
59

C H A P T E R

5
Locking SAS Data Objects

Introduction 59
Audience 60

About the SAS Data Hierarchy and Locking 60

The SAS Data Hierarchy 60

How SAS Data Objects Are Accessed and Used 61

Types of Locks 62
Locking Objects Explicitly (LOCK Statement) 63

Locking a SAS Data Library 64

Locking a SAS Data Set 64

Locking a SAS Catalog 65

Locking a Catalog Entry 65

Clearing an Explicit Lock 65
Explicitly Locking and Unlocking Each Data Object 65

Unlocking One Higher-Level Data Object for Multiple Lower-Level Objects 66

Locking One Higher-Level Data Object for Access to Multiple Lower-Level Data Objects and
Clearing the Single Higher-Level Lock 66

Listing Locks 67
Return Codes for the LOCK Statement 67

Locking Explicitly in a SAS Window (LOCK Command) 67

Setting and Clearing Locks by Using the LOCK Command 68

How Implicit Locking Works in SAS Program Steps 70

Default Circumstances for Selected SAS Operations 72
Changing the Data Set Option Default Object 73

Locking Message Format 74

Introduction
The SAS/SHARE lock manager facility enables multiple clients to share the same

SAS file at the same time. The lock manager must evaluate each incoming client
request for access to SAS data objects against a set of complex locking rules. It grants
or denies each new incoming request for access to the data object while monitoring the
status of all other client activities. The lock manager grants access to the wanted data
object by locking the data object, thus keeping out all other requests for the data object
until the operation has completed or the lock has been cleared explicitly.

Note: The term operation refers to any SAS procedure, statement, or command. 4

60 Audience 4 Chapter 5

Audience

This chapter is intended primarily for applications developers but may also be of
interest to end-users.

About the SAS Data Hierarchy and Locking

Knowing about the SAS data object hierarchy and locking concepts will help you to
understand the behavior of explicit locks that you set by using the LOCK statement or
a LOCK command and the conditions under which implicit locks are set automatically.
Also explained are the effects of locking on other operations.

The SAS Data Hierarchy
When you perform a SAS operation, the SAS/SHARE server controls what data object

is locked and how the data object is locked. This allows you to access the data objects
and denies access to those data objects by other users for the duration of the operation.

Figure 5.1 on page 60 shows the SAS data object type hierarchy.

Figure 5.1 Hierarchy of SAS data object Types

SAS Data Library

Member

• SAS Data File

• SAS Data View

• SAS Utility File

• SAS Data Catalog

Observation Entry

Locking SAS Data Objects 4 How SAS Data Objects Are Accessed and Used 61

u SAS data library
a collection of one or more SAS files that are recognized by SAS. Each file is a
member of the library.

v Member
a file in a SAS data library that may be one of the following types:

� SAS data file
� SAS data view
� SAS utility file
� SAS data catalog.

SAS data file
a SAS data set that contains both the data values and the descriptor
information. SAS data files are of member type DATA.

SAS data view
a SAS data file in which the descriptor information and observations are
obtained from other files. SAS data views store only the information that is
required to retrieve data values or descriptor information. SAS data views
are of member type VIEW.

SAS utility file
a SAS file that stores information that is private to a component of SAS.
Examples include SAS/ACCESS descriptors, MDDB (Multi-Dimensional Data
Base) files, and DMDB (Data Mining Data Base) files.

SAS catalog
a SAS file that stores many different kinds of information in smaller units
called entries. Some catalog entries contain system information such as key
definitions. Other catalog entries contain application information such as
window definitions, help windows, formats, informats, macros, or graphics
output.

w Observation
often referred to as a record, the horizontal component of a SAS data file. An
observation is a collection of data values associated with a single entity, such as a
customer or a state. Each observation contains one data value for each variable in
the data file.

wEntry
a unit of information that is stored in a SAS catalog.

How SAS Data Objects Are Accessed and Used
The type of lock that a server sets on a member or an observation is affected by how

the operation accesses and uses the SAS data object type. The ways to access a data
object are:

input to read data

update to change the values of variables

output to add new variables with values

utility to change the header information of the file.

Each SAS operation has a default behavior for each object that is accessed and the
way that the object is accessed. For example, given that the server engine permits
observation locking and the observation is not already locked, the server can open and

62 Types of Locks 4 Chapter 5

lock an observation in a data set. If the engine does not support observation locking,
the engine locks the member (above the observation) instead.

