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Chapter 14
Introduction to Structural Equations

with Latent Variables

Overview

You can use the CALIS procedure for analysis of covariance structures, fitting sys-
tems of linear structural equations, and path analysis. These terms are more or less
interchangeable, but they emphasize different aspects of the analysis. The analysis
of covariance structures refers to the formulation of a model for the variances and
covariances among a set of variables and the fitting of the model to an observed co-
variance matrix. In linear structural equations, the model is formulated as a system
of equations relating several random variables with assumptions about the variances
and covariances of the random variables. In path analysis, the model is formulated
as a path diagram, in which arrows connecting variables represent (co)variances and
regression coefficients. Path models and linear structural equation models can be con-
verted to models of the covariance matrix and can, therefore, be fitted by the methods
of covariance structure analysis. All of these methods allow the use of hypothetical
latent variables or measurement errors in the models.

Loehlin (1987) provides an excellent introduction to latent variable models using path
diagrams and structural equations. A more advanced treatment of structural equation
models with latent variables is given by Bollen (1989). Fuller (1987) provides a
highly technical statistical treatment of measurement-error models.

Comparison of the CALIS and SYSLIN Procedures

The SYSLIN procedure in the SAS/ETS product can also fit certain kinds of path
models and linear structural equation models. PROC CALIS differs from PROC
SYSLIN in that PROC CALIS allows more generality in the use of latent variables in
the models. Latent variables are unobserved, hypothetical variables, as distinct from
manifest variables, which are the observed data. PROC SYSLIN allows at most one
latent variable, the error term, in each equation. PROC CALIS allows several latent
variables to appear in an equation—in fact, all the variables in an equation can be
latent as long as there are other equations that relate the latent variables to manifest
variables.

Both the CALIS and SYSLIN procedures enable you to specify a model as a sys-
tem of linear equations. When there are several equations, a given variable may be
a dependent variable in one equation and an independent variable in other equations.
Therefore, additional terminology is needed to describe unambiguously the roles of
variables in the system. Variables with values that are determined jointly and si-
multaneously by the system of equations are calledendogenous variables. Variables
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with values that are determined outside the system, that is, in a manner separate from
the process described by the system of equations, are called exogenous variables. The
purpose of the system of equations is to explain the variation of each endogenous vari-
able in terms of exogenous variables or other endogenous variables or both. Refer to
Loehlin (1987, p. 4) for further discussion of endogenous and exogenous variables.
In the econometric literature, error and disturbance terms are usually distinguished
from exogenous variables, but in systems with more than one latent variable in an
equation, the distinction is not always clear.

In PROC SYSLIN, endogenous variables are identified by the ENDOGENOUS state-
ment. When you specify structural equations in PROC CALIS, endogenous variables
are assumed to be those that appear on the left-hand sides of the equations; a given
variable may appear on the left-hand side of at most one equation.

PROC SYSLIN provides many methods of estimation, some of which are applica-
ble only in special cases. For example, ordinary least-squares estimates are suitable
in certain kinds of systems but may be statistically biased and inconsistent in other
kinds. PROC CALIS provides three methods of estimation that can be used with
most models. Both the CALIS and SYSLIN procedures can do maximum likelihood
estimation, which PROC CALIS calls ML and PROC SYSLIN calls FIML. PROC
SYSLIN can be much faster than PROC CALIS in those special cases for which it
provides computationally efficient estimation methods. However, PROC CALIS has
a variety of sophisticated algorithms for maximum likelihood estimation that may be
much faster than FIML in PROC SYSLIN.

PROC CALIS can impose a wider variety of constraints on the parameters, including
nonlinear constraints, than can PROC SYSLIN. For example, PROC CALIS can con-
strain error variances or covariances to equal specified constants, or it can constrain
two error variances to have a specified ratio.

Model Specification

PROC CALIS provides several ways to specify a model. Structural equations can
be transcribed directly in the LINEQS statement. A path diagram can be described
in the RAM statement. You can specify a first-order factor model in the FACTOR
and MATRIX statements. Higher-order factor models and other complicated models
can be expressed in the COSAN and MATRIX statements. For most applications,
the LINEQS and RAM statements are easiest to use; the choice between these two
statements is a matter of personal preference.

