
177

A P P E N D I X

3
Tuning Tips for Applications
That Use SAS/SHARE Software

Authors 178
Abstract 178

Overview 178

The SAS Data Library Model 179

How Data Flows When You Use SAS Files 179

SAS Data Files 179
SAS Data Views 180

SAS Catalogs 181

Concurrent Access: Update versus Read-only 181

Computer Resources Used by a Server 182

CPU 182

I/O 183
Memory 184

Messages 185

Minimizing and Optimizing Resource Consumption 186

Programming Techniques 186

Clean Up Your Data Files 186
Choose the Appropriate Subsetting Strategy 187

Index Wisely 187

Look at a Clock Before You Create an Index 187

Choose Page Size Wisely 187

Understand and Control Random Access 188
Specify Sequential Access when an SCL Program Doesn’t Need Random Access 188

Limit the Number of Files Open During Execution of an SCL Program 189

Evaluate Each Report’s Timeliness Requirement 189

Be Aware of How Frequently Each File is Updated 190

Know Your Application’s DATA Step Views 190

Tuning Options in SAS/SHARE Software 190
TBUFSIZE= PROC SERVER Option 191

TOBSNO= Data Set Option 192

TBUFNO= PROC SERVER Option 192

RMTVIEW= and NORMTVIEW Options 193

LRPYIELD= PROC SERVER Option 194
Multiple Servers 194

SAS System Options 194

BUFSIZE= Option 194

COMPRESS= Option 195

Using Operating System Tools 195
Managing CPU 196

Managing I/O 196

Managing Memory 196

178 Authors 4 Appendix 3

Conclusion 197

Authors
The authors of this paper are: Steve Beatrous, Bill Brideson, Dan Squillace, and Jan

Squillace.

Note: This is a reprint from the Twenty-First Proceedings of the Annual SAS Users
Group International Conference, Chicago, Illinois, 1996. 4

Abstract
SAS has many tuning options, most of which are left at their default values. When

an application accesses data through a SAS/SHARE server, sometimes the default
values provide adequate performance and sometimes they do not.

SAS software is delivered to you properly tuned for a typical application that uses
SAS/SHARE software. SAS Institute makes some assumptions about the kind of
processing that is going to take place in a typical application. Recognizing that your
application may not be typical, SAS supplies tuning options that you can use to override
default behavior.

This paper discusses programming techniques and option value adjustments that you
can use to improve the performance of your applications that access data through
servers. The information in this paper is the result of tuning several large applications
that are in use at SAS Institute.

Overview
This paper was originally presented at SUGI 18. Since that time, client/server

applications have become more common. The paper is being updated and presented
again because there is a growing audience interested in tuning their client/server
applications.

This paper will give you some ideas to help you develop SAS applications that make
the most efficient use of concurrent access to SAS files. Since this audience is composed
of people with different amounts of experience developing applications that use
concurrent access to data, the first part of the paper will focus on overviewing the
general model for accessing data in SAS. The later parts of the paper will draw on the
general data model to describe how to tune a client/server application.

Since introducing SAS/SHARE software in 1987, SAS Institute has compared two
contrasting images to show the additional capability that SAS/SHARE software brings
to SAS. One image shows a user’s SAS session accessing files directly; the other image
shows a user’s SAS session connected to a server’s session and the server’s session
accessing the files directly. The essential difference is that the data in a file that is
accessed through a server travels through two SAS sessions whenever it is accessed. Of
course, a server controls concurrent access to the data that is read and written through
it, so its overhead has an important purpose. But it is important to remember that data
accessed through a server requires more computing resources than data accessed
directly.

One or more servers can execute at the same time on a single computer or in a
network of computers. You can use different servers for different applications, or you
can use a few servers to distribute the load of many applications.

Tuning Tips for Applications That Use SAS/SHARE Software 4 SAS Data Files 179

When you use more than one server, each server performs only part of the work load.
This allows each server to respond to requests more quickly. On the other hand, every
process on a computer requires a certain amount of overhead simply to exist, and
servers are no different from other processes in this regard. You must balance the
performance improvement that using multiple servers gives your users against the
increased load on your system as more servers execute. The later parts of this paper
will discuss measuring how much work a server is doing; you can use that information
to determine when to add or delete servers.

The SAS Data Library Model
You should make sure you thoroughly understand the material on the SAS data

library model in SAS Language Reference: Concepts before you attempt to tune SAS
applications and servers at your installation. Here are some of the terms defined in
that material that are most important to understanding this paper:

A SAS data library can have five types of members, DATA, VIEW, CATALOG,
PROGRAM, ACCESS, MDDB, and FDB. This paper will deal only with the types
DATA, VIEW, and CATALOG.

A library member of type DATA is a SAS data file. Through Version 5 of SAS, SAS
Institute referred to such files as SAS data sets. A SAS data file may be compressed,
and it may have zero or more indexes.

A SAS data view is a set of directions that tells a SAS view engine how to combine
data from one or more sources into observations.

A SAS catalog is a file that contains smaller files; the files contained in a catalog are
catalog entries. Some types of entries you might be familiar with are PROGRAM (SAS/
AF programs), SCREEN (PROC FSEDIT screens), and FORMAT (user-written formats).

How Data Flows When You Use SAS Files
To tune applications that access data concurrently, it is to your advantage to

understand how data is read and written in the different types of members of SAS
libraries that can be accessed through a server.

It is important to remember that an application cannot run any faster when it
accesses data through a server than it can when it accesses data directly. This may
seem obvious, but it is surprisingly easy to simply blame an application’s sluggish
performance on the server without ever testing the application while accessing the data
without going through a server. For many applications, the difference in performance
between accessing the data directly versus accessing the data through a server will not
be large. Whenever you develop a new application, verify that the application runs
acceptably while accessing its data directly before you add a server to the application’s
data access.

SAS Data Files
When a SAS session reads from a SAS data file that is accessed directly:
1 The procedure or DATA step requests an observation from the engine.
2 The engine requests the SAS host interface to read the page of the data file that

contains the observation.
3 The engine extracts the observation from the page and returns it to the procedure.