The lowest hierarchical level at which data can be locked varies according to the
engine that is used to access the data:

� The Version 7 engine (V7) and the Version 8 (default) engine (V8) allow locking at
the library, member, and observation level.

� The V7TAPE, the V8TAPE, and other sequential engines do not support locking
below the member level.

� Any engine that does not support access to SAS catalogs does not support locking
at any level.

� View engine default-locking behavior is based on how the view is created; for
example, by using the DATA step, by using the SQL procedure, or by using the
ACCESS procedure, which is available through SAS/ACCESS. Likewise, the
specific SAS/ACCESS engine that is used depends on the DBMS. See your SAS/
ACCESS documentation for information about view engine default-locking
behavior.

Table 5.1 on page 62 shows the combinations of objects that are locked, how objects
are locked, and the effects on other client operations.

Table 5.1 Effects of Object Locking on Other Client Operations

What Object Is
Locked How the Object Is Locked

Input Update Output

Member Other operations can read
the data set but cannot
open it for update or output.

No other operations can
access the data set.

No other operations can
access the data set.

Observation Other operations can read
or update the data set but
cannot open it for output.

Other operations can read or
update the data set but
cannot open it for output.

No other operations can
access the data set.

Types of Locks

There are two ways that a data object can be locked:

explicit lock
one that you set with the LOCK statement or the LOCK command for exclusive
access to the data object type. The behavior of the LOCK statement or the LOCK
command is restricted by the server engine, the object that is being accessed, and
the way that the object is accessed (for example, a data set is locked for writing).
For details about using the LOCK statement or the LOCK command, see “Locking
Objects Explicitly (LOCK Statement)” on page 63 and “Locking Explicitly in a SAS
Window (LOCK Command)” on page 67.

implicit lock
one that is automatically set on the data object type as required by the SAS
operation. The operation has default locking requirements that are affected by two
factors: the data object that is being accessed and the way that the object is
accessed. For example, the DATA step with a MODIFY statement accesses an
observation for update by default.

Locking SAS Data Objects 4 Locking Objects Explicitly (LOCK Statement) 63

Regardless of the type of lock that is attempted, in order to lock a selected data
object, the server must lock preceding levels of the hierarchy, as needed. This type of
lock is also referred to as an implicit lock.

When you specify a data object in a LOCK statement, you set an explicit lock on that
object. If you lock a lower-level object without explicitly locking the higher level or
levels, SAS locks the higher level (or levels) automatically.

For example, when you explicitly lock a SAS data set (lower-level lock) but not the
SAS data library (higher-level lock) that contains it, the data library is locked implicitly.
An implicit lock gives you and other users shared access to the data library, even
though you have exclusive access to the locked data set.

Locking Objects Explicitly (LOCK Statement)
A classic case in which explicit locks protect data while it is being updated is a

multi-step SAS program. For example, consider a nightly update process that consists of
a DATA step that removes observations that are no longer useful and then runs PROC
SORT to sort the file and PROC DATASETS to re-build the file’s indexes. No other
users can be allowed to access the file between any of these steps because the SORT
and DATASETS procedures will fail if they cannot acquire exclusive access to the file.

An explicit lock provides the needed protection. Before the first DATA step, execute a
LOCK statement to acquire exclusive access to the file. If exclusive access cannot be
obtained, the LOCK statement return code (&SYSLCKRC) indicates that, and the
update program can re-schedule the update for a later time, or it can signal an operator
or an action that its programmer thinks is appropriate. If the LOCK statement is
successful, a user who attempts to access the file before the corresponding LOCK
CLEAR statement executes (after the end of the PROC DATASETS step) will be denied
access, and the batch update will proceed uninterrupted.

You can use the LOCK statement to obtain an explicit lock on the following data
objects:

data library
data set
catalog
catalog entry.

When you use a LOCK statement, you have exclusive access to the data object. No
other clients can read or write to a data object that you have locked by using this
statement. You cannot lock a data object that another client has open.

When you use a LOCK statement to lock a data object, you can open that data object
as often as you want and in any mode that you want. For example, you can create,
replace, update, or read the object, as long as your PROC or DATA step does not conflict
with what is allowed by the engine that the server uses to access the data object. You
must first access a SAS data library through a server before you can lock that library or
any data object in it.