You can save a model specification in an OUTRAM= data set, which can then be
used with the INRAM= option to specify the model in a subsequent analysis.
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Statistical Inference � 191

Estimation Methods

The CALIS procedure provides three methods of estimation specified by the
METHOD= option:

ULS unweighted least squares
GLS generalized least squares
ML maximum likelihood for multivariate normal distributions

Each estimation method is based on finding parameter estimates that minimize a
badness-of-fit function that measures the difference between the observed sample co-
variance matrix and the predicted covariance matrix given the model and the parame-
ter estimates. See the section “Estimation Methods” on page 462 in Chapter 19, “The
CALIS Procedure,” for formulas, or refer to Loehlin (1987, pp. 54–62) and Bollen
(1989, pp. 104–123) for further discussion.

The default is METHOD=ML, which is the preferred method for most applications
with respect to statistical considerations. The option METHOD=GLS usually pro-
duces very similar results to METHOD=ML. Both methods are suitable regardless
of the scaling of the covariance matrix. The ULS method is appropriate for a co-
variance matrix only if the variables are measured on comparable scales; otherwise,
METHOD=ULS should be applied to the correlation matrix. PROC CALIS cannot
compute standard errors or test statistics with the ULS method.

You should not specify METHOD=ML or METHOD=GLS if the observed or pre-
dicted covariance matrix is singular—you should either remove variables involved in
the linear dependencies or specify METHOD=ULS.

PROC CALIS should not be used if your data are extremely nonnormal data, espe-
cially if they have high kurtosis. You should remove outliers and try to transform
variables that are skewed or heavy-tailed. This applies to all three estimation meth-
ods, since all the estimation methods depend on the sample covariance matrix, and
the sample covariance matrix is a poor estimator for distributions with high kurtosis
(Bollen 1989, pp. 415–418; Huber 1981; Hampel et. al 1986). PROC CALIS dis-
plays estimates of univariate and multivariate kurtosis (Bollen 1989, pp. 418–425) if
you specify the KURTOSIS option in the PROC CALIS statement.

Statistical Inference

When you specify the ML or GLS estimates with appropriate models, PROC CALIS
can compute

� a chi-square goodness-of-fit test of the specified model versus the alternative
that the data are from a multivariate normal distribution with unconstrained
covariance matrix (Loehlin 1987, pp. 62–64; Bollen 1989, pp. 110, 115,
263–269)
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� approximate standard errors of the parameter estimates (Bollen 1989, pp. 109,
114, 286), displayed with the STDERR option

� various modification indices, requested via the MODIFICATION or MOD op-
tion, that give the approximate change in the chi-square statistic that would
result from removing constraints on the parameters or constraining additional
parameters to zero (Bollen 1989, pp. 293–303)

If you have two models such that one model results from imposing constraints on
the parameters of the other, you can test the constrained model against the more
general model by fitting both models with PROC CALIS. If the constrained model
is correct, the difference between the chi-square goodness-of-fit statistics for the two
models has an approximate chi-square distribution with degrees of freedom equal to
the difference between the degrees of freedom for the two models (Loehlin 1987, pp.
62–67; Bollen 1989, pp. 291–292).

All of the test statistics and standard errors computed by PROC CALIS depend on
the assumption of multivariate normality. Normality is a much more important re-
quirement for data with random independent variables than it is for fixed independent
variables. If the independent variables are random, distributions with high kurtosis
tend to give liberal tests and excessively small standard errors, while low kurtosis
tends to produce the opposite effects (Bollen 1989, pp. 266–267, 415–432).

The test statistics and standard errors computed by PROC CALIS are also based on
asymptotic theory and should not be trusted in small samples. There are no firm
guidelines on how large a sample must be for the asymptotic theory to apply with
reasonable accuracy. Some simulation studies have indicated that problems are likely
to occur with sample sizes less than 100 (Loehlin 1987, pp. 60–61; Bollen 1989, pp.
267–268). Extrapolating from experience with multiple regression would suggest
that the sample size should be at least five to twenty times the number of parameters
to be estimated in order to get reliable and interpretable results.

