
157

C H A P T E R

10
Handling Exceptions

Introduction 157
Using the Program Halt Handler 157

Handling Exceptions with CATCH and THROW 158

Example 160

How SCL Determines Which CATCH Block To Execute 160

Catching and Rethrowing Exceptions 162
Nested CATCH Blocks 163

The SCLThrowable and SCLException Classes 163

Introduction
SCL provides two mechanisms for handling error conditions:

The program halt handler
Program halt handlers typically allow your application to print a message, save
some information, and then either try to continue execution or halt the
application. The SCL generic program halt handler is sort of an all-purpose
routine for handling program halts that occur for a variety of different reasons at
any point in the program.

The CATCH and THROW statements
The SCLException class and the CATCH and THROW statements enable you to
define specific exceptions and recovery routines that are specific to each exception.
You can define the exceptions and recovery routines in the locations in your code
where the exceptions may be encountered, thus making error recovery code a
natural part of the program.

Using the Program Halt Handler
The program halt handler is designed to handle unexpected run-time errors. The

programHalt class contains methods that are called when certain run-time exceptions
occur. By overriding these methods, you can specify whether an application should halt
immediately or continue executing. You can control how exceptions are handled.

In the following example, the _onGeneric method creates a list named MSGS, inserts
information about the location where the application failed into the list, and displays
the list with the MESSAGEBOX function. You can use this code to create your own
program halt handler.

class myHalt extends
sashelp.classes.programHalt.class;

158 Handling Exceptions with CATCH and THROW 4 Chapter 10

_onGeneric:method / (STATE=’O’);
dcl list msgs=makelist();
rc = insertc(msgs, "SCL program failed at ", 1);
rc = insertc(msgs, "Entry=" || entry, 2);
rc = insertc(msgs, "Line=" || putn(lineNumber, "3.0"), 3);
if (keywordType = ’function’) then

rc = insertc(msgs, "Function=" || keyword, 4);
else

rc = insertc(msgs, "Method=" || keyword, 4);

rc = messageBox(msgs);

/* continue execution */
stopExecution = ’No’;

endmethod;
endclass;

Note: Entry, lineNumber, keyword, and keywordType are all object attributes that
are defined in the class sashelp.classes.programHalt.class. 4

The _onGeneric method traps any error messages that are generated by SCL and
saves them in the MSGS list. Developers can use this list to identify and fix potential
problems in their code.

The programHalt handler must be declared at the beginning of your application. For
example:

dcl myHalt obj = _new_ myHalt();

Your program can instantiate multiple programHalt handlers, or your program may
instantiate only one handler, but then call a second program that instantiates its own
handler. The last programHalt handler that is instantiated is the current programHalt
handler. Only the current programHalt handler is active at any one time.

SCL uses a stack to keep track of programHalt handlers. Each time a programHalt
handler is instantiated, the new instance is pushed onto the stack. The handler on the
top of the stack is always the active handler. Before a program terminates it must
terminate (using the _term method) its programHalt handler. For example:

obj._term();

Terminating a programHalt handler pops it from the stack, and makes the next
programHalt handler on the stack the active handler.

For example, if your program instantiates the programHalt handler, and then calls
another SCL program, the second program may also instantiate a programHalt handler.
The second programHalt handler becomes the current programHalt handler. Before the
second program ends, it must terminate the second programHalt handler. The first
programHalt handler then becomes the current programHalt handler. If the second
programHalt handler is not terminated, it will remain active even after the program
that instantiated it has terminated.

Handling Exceptions with CATCH and THROW
All exceptions are subclasses of the SCLException class, which is a subclass of the

SCLThrowable class. You can use the CLASS statement to define your own exception
classes, and then use the THROW and CATCH statements to handle the exception.

Because an exception is a class, you can design the class to contain any information
that is relevant to recovering from the specific exception. A simple exception class may

4 Handling Exceptions with CATCH and THROW 159

contain only an error message. For example, the following class defines a subclass of
SCLException called NewException, which defines an error message string named
SecondaryMessage:

Example Code 10.1 NewException Class

Class NewException extends SCLException
dcl string SecondaryMessage;

endclass;

You can then create a new instance of NewException and raise this exception with
the THROW statement,as shown in the ThrowIt class:

Example Code 10.2 ThrowIt Class

Class ThrowIt;
m: method;
dcl NewException NE = _new_ NewException(’Exception in method m’);
NE.SecondaryMessage = "There’s no code in m!";
throw NE;
endmethod;

endclass;

Note: You must always declare a variable to hold the thrown exception. 4

The code that processes the exception is enclosed in CATCH blocks. CATCH blocks
can contain any code needed to process the exception, including more CATCH and
THROW statements.

