165

CHAPTER

11

Using SAS Tables

Introduction 165

Accessing SAS Tables 166

Assigning Librefs 166

Opening SAS Tables 166
Number of Open SAS Tables Allowed 167

SAS Table and SCL Data Vectors 167
Access Control Levels 168
Specifying a Control Level 169

Reading SAS Tables 169
Linking SAS Table Columns And SCL Variables 169

Matched Column and Variable Names 169
Unmatched Column and Variable Names 170

Determining a Column’s Position in a SAS Table 170
Using Table-Lookup Techniques 171

Controlling Access to SAS Table Rows 171
Permanently Subsetting Data 171
Temporarily Subsetting Data 172
Searching with WHERE versus LOCATEC or LOCATEN 172
Searching Efficiently 172
Undoing WHERE Clauses 173

Changing the Sequence of Reading Rows 173

Updating SAS Tables 173
Appending Rows 174
Deleting Rows 174
Remaining Rows Not Renumbered 174
Renumbering Rows 174

Closing SAS Tables 175

Determining Attributes of SAS Tables and Columns 175
Querying Attributes of SAS Tables 175
Querying Attributes of SAS Table Columns 176
Defining New Columns 176

Performing Other SAS Table Operations 176

Preserving the Integrity of Data 177

Manipulating SAS Table Indexes 177

Introduction

SCL provides a group of features that can read or manipulate data stored in SAS
tables. For example, you may want an SCL program to update one or more SAS tables,
based on user transactions from a single user interface. For a data entry and retrieval

166 Accessing SAS Tables A Chapter 11

system, you may want to use a secondary table to supplement the primary table. You
might use the secondary table as a lookup table for sophisticated error checking and
field validation. In addition, you may want to manipulate SAS tables to perform tasks
like the following:

o displaying table values in a window

O creating a new table

O copying, renaming, sorting, or deleting a table
O indexing a SAS table.

Many functions that perform SAS table operations return a SAS software return
code, called sysrc. Chapter 14, “SAS System Return Codes,” on page 227 contains a list
of return codes with a section for operations that are most commonly performed on SAS
tables. You can check for these codes to write sophisticated error checking for your SCL
programs.

The following sections describe the tasks that SCL programs can perform on SAS
tables, along with summary information about the SCL function or routine to use to
perform that task. These functions and routines are described in Chapter 16, “SAS
Component Language Dictionary,” on page 249.

Accessing SAS Tahles

Before an SCL program can access the values in a SAS table, a communication link
must be established between SAS software, the SAS tables, and the SCL program. You
link SAS software to the tables by assigning librefs to the data libraries in which the
SAS tables are stored. You complete the communication by linking the SAS tables and
the SCL program, using the OPEN function to open the SAS tables. (Some SCL
routines, such as CALL FSEDIT and CALL FSVIEW automatically open the SAS table
that they are displaying. Therefore, the OPEN function is not needed to open the
specified table.)

Assigning Librefs

SCL provides the LIBNAME function for assigning a libref in an SCL program. You
can also assign librefs outside an SCL program that works with SAS tables by putting
the appropriate LIBNAME statement in the application’s start-up file, the autoexec file.
For more information about assigning librefs outside an SCL program, see the SAS
software documentation for your host operating system.

If you have SAS/SHARE software or SAS/CONNECT software installed at your
location, you can also use Remote Library Services (RLS) to assign librefs. RLS gives
your SCL applications “read” or “write” access to SAS tables, views and catalogs across
hardware platforms and SAS releases. Once an RLS libref is established, the RLS
functionality is transparent to SAS tables and views in SCL programs. Catalog
compatibility across platforms is architecture dependent. For further information, see
SAS/SHARE User’s Guide.

Opening SAS Tables

To open a SAS table, use the OPEN function. Opening a SAS table provides the
gateway through which an SCL program and a SAS table can interact. This process

Using SAS Tables A SAS Table and SCL Data Vectors 167

does not actually access the information in a SAS table, but it makes the table available
for the program’s use. To access the data in the SAS table, the program must perform
“read” operations on the table. When you open a SAS table, the following actions take
place:

O The SAS table data vector (TDV) for the table is created to store copies of the
table’s column values.

o A unique numeric identifier is assigned to the SAS table. This identifier is used by
other functions that manipulate data.

o An access control level is assigned to the SAS table. This control level determines
the level of access to the SAS table that is permitted to other users or applications
that try to use the SAS table at the same time.