The asymptotic theory requires that the parameter estimates be in the interior of the
parameter space. If you do an analysis with inequality constraints and one or more
constraints are active at the solution (for example, if you constrain a variance to be
nonnegative and the estimate turns out to be zero), the chi-square test and standard
errors may not provide good approximations to the actual sampling distributions.

Standard errors may be inaccurate if you analyze a correlation matrix rather than a
covariance matrix even for sample sizes as large as 400 (Boomsma 1983). The chi-
square statistic is generally the same regardless of which matrix is analyzed provided
that the model involves no scale-dependent constraints.

If you fit a model to a correlation matrix and the model constrains one or more ele-
ments of the predicted matrix to equal 1.0, the degrees of freedom of the chi-square
statistic must be reduced by the number of such constraints. PROC CALIS attempts
to determine which diagonal elements of the predicted correlation matrix are con-
strained to a constant, but it may fail to detect such constraints in complicated mod-
els, particularly when programming statements are used. If this happens, you should
add parameters to the model to release the constraints on the diagonal elements.
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Goodness-of-fit Statistics

In addition to the chi-square test, there are many other statistics for assessing the
goodness of fit of the predicted correlation or covariance matrix to the observed ma-
trix.

Akaike’s (1987) information criterion (AIC) and Schwarz’s (1978) Bayesian criterion
(SBC) are useful for comparing models with different numbers of parameters—the
model with the smallest value of AIC or SBC is considered best. Based on both
theoretical considerations and various simulation studies, SBC seems to work better,
since AIC tends to select models with too many parameters when the sample size is
large.

There are many descriptive measures of goodness of fit that are scaled to range ap-
proximately from zero to one: the goodness of fit index (GFI) and GFI adjusted
for degrees of freedom (AGFI) (Jöreskog and Sörbom 1988), centrality (McDonald
1989), and the parsimonious fit index (James, Mulaik, and Brett 1982). Bentler and
Bonett (1980) and Bollen (1986) have proposed measures for comparing the good-
ness of fit of one model with another in a descriptive rather than inferential sense.

None of these measures of goodness of fit are related to the goodness of prediction
of the structural equations. Goodness of fit is assessed by comparing the observed
correlation or covariance matrix with the matrix computed from the model and pa-
rameter estimates. Goodness of prediction is assessed by comparing the actual values
of the endogenous variables with their predicted values, usually in terms of root mean
squared error or proportion of variance accounted for (R2). For latent endogenous
variables, root mean squared error andR2 can be estimated from the fitted model.

Optimization Methods

PROC CALIS uses a variety of nonlinear optimization algorithms for computing pa-
rameter estimates. These algorithms are very complicated and do not always work.
PROC CALIS will generally inform you when the computations fail, usually by dis-
playing an error message about the iteration limit being exceeded. When this hap-
pens, you may be able to correct the problem simply by increasing the iteration limit
(MAXITER= and MAXFUNC=). However, it is often more effective to change the
optimization method (OMETHOD=) or initial values. For more details, see the sec-
tion “Use of Optimization Techniques” on page 551 in Chapter 19, “The CALIS
Procedure,” and refer to Bollen (1989, pp. 254–256).

PROC CALIS may sometimes converge to a local optimum rather than the global
optimum. To gain some protection against local optima, you can run the analysis
several times with different initial estimates. The RANDOM= option in the PROC
CALIS statement is useful for generating a variety of initial estimates.
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Specifying Structural Equation Models

Consider fitting a linear equation to two observed variables,Y andX. Simple linear
regression uses the model of a particular form, labeled for purposes of discussion, as
Model Form A.

Model Form A

Y = �+ �X +EY

where� and� are coefficients to be estimated andEY is an error term. If the val-
ues ofX are fixed, the values ofEY are assumed to be independent and identically
distributed realizations of a normally distributed random variable with mean zero and
variance Var(EY ). If X is a random variable,X andEY are assumed to have a bi-
variate normal distribution with zero correlation and variances Var(X) and Var(EY ),
respectively. Under either set of assumptions, the usual formulas hold for the esti-
mates of the coefficients and their standard errors (see Chapter 3, “Introduction to
Regression Procedures”).

