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Chapter 12
The Four Types of

Estimable Functions

Overview

The GLM, VARCOMP, and other SAS/STAT procedures label the Sums of Squares
(SS) associated with the various effects in the model as Type I, Type II, Type III, and
Type IV. These four types of hypotheses may not always be sufficient for a statistician
to perform all desired hypothesis tests, but they should suffice for the vast majority
of analyses. This chapter explains the hypotheses tested by each of the four types of
SS. For additional discussion, see Freund, Littell, and Spector (1991) or Milliken and
Johnson (1984).

Estimability

For linear models such as

Y = X� + �

with E(Y) = X�, a primary analytical goal is to estimate or test for the significance
of certain linear combinations of the elements of�. This is accomplished by comput-
ing linear combinations of the observedYs. An unbiased linear estimate of a specific
linear function of the individual�s, sayL�, is a linear combination of theYs that
has an expected value ofL�. Hence, the following definition:

A linear combination of the parametersL� is estimable if and only if a
linear combination of theYs exists that has expected valueL�.

Any linear combination of theYs, for instanceKY, will have expectationE(KY) =

KX�. Thus, the expected value of any linear combination of theYs is equal to that
same linear combination of the rows ofX multiplied by�. Therefore,

L� is estimable if and only if there is a linear combination of the rows
of X that is equal toL—that is, if and only if there is aK such that
L = KX.

Thus, the rows ofX form a generating set from which any estimableL can be con-
structed. Since the row space ofX is the same as the row space ofX0

X, the rows
of X0

X also form a generating set from which all estimableLs can be constructed.
Similarly, the rows of(X0

X)�X0
X also form a generating set forL.
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Therefore, ifL can be written as a linear combination of the rows ofX, X0
X, or

(X0
X)�X0

X, thenL� is estimable.

Once an estimableL has been formed,L� can be estimated by computingLb,
whereb = (X0

X)�X0
Y. From the general theory of linear models, the unbiased

estimatorLb is, in fact, thebest linear unbiased estimator ofL� in the sense of
having minimum variance as well as maximum likelihood when the residuals are
normal. To test the hypothesis thatL� = 0, compute SS(H0: L� = 0) =

(Lb)0(L(X0
X)�L0)�1

Lb and form anF test using the appropriate error term.

General Form of an Estimable Function

This section demonstrates a shorthand technique for displaying the generating set for
any estimableL. Suppose

X =

2
6666664

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

3
7777775

and � =

2
664

�

A1

A2

A3

3
775

X is a generating set forL, but so is the smaller set

X
� =

2
4 1 1 0 0

1 0 1 0

1 0 0 1

3
5

X
� is formed fromX by deleting duplicate rows.

Since all estimableLs must be linear functions of the rows ofX� for L� to be es-
timable, anL for a single-degree-of-freedom estimate can be represented symboli-
cally as

L1� (1 1 0 0) + L2� (1 0 1 0) + L3� (1 0 0 1)

or

L = (L1 + L2 + L3; L1; L2; L3)

For this example,L� is estimable if and only if the first element ofL is equal to the
sum of the other elements ofL or if

L� = (L1 + L2 + L3)� �+ L1�A1 + L2�A2 + L3�A3

is estimable for any values ofL1, L2, andL3.
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Introduction to Reduction Notation � 161

If other generating sets forL are represented symbolically, the symbolic notation
looks different. However, the inherent nature of the rules is the same. For example,
if row operations are performed onX� to produce an identity matrix in the first3� 3

submatrix of the resulting matrix

X
�� =

2
4 1 0 0 1

0 1 0 �1

0 0 1 �1

3
5

thenX�� is also a generating set forL. An estimableL generated fromX�� can be
represented symbolically as

L = (L1; L2; L3; L1� L2� L3)

Note that, again, the first element ofL is equal to the sum of the other elements.

With the thousands of generating sets available, the question arises as to which one
is the best to representL symbolically. Clearly, a generating set containing a mini-
mum of rows (of full row rank) and a maximum of zero elements is desirable. The
generalized inverse ofX0

X computed by the GLM procedure has the property that
(X0
X)�X0

X usually contains numerous zeros. For this reason, PROC GLM uses the
nonzero rows of(X0

X)�X0
X to representL symbolically.