The identifier number identifies the table to the application, and you pass it to other
SCL functions that manipulate the SAS table. Because this number is unique for each
table that is currently open, it is useful for tracking multiple SAS tables that are open
at the same time.

Note: If for some reason a SAS table cannot be opened, the OPEN function returns
a value of O for the table identifier. Therefore, to determine whether a SAS table has
been opened successfully, you should test the value of the return code for the OPEN
function in your SCL program. Doing this ensures that you don't cause a program to
halt by passing a 0 to another function that uses that SAS table identifier. To
determine why the table could not be opened, use the SYSMSG function to retrieve the
message that is associated with the return code. 2o

Number of Open SAS Tahles Allowed

An application can have a maximum of 999 SAS tables open simultaneously.
However, your operating system may impose other limits. For details, see the
documentation provided by the vendor for your operating system.

Although SCL permits you to have a large number of tables open simultaneously, be
aware that memory is allocated for each SAS table from the time the SAS table is
opened until it is closed. Therefore, try to minimize the number of tables that are open
at the same time, and close them as soon as a program finishes with them for that
session.

SAS Table and SCL Data Vectors

When an application opens a SAS table, its TDV is empty. However, to enable the
program to work with the SAS table columns, SCL provides functions for copying table
rows one at a time from the SAS table to the TDV. Once column values for a row are in
the TDV, you can copy these values into the SCL data vector (SDV), and the application
can manipulate the column values.

Before you can display or manipulate the values of SAS table columns, those columns
must be linked to SCL variables through the TDV and the SDV. Special SCL functions
and storage locations facilitate the transfer of values between SAS table columns and
SCL variables. Figure 11.1 on page 168 illustrates the SDV and TDV that are created
for an application that opens a SAS table. This figure shows the paths that rows take
when they are read from the table, displayed in the window, processed, and then
returned to the table.

168 Access Control Levels A Chapter 11

Figure 11.1 Path of Data in SAS Table “Read” and “Write” Operations

Application
Window SAS Table
I _—> 4¢—uw Q0
0z EZ
w o < w
x> [als
T 5%
v & Fields
omm - n
>Zzz om
Z o4 (=
@) m > 0
m po) = T
- m 3
Qm
— -
(oM@
25
= m
SET m
SCL Data Vector Table Data Vector
(SDV) (TDV)
<4+——GETVARC/N
—» * % % * % % * % % * % %
PUTVARC/N—,
) —
System Window, Nonwindow, & Special Variables
Variables Variables

Two steps are required in order to transfer data from an open SAS table to an SCL
program:

1 The values of the columns in a row in the open SAS table are copied into the TDV.

2 The values of the columns in the TDV are copied to the SDV, which contains all of
the SCL variables (window variables, nonwindow variables, system variables, and
so on). The transfer of data from the TDV to the SDV can be either automatic
(when the SET routine is used) or under program control (when the GETVARC or
GETVARN functions are used).

Once the values are in the SDV, you can manipulate them by using SCL statements.
Two steps are also required in order to transfer data from an SCL program to an open
SAS table:

1 The column values in the SDV are transferred to the TDV. The transfer of data
from the SDV to the TDV can be either automatic (when the SET routine is used)
or under program control (when PUTVARC or PUTVARN is used).

2 The values in the TDV are written to the columns in a row in the open table.

Access Gontrol Levels

When a SAS table is opened, SAS software determines the control level for the table.
The control level determines the extent to which access to the table is restricted. For
example, an application may be able to gain exclusive update access to the entire SAS
table, or it may be able to gain exclusive update access to only the row that is currently
in use. In either case, there are ramifications for any users or applications that need to
access the SAS table at the same time. You can open a SAS table with one of the
following control levels:

RECORD
provides exclusive update access only to the SAS table row that is currently in the
TDV (as with the FETCH and FETCHOBS functions). With this control level, the

Using SAS Tables A Linking SAS Table Columns And SCL Variables 169

same user can open the same SAS table multiple times (multiple concurrent
access). In addition, if SAS/SHARE software is used, then multiple users can open
the same SAS table simultaneously for browsing or for editing. For more
information, see SAS/SHARE User’s Guide.