In the REG or SYSLIN procedure, you would fit a simple linear regression model
with a MODEL statement listing only the names of the manifest variables:

proc reg;
model y=x;

run;

You can also fit this model with PROC CALIS, but you must explicitly specify the
names of the parameters and the error terms (except for the intercept, which is as-
sumed to be present in each equation). The linear equation is given in the LINEQS
statement, and the error variance is specified in the STD statement.

proc calis cov;
lineqs y=beta x + ex;
std ex=vex;

run;

The parameters are the regression coefficient BETA and the variance VEX of the
error term EX. You do not need to type an * between BETA and X to indicate the
multiplication of the variable by the coefficient.

The LINEQS statement uses the convention that the names of error terms begin with
the letter E, disturbances (errors terms for latent variables) in equations begin with D,
and other latent variables begin with F for “factor.” Names of variables in the input
SAS data set can, of course, begin with any letter.
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Specifying Structural Equation Models � 195

If you leave out the name of a coefficient, the value of the coefficient is assumed to
be 1. If you leave out the name of a variance, the variance is assumed to be 0. So if
you tried to write the model the same way you would in PROC REG, for example,

proc calis cov;
lineqs y=x;

you would be fitting a model that saysY is equal toX plus an intercept, with no error.

The COV option is used because PROC CALIS, like PROC FACTOR, analyzes the
correlation matrix by default, yielding standardized regression coefficients. The COV
option causes the covariance matrix to be analyzed, producing raw regression coef-
ficients. See Chapter 3, “Introduction to Regression Procedures,” for a discussion of
the interpretation of raw and standardized regression coefficients.

Since the analysis of covariance structures is based on modeling the covariance ma-
trix and the covariance matrix contains no information about means, PROC CALIS
neglects the intercept parameter by default. To estimate the intercept, change the
COV option to UCOV, which analyzes the uncorrected covariance matrix, and use
the AUGMENT option, which adds a row and column for the intercept, called IN-
TERCEP, to the matrix being analyzed. The model can then be specified as

proc calis ucov augment;
lineqs y=alpha intercep + beta x + ex;
std ex=vex;

run;

In the LINEQS statement,intercep represents a variable with a constant value of 1;
hence, the coefficientalpha is the intercept parameter.

Other commonly used options in the PROC CALIS statement include

� MODIFICATION to display model modification indices

� RESIDUAL to display residual correlations or covariances

� STDERR to display approximate standard errors

� TOTEFF to display total effects

For ordinary unconstrained regression models, there is no reason to use PROC CALIS
instead of PROC REG. But suppose that the observed variablesY andX are contam-
inated by error, and you want to estimate the linear relationship between their true,
error-free scores. The model can be written in several forms. A model of Form B is
as follows.
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Model Form B

Y = �+ �FX +EY

X = FX +EX

Cov(FX ; EX) = Cov(FX ; EY ) = Cov(EX ; EY ) = 0

This model has two error terms,EY andEX , as well as another latent variableFX
representing the true value corresponding to the manifest variableX. The true value
corresponding toY does not appear explicitly in this form of the model.

The assumption in Model Form B is that the error terms and the latent variableFX
are jointly uncorrelated is of critical importance. This assumption must be justified
on substantive grounds such as the physical properties of the measurement process.
If this assumption is violated, the estimators may be severely biased and inconsistent.

You can express Model Form B in PROC CALIS as follows:

proc calis cov;
lineqs y=beta fx + ey,

x=fx + ex;
std fx=vfx,

ey=vey,
ex=vex;

run;

You must specify a variance for each of the latent variables in this model using the
STD statement. You can specify either a name, in which case the variance is con-
sidered a parameter to be estimated, or a number, in which case the variance is con-
strained to equal that numeric value. In general, you must specify a variance for each
latent exogenous variable in the model, including error and disturbance terms. The
variance of a manifest exogenous variable is set equal to its sample variance by de-
fault. The variances of endogenous variables are predicted from the model and are
not parameters. Covariances involving latent exogenous variables are assumed to be
zero by default. Covariances between manifest exogenous variables are set equal to
the sample covariances by default.