The syntax for the LOCK statement follows:

LOCK libref<.member-name<.member-type
| .entry-name.entry-type>> <LIST | CLEAR>;

The LOCK statement takes the following arguments:

libref
is a valid SAS name that serves as a symbolic link to a SAS data library.

member-name
is a valid SAS name that specifies a member of the referenced SAS data library.

64 Locking a SAS Data Library 4 Chapter 5

member-type
is the type of the SAS file to be locked. Valid values are DATA, VIEW, and
CATALOG. The default value is DATA.

If member-type is omitted or is specified as the value DATA or VIEW, two locks
are obtained: one on libref.member-name.DATA and the other on
libref.member-name.VIEW.

entry-name
is the name of the catalog entry to be locked.

entry-type
is the type of the catalog entry to be locked.

LIST
writes to the SAS log whether the specified data object is locked and by whom.
This argument is optional.

CLEAR
releases a lock on the specified data object that was acquired in your SAS session
by use of the LOCK statement. This argument is optional.

For details about releasing locks, see “Clearing an Explicit Lock” on page 65.

Locking a SAS Data Library
This statement locks the SAS data library that is referenced by MYLIB.

lock mylib;

Locking the library prevents other users from reading, updating, or deleting existing
SAS files in the library or from creating new SAS files in the library. The lock also
prevents other users from obtaining a list of files in the library. It does not prevent
users from issuing LIBNAME statements to access the library, but it does prevent them
from using SAS files in the library while it is locked.

Locking a SAS Data Set
These statements lock the SAS data set FUEL that is referenced by MYLIB. These

three statements are equivalent to each other.

lock mylib.fuel;
lock mylib.fuel.data;
lock mylib.fuel.view;

Locking a SAS data set (a SAS data file or a SAS data view) prevents other users
from creating, reading, updating, deleting, or renaming the SAS data file. Locking a
SAS data view prevents other users from creating, reading, deleting, renaming, or
interpreting the view.

Since Release 6.06 of SAS software, a SAS data set can be either a SAS data file
(member type DATA) or a SAS data view (member type VIEW). In most SAS programs,
it does not matter whether the data comes from a SAS data file or a data view.

Because of this transparency in users’ SAS programs, it is important to lock both the
SAS data file and the SAS data view by the same name at the same time. When you
execute the LOCK statement on one of these data sets, it automatically locks both of
them. In the preceding example, the server locks the SAS data file MYLIB.FUEL.DATA
and the SAS data view MYLIB.FUEL.VIEW. For more information about SAS data
sets, see SAS Language Reference: Concepts.

Locking SAS Data Objects 4 Clearing an Explicit Lock 65

CAUTION:
The LOCK statement does not affect the source data of a data view. The LOCK statement
does not prevent a SAS data view’s underlying SAS file (or files) from being read or
updated by a SAS library engine or by a SAS view engine when a different view is
interpreted in the server SAS session. 4

Locking a SAS Catalog
This statement locks the member MYCAT in the library SCLLIB. MYCAT is a SAS

catalog, as indicated by the member type CATALOG.

lock scllib.mycat.catalog;

Locking a member of type CATALOG prevents other users from creating, deleting, or
renaming the catalog, or listing the entries in the catalog. It also prevents other users
from creating, reading, updating, deleting, or renaming any of the entries in the catalog.

While your SAS catalog or catalogs are locked, you can update an application that
uses many different catalog entries. For example, you can execute LOCK statements to
ensure exclusive access to the catalogs that contain your application’s entries. By doing
this, you can be sure that no other users are executing your application while you are in
the middle of updating its entries. After you have updated all the entries and tested
your application, you clear the lock by using the LOCK statement and the CLEAR
argument. This allows other users to gain access to your catalogs and to execute your
application. For information about the CLEAR argument, see “Clearing an Explicit
Lock” on page 65.

Locking a Catalog Entry
This statement locks the catalog entry JOHNCBT of type CMAP in the catalog

SCLLIB.MYCAT.

lock scllib.mycat.johncbt.cmap;

Locking an entry in a catalog prevents other users from creating, reading, updating,
or deleting that entry.

Clearing an Explicit Lock
How you clear an explicit lock depends on the level in the data object hierarchy at

which the lock was obtained. You can use one of three methods to clear locks:
� Explicitly lock and unlock each data object that you access.
� Explicitly lock lower-level data objects and unlock the higher-level data objects,

which implicitly unlocks its lower-level objects.
� Explicitly lock a higher-level data object that contains multiple lower-level data

objects that you want to access. Consequently, you can clear the single higher-level
lock after you have finished accessing the lower-level objects.