If the generating set represented symbolically is of full row rank, the number of sym-
bols (L1; L2; : : :) represents the maximum rank of any testable hypothesis (in other
words, the maximum number of linearly independent rows for anyL matrix that can
be constructed). By letting each symbol in turn take on the value of 1 while the others
are set to 0, the original generating set can be reconstructed.

Introduction to Reduction Notation

Reduction notation can be used to represent differences in Sums of Squares for two
models. The notationR(�;A;B;C) denotes the complete main effects model for
effectsA,B, andC. The notation

R(A j �;B;C)

denotes the difference between the model SS for the complete main effects model
containingA, B, andC and the model SS for the reduced model containing onlyB

andC.
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In other words, this notation represents the differences in Model SS produced by

proc glm;
class a b c;
model y=a b c;

run;

and

proc glm;
class b c;
model y=b c;

run;

As another example, consider a regression equation with four independent variables.
The notationR(�3; �4j�1; �2) denotes the differences in Model SS between

y = �0 + �1x1 + �2x2 + �3x3 + �4x4 + �

and

y = �0 + �1x1 + �2x2 + �

With PROC REG, this is the difference in Model SS for the models produced by

model y=x1 x2 x3 x4;

and

model y=x1 x2;

Examples

A One-Way Classification Model
For the model

Y = �+Ai + � i = 1; 2; 3

the general form of estimable functionsLb is (from the previous example)

L� = L1� �+ L2�A1 + L3�A2 + (L1� L2� L3)�A3

SAS OnlineDoc: Version 8



Examples � 163

Thus,

L = (L1; L2; L3; L1 � L2� L3)

Tests involving only the parametersA1, A2, andA3 must have anL of the form

L = (0; L2; L3;�L2 � L3)

Since the precedingL involves only two symbols, hypotheses with at most two
degrees-of-freedom can be constructed. For example, letL2 = 1 andL3 = 0;
then letL2 = 0 andL3 = 1:

L =

�
0 1 0 �1

0 0 1 �1

�

The precedingL can be used to test the hypothesis thatA1 = A2 = A3. For this
example, anyL with two linearly independent rows with column 1 equal to zero
produces the same Sum of Squares. For example, a pooled linear quadratic

L =

�
0 1 0 �1

0 1 �2 1

�

gives the same SS. In fact, for anyL of full row rank and any nonsingular matrixK
of conformable dimensions,

SS(H0: L� = 0) = SS(H0: KL� = 0)

A Three-Factor Main Effects Model
Consider a three-factor main effects model involving the CLASS variablesA,B, and
C, as shown in Table 12.1.

Table 12.1. Three-Factor Main Effects Model

Obs A B C

1 1 2 1
2 1 1 2
3 2 1 3
4 2 2 2
5 2 2 2

The general form of an estimable function is shown in Table 12.2.
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Table 12.2. General Form of an Estimable Function for Three-Factor Main Effects
Model

Parameter Coefficient
� (Intercept) L1

A1 L2

A2 L1� L2

B1 L4

B2 L1� L4
C1 L6

C2 L1 + L2� L4� 2� L6

C3 �L2 + L4 + L6

Since only four symbols (L1, L2, L4, andL6) are involved, any testable hypothesis
will have at most four degrees of freedom. If you form anLmatrix with four linearly
independent rows according to the preceding rules, then

SS(H0: L� = 0) = R(�;A;B;C)

In a main effects model, the usual hypothesis of interest for a main effect is the equal-
ity of all the parameters. In this example, it is not possible to test such a hypothesis
because of confounding. One way to proceed is to construct a maximum rank hy-
pothesis (MRH) involving only the parameters of the main effect in question. This
can be done using the general form of estimable functions. Note the following:

� To get an MRH involving only the parameters ofA, the coefficients ofL asso-
ciated with�, B1, B2, C1, C2, andC3 must be equated to zero. Starting at
the top of the general form, letL1 = 0, thenL4 = 0, thenL6 = 0. If C2 and
C3 are not to be involved, thenL2 must also be zero. Thus,A1 � A2 is not
estimable; that is, the MRH involving only theA parameters has zero rank and
R(A j �;B;C) = 0.