180 SAS Data Views 4 Appendix 3

When a SAS session updates or adds to a SAS data file that is accessed directly:
1 The procedure calls the engine to replace or add the observation.
2 The engine replaces or adds the observation in the page.
3 The engine calls the host interface to write the updated or new page to disk.

When a SAS session reads from a SAS data file that is accessed through a server:
1 The procedure or DATA step requests the observation from the REMOTE engine.
2 The REMOTE engine determines whether the requested observation is already

available in its transmission buffer in the user’s SAS session. If the observation is
available, it is returned to the procedure.

3 If the observation is not already available in the user’s SAS session, the REMOTE
engine sends a message to the server to get a buffer full of observations, including
the observation requested by the procedure.

4 The server fills the transmission buffer by requesting one or more observations
from the engine that accesses the data file in the server’s SAS session.

5 For each observation, the engine in the server’s session requests the SAS host
interface to read the page of the data file that contains the observation.

6 The engine in the server’s SAS session extracts each observation from its page and
returns it to the server.

7 After filling the transmission buffer, the server sends the buffer to the REMOTE
engine.

8 The REMOTE engine extracts the desired observation from the transmission
buffer and returns it to the procedure or DATA step.

When a SAS session updates or adds to a SAS data file that is accessed through a
server:

1 The procedure calls the REMOTE engine to replace or add the observation.
2 The REMOTE engine replaces the observation in its transmission buffer or adds

the observation to its transmission buffer.
3 If the data file is open for update access, the REMOTE engine sends a message to

the server that carries the new or updated observation and requests that it be
updated in or added to the data file.

4 If the data file is open for output access, the REMOTE engine adds observations to
its transmission buffer until the buffer is full. After the transmission buffer is full,
the REMOTE engine sends it to the server.

5 The server requests the engine that accesses the library in the server’s SAS session
to replace the observation in the data file or add the observation(s) to the data file.

6 The engine in the server’s SAS session replaces or adds each observation by
updating and creating pages in the data file.

7 The engine requests the SAS host interface to write each updated and new page to
the data file.

8 The engine in the server’s SAS session returns to the server.
9 The server replies to the REMOTE engine indicating that the updated or new

observation has been stored in the data file.
10 The REMOTE engine returns to the procedure.

SAS Data Views
The flow of data as a SAS data view is processed can be complex, because a view is a

set of instructions that tells how to select and combine data from one or more sources.

Tuning Tips for Applications That Use SAS/SHARE Software 4 Concurrent Access: Update versus Read-only 181

A SAS data view can be interpreted in a user’s SAS session or a server’s SAS session.
When a view is interpreted in a user’s SAS session, the view file and none, some, or all
of the data read by the view can be accessed through a server. When a view is
interpreted in a server’s SAS session, the view file and all of the data read by the view
must be accessed by the server.

There are three types of SAS views:

� PROC SQL views, which are interpreted by the SQL engine

� SAS/ACCESS views, which are interpreted by SAS/ACCESS interface engines

� DATA step views, which are interpreted by the DATA step view engine

A view created by the SQL procedure can read SAS data sets (SAS data files and any
kind of SAS data view).

When a SAS/ACCESS view engine is used in a multi-user server’s session, the view
engine can only read from the database; it cannot update the database. The flow of data
is one-way: from the database to the interface engine to the server to the user.

A DATA step view can, like a PROC SQL view, combine data from SAS data files and
SAS data views. In addition, DATA step views can include sophisticated calculations
and read data from external files. A DATA step view can produce data exclusively by
calculation, without reading any data.

SAS Catalogs
SAS catalogs are containers for many different kinds of entries, and the data in each

type of entry is accessed in a pattern unique to the entry type. Like the observations in
SAS data sets, the REMOTE engine will combine records in a catalog entry into groups.
The combination of records for catalog entries is done only for INPUT opens (OUTPUT
and UPDATE opens transmit one record at a time).

Concurrent Access: Update versus Read-only

Many applications use several SAS files. It is to your advantage if, while designing
your application, you identify and segregate:

� the set of files which must be updatable by more than one user at a time

� the files that will be updated by only one user, but while other users are reading
the files

� the files that will be updated so infrequently that access to those files by all users
is practically read-only

The files in the first group are excellent candidates for access through a server. The
files in the second group are often good candidates for access through a server, but for
some applications the performance improvement from not accessing the files through a
server may make it worthwhile to use a more complicated procedure to update those
files while the users are not around. The files in the third group are almost always poor
candidates for access through a server because all of the operating systems that SAS
runs under provide shared read-only access to files, and that direct access is almost
always faster than access through a server.

Here is a summary of the advantages and disadvantages of segregating files into
read only and concurrently updated libraries:

182 Computer Resources Used by a Server 4 Appendix 3

� A SAS file that is accessed through a server generally costs more, in terms of
computing resources, for users of the application to use than a SAS file that is
stored in a library that is accessed directly by the users.

� Reduced traffic through a server optimizes response time for the users of the
concurrently updated files.

� Simpler, more direct access to read-only copies of files reduces the cost of an
application’s query and reporting functions. Note that such a copy may be a subset
rather than the entire file.

� A SAS file that is accessed through a server can be updated while it is being
queried or reported on.

� Copies of files require disk space.
� A file in a SAS library that is accessed directly by users can not be updated while

a user executes the part of the application that uses that file.

Computer Resources Used by a Server
The information in this paper so far has been about SAS files and how they are used

by an application. You will be a more effective application developer if, in addition to
understanding how to make optimum use of SAS files, you also understand the
computer resources that a server consumes. That understanding will allow you to design
your applications to make optimum use of a server as well as optimum use of SAS files.

A server is an independently running SAS session that brokers requests for data from
other SAS sessions. There are 4 kinds of computer resources that a server consumes:

� CPU (the computer’s processor)
� I/O (input from and output to the computer’s permanent storage)
� Memory (the computer’s working storage)
� Messages (passing data between a server and its users)

CPU, I/O, and memory resources are consumed by every SAS session. Messages is a
name for one measurable aspect of the complex area of communications resources;
communications resources are consumed by SAS/SHARE software and SAS/CONNECT
software because these two products enable SAS sessions to communicate with one
another.