Fuller (1987, pp. 18–19) analyzes a data set from Voss (1969) involving corn yields
(Y) and available soil nitrogen (X) for which there is a prior estimate of the mea-
surement error for soil nitrogen Var(EX ) of 57. You can fit Model Form B with this
constraint using the following SAS statements.
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Specifying Structural Equation Models � 197

data corn(type=cov);
input _type_ $ _name_ $ y x;
datalines;

n . 11 11
mean . 97.4545 70.6364
cov y 87.6727 .
cov x 104.8818 304.8545
;

proc calis data=corn cov stderr;
lineqs y=beta fx + ey,

x=fx + ex;
std ex=57,

fx=vfx,
ey=vey;

run;

In the STD statement, the variance of EX is given as the constant value 57. PROC
CALIS produces the following estimates.

The SAS System

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

y = 0.4232*fx + 1.0000 ey
Std Err 0.1658 beta
t Value 2.5520
x = 1.0000 fx + 1.0000 ex

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fx vfx 247.85450 136.33508 1.82
ey vey 43.29105 23.92488 1.81
ex 57.00000

Figure 14.1. Measurement Error Model for Corn Data

PROC CALIS also displays information about the initial estimates that can be useful
if there are optimization problems. If there are no optimization problems, the initial
estimates are usually not of interest; they are not be reproduced in the examples in
this chapter.

You can write an equivalent model (labeled here as Model Form C) using a latent
variableFY to represent the true value corresponding toY.
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Model Form C

Y = FY +EY

X = FX +EX

FY = �+ �FX

Cov(FX ; EX) = Cov(FX ; EX) = Cov(EX ; EY ) = 0

The first two of the three equations express the observed variables in terms of a true
score plus error; these equations are called the measurement model. The third equa-
tion, expressing the relationship between the latent true-score variables, is called the
structural or causal model. The decomposition of a model into a measurement model
and a structural model (Keesling 1972; Wiley 1973; Jöreskog 1973) has been pop-
ularized by the program LISREL (Jöreskog and Sörbom 1988). The statements for
fitting this model are

proc calis cov;
lineqs y=fy + ey,

x=fx + ex,
fy=beta fx;

std fx=vfx,
ey=vey,
ex=vex;

run;

You do not need to include the variance ofFY in the STD statement because the
variance ofFY is determined by the structural model in terms of the variance ofFX ,
that is, Var(FY )=�2 Var(FX ).

Correlations involving endogenous variables are derived from the model. For exam-
ple, the structural equation in Model Form C implies thatFY andFX are correlated
unless� is zero. In all of the models discussed so far, the latent exogenous variables
are assumed to be jointly uncorrelated. For example, in Model Form C,EY ,EX , and
FX are assumed to be uncorrelated. If you want to specify a model in whichEY and
EX , say, are correlated, you can use the COV statement to specify the numeric value
of the covariance Cov(EY , EX) betweenEY andEX , or you can specify a name to
make the covariance a parameter to be estimated. For example,

proc calis cov;
lineqs y=fy + ey,

x=fx + ex,
fy=beta fx;

std fy=vfy,
fx=vfx,
ey=vey,
ex=vex;

cov ey ex=ceyex;
run;
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This COV statement specifies that the covariance between EY and EX is a parameter
named CEYEX. All covariances that are not listed in the COV statement and that are
not determined by the model are assumed to be zero. If the model contained two or
more manifest exogenous variables, their covariances would be set to the observed
sample values by default.

Identification of Models

Unfortunately, if you try to fit models of Form B or Form C without additional
constraints, you cannot obtain unique estimates of the parameters. These models
have four parameters (one coefficient and three variances). The covariance matrix of
the observed variablesY andX has only three elements that are free to vary, since
Cov(Y,X)=Cov(X,Y). The covariance structure can, therefore, be expressed as three
equations in four unknown parameters. Since there are fewer equations than un-
knowns, there are many different sets of values for the parameters that provide a
solution for the equations. Such a model is said to be underidentified.