� To obtain the MRH involving only theB parameters, letL1 = L2 = L6 = 0.
But then to removeC2 andC3 from the comparison,L4 must also be set to 0.
Thus,B1�B2 is not estimable andR(B j �;A;C) = 0.

� To obtain the MRH involving only theC parameters, letL1 = L2 = L4 = 0.
Thus, the MRH involving onlyC parameters is

C1� 2� C2 + C3 = K (for anyK)

or any multiple of the left-hand side equal toK. Furthermore,

SS(H0: C1 = 2� C2� C3 = 0) = R(C j �;A;B)
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A Multiple Regression Model
Suppose

E(Y ) = �0 + �1 �X1 + �2 �X2 + �3 �X3

If theX0
Xmatrix is of full rank, the general form of estimable functions is as shown

in Table 12.3.

Table 12.3. General Form of Estimable Functions for a Multiple Regression Model
WhenX0

X Matrix Is of Full Rank

Parameter Coefficient
�0 L1

�1 L2

�2 L3

�3 L4

To test, for example, the hypothesis that�2 = 0, let L1 = L2 = L4 = 0 and
let L3 = 1. Then SS(L� = 0) = R(�2 j �0; �1; �3). In the full-rank case, all
parameters, as well as any linear combination of parameters, are estimable.

Suppose, however, thatX3 = 2 � X1 + 3 � X2. The general form of estimable
functions is shown in Table 12.4.

Table 12.4. General Form of Estimable Functions for a Multiple Regression Model
WhenX0

X Matrix Is Not of Full Rank

Parameter Coefficient
�0 L1

�1 L2

�2 L3

�3 2� L2 + 3� L3

For this example, it is possible to testH0: �0 = 0. However,�1, �2, and�3 are not
jointly estimable; that is,

R(�1 j �0; �2; �3) = 0

R(�2 j �0; �1; �3) = 0

R(�3 j �0; �1; �2) = 0

Using Symbolic Notation

The preceding examples demonstrate the ability to manipulate the symbolic repre-
sentation of a generating set. Note that any operations performed on the symbolic
notation have corresponding row operations that are performed on the generating set
itself.
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Estimable Functions

Type I SS and Estimable Functions

The Type I SS and the associated hypotheses they test are by-products of the modified
sweep operator used to compute a generalized inverse ofX

0
X and a solution to the

normal equations. For the modelE(Y ) = X1 � B1 + X2 � B2 + X3 � B3, the
Type I SS for each effect correspond to

Effect Type I SS
B1 R(B1)

B2 R(B2jB1)

B3 R(B3jB1; B2)

The Type I SS are model-order dependent; each effect is adjusted only for the
preceding effects in the model.

There are numerous ways to obtain a Type I hypothesis matrixL for each effect. One
way is to form theX0

X matrix and then reduceX0
X to an upper triangular matrix

by row operations, skipping over any rows with a zero diagonal. The nonzero rows
of the resulting matrix associated withX1 provide anL such that

SS(H0: L� = 0) = R(B1)

The nonzero rows of the resulting matrix associated withX2 provide anL such that

SS(H0: L� = 0) = R(B1jB2)

The last set of nonzero rows (associated withX3) provide anL such that

SS(H0: L� = 0) = R(B3jB1; B2)

Another more formalized representation of Type I generating sets forB1, B2, and
B3, respectively, is

G1 = ( X
0

1
X1 j X

0

1
X2 j X

0

1
X3 )

G2 = ( 0 j X
0

2
M2X2 j X

0

2
M2X3 )

G3 = ( 0 j 0 j X
0

3
M3X3 )

where

M1 = I�X1(X
0

1X1)
�
X

0

1

and

M2 = M1 �M1X2(X
0

2M1X2)
�
X

0

2M1
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Type II SS and Estimable Functions � 167

Using the Type I generating setG2 (for example), if anL is formed from linear
combinations of the rows ofG2 such thatL is of full row rank and of the same row
rank asG2, then SS(H0 : L� = 0) = R(B2jB1).

In the GLM procedure, the Type I estimable functions displayed symbolically when
the E1 option is requested are

G
�

1 = (X0

1X1)
�
G1

G
�

2 = (X0

2M1X2)
�
G2

G
�

3 = (X0

3M2X3)
�
G3

As can be seen from the nature of the generating setsG1,G2, andG3, only the Type I
estimable functions forB3 are guaranteed not to involve theB1 andB2 parameters.
The Type I hypothesis forB2 can (and usually does) involveB3 parameters. The
Type I hypothesis forB1 usually involvesB2 andB3 parameters.