Explanations of these methods follow.

Explicitly Locking and Unlocking Each Data Object
You obtain an explicit lock on a specific data object and you clear each lock

individually. Examples follow:

66 Clearing an Explicit Lock 4 Chapter 5

lock educlib.mycat.choice1.menu;
lock educlib.mycat.choice2.menu;
/* Update the two catalog entries */
/* as needed. */
lock educlib.mycat.choice1.menu clear;
lock educlib.mycat.choice2.menu clear;

The first LOCK statement sets implicit locks on the SAS data library EDUCLIB and
on the SAS catalog EDUCLIB.MYCAT. It then sets an explicit lock on the catalog entry
EDUCLIB.MYCAT.CHOICE1.MENU. Because the user already has implicit locks on the
catalog and library, the second LOCK statement does not set additional implicit locks
before it sets an explicit lock on the catalog entry EDUCLIB.MYCAT.CHOICE2.MENU.

The first LOCK statement that contains the CLEAR argument releases the explicit
lock on the catalog entry CHOICE1.MENU, but it does not clear the implicit locks
because an entry in the catalog is still locked. The second LOCK statement that
contains the CLEAR argument releases the explicit lock on the catalog entry
CHOICE2.MENU. Because no catalog entries remain locked, the CLEAR argument
releases the implicit lock on the SAS catalog EDUCLIB.MYCAT. Also, because no
members of the library are locked, it clears the implicit lock on the SAS library
EDUCLIB.

Unlocking One Higher-Level Data Object for Multiple Lower-Level Objects

You set explicit locks on data objects at low levels. Clear a higher-level implicit lock
to cause all of the lower-level explicit locks to be cleared automatically. Examples follow:

lock educlib.mycat.choice1.menu;
lock educlib.mycat.choice2.menu;
/* Update the two catalog entries */
/* as needed. */
lock educlib.mycat clear;

The first LOCK statement sets implicit locks on the SAS data library EDUCLIB and
on the SAS catalog EDUCLIB.MYCAT. It then sets an explicit lock on the catalog entry
EDUCLIB.MYCAT.CHOICE1.MENU. Because the user already has implicit locks on
the catalog and the library, the second LOCK statement does not set additional implicit
locks before it sets an explicit lock on the catalog entry
EDUCLIB.MYCAT.CHOICE2.MENU.

The LOCK statement that contains the CLEAR argument releases the explicit locks
on both catalog entries and clears the implicit lock on the SAS catalog. Because no
members of the library remain locked, it also clears the implicit lock on the SAS library.

Locking One Higher-Level Data Object for Access to Multiple Lower-Level
Data Objects and Clearing the Single Higher-Level Lock

To update several lower-level data objects without individually locking each one
when all these data objects fall under a single higher-level data object, you can lock the
higher-level data object to prevent access by other users to all of the data objects that
are included under the higher-level data object.

However, you may need to clear the lock on the higher-level data object before you
are finished with your work. For example, a co-worker wants to work on other
lower-level data objects under the same higher-level data object. In this case, you can
acquire explicit locks on the lower-level data objects that you need, and then clear your
explicit lock on the higher-level data object. You will retain an implicit lock on the
higher-level data object as long as you have lower-level data objects locked, for example,

Locking SAS Data Objects 4 Locking Explicitly in a SAS Window (LOCK Command) 67

lock educlib;
/* Update various library members */
/* and catalog entries. */

Now, one of your co-workers needs to work on some SAS files in the library
EDUCLIB that you are not updating. So, you lock the SAS files in the library
EDUCLIB that you do need, as in the following example:

lock educlib.mycat.catalog;
lock educlib.mydata1;
lock educlib.mydata2;

Then, you clear your explicit lock on the library to allow your co-worker to use other
members of the library:

lock educlib clear;

You retain an implicit lock on the library because you hold explicit locks on three
SAS files in the library.