Any work done by a server consumes more than one kind of resource (if you are
looking for simple uncomplicated truths, you may want to skip this section). A server
can do several kinds of work and, as you might expect, not all kinds of work consume
resources in the same relative amounts. For example, some work a server can do
consumes much of the CPU resource but little of the other resources, while other work
consumes much of the memory resource, less of the CPU resource, and very little of the
other resources.

CPU
A server creates processes as users connect to it and execute DATA steps,

procedures, and windows. These processes (created on users’ behalf) are assigned the
work that is actually performed in the server’s SAS session. This allows a process in a
server’s session to do work requested by one user and then yield control so that another
process can do work for another user.

Tuning Tips for Applications That Use SAS/SHARE Software 4 I/O 183

Most requests handled by the processes in a server require small bursts of CPU time.
But there are several requests that can consume especially large amounts of CPU time:

� Processing a WHERE clause

� Interpreting a SAS data view

� Processing a compressed SAS data file

When a SAS data set is accessed through a server, every WHERE clause used to
select observations from that data set is evaluated by a process in the server’s SAS
session. This increases the server’s overall use of the CPU resource to reduce its use of
the messages resource. Often, evaluation of a WHERE clause can be optimized by using
an index to locate the desired observations. But when an index is not used, or selects
more observations than satisfy the WHERE clause, the process in the server’s session
must search for observations that completely satisfy the WHERE clause. Searching can
consume a significant amount of the CPU resource. While a process conducts a search,
it yields periodically to allow other processes in the server’s session to do work for other
users.

A PROC SQL view can consume quite a bit of the CPU resource. The SQL view
engine may join tables, it may need to sort intermediate files, and there may be several
WHERE clauses in the view that require evaluation. The process in which the SQL
view engine executes yields periodically while a view is interpreted.

DATA step views and SAS/ACCESS views also consume the CPU resource. The
process in which either of these engines executes does not yield to allow other processes
to run, although the server itself allows other processes to run when a group of
observations has been prepared for transmission to a user’s SAS session. A DATA step
view that does a great deal of calculation while preparing each observation can have a
visibly harmful impact on a server’s response time to other users’ requests.

When a compressed SAS data file is read, processes in the server’s session
decompress each observation; when a compressed SAS data file is created or replaced, a
process in the server’s session compresses each observation. In many cases the time
required to decompress (or compress) is shorter than the time required to read the
additional pages of an uncompressed file. In other words, trading increased use of the
CPU resource for decreased use of the I/O resource can, on balance, reduce the length of
time users wait for a server to respond. While a user processes a compressed data file
through a server, other processes in the server’s session may execute between groups of
observations requested by that user; a SAS data file is not compressed or decompressed
in its entirety in a single operation.

The "Programming Techniques" section of this paper offers ideas for reducing the
CPU consumption of processes in a server’s session under the topics:

� Choose the appropriate subsetting strategy

� Index wisely

� Know your application’s DATA step views

I/O
Since most work done by the processes in a server’s SAS session involves I/O

activity, those processes can spend a significant amount of time waiting for I/O activity
to complete. (This time includes moving the head of a disk drive to the correct position,
waiting for the disk to spin around to the position of the requested data, and
transferring the data from the disk to the computer’s working storage.) In the current
release of SAS/SHARE software, while a process in a server’s session waits for I/O

184 Memory 4 Appendix 3

activity to complete, other processes in the server’s session do not perform other work
that uses a different (CPU, memory, or messages) resource.

That waiting could, it would seem, become a bottleneck for a server, and in a few
situations this problem is realized. But in practice most of a server’s memory is used
for I/O buffers and processes in a server’s session typically satisfy most requests for
data from I/O buffers that are already in memory.

A server typically allocates memory for one page of a file each time the file is opened,
up to the number of pages in the file. For example, if the application being executed by
a user opens a file twice, enough of the server’s memory to contain two pages of the file
is allocated; if ten users run the application, space for 20 pages of the file is allocated in
the server’s memory. The number of buffers allocated for a file will not exceed the
number of pages in the file.

Of course, the pages of the file maintained in memory are not the same set of pages
all the time: as users request pages of the file that are not in memory, pages that are in
memory are written back to the file on disk if they have been modified, or if an
in-memory page has not been modified its buffer is simply used to read the new page.

A larger page size can reduce the number of I/O operations required to process a SAS
data file. But it takes longer to read a large page than it takes to read a small one, so
unless most of the observations in a large page are likely to be accessed by users, large
page sizes can increase the amount of time required to perform I/O activity in the
server’s SAS session.

There are two patterns in which data is read from or written to SAS files:
� Sequential
� Random

When an application processes a SAS file in sequential order, no page of the file is
read into or written from the server’s memory more than once each time the file is read
or written. Also, observations are transmitted to and from users’ sessions in groups,
which conserves the messages resource.

In many applications that are used with concurrently accessed files, data is accessed
in random order, i.e., a user reads the 250th observation, then the 10,000th observation,
then the 5th observation, and so forth. When a file is processed in random order, it is
much more difficult to predict how many times each page of the file will be read into or
written from the memory of a server’s SAS session. In addition, only one observation is
transmitted on each message between server and user, which does not conserve the
messages resource.

The "Programming Techniques" section of this paper offers ideas for reducing the I/O
load of a server under the topics:

� Clean up your data files
� Choose the appropriate subsetting strategy
� Choose page size wisely
� Specify sequential access when an SCL program doesn’t need random access

Memory
A computer’s working storage is used by a server to load programs, hold I/O buffers,

and maintain control information. When a server’s working set becomes large compared
to the amount of memory installed on a computer, a significant amount of the server’s
working storage may be stored on disk by the operating system’s virtual memory
manager.

Large amounts of a server’s memory are consumed by:

Tuning Tips for Applications That Use SAS/SHARE Software 4 Messages 185

� A SAS data view that contains an ORDER BY clause
� Many indexes on data files accessed through a server
� A large number of files open at the same time
� Data files that have large page sizes

Since the ORDER BY clause causes the observations produced by a view to be sorted
every time the view is interpreted, it requires memory to be used for a work area for
the sorting step. Your application should only use this clause in its views when it has a
clear benefit for your users.