There are, however, a number of models for which the Type I hypotheses are consid-
ered appropriate. These are

� balanced ANOVA models specified in proper sequence (that is, interactions do
not precede main effects in the MODEL statement and so forth)

� purely nested models (specified in the proper sequence)

� polynomial regression models (in the proper sequence).

Type II SS and Estimable Functions

For main effects models and regression models, the general form of estimable func-
tions can be manipulated to provide tests of hypotheses involving only the parameters
of the effect in question. The same result can also be obtained by entering each effect
in turn as the last effect in the model and obtaining the Type I SS for that effect. These
are theType II SS. Using a modified reversible sweep operator, it is possible to obtain
the Type II SS without actually rerunning the model.

Thus, theType II SS correspond to the R notation in which each effect is adjusted
for all other effects possible. For a regression model such as

E(Y ) = X1�B1 +X2�B2 +X3�B3

the Type II SS correspond to

Effect Type II SS
B1 R(B1 j B2; B3)
B2 R(B2 j B1; B3)

B3 R(B3 j B1; B2)
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For a main effects model (A, B, andC as classification variables), the Type II SS
correspond to

Effect Type II SS
A R(A j B;C)

B R(B j A;C)
C R(C j A;B)

As the discussion in the section “A Three-Factor Main Effects Model” on page 163
indicates, for regression and main effects models the Type II SS provide an MRH for
each effect that does not involve the parameters of the other effects.

For models involving interactions and nested effects, in the absence of a priori para-
metric restrictions, it is not possible to obtain a test of a hypothesis for a main effect
free of parameters of higher-level effects with which the main effect is involved.

It is reasonable to assume, then, that any test of a hypothesis concerning an effect
should involve the parameters of that effect and only those other parameters with
which that effect is involved.

Contained Effect
Given two effectsF1 andF2, F1 is said to becontained inF2 provided that

� both effects involve the same continuous variables (if any)

� F2 has more CLASS variables than doesF1, and ifF1 has CLASS variables,
they all appear inF2

Note that the interaction effect� is contained in all pure CLASS effects, but it is not
contained in any effect involving a continuous variable. No effect is contained by�.

Type II, Type III, and Type IV estimable functions rely on this definition, and they
all have one thing in common: the estimable functions involving an effectF1 also
involve the parameters of all effects that containF1, and they do not involve the
parameters of effects that do not containF1 (other thanF1).

Hypothesis Matrix for Type II Estimable Functions
The Type II estimable functions for an effectF1 have anL (before reduction to full
row rank) of the following form:

� All columns ofL associated with effects not containingF1 (exceptF1) are
zero.

� The submatrix ofL associated with effectF1 is (X0

1
MX1)

�(X0

1
MX1).

� Each of the remaining submatrices ofL associated with an effectF2 that con-
tainsF1 is (X0

1
MX1)

�(X0

1
MX2).
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Type II SS and Estimable Functions � 169

In these submatrices,

X0 = the columns ofX whose associated effects do not containF1.

X1 = the columns ofX associated withF1.

X2 = the columns ofX associated with anF2 effect that containsF1.

M = I�X0(X
0

0X0)
�
X

0

0:

For the modelY = A B A � B, the Type II SS correspond to

R(A j �;B); R(B j �;A); R(A � B j �;A;B)

for effectsA, B, andA � B, respectively. For the modelY = A B(A) C(A B), the
Type II SS correspond to

R(A j �); R(B(A) j �;A); R(C(AB) j �;A;B(A))

for effectsA, B(A) andC(AB), respectively. For the modelY = X X � X, the
Type II SS correspond to

R(X j �;X �X) and R(X �X j �;X)

for X andX �X, respectively.

Example of Type II Estimable Functions
For a 2 � 2 factorial withw observations per cell, the general form of estimable
functions is shown in Table 12.5. Any nonzero values forL2, L4, andL6 can be
used to constructL vectors for computing the Type II SS forA, B, andA � B,
respectively.