You continue to update entries in the SAS catalog EDUCLIB.MYCAT and the SAS
data sets EDUCLIB.MYDATA1 and EDUCLIB.MYDATA2 that you have locked. After
you finish your updates, you can issue one LOCK statement to clear your explicit locks
on the three library members and to clear your implicit lock on the library as follows:

lock educlib clear;

Listing Locks
You can list to the SAS log the status of the specified data object - whether it is

locked and by whom. The format for listing lock status follows:

data-object is status by whom

Example:

lock educlib.mycat.catalog list;
EDUCLIB is locked by sasuser

Return Codes for the LOCK Statement
The SAS macro variable SYSLCKRC contains the return code from the LOCK

statement. The following actions result in a non-zero value in SYSLCKRC:
� You try to lock a data object but cannot obtain the lock (for example, the data

object was already in use or is locked by another user).
� You use a LOCK statement with the LIST argument to list a lock you do not have.
� You use a LOCK statement with the CLEAR argument to release a lock you do not

have.

For more information about the SYSLCKRC SAS macro variable, see SAS Guide to
Macro Processing.

Locking Explicitly in a SAS Window (LOCK Command)
The LOCK command provides a convenient way to lock data objects within a SAS

window. As in the LOCK statement, you can use the LOCK command to obtain an
explicit lock on the following data objects:

68 Setting and Clearing Locks by Using the LOCK Command 4 Chapter 5

data library

data set

catalog

catalog entry.

You can specify the name of the data object that is to be locked on the command line
of a window, such as the Program Editor window in the SAS Display Manager System.

Note: You must first access a SAS data library through a server before you can lock
that library or any data object in it. 4

The syntax for the LOCK command is

LOCK libref<.member-name<.member-type
| .entry-name.entry-type>><LIST | CLEAR>;

libref
is a valid SAS name that serves as a symbolic link to a SAS data library.

member-name
is a valid SAS name that specifies a member of the referenced data library.

member-type
is the type of the SAS file to be locked. Valid values include DATA, VIEW, and
CATALOG. The default is DATA.

If you omit member-type or if you specify either the value DATA or VIEW, two
locks are obtained automatically: one on libref.member-name.DATA and one on
libref.member-name.VIEW.

entry-name.entry-type
is the name and type of the SAS catalog entry to be locked.

LIST
writes to the SAS log whether the specified data object is locked and by whom.
This argument is optional.

CLEAR
releases a lock on the specified data object that was acquired in your SAS session
by use of the LOCK command. This argument is optional.

For details about releasing locks, see “Clearing an Explicit Lock” on page 65.

Setting and Clearing Locks by Using the LOCK Command
You can issue the LOCK command in any SAS window. It works exactly like the

LOCK statement. For details about the LOCK statement, see Chapter 11, “The LOCK
Statement and the LOCK Command,” on page 113.

Output 5.1 on page 68 shows that the catalog MAPSLIB.MAPSCAT.ASIAMAP.CMAP
has successfully been locked. From the Program Editor window, the LOCK command
was issued to obtain a lock on another catalog- MAPSLIB.MAPSCAT.EUROMAP.CMAP.

Output 5.1 Locking a Catalog Entry

Locking SAS Data Objects 4 Setting and Clearing Locks by Using the LOCK Command 69

LOG
Command ===>

1 LIBNAME MAPSLIB ’SASXYZ.SHRTEST.SASDATA’ SERVER=SHARE1;
NOTE: Libref MAPSLIB was successfully assigned as follows:

Engine: REMOTE
Physical Name: SASXYZ.SHRTEST.SASDATA

NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is now locked for
exclusive access by you.

PROGRAM EDITOR
Command ===> LOCK MAPSLIB.MAPSCAT.EUROMAP.CMAP

00001
00002
00003
00004
00005
00006

In Output 5.2 on page 69, you can see that MAPSLIB.MAPSCAT.EUROMAP.CMAP
was successfully locked. From the Program Editor window, the LOCK command that
contains the CLEAR argument was issued to release the lock on catalog
MAPSLIB.MAPSCAT.EUROMAP.CMAP.

Output 5.2 Releasing a Lock on a Catalog Entry

LOG
Command ===>

1 LIBNAME MAPSLIB ’SASXYZ.SHRTEST.SASDATA’ SERVER=SHARE1;
NOTE: Libref MAPSLIB was successfully assigned as follows:

Engine: REMOTE
Physical Name: SASXYZ.SHRTEST.SASDATA

NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is now locked for
exclusive access by you.

PROGRAM EDITOR
Command ===> LOCK MAPSLIB.MAPSCAT.EUROMAP.CMAP CLEAR

00001
00002
00003
00004
00005
00006

70 How Implicit Locking Works in SAS Program Steps 4 Chapter 5

In Output 5.3 on page 70, you can see that MAPSLIB.MAPSCAT.EUROMAP.CMAP
was successfully unlocked. The log also reports who clears the lock. In this example,
the user who set and cleared the lock is referred to as “you.”