If the number of parameters equals the number of free elements in the covariance ma-
trix, then there may exist a unique set of parameter estimates that exactly reproduce
the observed covariance matrix. In this case, the model is said to be just identified or
saturated.

If the number of parameters is less than the number of free elements in the covariance
matrix, there may exist no set of parameter estimates that reproduces the observed co-
variance matrix. In this case, the model is said to be overidentified. Various statistical
criteria, such as maximum likelihood, can be used to choose parameter estimates that
approximately reproduce the observed covariance matrix. If you use ML or GLS esti-
mation, PROC CALIS can perform a statistical test of the goodness of fit of the model
under the assumption of multivariate normality of all variables and independence of
the observations.

If the model is just identified or overidentified, it is said to be identified. If you use
ML or GLS estimation for an identified model, PROC CALIS can compute approxi-
mate standard errors for the parameter estimates. For underidentified models, PROC
CALIS obtains approximate standard errors by imposing additional constraints re-
sulting from the use of a generalized inverse of the Hessian matrix.

You cannot guarantee that a model is identified simply by counting the parameters.
For example, for any latent variable, you must specify a numeric value for the vari-
ance, or for some covariance involving the variable, or for a coefficient of the variable
in at least one equation. Otherwise, the scale of the latent variable is indeterminate,
and the model will be underidentified regardless of the number of parameters and
the size of the covariance matrix. As another example, an exploratory factor analysis
with two or more common factors is always underidentified because you can rotate
the common factors without affecting the fit of the model.

PROC CALIS can usually detect an underidentified model by computing the approxi-
mate covariance matrix of the parameter estimates and checking whether any estimate
is linearly related to other estimates (Bollen 1989, pp. 248–250), in which case PROC
CALIS displays equations showing the linear relationships among the estimates. An-
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other way to obtain empirical evidence regarding the identification of a model is to
run the analysis several times with different initial estimates to see if the same final
estimates are obtained.

Bollen (1989) provides detailed discussions of conditions for identification in a vari-
ety of models.

The following example is inspired by Fuller (1987, pp. 40–41). The hypothetical data
are counts of two types of cells, cells forming rosettes and nucleated cells, in spleen
samples. It is reasonable to assume that counts have a Poisson distribution; hence,
the square roots of the counts should have a constant error variance of 0.25.

You can use PROC CALIS to fit a model of Form C to the square roots of the counts
without constraints on the parameters, as displayed in following statements. The
option OMETHOD=QUANEW is used in the PROC CALIS statement because in
this case it produces more rapid convergence than the default optimization method.

data spleen;
input rosette nucleate;
sqrtrose=sqrt(rosette);
sqrtnucl=sqrt(nucleate);
datalines;

4 62
5 87
5 117
6 142
8 212
9 120
12 254
13 179
15 125
19 182
28 301
51 357
;

proc calis data=spleen cov omethod=quanew;
lineqs sqrtrose=factrose + err_rose,

sqrtnucl=factnucl + err_nucl,
factrose=beta factnucl;

std err_rose=v_rose,
err_nucl=v_nucl,
factnucl=v_factnu;

run;
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This model is underidentified. PROC CALIS displays the following warning:

WARNING: Problem not identified: More parameters to estimate ( 4 )
than given values in data matrix ( 3 ).

and diagnoses the indeterminacy as follows:

NOTE: Hessian matrix is not full rank. Not all parameters are identified.
Some parameter estimates are linearly related to other parameter
estimates as shown in the following equations:

v_nucl = -10.554977 - 0.036438 * beta + 1.00000 * v_factnu
+ 0.149564 * v_rose

The constraint that the error variances equal 0.25 can be imposed by modifying the
STD statement:

proc calis data=spleen cov stderr;
lineqs sqrtrose=factrose + err_rose,

sqrtnucl=factnucl + err_nucl,
factrose=beta factnucl;

std err_rose=.25,
err_nucl=.25,
factnucl=v_factnu;

run;