Table 12.5. General Form of Estimable Functions for 2� 2 Factorial

Effect Coefficient
� L1

A1 L2

A2 L1� L2

B1 L4

B2 L1� L4

AB11 L6

AB12 L2� L6

AB21 L4� L6

AB22 L1� L2� L4 + L6

For a balanced2�2 factorial with the same number of observations in every cell, the
Type II estimable functions are shown in Table 12.6.
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Table 12.6. Type II Estimable Functions for Balanced 2� 2 Factorial

Coefficients for Effect
Effect A B A � B

� 0 0 0

A1 L2 0 0

A2 �L2 0 0

B1 0 L4 0

B2 0 �L4 0

AB11 0:5 � L2 0:5 � L4 L6

AB12 0:5 � L2 �0:5 � L4 �L6
AB21 �0:5 � L2 0:5 � L4 �L6
AB22 �0:5 � L2 �0:5 � L4 L6

For an unbalanced2 � 2 factorial (with two observations in every cell except the
AB22 cell, which contains only one observation), the general form of estimable
functions is the same as if it were balanced since the same effects are still estimable.
However, the Type II estimable functions forA andB are not the same as they were
for the balanced design. The Type II estimable functions for this unbalanced2 � 2

factorial are shown in Table 12.7.

Table 12.7. Type II Estimable Functions for Unbalanced 2� 2 Factorial

Coefficients for Effect
Effect A B A � B

� 0 0 0
A1 L2 0 0

A2 �L2 0 0

B1 0 L4 0

B2 0 �L4 0

AB11 0:6 � L2 0:6 � L4 L6

AB12 0:4 � L2 �0:6 � L4 �L6
AB21 �0:6 � L2 0:4 � L4 �L6
AB22 �0:4 � L2 �0:4 � L4 L6

By comparing the hypothesis being tested in the balanced case to the hypothesis be-
ing tested in the unbalanced case for effectsA andB, you can note that the Type II
hypotheses forA andB are dependent on the cell frequencies in the design. For un-
balanced designs in which the cell frequencies are not proportional to the background
population, the Type II hypotheses for effects that are contained in other effects are
of questionable merit.

However, if an effect is not contained in any other effect, the Type II hypothesis for
that effect is an MRH that does not involve any parameters except those associated
with the effect in question.

Thus, Type II SS are appropriate for

� any balanced model

� any main effects model

SAS OnlineDoc: Version 8



Type III and IV SS and Estimable Functions � 171

� any pure regression model

� an effect not contained in any other effect (regardless of the model)

In addition to the preceding, the Type II SS is generally accepted by most statisticians
for purely nested models.

Type III and IV SS and Estimable Functions

When an effect is contained in another effect, the Type II hypotheses for that effect
are dependent on the cell frequencies. The philosophy behind both the Type III and
Type IV hypotheses is that the hypotheses tested for any given effect should be the
same for all designs with the same general form of estimable functions.

To demonstrate this concept, recall the hypotheses being tested by the Type II SS in
the balanced2 � 2 factorial shown in Table 12.6. Those hypotheses are precisely
the ones that the Type III and Type IV hypotheses employ for all2 � 2 factorials
that have at least one observation per cell. The Type III and Type IV hypotheses for
a design without missing cells usually differ from the hypothesis employed for the
same design with missing cells since the general form of estimable functions usually
differs.

Type III Estimable Functions
Type III hypotheses are constructed by working directly with the general form of
estimable functions. The following steps are used to construct a hypothesis for an
effectF1:

1. For every effect in the model exceptF1 and those effects that containF1,
equate the coefficients in the general form of estimable functions to zero.

If F1 is not contained in any other effect, this step defines the Type III hypothe-
sis (as well as the Type II and Type IV hypotheses). IfF1 is contained in other
effects, go on to step 2. (See the section “Type II SS and Estimable Functions”
on page 167 for a definition of when effectF1 is contained in another effect.)

2. If necessary, equate new symbols to compound expressions in theF1 block in
order to obtain the simplest form for theF1 coefficients.

3. Equate all symbolic coefficients outside of theF1 block to a linear function of
the symbols in theF1 block in order to make theF1 hypothesis orthogonal to
hypotheses associated with effects that containF1.