MEMBER
provides exclusive update access to an entire SAS table. While this control level is
in effect, no other user can open the table, and the same user cannot open the
table multiple times.

Specifying a Control Level

When you use the OPEN function to open a SAS data set in UPDATE mode, by
default the table is opened with RECORD-level control. However, in SCL you can use
the OPEN function with the SAS data set option CNTLLEV= to set the control level
when a SAS table opens. See “OPEN” on page 576 for more information.

Reading SAS Tahles

You may want to use an SCL program to manipulate column values from SAS
tables. For example, you may want to do one or more of the following:

o display data values in a window
o use the values in arithmetic calculations
o determine data values before taking certain actions.

Before a program can manipulate the data, it must read the data from the table.
After column values are changed, the program can update the values of columns in the
table. In addition to updating existing column values, programs also can add new rows
or delete obsolete rows.

After a SAS table is open, you can access any column value for any row in the SAS
table. The first step in accessing the data involves reading (or copying) a row from the
SAS table to the TDV—for example, by using the FETCH function. By default, the
FETCH function starts with the first row in the SAS table and reads the next row from
the SAS table each time it executes.

Linking SAS Table Columns And SCL Variables

The next step in accessing the data is to link the SAS table columns in the TDV with
the SCL window variables and nonwindow variables in the SDV. The function that you
use depends on whether the SCL variables and SAS table columns have the same name
and type. If an application has some SCL variables that match SAS table columns and
others that do not, then you can use a combination of these techniques.

Matched Column and Variable Names

If columns of a SAS table and SCL variables have the same names and types, then
you can use the SET routine to link all of them automatically with a single program
statement. The SET routine is typically invoked immediately following the OPEN
function.

Note: If you use the SET routine and then also use the PUTVARC or PUTVARN
routine for an SCL variable that has a matching SAS table column, the SET routine

170

Determining a Column’s Position in a SAS Table A Chapter 11

overrides the PUTVARC or PUTVARN routine. Doing this is inefficient because
duplicate actions are performed. A

Unmatched Column and Variable Names

When the SCL variables do not have the same names or types as SAS table columns,
you must use a GETVARC or GETVARN statement (for character and numeric values,
respectively) for each unmatched column to link them from the TDV to the SDV. Once
the columns have been manipulated, use an individual PUTVARC or PUTVARN routine
to link each one from the SDV back to the TDV.

Note: The GETVARC and GETVARN functions establish only a temporary link
between a SAS table column and an SCL variable. When the statement executes, the
columns are linked. After the statement executes, the link is terminated. Therefore,
you must use the GETVARC or GETVARN function one time for each SAS table column
that you want to link. This is different from the SET routine, which establishes a
permanent link between any matching SAS table and SCL variables until the open SAS
table is closed. »

Determining a Column’s Position in a SAS Table

Some functions, such as GETVARC, GETVARN, PUTVARC and PUTVARN, require
the position of a column in the SAS table row. Use the VARNUM function to determine
the position, and then use the position repeatedly throughout your program. The
following example uses the VARNUM function to determine the position of several
columns. After the column positions have been determined, the program links to a
labeled section called GETVALUE to determine the column values.

INIT:
control enter;
houses=open(’'sasuser.houses’,'u’);
if (houses=0) then _msg_=sysmsg();
else
do;
vtype=varnum(houses, 'style’);
vsize=varnum(houses, 'sqfeet’);
vbedrms=varnum(houses, 'bedrooms’) ;
vbathrms=varnum(houses, 'baths’);
vaddress=varnum(houses, 'street’);
vcost=varnum(houses, 'price’);
link getvalue;
end;
return;

MAIN:
...more SCL statements...
return;

TERM:
if (houses>0) then rc=close(houses);
return;

GETVALUE:
rc=fetch(houses);
type=getvarc (houses, vtype);

Using SAS Tables A Permanently Subsetting Data 17

size=getvarn(houses,vsize);

bedrms=getvarn(houses,vbedrms) ;

bathrms=getvarn(houses,vbathrms);

address=getvarc (houses,vaddress);

cost=getvarn(houses,vcost);
return;

Using Table-Lookup Techniques

Table lookup, the process of looking up data in a data structure, has several useful
applications for data entry applications. For example, you may want to display certain
information in a window based on a value that a user has entered. If this information is
stored in another SAS table, then you can use table-lookup techniques to read and
display this information. In addition, you can use table lookup to perform field
validation by ensuring that a value entered by a user is a value that is contained in a
specified SAS table.