The resulting parameter estimates are displayed in Figure 14.2.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

factrose = 0.4034*factnucl
Std Err 0.0508 beta
t Value 7.9439

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

factnucl v_factnu 10.45846 4.56608 2.29
err_rose 0.25000
err_nucl 0.25000

Figure 14.2. Spleen Data: Parameter Estimates for Overidentified Model

This model is overidentified and the chi-square goodness-of-fit test yields ap-value
of 0.0219, as displayed in Figure 14.3.
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The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.4775
Goodness of Fit Index (GFI) 0.7274
GFI Adjusted for Degrees of Freedom (AGFI) 0.1821
Root Mean Square Residual (RMR) 0.1785
Parsimonious GFI (Mulaik, 1989) 0.7274
Chi-Square 5.2522
Chi-Square DF 1
Pr > Chi-Square 0.0219
Independence Model Chi-Square 13.273
Independence Model Chi-Square DF 1
RMSEA Estimate 0.6217
RMSEA 90% Lower Confidence Limit 0.1899
RMSEA 90% Upper Confidence Limit 1.1869
ECVI Estimate 0.9775
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 2.2444
Probability of Close Fit 0.0237
Bentler’s Comparative Fit Index 0.6535
Normal Theory Reweighted LS Chi-Square 9.5588
Akaike’s Information Criterion 3.2522
Bozdogan’s (1987) CAIC 1.7673
Schwarz’s Bayesian Criterion 2.7673
McDonald’s (1989) Centrality 0.8376
Bentler & Bonett’s (1980) Non-normed Index 0.6535
Bentler & Bonett’s (1980) NFI 0.6043
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6043
Z-Test of Wilson & Hilferty (1931) 2.0375
Bollen (1986) Normed Index Rho1 0.6043
Bollen (1988) Non-normed Index Delta2 0.6535
Hoelter’s (1983) Critical N 10

Figure 14.3. Spleen Data: Fit Statistics for Overidentified Model

The sample size is so small that thep-value should not be taken to be accurate, but to
get a smallp-value with such a small sample indicates it is possible that the model is
seriously deficient. The deficiency could be due to any of the following:

� The error variances are not both equal to 0.25.

� The error terms are correlated with each other or with the true scores.

� The observations are not independent.

� There is a disturbance in the linear relation betweenfactrose andfactnucl.

� The relation betweenfactrose andfactnucl is not linear.

� The actual distributions are not adequately approximated by the multivariate
normal distribution.

A simple and plausible modification to the model is to add a “disturbance term” or
“error in the equation” to the structural model, as follows.
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proc calis data=spleen cov stderr;
lineqs sqrtrose=factrose + err_rose,

sqrtnucl=factnucl + err_nucl,
factrose=beta factnucl + disturb;

std err_rose=.25,
err_nucl=.25,
factnucl=v_factnu,
disturb=v_dist;

run;

The following parameter estimates are produced.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

factrose = 0.3907*factnucl + 1.0000 disturb
Std Err 0.0771 beta
t Value 5.0692

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

factnucl v_factnu 10.50458 4.58577 2.29
err_rose 0.25000
err_nucl 0.25000
disturb v_dist 0.38153 0.28556 1.34

Figure 14.4. Spleen Data: Parameter Estimated for Just Identified Model

This model is just identified, so there are no degrees of freedom for the chi-square
goodness-of-fit test.

Path Diagrams and the RAM Model

Complicated models are often easier to understand when they are expressed as path
diagrams. One advantage of path diagrams over equations is that variances and co-
variances can be shown directly in the path diagram. Loehlin (1987) provides a de-
tailed discussion of path diagrams.