Output 5.3 SAS Log Message after the Lock Has Been Cleared

LOG
Command ===>

1 LIBNAME MAPSLIB ’SASXYZ.SHRTEST.SASDATA’ SERVER=SHARE1;
NOTE: Libref MAPSLIB was successfully assigned as follows:

Engine: REMOTE
Physical Name: SASXYZ.SHRTEST.SASDATA

NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is now locked for
exclusive access by you.

NOTE: MAPSLIB.MAPSCAT.EUROMAP.CMAP is no longer locked
for exclusive access by you.

How Implicit Locking Works in SAS Program Steps
The following example shows the effect of implicit locking when two clients, John

and Maria, share access to the SAS data set FUEL in their respective PROC FSEDIT
sessions at the same time. Maria is updating observation 6.

John terminates his FSEDIT session to do some data analysis. He wants a sorted
report of fuel inventory data, so he submits statements to sort and print the data set
FUEL. Output 5.4 on page 71 shows the SAS log for this portion of John’s session:

Locking SAS Data Objects 4 How Implicit Locking Works in SAS Program Steps 71

Output 5.4 Attempt to Sort a Locked Data Set

Command ===>

3 PROC SORT DATA=DATALIB.FUEL;
4 BY AREA;
5 RUN;

ERROR: You cannot open DATALIB.FUEL.DATA for output access
with member-level control because DATALIB.FUEL.DATA
is in use by FSEDIT.

NOTE: The SAS System stopped processing this step because
of errors.

NOTE: The PROCEDURE SORT used 0.03 CPU seconds and 3969K.

6 PROC PRINT DATA=DATALIB.FUEL;
7 BY AREA;
8 RUN;

ERROR: Data Set DATALIB.FUEL is not sorted in ascending
sequence. The current by-group has AREA = TEX1
and the next by-group has AREA = TEX2.

NOTE: The SAS System stopped processing this step because
of errors.

NOTE: The PROCEDURE PRINT used 0.03 CPU seconds and 4068K.

For details about error message formats, see “Locking Message Format” on page 74.
Because the OUT= option is not specified in the PROC SORT statement, the process

defaults to the data set named by the DATA= option and the SORT procedure tries to
replace the SAS data set. However, because Maria’s FSEDIT session has the data set
open for update, the SORT procedure cannot open it for output.

The SAS log shows that the PROC PRINT step executes because the PRINT
procedure opens its input data set with observation-level control. However, the PRINT
procedure terminates prematurely because the data set is not sorted properly. Note
that even if the data set were in sorted order when John terminated PROC FSEDIT,
Maria could have changed the value of AREA in one or more observations so that the
data set would no longer be sorted properly when the PRINT procedure executed.

To avoid the conflict and ensure that he gets the report he wants, John can use the
OUT= option to write a copy of the sorted data set into his WORK library, as shown in
the following example:

proc sort data=datalib.fuel out=fuel;
by area;

run;

John avoids a conflict because this PROC SORT statement opens the data set
DATALIB.FUEL only for input with observation-level control.

John can then use the PRINT procedure to display the temporary data set
WORK.FUEL.

72 Default Circumstances for Selected SAS Operations 4 Chapter 5

Default Circumstances for Selected SAS Operations
Knowledge of the default data objects and how they are accessed will help you to

anticipate the behavior of certain operations when you write your application or issue
SAS statements in interactive mode. Table 5.2 on page 72 presents the default
circumstances for some frequently used SAS operations.

Table 5.2 Default Circumstances for Selected SAS Operations

Typical Statements and Commands How Object Is
Locked

What Object Is
Locked

DATA step

DATA statement with MODIFY statement update observation

DATA statement without MODIFY statement output member

SET statement without POINT= and KEY= options input observation

SET statement with POINT= and KEY= options input member

MERGE statement input observation

MODIFY statement without POINT= and KEY= options update observation

MODIFY statement with POINT= and KEY= options update member

UPDATE statement input observation

Procedures

APPEND procedure

BASE= option update observation

DATA= option input observation

COPY procedure

IN= option input observation

IN= option with MOVE option output observation

OUT= option output member

FSBROWSE procedure

DATA= option input observation

FSEDIT procedure

DATA= option update observation

FSVIEW procedure

DATA= option without EDIT option input observation

DATA= option with EDIT option update observation

PRINT procedure

DATA= option input observation

UNIFORM= option input member

SORT procedure

DATA= option input observation

Locking SAS Data Objects 4 Changing the Data Set Option Default Object 73

Typical Statements and Commands How Object Is
Locked

What Object Is
Locked

OUT= option output member

SQL procedure

CREATE TABLE statement output member

DELETE statement update observation

INSERT statement update member

UPDATE statement update member

Changing the Data Set Option Default Object
In some cases, you can change the SAS data set option default object. When the