To validate a field value, you can use the LOCATEC, LOCATEN, or WHERE function
to search a secondary SAS table for a specific character or numeric value that has been
entered by a user. For example, you might want to make sure that users enter names
that exist in another SAS table. You also can use these techniques to display text from
a secondary SAS table, based on values that users enter in the fields. For example,
when a user enters a valid name in the Employee Name field, you can look up the
associated sales region and sales to date in the secondary SAS table and then display
this information in the window.

Controlling Access to SAS Tahle Rows

For many applications, you may want an SCL program to read from a SAS table only
the rows that meet a set of search conditions. For example, if you have a SAS table that
contains sales records, you may want to read just the subset of records for which the
sales are greater than $300,000 but less than $600,000. To do this, you can use
WHERE clause processing, which is a set of conditions that rows must meet in order to
be processed. In WHERE clause processing, you can use either permanent or temporary
WHERE clauses.

Permanently Subsetting Data

A permanent WHERE clause applies a set of search conditions that remain in effect
until the SAS table is closed. You might use a permanent WHERE clause to improve
the efficiency of a program by reading only a subset of the rows in a SAS table. You
might also want to use a permanent WHERE clause in applications when you want to
limit the SAS table rows that are accessible, or visible, to users. For example, if you are
working with a large SAS table, users may not need access to all the rows to use your
application. Or, for security reasons, you may want to restrict access to a set of rows
that meet certain conditions.

SCL provides several features that enable you to subset a SAS table based on
specified search conditions. To apply a permanent WHERE clause to a SAS table, you
can use the SAS data set option WHERE= with the OPEN function. For example, the
following WHERE clause selects only the records for which the sales are greater than
$300,000 but less than $600,000:

172

Temporarily Subsetting Data A Chapter 11

/* Open the SAS table and display a */
/* subset of the SAS table rows */
salesid=open
("sample.testdata(where=((sales > 300000)"||
"and (sales < 600000)))",'i");

You can also use the WHERE= option in SCL with the FSEDIT and FSVIEW routines.

Temporarily Subsetting Data

In addition to restricting access to SAS table rows, you may want to enable users to
subset the accessible records even further. In this case, you can use the WHERE
function to apply a temporary WHERE clause. A temporary WHERE clause applies a
set of search conditions that can be modified or canceled by subsequent SCL statements.
For example, you could apply a temporary WHERE clause like the following:

rc=where(dsid, 'SSN="| |ssn);

When a SAS table is indexed, you can use the SETKEY function for subsetting. For
example, if a SAS table is indexed on the column SSN, you could use:

rc=setkey(dsid, 'SSN’, ‘eq’);

Searching with WHERE versus LOCATEC or LOCATEN

You can search efficiently with the WHERE function if you are working with a large
SAS table that is indexed by the column or columns for which you are searching. It is
also appropriate to use the WHERE function when you are using an expression that
involves several columns to locate rows.

However, you can use LOCATEC or LOCATEN to find a row when one or more of the
following conditions are met:

o The SAS table is small.

O You are searching for one row that meets a single search condition (for example,
the row that contains a particular name).

O You are looking for one row that meets a single search condition in a large SAS
table, if the SAS table is sorted by the column for which you are searching, and if
you are using the more efficient binary search. See the following section for more
information.