By once again observing the Type II hypotheses being tested in the balanced2 � 2

factorial, it is possible to verify that theA andA � B hypotheses are orthogonal and
also that theB andA �B hypotheses are orthogonal. This principle of orthogonality
between an effect and any effect that contains it holds for all balanced designs. Thus,
construction of Type III hypotheses for any design is a logical extension of a process
that is used for balanced designs.

The Type III hypotheses are precisely the hypotheses being tested by programs that
reparameterize using the usual assumptions (for example, all parameters for an effect
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172 � Chapter 12. The Four Types of Estimable Functions

summing to zero). When no missing cells exist in a factorial model, Type III SS
coincide with Yates’ weighted squares-of-means technique. When cells are missing
in factorial models, the Type III SS coincide with those discussed in Harvey (1960)
and Henderson (1953).

The following steps illustrate the construction of Type III estimable functions for a
2� 2 factorial with no missing cells.

To obtain theA �B interaction hypothesis, start with the general form and equate the
coefficients for effects�,A, andB to zero, as shown in Table 12.8.

Table 12.8. Type III Hypothesis for A �B Interaction

Effect General Form L1 = L2 = L4 = 0

� L1 0

A1 L2 0

A2 L1� L2 0
B1 L4 0

B2 L1� L4 0

AB11 L6 L6

AB12 L2� L6 �L6
AB21 L4� L6 �L6
AB22 L1� L2� L4 + L6 L6

The last column in Table 12.8 represents the form of the MRH forA � B.

To obtain the Type III hypothesis forA, first start with the general form and equate the
coefficients for effects� andB to zero (letL1 = L4 = 0). Next letL6 = K�L2, and
find the value of K that makes the A hypothesis orthogonal to the A*B hypothesis. In
this case, K=0.5. Each of these steps is shown in Table 12.9.

In Table 12.9, the fourth column (underL6 = K � L2) represents the form of all
estimable functions not involving�, B1, or B2. The prime difference between the
Type II and Type III hypotheses forA is the wayK is determined. Type II chooses
K as a function of the cell frequencies, whereas Type III choosesK such that the
estimable functions forA are orthogonal to the estimable functions forA � B.

Table 12.9. Type III Hypothesis for A

Effect General Form L1 = L4 = 0 L6 = K � L2 K = 0:5

� L1 0 0 0

A1 L2 L2 L2 L2

A2 L1� L2 �L2 �L2 �L2
B1 L4 0 0 0

B2 L1� L4 0 0 0

AB11 L6 L6 K � L2 0:5 � L2
AB12 L2� L6 L2� L6 (1�K) � L2 0:5 � L2
AB21 L4� L6 �L6 �K � L2 �0:5 � L2
AB22 L1� L2� L4 + L6 �L2 + L6 (K � 1) � L2 �0:5 � L2
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An example of Type III estimable functions in a3 � 3 factorial with unequal cell
frequencies and missing diagonals is given in Table 12.10 (N1 throughN6 represent
the nonzero cell frequencies).

Table 12.10. A 3� 3 Factorial Design with Unequal Cell Frequencies and Missing
Diagonals

B
1 2 3

1 N1 N2

A 2 N3 N4

3 N5 N6

For any nonzero values ofN1 throughN6, the Type III estimable functions for each
effect are shown in Table 12.11.

Table 12.11. Type III Estimable Functions for 3 � 3 Factorial Design with Unequal
Cell Frequencies and Missing Diagonals

Effect A B A �B

� 0 0 0

A1 L2 0 0
A2 L3 0 0

A3 �L2� L3 0 0

B1 0 L5 0

B2 0 L6 0

B3 0 �L5� L6 0

AB12 0:667 � L2 + 0:333 � L3 0:333 � L5 + 0:667 � L6 L8

AB13 0:333 � L2� 0:333 � L3 �0:333 � L5� 0:667 � L6 �L8
AB21 0:333 � L2 + 0:667 � L3 0:667 � L5 + 0:333 � L6 �L8
AB23 �0:333 � L2 + 0:333 � L3 �0:667 � L5� 0:333 � L6 L8