syntax of a statement or a command allows you to specify SAS data set options, you can
use the CNTLLEV= option to override the default object and specify the object that you
want, instead.

For example, for a SET statement that contains the POINT= option, you can change
the default from member to observation by specifying the CNTLLEV= data set option:

set datalib.fuel (cntllev=rec) point=obsnum;

Note: If you make this change, the values in a specific observation may differ each
time that you read the observation. 4

Note: The value, rec (for record), means the same as observation. 4

You can also change observation to member. You might do this to ensure that a data
set does not change while you are processing it. For example, if you use a SET
statement with a BY statement and you cannot use an index to retrieve the observations
in sorted order, you can use the CNTLLEV= option to re-set observation to member.

set datalib.fuel (cntllev=mem);
by area;

In some cases, you cannot override the default setting because the statement or the
command requires it. For example, a DATA statement requires a member setting when
the MODIFY statement is omitted from the DATA step. Without the MODIFY
statement, the data set that is specified in the DATA statement must be opened for
output. Thus, even if you specify CNTLLEV=REC in such a DATA statement, the DATA
step tries to set the object as member but will fail if other operations are accessing the
data set.

Note: Be careful when using the CNTLLEV= option for a procedure. Some
procedures make multiple passes through an input data set and require that the data
remains the same to guarantee the integrity of the output. If they have this
requirement, such procedures issue a warning but allow their objects to be re-set with
the CNTLLEV= option. 4

For details about the syntax of the CNTLLEV= option in the SET statement, see
Chapter 12, “The CNTLLEV= Data Set Option,” on page 117.

74 Locking Message Format 4 Chapter 5

Locking Message Format
SAS/SHARE delivers an informational or error message if you attempt to access a

data object that is already in use or is locked by another operation. The message takes
the following form:

object is status by whom

object
SAS data library | SAS data member | SAS data file observation or catalog

status
locked for exclusive access| in use | not locked

whom
you | user user(server-connection-number) |

n other users of this server|
task FSEDIT (server-connection-number)

The messages explain the status of the data object that is being accessed. To recover,
you usually must wait until the data object is available or find out when the data object
will be available by talking to the person who has locked the object.

Examples of typical messages follow:

NOTE: SASUSER.MYLIB is not locked or in use by you,
but is locked for exclusive access by user sasuser(1).

The SAS data library that is referenced by MYLIB is locked by userid SASUSER(1).
A lock on a library prevents other clients from reading, updating, or deleting existing
SAS files in the library or from creating new SAS files in the library. The lock also
prevents other clients from obtaining a list of files in the library. It does not prevent
client operations from issuing LIBNAME statements to access the library, but it does
prevent them from using SAS files in the library while it is locked.

You must wait for userid SASUSER(1) to unlock the library before you can use it.

MYLIB.MYCAT.CATALOG is not locked or in use by you,
but is in use by 2 other users of this server.

Because two users are already accessing the MYCAT member in the MYLIB library,
you can infer that no locks have been set on the catalog, and that client operations are
reading catalog entries or adding entries to the catalog. Although you may browse the
catalog or add entries to the catalog, you cannot attempt to lock the catalog until there
are no client operations using it.

MYLIB.MYCAT.MYCATENTRY.CMAP is not locked by sasuser(1).

The catalog entry MYCATENTRY of type CMAP in the catalog MYLIB.MYCAT is not
locked by userid SASUSER(1). This message results when user SASUSER attempts to
unlock a catalog entry that another client has locked.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/
SHARE User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. pp. 247.

SAS/SHARE User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–478–0
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, AIX®, DB2®, OS/2®, OS/390®, RMT

TM

, RS/6000®, System/370
TM

, and System/390®

are registered trademarks or trademarks of International Business Machines Corporation.
ORACLE® is a registered trademark or trademark of Oracle Corporation. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