Searching Efficiently

By default, LOCATEC and LOCATEN search a SAS table sequentially. However, a
sequential search is not always the most efficient way to locate a particular row,
especially if your SAS table has been sorted. If a SAS table has already been sorted by
the column for which you want to search, you can specify a faster, more efficient binary
search. For a binary search, use an additional optional argument with LOCATEC or
LOCATEN to specify the order in which the SAS table has been sorted (A for ascending
order or D for descending order). For example, assuming that the SAS table
MYSCHOOL.CLASS has been sorted in ascending order by NAME, you can use the
following statements to perform a binary search:

dsid=open('myschool.class’);
vnum=varnum(dsid, ‘'name’);

Using SAS Tables A Updating SAS Tables 173

sname='Gail’;
val=locatec(dsid,vnum,sname,'a’);

Undoing WHERE Clauses

WHERE clauses impose certain restrictions on other SCL functions that manipulate
data. Therefore, in some cases, you may need to undo a WHERE clause in an SCL
program before using other functions. When you specify a WHERE clause, the WHERE
conditions replace the conditions that were specified in the previous WHERE clause.
However, you can augment a WHERE condition with the ALSO keyword. For example,
the following WHERE clause adds the condition of "age greater than 15" to an existing
WHERE clause:

rc=where(dsid, 'also age > 15');

To undo the condition that was added by the ALSO keyword, you could use the
following statement:

rc=where(dsid, 'undo’);

To undo (or delete) a temporary WHERE clause, use the WHERE function and
specify only the SAS table identifier argument. This process undoes all temporary
WHERE clauses that are currently in effect.

Changing the Sequence of Reading Rows

When an application displays a subset of a SAS table, you may want to let users
display and scroll through all rows that meet the search conditions. To do this, you can
use a set of SCL functions that reread table rows. For example, when a program
displays the first row that meets the conditions, SCL provides functions that you can
use to mark the row. Then a user can continue to search the rest of the SAS table for
any other rows that meet the search conditions, counting them along the way. After
finding the last row that meets the search conditions, the user can redisplay the first
row in the subset (the row that was marked earlier). The following sequence of steps
implements this technique:

1 Use the NOTE function to mark a row in the subset for later reading.

2 Use the POINT function to return to the marked row after you have located all
rows that meet the search conditions.

3 Use the DROPNOTE function to delete the NOTE marker and free the memory
used to store the note after the program finishes using the noted row.

Updating SAS Tables

When a table row is read, its data follow a path from the SAS table through the
TDV to the SDV, where finally they can be manipulated. After the data is manipulated,
it must follow the reverse path from the SDV through the TDV back to the SAS table.
If you use the SET routine to link the values from the TDV to the SDV, then any
changed values are automatically linked from the SDV back to the TDV. If you do not
use SET, then you must explicitly copy the value of each variable to the TDV. In either
case, you use the UPDATE function to copy the values from the TDV to the SAS table.

174

Appending Rows A Chapter 11

Appending Rows

To add new rows to a SAS table rather than updating the existing rows, use the
APPEND function. If the SCL variables have the same name and type as the SAS table
columns and you use the SET routine to link them, then using the APPEND function is
straightforward, and the values are automatically written from the TDV to the SAS
table.

Note: If the program does not use the SET routine, or if the APPEND function is
used with the NOSET option, a blank row is appended to the SAS table. This is a
useful technique for appending rows when the SCL program or the window variables do
not match the SAS table columns. For example, when the SET routine is not used, you
would use a sequence of statements like those below to append a blank row and then
update it with values. A

rc=append (dsid);
.. .PUTVARC or PUTVARN program statement(s)...
rc=update(dsid);

Deleting Rows

To delete rows from a SAS table, use the DELOBS function. In order to use this
function, the SAS table must be open in UPDATE mode. The DELOBS function
performs the following tasks:

o marks the row for deletion from the SAS table. However, the row is still physically
in the SAS table.

o prevents any additional editing of the row. Once a row has been marked for
deletion, it cannot be read.

Remaining Rows Not Renumbered

Although deleted rows are no longer accessible, all other rows in the SAS table
retain their original physical row numbers. Therefore, it is important to remember that
a row's physical number may not always coincide with its relative position in the SAS
table. For example, the FETCHOBS function treats a row value as a relative row
number. If row 2 is marked for deletion and you use FETCHOBS to read the third row,
FETCHOBS reads the third non-deleted row—in this case, row 4. However, you can use
FETCHOBS with the ABS option to count deleted rows.