When an exception is thrown, normal execution of the entry stops, and SCL begins
looking for a CATCH block to process the thrown class. The CATCH block can contain
any statements needed to process the exception. For example, the following code prints
the stack traceback at the point of the throw.

do;
dcl NewException NE = new NewException(’Exception in method m’);
NE.SecondaryMessage = "There’s no code in m!";
throw NE;

catch NE;
put NE.getMessage(); /* Print exception information. */
call putlist(NE.traceback);
put NE.SecondaryMessage=; /* Print secondary message. */

endcatch;
end;

Note: CATCH blocks must always be enclosed in DO statements. 4

The traceback information that is printed by this example is stored automatically by
SCL when an exception is thrown. See “The SCLThrowable and SCLException Classes”
on page 163 for more information.

Note: When a CATCH block has finished executing, control transfers to the end of
the current DO statement, and the program resumes normal execution. If no exception
has been thrown and SCL encounters a CATCH block, control transfers to the end of
the current DO statement and execution resumes at that location. Therefore, any SCL
statements the occur between CATCH blocks or following the last CATCH block within
the same DO group will never be executed. Any SCL statements within the DO group
that are not part of a CATCH block but must execute must be entered at the beginning
of the DO group. 4

160 Example 4 Chapter 10

After an exception is processed, program execution continues normally.

Example
Suppose you have the following class Y. This class defines a method called update

that throws an exception that is an instance of the SCLException class.

import sashelp.classes;
class Y;
update: method;

if (_self_.readOnly) then
/* Throw an exception. Set message via constructor. */
throw _new_ SCLException(’Cannot update when in ready-only mode’);

endmethod;
endclass;

Class X defines method M, which declares a local variable to hold the exception, and
then calls the update method, which throws the exception. The exception is then
processed by the CATCH block for SCLE.

import sashelp.classes;
class X;
M: method;

do;
/* Declare the local exception variable. */
dcl SCLException scle;
dcl Y y = _new_ y();

/* Call update method, which throws SCLEception. */
y.update();

/* Process the SCLException. */
catch scle;

/* Print exception information. */
put scle.getMessage();
call putlist(scle.traceback);

endcatch;
end;

endmethod;
endclass;

How SCL Determines Which CATCH Block To Execute
SCL uses the scope of the DO group that contains the CATCH block and the class of

the exception to determine which CATCH block to execute.

� SCL first looks in the scope of the DO group where the exception was initially
thrown. If SCL does not find a corresponding CATCH block, it expands its search
outward to the next enclosing DO group.

Note: If you are rethrowing an exception that has been thrown and caught at
least once already, then SCL automatically passes the exception outside of the DO
group where the exception was rethrown. 4

SCL continues expanding the scope of its search until it finds a corresponding
CATCH block or it has searched the current SCL entry. If the current SCL entry

4 How SCL Determines Which CATCH Block To Execute 161

does not contain a CATCH block for the thrown class, then the exception is passed
up the stack to the calling entry where the process is repeated. If the calling entry
contains a CATCH statement for the thrown class, then execution resumes at the
location of the CATCH statement. If the calling entry does not contain a CATCH
statement for the thrown class, then the exception is passed up the stack until
SCL finds a corresponding CATCH statement or until the stack is completely
unwound. If SCL does not find a corresponding CATCH statement, then the
exception is treated the same as a program halt.

� SCL uses the class hierarchy to determine which CATCH block to execute. Within
the scope that it is currently searching, SCL chooses the CATCH block for the
class that is most closely related to the class of the thrown exception. For example,
if the current scope contains a CATCH block for the thrown class, then SCL will
execute that CATCH block. If the current scope does not contain a CATCH block
for the thrown class, but does contains a CATCH block for the parent class of the
thrown exception, then SCL will execute the CATCH block for the parent class. If
none of the CATCH blocks in the current scope are related to the thrown class,
then SCL continues its search for an appropriate CATCH block.