AB31 �0:333 � L2� 0:667 � L3 0:333 � L5� 0:333 � L6 L8

AB32 �0:667 � L2� 0:333 � L3 �0:333 � L5 + 0:333 � L6 �L8

Type IV Estimable Functions
By once again looking at the Type II hypotheses being tested in the balanced2�2 fac-
torial (see Table 12.6), you can see another characteristic of the hypotheses employed
for balanced designs: the coefficients of lower-order effects are averaged across each
higher-level effect involving the same subscripts. For example, in theA hypothesis,
the coefficients ofAB11 andAB12 are equal to one-half the coefficient ofA1, and
the coefficients ofAB21 andAB22 are equal to one-half the coefficient ofA2. With
this in mind then, the basic concept used to construct Type IV hypotheses is that the
coefficients of any effect, sayF1, are distributed equitably across higher-level effects
that containF1. When missing cells occur, this same general philosophy is adhered
to, but care must be taken in the way the distributive concept is applied.

Construction of Type IV hypotheses begins as does the construction of the Type III
hypotheses. That is, for an effectF1, equate to zero all coefficients in the general
form that do not belong toF1 or to any other effect containingF1. If F1 is not
contained in any other effect, then the Type IV hypothesis (and Type II and III) has
been found. IfF1 is contained in other effects, then simplify, if necessary, the coef-
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ficients associated withF1 so that they are all free coefficients or functions of other
free coefficients in theF1 block.

To illustrate the method of resolving the free coefficients outside of theF1 block,
suppose that you are interested in the estimable functions for an effectA and thatA
is contained inAB, AC, andABC. (In other words, the main effects in the model
areA,B, andC.)

With missing cells, the coefficients of intermediate effects (here they areAB and
AC) do not always have an equal distribution of the lower-order coefficients, so the
coefficients of the highest-order effects are determined first (here it isABC). Once
the highest-order coefficients are determined, the coefficients of intermediate effects
are automatically determined.

The following process is performed for each free coefficient ofA in turn. The result-
ing symbolic vectors are then added together to give the Type IV estimable functions
for A.

1. Select a free coefficient ofA, and set all other free coefficients ofA to zero.

2. If any of the levels ofA have zero as a coefficient, equate all of the coefficients
of higher-level effects involving that level ofA to zero. This step alone usually
resolves most of the free coefficients remaining.

3. Check to see if any higher-level coefficients are now zero when the coefficient
of the associated level ofA is not zero. If this situation occurs, the Type IV
estimable functions forA are not unique.

4. For each level ofA in turn, if theA coefficient for that level is nonzero, count
the number of times that level occurs in the higher-level effect. Then equate
each of the higher-level coefficients to the coefficient of that level ofA divided
by the count.

An example of a3 � 3 factorial with four missing cells (N1 throughN5 represent
positive cell frequencies) is shown in Table 12.12.

Table 12.12. 3� 3 Factorial Design with Four Missing Cells

B
1 2 3

1 N1 N2

A 2 N3 N4

3 N5

The Type IV estimable functions are shown in Table 12.13.
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Table 12.13. Type IV Estimable Functions for 3�3 Factorial Design with Four Miss-
ing Cells

Effect A B A � B

� 0 0 0

A1 �L3 0 0

A2 L3 0 0

A3 0 0 0

B1 0 L5 0

B2 0 �L5 0

B3 0 0 0

AB11 �0:5 � L3 0:5 � L5 L8

AB12 �0:5 � L3 �0:5 � L5 �L8
AB21 0:5 � L3 0:5 � L5 �L8
AB22 0:5 � L3 �0:5 � L5 L8
AB33 0 0 0

A Comparison of Type III and Type IV Hypotheses
For the vast majority of designs, Type III and Type IV hypotheses for a given effect
are the same. Specifically, they are the same for any effectF1 that is not contained in
other effects for any design (with or without missing cells). For factorial designs with
no missing cells, the Type III and Type IV hypotheses coincide for all effects. When
there are missing cells, the hypotheses can differ. By using the GLM procedure, you
can study the differences in the hypotheses and then decide on the appropriateness of
the hypotheses for a particular model.

The Type III hypotheses for three-factor and higher completely nested designs with
unequalNs in the lowest level differ from the Type II hypotheses; however, the Type
IV hypotheses do correspond to the Type II hypotheses in this case.

When missing cells occur in a design, the Type IV hypotheses may not be unique. If
this occurs in PROC GLM, you are notified, and you may need to consider defining
your own specific comparisons.
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