Non-deleted rows are intentionally not renumbered so that you can continue to use
row numbers as pointers. This is important when you are using the FSEDIT procedure
or subsequent SAS statements that directly access table rows by number, such as the
POINT= option in a SAS language SET statement.

You can control row renumbering if necessary. See the next section for details.

Renumbering Rows
To renumber accessible SAS table rows, an SCL program must use one of the
following techniques to process the SAS table:

o Sort the table, using either the SORT function in SCL or the SORT procedure. If
the SAS table is already in sorted order, then you must use the FORCE option.

Using SAS Tables A Querying Attributes of SAS Tables 175

Note: The SORT function and PROC SORT do not sort and replace an indexed
SAS table unless you specify the FORCE option, because sorting destroys indexes
for a SAS table.

o Copy the table, using either the COPY function in SCL or the COPY procedure. In
this case, the input and output tables must be different. The output table is the
only one that is renumbered.

O Read the remaining data table rows, using the SAS language SET statement in a
DATA step (not the SCL SET statement), and write these rows to a data table. To
avoid exiting from SCL, you can use a submit block. For example:

houseid=open(’'sasuser.houses’,'u’);
...SCL statements that read rows and delete rows...
submit continue;
data sasuser.houses;
set sasuser.houses;
run;
endsubmit;

Closing SAS Tahles

After an SCL program has finished using a SAS table, the program should close the
table with the CLOSE function at the appropriate point in your program. If a SAS table
is still open when an application ends, SAS software closes it automatically and
displays a warning message. In general, the position of the CLOSE function should
correspond to the position of the OPEN function, as follows:

o If the OPEN function is in the initialization section, then put the CLOSE function

in the termination section.

o If the OPEN function is in MAIN, then put the CLOSE function in MAIN.

Note: If you're designing an application system in which more than one program
uses a particular SAS table, and if the identifier for this table can be passed to
subsequent programs, then close the SAS table in the termination section of the
program that uses the table last. o

Determining Attributes of SAS Tables and Columns

SCL provides features for determining characteristics (or attributes) of the SAS table
or columns with which a program is working. For example, one approach is to open a
table, determine how many columns are in the table, and then set up a program loop
that executes once for each column. The loop can query the attributes of each column.
To do this, the program needs to determine how many columns are in the SAS table, as
well as the name, type, length, format, informat, label, and position of each column.

Querying Attributes of SAS Tables

SAS tables have a variety of numeric and character attributes associated with them.
These attributes can provide some basic information to your SCL program. For

176

Querying Attributes of SAS Table Columns A Chapter 11

example, to determine the number of columns in an existing SAS table, use the NVARS
argument with the ATTRN function. For a list of other table attributes and how to
retrieve them, see “ATTRC and ATTRN” on page 258.

Querying Attributes of SAS Tabhle Columns

Columns in a SAS table also have several attributes that your program may need to
qguery. Here is a list of column attributes and the SCL functions that you can use to
retrieve those attributes:

name VARNAME function
number VARNUM function
data type VARTYPE function
length VARLEN function
label VARLABLE function
format VARFMT function
informat VARINFMT function.

Defining New Columns

After determining the name, type, length, label, format, and informat of each
column, you can add a new column that has these attributes to the column list for a
new SAS table. To do this, first use the OPEN function with the N argument (for NEW
mode), and then use the NEWVAR function.

CAUTION:
Your program should check to see whether the SAS table exists before opening it in NEW
mode. When used with the N argument (for NEW mode), the OPEN function
replaces an existing SAS table that has the same name. If you do not want to delete
an existing SAS table by opening it in NEW mode, then use the EXIST function to
confirm that the table does not exist before using OPEN to create a new SAS table. 2

Performing Other SAS Tahle Operations

There are other SCL functions that you can use to perform operations on SAS tables.
The tasks that you can perform, along with the function to use, are as follows:

o To copy a table, use the COPY function. By default, if the target file already exists,
the COPY function replaces that file without warning. To avoid unintentionally
overwriting existing files, your program should use the EXIST function to
determine whether the target file exists before executing the COPY function. (You
can use COPY with a WHERE clause to create a new table that contains a subset
of the rows in the original table.)