Suppose that in addition to the NewException class (see Example Code 10.1 on page
159) you define a subclass of NewException called SubException:

Example Code 10.3 SubException Class

Class SubException extends NewException
...code to process SubExceptions...

endclass;

As with all exceptions, SCL first searches the current DO group for a CATCH block that
is related to the thrown class. In this example, because NEsub is an instance of
SubException and SubException is a subclass of NewException, SCL will execute the
CATCH block for NE because it is in the scope of the current DO group. The CATCH
block for NEsub is in a different scope (the outer DO group), so it will not be executed
unless the CATCH block for NE is modified to rethrow (see “Catching and Rethrowing
Exceptions” on page 162) the exception. If the CATCH block for NE rethrows the
exception, then both CATCH blocks will be executed.

Example Code 10.4 Nested DO Statements

dcl NewException NE;
dcl SubException NEsub;

do;
do;
NEsub = _new_ SubException(’Exception in method m’);
NEsub.SecondaryMessage = "There’s no code in m!";
throw NEsub;

catch NE;
put NE.getMessage(); /* Print exception information. */
call putlist(NE.traceback);
put NE.SecondaryMessage=; /* Print secondary message. */
/* Could rethrow the NEsub exception if needed. */

endcatch;
end;

/* The following CATCH block will not be executed */
/* unless the CATCH block for NE rethrows the exception. */

162 Catching and Rethrowing Exceptions 4 Chapter 10

catch NEsub;
...code to process NEsub exceptions...

endcatch;
end;

Catching and Rethrowing Exceptions
Each entry in the stack can process an exception and then pass it back up the stack

by rethrowing it, which allows the calling entry to perform additional processing. Each
entry can perform whatever processing is relevant to that entry.

do;
catch e1;

...process the exception...
throw e1; /* Rethrow the exception. */

endcatch;
end;

Note: If an exception is rethrown within a CATCH block, no CATCH block within
the same scope can recatch the exception. The exception is passed out of the scope
where it was thrown. 4

If SCL finds a second CATCH block for E1 within the same SCL entry but outside of
the scope of the DO group where the exception was thrown, then execution continues
with that second CATCH block. If SCL does not find another CATCH block for E1 in
that same SCL entry, then the exception is passed up the stack to the calling entry.

Suppose you have defined the NewException class (see Example Code 10.1 on page
159) and the ThrowIt class (see Example Code 10.2 on page 159). The following
program section calls method M, which throws the exception NE. The two CATCH
blocks catch, rethrow, and recatch the exception.

init:
dcl ThrowIt TI = _new_ThrowIt();
dcl NewException NE;
do;

do;
TI.m();

catch NE;
put ’caught it’;
throw NE;

endcatch;
end;

catch NE;
put ’caught it again’;

endcatch;
end;
return;

Note: You cannot define multiple CATCH blocks for the same exception within the
same scope. 4

4 The SCLThrowable and SCLException Classes 163

Nested CATCH Blocks
You can nest CATCH blocks. For example, suppose you define the class W as follows:

class w;
m: method n:num;
do;
dcl e1 e1;
dcl e2 e2;

do;
if (n < 0) then throw _new_ e2();

else throw _new_ e1();
catch e2;

put ’caught inner e2’;
do;
dcl e1 e1;
if (n<0) then throw _new_ e2();

else throw _new_ e1();
catch e1;

put ’caught inner e1’;
endcatch;
end;

endcatch;
end;
catch e1;

put ’caught outer e1’;
endcatch;

catch e2;
put ’caught outer e2’;

endcatch;
end;
endmethod;
endclass;

If you invoke method M with a negative argument as in the following program
section:

init:
dcl w w = _new_ w();
w.m(-2);
return;

then the output would be

caught inner e2
caught outer e2

The SCLThrowable and SCLException Classes
All exceptions are subclasses of the SCLException class, which is a subclass of the

SCLThrowable class. When an exception is thrown, SCL automatically stores the name
of the entry that throws the exception, the line number where the throw occurs, and the
stack traceback at the point of the throw. You can set the message attribute via the

164 The SCLThrowable and SCLException Classes 4 Chapter 10

constructor when an instance of the exception is created. You can use the getMessage
method to return the message.

Example Code 10.5 SCLThrowable Class

class SCLThrowable;
public string(32767) message;
public list traceback; /* stack traceback */
public string entry; /* SCL entry name */
public num line; /* line number */

SCLThrowable: public method s:string;
message = s;

endmethod;

getMessage: public method return=string;
return message;

endmethod;
endclass;

Example Code 10.6 SCLException Class

class SCLException extends SCLThrowable;
SCLException: public method /(state=’o’);

_super("SCLException");
endmethod;

SCLException: public method s:string /(state=’o’);
_super(s);

endmethod;
endclass;

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–495–0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