When a SAS data file is opened, all indexes on the file are opened. Therefore, when a
SAS data file has many indexes, a large amount of memory in the server’s SAS session
can be used to store pages of the index file and related control information. Of course,
when many SAS data files that are accessed through a server each have many indexes,
this effect is multiplied.

At SAS Institute, we have observed that the majority of servers’ memory has been
consumed by I/O buffers. Carefully selecting the number of times each file is opened by
your application and the page size of each file can have considerable impact on the
amount of memory required by a server.

The "Programming Techniques" section of this paper offers ideas for reducing the
memory requirements of a server under the topics:

� Choose page size wisely
� Index wisely
� Limit the number of files open during execution of an SCL program

Messages
Messages are the communication events between users’ SAS sessions and a server.

Whenever a piece of information (for example, an observation) is moved from a server to
a user, a message is sent from the user to the server and a reply is sent back from the
server to the user.

Messages and replies are transmitted by communications access methods. The cost of
a message varies greatly with access method. Memory-to-memory communication
within a single computer, for example via the Cross-Memory Services
(COMAMID=XMS) or Inter-User Communications Vehicle (COMAMID=IUCV) access
methods is very rapid, while messages that flow on cables between computers, for
example via the DECnet (COMAMID=DECNET) or TCP/IP (COMAMID=TCP) access
methods take much longer to travel between SAS sessions.

SAS Institute has observed that the cost of sending data via most communications
access methods is more directly a function of the number of messages than the amount
of data. In other words, to move a million characters of data between a user and a
server, it takes less time to send the data in 100 messages than to send the data in
10,000 messages.

SAS/SHARE software conserves the messages resource by:
� Transmitting data between servers and users in groups
� Evaluating WHERE clauses in servers’ sessions
� Interpreting SAS data views in servers’ sessions

The "Programming Techniques" section of this paper offers some ideas for conserving
the messages resource under the topics:

� Choose the appropriate subsetting strategy

186 Minimizing and Optimizing Resource Consumption 4 Appendix 3

� Understand and control random access

The "Tuning Options" section shows options you can use to control the grouping of
observations on messages between servers and users:

� TBUFSIZE=

� TOBSNO=

Minimizing and Optimizing Resource Consumption

Now that you understand how SAS and SAS/SHARE software use files and computer
resources, it’s time to apply that knowledge to the design and implementation of your
applications.

The most productive way to optimize the performance of your application is
programming it to work as efficiently as possible. You can almost always realize more
performance improvement by coding your application to exploit features of SAS than
you can gain by adjusting the operation of SAS.

When you decide to adjust SAS to operate differently, remember that tuning is a
balancing act and invariably requires compromise. Of course, to effectively tune SAS
you must understand what your application’s bottlenecks are.

This section will first list some programming techniques that are based on the
information presented earlier in this paper. After that, the tuning options of SAS/
SHARE software and SAS will be described.

Programming Techniques

Clean Up Your Data Files

The most obvious way to reduce the amount of work done by a server is eliminating
unused variables and observations from the files that are accessed through the server.
To make sure that your files are no larger than they need to be, periodically remove or
archive unused data.

As a SAS data file matures, users add new observations, update existing observations,
and forget about old observations. In most cases the level of activity is greatest on the
newest observations. If the users of your application do not frequently access older
information, consider moving older observations from files that are concurrently
updated to archive files that are accessed directly (instead of through a server).

Also as a SAS data file matures, new variables are added, some variables turn out to
be larger than they need to be, and some variables lose their usefulness. Periodically
check your application’s SAS data files for variables that are longer than they need to
be and for variables that are no longer used.

While compressing a SAS data file reduces the number of pages in it, compression
can not be as efficient at eliminating unused space as you can be by deleting unused
observations and variables and by shortening variables that are longer than necessary.

Smaller data files improve the performance of all SAS sessions by reducing the
amount of disk space required by each file, by reducing the number of I/O operations
required to process the data in each file, and by reducing the number and size of
messages required to transmit the data in a file between a server and its users.

Tuning Tips for Applications That Use SAS/SHARE Software 4 Programming Techniques 187

Choose the Appropriate Subsetting Strategy
Creating a subset of the observations in a SAS file can consume large amounts of the

I/O and messages resources. There are several subsetting techniques available in SAS:

� any WHERE clause that is optimized by the use of an index

� any WHERE clause that is not optimized by the use of an index

� the subsetting IF statement of the SAS DATA step

� the FIND, SEARCH, and LOCATE commands of SAS/FSP procedures

When an index is not used to locate directly the observations that satisfy a WHERE
clause, the process in the server’s session must read observations from the data file
until it finds one that matches the WHERE clause. This can consume a very large
amount of the I/O and CPU resources. Those resource requirements can be greatly
reduced when the variables in the WHERE clause are indexed.

The subsetting IF statement of the DATA step and the FIND, SEARCH, and
LOCATE commands of SAS/FSP procedures perform the specified comparison in the
user’s SAS session instead of in a process in a server. This requires that every
observation of the SAS data set be transmitted from the server’s session to the user’s
session, which can consume a very large amount of the messages resource, in addition
to the I/O and CPU resources required to read the data file. Since the comparisons of a
WHERE clause are performed in the server’s session, only the desired observations are
transmitted to the user’s session and the message resource is conserved.

The I/O resource consumption is the same unoptimized WHERE, subsetting IF, and
FSP’s FIND, SEARCH, and LOCATE. Using WHERE clauses is recommended,
however, because the messages resource consumption is higher for the subsetting IF
statement and the FIND, SEARCH, and LOCATE commands.

Index Wisely
Indexing is a tool that optimizes WHERE clause selection of observations from SAS

data sets. A WHERE clause without an index requires the process in the server to read
every observation in a SAS data set to find the observations that match the WHERE
selection criteria. An index often allows the server to locate the records that satisfy a
WHERE clause without having to read the records that do not match.

Adding indexes may be a good idea if your application seems to be taking too long to
execute WHERE clauses. However, indexes require extra memory and may present a
problem for a server that is memory constrained.

A complete description of index usage may be found in the paper "Effective Use of
Indexes in the SAS System," in the Proceedings of the SAS User’s Group International
Sixteenth Annual Conference.