O To create a new table, use the OPEN function with the N option. (The table must
be closed and then reopened in UPDATE mode if the program will update it).
Then, use NEWVAR to create columns.

O To enable users to create a new table interactively, use the NEW function.

O To enable users to create a new table interactively from an external file, use the
IMPORT function or the IMPORT wizard.

Using SAS Tables A Manipulating SAS Table Indexes 177

O To delete a table, use the DELETE function. (The table must be closed).
o To rename a table, use the RENAME function. (The table must be closed.)
o To sort a table, use the SORT function. (The table must be open in UPDATE mode.)

Preserving the Integrity of Data

SCL provides a group of functions that specify and enforce integrity constraints for
SAS tables. Integrity constraints preserve the consistency and correctness of stored
data, and they are automatically enforced for each addition, update, and deletion
activity for a SAS table to which the constraints have been assigned. For such a table,
value changes must satisfy the conditions that have been specified with constraints.

There are two basic types of integrity constraints: general constraints and referential
constraints. The following list shows the specific types of integrity restraints that you
can apply through SCL. The first four items are general constraints, which control
values in a single SAS table. The last item is a referential constraint, which establishes
a parent-child relationship between columns in two or more SAS tables.

o A column can contain only non-null values.

o A column can contain only values that fall within a specific set, range, or list of
values, or that duplicate a value in another column in the same row.

o A column can contain only values that are unique.
o A column that is a primary key can contain only values that are unique and that
are not missing values.

o A column that is a foreign key (the child) can contain only values that are present
in the associated primary key (the parent) or null values. A column that is a
primary key can contain only values that cannot be deleted or changed unless the
same deletions or changes have been made in values of the associated foreign key.
Values of a foreign key can be set to null, but values cannot be added unless they
also exist in the associated primary key.

SCL provides the following functions for creating and enforcing integrity constraints:

ICCREATE
creates and specifies integrity constraints for a SAS table.

ICDELETE
drops an integrity constraint.

ICTYPE
returns the type of constraint that is assigned to a SAS table.

ICVALUE
returns the varlist or WHERE clause that is associated with an integrity
constraint.

For more information about integrity constrains, see SAS/SHARE User’s Guide.

Manipulating SAS Table Indexes

When you develop an application that creates a SAS table, you may want to give
users the option of creating an index for the table. An index, which provides fast access
to rows, is an auxiliary data structure that specifies the location of rows, based on the
values of one or more columns, known as key columns. Both compressed and

178

Manipulating SAS Table Indexes A Chapter 11

uncompressed SAS tables can be indexed by one or more columns to aid in the
subsetting, grouping, or joining of rows. SAS table indexes are particularly useful for
optimizing WHERE clause processing.

SCL provides a set of functions for creating and manipulating SAS table indexes.
However, SCL functions are just one way of building and querying SAS table indexes.
Other ways include:

o the DATASETS procedure in base SAS software

o the INDEX= option (when you are creating a SAS table)

o the SQL procedure in base SAS software.

There are two types of indexes: simple indexes and composite indexes. A simple
index is an index on a single column, and a composite index is an index on more than
one column. A SAS table can have multiple simple indexes, multiple composite indexes,

or a combination of simple and composite indexes.
SCL provides the following functions for manipulating indexes:

ICREATE
creates an index for SAS tables that are open in UTILITY mode.
IVARLIST
returns a list of one or more columns that have been indexed for the specified key
in the table.
ISINDEX
returns the type of index for a column in a SAS table, as follows:
BOTH The column is a member of both simple and composite indexes.
COMP The column is a member of a composite index.
REG The column is a member of a regular (simple) index.
(blank) No index has been created for the specified column.
IOPTION

returns a character string that consists of the options for the specified key and
index columns. The options are separated by blanks.

IDELETE
deletes an index for a SAS table that is open in UTILITY mode. You can delete an
index when a program finishes with it, or if you find that the index is not operating
efficiently. Keep in mind that indexes are not always advantageous. Sometimes
the costs outweigh the savings. For a detailed discussion of when to use indexes,
see the information about SAS files in SAS Language Reference: Concepts.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS®
Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS’ Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-495-0

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