Look at a Clock Before You Create an Index
When a SAS data file is accessed through a server, creating an index on it prevents

the server from responding to other users’ requests. While it can be useful to create an
index while a data file is accessed through a server, indexes on large files should be
created after hours. Indexes on large data files should not be created while a server is
expected to respond quickly to users’ requests.

Choose Page Size Wisely
Larger page sizes can be used to reduce the number of I/O operations required to

process a SAS data file. But it takes longer to read a large page than it takes to read a
small one and larger pages can increase the memory load on a server.

188 Programming Techniques 4 Appendix 3

Large page sizes can be useful if most of the observations on each page are likely to
be accessed each time the page is read into the server’s memory, or if a large page size
causes all or most of a SAS data file to be kept in the server’s memory. Otherwise, large
page sizes can increase the amount of time required to perform I/O activity in the
server’s SAS session to the detriment of the server’s ability to provide timely response
to users’ requests.

Understand and Control Random Access
It is often worth the effort to study the order in which the users of your application

access the data in your application’s files. That tells you how widely dispersed your
users’ patterns of reference are. Sometimes you can reduce the amount of dispersal by
sorting one or more files by a variable (like date last updated) that happens to correlate
(even to a small degree) with your users’ pattern of access.

The components of SAS that are used most frequently to access data in a random
order are:

� The "n" (position to observation number) command of SAS full-screen procedures.
� The POINT= option of the SET and MODIFY statements of the DATA step
� The KEY= option of the SET and MODIFY statements of the DATA step
� The FETCHOBS() function in Screen Control Language
� The SETKEY() function in Screen Control Language
� Using an indexed variable as a BY variable

Specify Sequential Access when an SCL Program Doesn’t Need Random
Access

The SCL OPEN() function allows you to specify that a file will be sequentially
accessed (the default is random access). There are two types of sequential access that
may be requested with SCL OPEN().

� Strict sequential (’IS’ for input and ’US’ for update)
� Limited sequential (’IN’ for input and ’UN’ for update)

The server will by default transmit multiple observations per read for either of ’IS’ or
’IN’ open modes.

If the application’s use of data is predominantly sequential, but you occasionally need
to re-read a previously read observation then use a mode of ’IN’ or ’UN’ in your SCL
OPEN() function. If the application’s use of data is strictly sequential (you will never
revisit a previously read observation) then use the open mode ’IS’ or ’US’. The ’IS’ and
’US’ open modes are the most efficient for SCL. A ’IS’ or ’US’ open mode, however, will
restrict an SCL application to those functions which access data sequentially. The SCL
functions which access data in a random pattern are:

� FETCHOBS()
� DATALISTC()
� DATALISTN()
� POINT()

Specifying an access pattern on an SCL OPEN() function is documented in SAS
Component Language: Reference. An example of specifying a sequential access pattern
on an SCL OPEN() function is:

DSID = OPEN(’MYLIB.A’, ’IN’);

Tuning Tips for Applications That Use SAS/SHARE Software 4 Programming Techniques 189

Limit the Number of Files Open During Execution of an SCL Program

An open file consumes memory in both users’ and servers’ SAS sessions. If a server
consumes too much memory, check the applications that access data through that
server to see if any of them open files before they are needed or leave files open when
they are not being used.

There are three strategies for using SAS data sets in an SCL program:

� open during initialization of the application and leave open until the application
terminates

� open as needed, then leave open until the application terminates

� open as needed, then close as soon as possible

The initialization code of an application is the place to open the SAS data sets that
will be used throughout the execution of the application. But if an application’s
initialization code must open a large number of files, the time it takes to get started
may be long. By studying how an application is used, you may discover some SAS data
sets that can be opened as functions are requested while the application executes,
which can reduce the amount of time the application takes to initialize and reduces the
concentration of time required to open files.

Whether they are opened during initialization or later, lookup tables that are small
should usually not be closed until an application terminates because the single I/O
buffer required by such a lookup table does not require a large amount of memory. In
such a case it is frequently economical to use a small amount of the memory resource to
conserve the CPU resource that would be required to open and close the lookup table
over and over.

Larger SAS data sets, and SAS data sets that are used extremely infrequently (for
example, once during initialization) or during a seldom-used function (for example, a
lookup table on a rarely updated field), should usually be left closed whenever they are
not being used.

Evaluate Each Report’s Timeliness Requirement

Consider how frequently each of your application’s reports is generated and how
timely the data summarized by the report must be. If a report must be based on
current information, it must be based on files that are concurrently updated. A report
that does not require up to the second information can be generated from files that are
directly (and inexpensively) accessed instead of files that are accessed through a server.

For example, a travel agent making reservations or a stock broker making trades
require every query to show up-to-the-second information. On the other hand, daily
reports or analysis of long-term trends can use data that are out of date by several
hours, several days, or even several weeks or months.

When copying data from a server, it may be subset horizontally with a WHERE
clause and it may be subset vertically with a DROP= or KEEP= data set option. (In
relational terminology, the horizontal subsetting is selection and vertical subsetting is
projection.) Be sure to take advantage of both methods when copying a file from a
server to make the copy of the file as small as possible and thus ensure that reports and
generated as efficiently as possible.

Don’t forget that files can be stored in users’ WORK libraries. It can be most efficient
to copy a file that is concurrently updated from a server to a user’s WORK library and
then use that file more than one time to generate reports. Such a copy of a file contains
very timely data yet is not especially expensive to create or use.

A SAS data file that is accessed directly is almost always less costly to use than a file
that is accessed through a server.

190 Tuning Options in SAS/SHARE Software 4 Appendix 3

Be Aware of How Frequently Each File is Updated
Many applications contain one or more query functions that use a lookup file to offer

a user a set of values that are valid to enter into a field. Such a file is read, but never
updated, by the majority of the users of the application. Occasionally, values must be
added to and removed from the lookup files as the valid input data for the application
changes.

A lookup file that is used frequently and updated less often than, say, once a week is
likely to be a good candidate for not being accessed through a server if it would be easy
to find some time during the week when the files can be updated because the application
is not being used. On the other hand, a lookup file that is updated many times each day
should, in many cases, be accessed through a server because updating the file will be
convenient: the lookup file can be updated while users use it to perform queries.

SAS catalog entries illustrate another way that update frequency can change:
An application may use only a few or many catalog entries. Like lookup files, catalog

entries that are updated frequently are likely candidates for access through a server.
But catalog entries that are never changed, or only changed very infrequently, should
not be accessed through a server.

The update frequency may change for some of an application’s catalog entries over
time. For example, while an application is under development and being tested, it can
be extremely convenient for the developers of the application to be able to update any
catalog entry while those testing the application continue with their work. During this
phase, the convenience of accessing the catalog entries through a server can more than
pay for the cost of the overhead of server access. After the testing is completed and the
application has stabilized, some or all of the application’s catalogs can be moved to a
SAS library that is accessed directly by the users of the application; in this phase
efficient access by the users is more important than being able to update the catalog
entries conveniently.

Remember that not all of an application’s catalog entries must be accessed the same
way. Catalog entries that must be frequently updated can continue to be accessed
through a server, while other catalog entries that change very seldom can be stored in
SAS catalogs that are accessed directly by the users of the application.

Know Your Application’s DATA Step Views
While it is creating each observation, a process in a server’s session that is

interpreting a DATA step view does not yield control to allow other processes in the
server to execute other users’ requests. While DATA step views can be useful in a
server, they must be used carefully. A DATA step view that requires a small amount of
processing to create each observation will not prevent other processes in a server’s SAS
session from responding to other users’ requests. But a DATA step view that contains
many DO loops with many calculations and reads (or even writes) many records in
external files or SAS data sets can take a very long time to create each observation.
Such a DATA step view should not be interpreted in a server’s session because it does
not yield control until each observation is created.

If it is advantageous to your application for its DATA step views to be interpreted in
a server’s session, be sure that any external files read by the DATA step view are
available to the server’s SAS session.

Tuning Options in SAS/SHARE Software
SAS/SHARE software makes some assumptions about the relative values of

resources. For example, SAS/SHARE software considers messages to be more expensive
than memory so it attempts to use more memory to reduce the number of messages.

Tuning Tips for Applications That Use SAS/SHARE Software 4 Tuning Options in SAS/SHARE Software 191

The default values and behavior may not be optimum for your application, so you have
the opportunity to adjust:

� when and in what amounts observations are transmitted in groups instead of
individually

� which SAS data views are interpreted in users’ SAS sessions and which are
interpreted in the server’s SAS session

� how frequently a long-running process in a server’s SAS session yields to allow
other users’ requests to be processed

SAS/SHARE software automatically attempts to conserve the message resource by
transmitting observations in groups whenever possible. Observations can always be
transmitted in groups when a data set is being created or replaced, but when a data set
is opened for update access it is never appropriate to transmit more than one
observation at a time. The grouping of observations when a data set is opened for input
depends on the situation; you control whether observations are transmitted in groups
according to:

� Whether the data set is opened for random or sequential access
� The control level of the data set
� The use of the TOBSNO= data set option to override the default behavior

The factors that control how many observations are transmitted in each group are:
� The value specified for the TBUFSIZE= option on the PROC SERVER statement
� The value specified for the TOBSNO= data set option

TBUFSIZE= PROC SERVER Option
A server allocates a set of multi-observation transfer buffers, called MOTBs, during

its initialization that are shared by all SAS files accessed through that server. On all
Release 6.09E and 6.11 hardware platforms the default size of each MOTB is 32,768
bytes. To change this size from the default value, use the TBUFSIZE= option on the
PROC SERVER statement.

The value of the TBUFSIZE= option is used by a server to automatically calculate
how many observations to combine into each group for all of the data sets accessed
through it. Therefore, this option can be the easiest way to cause a server to generally
combine more or fewer observations into each group.

When the data sets accessed through a server have large observations, the number of
observations transferred in each message is small when not many observations fit into
32,768 bytes. A small number of observations per message conserves the memory
resource at the expense of the messages resource, but since messages tend to be
expensive relative to memory that trade-off will probably not allow your application to
perform as well as it could.

The number of observations per group is calculated by subtracting a small amount of
overhead from the MOTB size and dividing the result by the length of one observation.
For example, consider a SAS data set in which each observation is 10,000 bytes long.
The default MOTB size is 32,768. In this case three observations are transmitted in
each message when the application opens the data set for sequential access. To increase
the number of observations per message to 6, specify the option TBUFSIZE=64k on the
PROC SERVER statement.

An example of using the TBUFSIZE= option is:

PROC SERVER TBUFSIZE=128K
<other PROC SERVER options>;

192 Tuning Options in SAS/SHARE Software 4 Appendix 3

TOBSNO= Data Set Option
Independently of the TBUFSIZE= option’s effect on a server’s overall behavior, you

can control the number of observations per group for individual data sets that are
accessed through the server. For example, if you specify TOBSNO=3, three observations
will be sent in each message.

The TOBSNO= option may be specified wherever SAS data set options are accepted:
as an argument to the OPEN() function of SAS Screen Control Language, on the
DATA= option of a SAS procedure, and on the SET, MERGE, UPDATE, and MODIFY
statements of the DATA step. It must be specified for each data set for which you want
grouping behavior different from the default.

When a data set is opened for input with a sequential access pattern, a server
calculates the number of observations per group as the smallest of:

� the number of observations in the data set

� 100

� the number of observations that will fit into an MOTB

When a SAS data set is opened for input with a random access pattern, the default
behavior is transmitting observations individually (the group size is one). This ensures
that a user always receives up-to-date data when they position to an observation, and it
reduces wasted communications bandwidth because no observations are transmitted to
a user’s session except the specific observations requested.

At other times, the TOBSNO= data set option may be used to increase the number of
observations transferred in each group. For example, consider an SCL program in
which a SAS data set dsid is passed to a DATALISTC() or DATALISTN() function. The
data set is read from beginning to end by the function, and then the observation chosen
by the user is reread. Since by default the OPEN() function of SCL specifies a random
access pattern, observations for that dsid are transmitted individually. But the access
pattern of the DATALISTC() and DATALISTN() functions is really skip sequential, so
transmitting observations individually is not optimum. TOBSNO=4 could be specified
in a case like this to reduce the number of messages by three-quarters. (Note that the
user could change the open mode from ’I’ to ’IN’ as an alternative to specifying a
TOBSNO data set option.)

The number of observations transmitted when a data set is opened for input is
summarized below: An example of using the TOBSNO= data set option is:

PROC FSVIEW DATA=MYLIB.A(TOBSNO=10);

TBUFNO= PROC SERVER Option
Since MOTBs are shared by all data sets accessed through a server, it is possible not

to have enough MOTBs. The number of MOTBs a server allocates is specified by the
TBUFNO= option on the PROC SERVER statement. By default, four MOTBs are
allocated when a server initializes. When WHERE clauses are used frequently to
request a subset of data from a server and evaluation of those WHERE clauses is not
optimized by an index, a server can spend a long time satisfying each user’s request for
observations that satisfy a WHERE clause.

Each MOTB is assigned when a request for data is made and is not released until
the request is satisfied. Therefore, when a process in a server’s session takes a long
time to satisfy a WHERE clause, an MOTB is assigned to that process for a long time.
Such a situation reduces the server’s ability to reuse MOTBs by assigning them to other
processes; one solution to that problem is specifying a larger value for the TBUFNO=
option. Of course, you should check the WHERE clauses being used to ensure that they
can be evaluated as efficiently as possible.

Tuning Tips for Applications That Use SAS/SHARE Software 4 Tuning Options in SAS/SHARE Software 193

When a user requests one or more observations and a server cannot assign an MOTB
to the process that will execute the user’s request, the server writes a message to its
SAS log, waits for a brief period of time, and tries again to assign an MOTB to the
process for the user’s request. If there are still no MOTBs available, the sequence
repeats. You can tell when the number of MOTBs is not sufficient by the presence of
these messages in a server’s SAS log.

An example of using the TBUFNO= option is:

PROC SERVER TBUFNO=8
<other PROC SERVER options>;

RMTVIEW= and NORMTVIEW Options
Consider each SAS data view used by your application and determine whether the

view should be interpreted in the server’s SAS session or the users’ SAS sessions. You
decide where to have a view interpreted according to:

� How many observations does the view produce?

� How much data is read by the view?

� Where is the data that is read by the view?

� How much work must the computer do to interpret the view?

Some PROC SQL views are especially good candidates for interpretation in a server’s
SAS session because the number of observations produced by the view is much smaller
than the number of observations read by the view, the data sets read by the view are
available to the server and the amount of processing necessary to build each
observation is not large.

Other PROC SQL views should be interpreted in users’ SAS sessions because the
number of observations produced by the view is not appreciably smaller than the
number of observations read by the view, some of the data sets read by the view can be
directly accessed by the users’ SAS sessions, and the amount of processing done by the
view is considerable.

By default, SAS data views are interpreted in a server’s SAS session, but the
RMTVIEW= option of the LIBNAME statement enables you to have the views in a
library interpreted in users’ SAS sessions instead. The NORMTVIEW option on the
PROC SERVER statement enables you to prevent all SAS data views from being
interpreted in the server’s session.

SAS/ACCESS views do not provide update access to the underlying database when
they are interpreted in a server’s session, so it is often more practical to interpret SAS/
ACCESS views in users’ SAS session.

If it is useful for your application to have a SAS/ACCESS view interpreted in a
server’s session, make sure that all of the necessary database interface components are
available to the server’s session.

If a user’s SAS session is capable of using a SAS/ACCESS interface engine to access
the underlying database, it is more efficient to execute the SAS/ACCESS interface
engine in the user’s SAS session. Note that in this case it may be convenient to store
the view file in a SAS library that is accessed through a server if the view will be
updated frequently and used by more than one user.

Like SAS/ACCESS views, DATA step views are very often most useful when
interpreted in users’ SAS sessions. See "Know your application’s DATA step views",
above, for more information about interpreting DATA step views in a server’s session.

See “Introduction” on page 103for a complete description of the RMTVIEW= option of
the LIBNAME statement.

Examples of specifying the RMTVIEW= and NORMTVIEW options are:

194 SAS System Options 4 Appendix 3

LIBNAME MYLIB ’my SAS data library’
RMTVIEW=YES
<other LIBNAME options>;

PROC SERVER NORMTVIEW
<other PROC SERVER options>;

LRPYIELD= PROC SERVER Option
Some components of SAS yield control periodically and can be directed to do so more

or less frequently than their default rate. These components are called long-running
processes and include evaluating WHERE clauses and interpreting PROC SQL views.

Changing the rate at which control is yielded is delicate because the act of yielding
control consumes some CPU resource: increasing the frequency at which control is
yielded increases a server’s CPU consumption all by itself. You can change the rate at
which the processes in a server yield control by varying the value of the PROC SERVER
option LRPYIELD=. The default value of this option is 10,000; the option has no units.

To make long-running processes yield relatively more frequently, specify a value
greater than 10,000. While a higher value may have the effect of providing more even
response time to a server’s users, this comes at the expense of increased consumption of
the server’s CPU resource. Also, the processes that run for a long time run even longer
when they are asked to yield more frequently.

To make a long-running process yield less frequently, specify a value smaller than
10,000. A lower LRPYEILD= value may make some individual user requests (like an
SQL join with a sort) complete sooner, but the server’s other users are forced to wait as
the long-running process does more work before it yields control. Response time can
become more uneven when long-running processes are allowed to yield less frequently.

This option is documented in Chapter 8, “The SERVER Procedure,” on page 95.
An example of specifying the LRPYIELD= option is:

PROC SERVER LRPYIELD=5000
<other PROC SERVER options>;

Multiple Servers
This is not an option you specify on a SAS program statement; instead it is a method

of managing the workload of concurrent access to SAS data sets.
If you determine that a server is consuming too much of a resource and you can not

reduce the server’s consumption of that resource any further, creating an additional
server allows you to divide your applications’ workload among several servers.

SAS/SHARE software includes a family of SAS macros that help you manage SAS
file access through multiple servers. Those macros are documented in Chapter 6,
“Using SAS/SHARE Macros for Server Access,” on page 75

SAS System Options
SAS software has several SAS I/O tuning options. The options that are most

relevant to applications that access data through a server are:
� the BUFSIZE= data set and system option
� the COMPRESS= data set and system option

BUFSIZE= Option
When a file is created, use the BUFSIZE= data set option to specify the size of the

pages of the file. The SAS default page size is optimum for files that are processed

Tuning Tips for Applications That Use SAS/SHARE Software 4 Using Operating System Tools 195

sequentially, but it may not be optimum when the observations of a file are accessed in
random order. PROC CONTENTS shows the page size of a SAS data file.

You might find it useful to balance the pattern in which a file is randomly accessed
against the number of observations stored on each page of the file. If most random
access sequences access observations in very different locations in the file, then a small
page size will improve performance because most of the observations on each page are
not used. On the other hand, if most random access sequences are likely to be to
observations that are physically near each other in the file, you might be able to take
advantage of a large page size to have many of the observations read from the file into
the server’s memory at once.

If you want to keep all or most of a SAS data file in memory, you can choose a very
large page size. Of course, this can consume a lot of the server’s memory so you should
only use such a page size when you really want to. If you expect that not much data
from a large file will need to be in memory at one time, choose a small page size to
make reading and writing each page as fast as possible.

If you find that your server is spending a significant amount of time waiting for I/O
operations to complete, consider recreating the files that are not used for sequential
access with a smaller page size.

An example of using the BUFSIZE= data set option is:

DATA MYLIB.A(BUFSIZE=6K);
SET MYLIB.A;

RUN;

COMPRESS= Option

This option is used to cause a SAS data file to be stored in compressed format.
Compressing files usually makes them smaller, so a server is able to read more
observations per I/O request when a file is compressed. The reduction in file size for a
compressed file (which conserves the I/O resource) is paid for, though, by an increase in
the consumption of the CPU resource (which is used to decompress the observations as
the file is read). If your server is CPU-bound, compression could do more harm than
good, but if your server is I/O-bound, compression could reduce its consumption of the I/
O resource.

Using Operating System Tools

Up to this point, we have been looking at SAS application and server performance
from an internal point of view. Now we turn to an external point of view. By
performance externals, we mean several things. First, at what rate is a server
consuming resources such as CPU, memory, and DASD I/O? Second, with what other
workloads is a server competing for these resource? And third, what policy is being
used to manage a server’s access to resources with respect to other work in the system?

There are several monitors available for MVS and VM to help you analyze a server’s
resource utilization and contention with other workloads. On MVS, most sites license
IBM

TM

’s RMF product. RMF Monitor II and Monitor III support interactive analysis of
SAS/SHARE performance. Also available on MVS are Candle Corporation’s Omegamon
and Landmark System’s TMON for MVS. Prominent products on VM include
Omegamon from Candle Corporation and XAMAP and XAMON from Velocity Software.

Questions these monitors can help you answer include:

� Are my servers getting appropriate access to resources?

196 Managing CPU 4 Appendix 3

� Is another workload causing a severe contention problem for one of my servers?
For example, is my server fighting with another application over access to the
same disk drive?

� What resource bottlenecks are most critical to my applications? Where should I
direct my tuning efforts?

Often, solutions to resource utilization problems result in making trade-offs among
resources. For example, you may be able to reduce I/O by allocating additional buffers.
But the additional buffer allocation will take more memory. Use of one of these
monitors can help you evaluate the effectiveness of the trade-off.

It is beyond the scope of this paper to tell you exactly how to use specific operating
system performance monitors. We are making the non-trivial assumption that you or
someone else on your staff have that knowledge. Basically, every system has three
principal resources: CPU, I/O, and memory. We will look at examples of managing each
of these for servers:

Managing CPU
The most critical factor here is assuring that your servers are getting a reasonable

share of the available CPU time. Servers in general ought to run at a higher priority
than clients and at the same priority as other types of server or service work on your
system (transaction monitors, database servers, etc.). You can tune your SAS/SHARE
application meticulously only to be foiled if a background process (for example) is
preventing your servers from getting CPU time.

If CPU time is a scarce resource on your system, that is your system is generally
running at very high CPU utilizations, then you need to consider SAS/SHARE tuning
actions which can reduce CPU time. Two specific examples are type of server
connection and whether or not to use data compression.

Managing I/O
The first thing to consider here is the amount of contention with other work on the

system. Are your SAS libraries competing with other work on channels, disk
controllers, or disk drives which are too busy? Too busy on I/O channels and control
units is highly specific to each operating system and hardware vendor. But in general it
is safe to say that if a disk drive is consistently above twenty percent busy, then
off-loading work from that drive ought to be considered.

If there is no significant contention with other work, then you need to consider
spreading application libraries using SAS/SHARE across multiple disks.

If waiting for I/O is still a problem for your servers, then you need to consider SAS/
SHARE tuning options which can reduce I/O time. These include using smaller page
sizes for randomly-accessed data, adding indexes for randomly-accessed data, and
possibly using data compression. Data compression is a specific example of the resource
trade-off problem mentioned earlier. Data compression can reduce I/O and disk storage
but will increase CPU time.

Managing Memory
Memory is an interesting resource in that it directly affects both CPU and I/O

resource consumption. Too little memory increases both. Additional memory can reduce
both. The most critical factor here is to ensure that your servers have sufficient

Tuning Tips for Applications That Use SAS/SHARE Software 4 Conclusion 197

memory to prevent excessive wait for paging. Most operating systems have controls to
differentiate the amount of memory given to various workloads on the system.

If real memory is a scarce resource on your system, then you need to consider SAS/
SHARE tuning actions which reduce memory consumption. Chief among these are
reducing data set page sizes to reduce I/O buffer memory requirements and using
shared SAS system images where possible.

Conclusion

The concurrent access capabilities that SAS/SHARE software adds to SAS give
developers opportunities to create applications that allow their users to have up-to-date
data and to be more productive.

Such applications use SAS in new ways. This paper has discussed areas to be aware
of and ways to trade usage of one resource for another. This information enables
developers of applications that take advantage of concurrently accessed data to write
those applications to use the available computer resources in the most efficient ways
possible.

198 Conclusion 4 Appendix 3

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
SHARE User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 247.

SAS/SHARE User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–478–0
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX®, DB2®, OS/2®, OS/390®, RMT

TM

, RS/6000®, System/370
TM

, and System/390®

are registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