It is customary to write the names of manifest variables in rectangles and names of
latent variables in ovals. The coefficients in each equation are indicated by draw-
ing arrows from the independent variables to the dependent variable. Covariances
between exogenous variables are drawn as two-headed arrows. The variance of an
exogenous variable can be displayed as a two-headed arrow with both heads pointing
to the exogenous variable, since the variance of a variable is the covariance of the
variable with itself. Here is a path diagram for the spleen data, explicitly showing all
latent variables and variances of exogenous variables.
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V_DIST

.25 .25

5: ERR_ROSE 6: ERR_NUCL

1.0 1.0

1.0 1.0

1: SQRTROSE

3: FACTROSE 4: FACTNUCL

7: DISTURB

2: SQRTNUCL

V_FACTNU

BETA

Figure 14.5. Path Diagram: Spleen

There is an easier way to draw the path diagram based on McArdle’s reticular action
model (RAM) (McArdle and McDonald 1984). McArdle uses the convention that a
two-headed arrow that points to an endogenous variable actually refers to the error
or disturbance term associated with that variable. A two-headed arrow with both
heads pointing to the same endogenous variable represents the error or disturbance
variance for the equation that determines the endogenous variable; there is no need to
draw a separate oval for the error or disturbance term. Similarly, a two-headed arrow
connecting two endogenous variables represents the covariance between the error of
disturbance terms associated with the endogenous variables. The RAM conventions
allow the previous path diagram to be simplified, as follows.
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4: FACTNUCL

1: SQRTROSE 2: SQRTNUCL

.25 .25

V_DIST V_FACTNU

BETA

1.0 1.0

3: FACTROSE

Figure 14.6. Path Diagram: Spleen

The RAM statement in PROC CALIS provides a simple way to transcribe a path
diagram based on the reticular action model. Assign the integers 1, 2, 3,: : : to the
variables in the order in which they appear in the SAS data set or in the VAR state-
ment, if you use one. Assign subsequent consecutive integers to the latent variables
displayed explicitly in the path diagram (excluding the error and disturbance terms
implied by two-headed arrows) in any order. Each arrow in the path diagram can
then be identified by two numbers indicating the variables connected by the path.
The RAM statement consists of a list of descriptions of all the arrows in the path
diagram. The descriptions are separated by commas. Each arrow description consists
of three or four numbers and, optionally, a name in the following order:

1. The number of heads the arrow has.

2. The number of the variable the arrow points to, or either variable if the arrow
is two-headed.

3. The number of the variable the arrow comes from, or the other variable if the
arrow is two-headed.

4. The value of the coefficient or (co)variance that the arrow represents.
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5. A name if the arrow represents a parameter to be estimated, in which case the
previous number is taken to be the initial estimate of the parameter. Omit the
name if the arrow represents a constant. If you specify a name, the fourth
number may be omitted.

The model for the spleen data can be specified with the RAM statement, as follows:

/* 1 sqrtrose */
/* 2 sqrtnucl */
/* 3 factrose */
/* 4 factnucl */

proc calis data=spleen cov stderr method=ml outram=splram1;
var sqrtrose sqrtnucl;
ram 1 1 3 1, /* sqrtrose <- factrose */

1 2 4 1, /* sqrtnucl <- factnucl */
1 3 4 beta, /* factrose <- factnucl */
2 1 1 .25, /* error variance for sqrtrose */
2 2 2 .25, /* error variance for sqrtnucl */
2 3 3 v_dist, /* disturbance variance for factrose */
2 4 4 v_factnu; /* variance of factnucl */

run;

The resulting output in RAM form is displayed in Figure 14.7.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix ----Row----- ---Column--- Parameter Estimate Error t Value

1 2 sqrtrose 1 F1 3 . 1.00000
1 2 sqrtnucl 2 F2 4 . 1.00000
1 2 F1 3 F2 4 beta 0.39074 0.07708 5.07
1 3 E1 1 E1 1 . 0.25000
1 3 E2 2 E2 2 . 0.25000
1 3 D1 3 D1 3 v_dist 0.38153 0.28556 1.34
1 3 D2 4 D2 4 v_factnu 10.50458 4.58577 2.29

Figure 14.7. Spleen Data: RAM Model

You can request an output data set containing the model specification by using the
OUTRAM= option in the PROC CALIS statement. Names for the latent variables
can be specified in a VNAMES statement.
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proc calis data=spleen cov stderr method=ml outram=splram1;
var sqrtrose sqrtnucl;
vnames 1 factrose factnucl,

2 err_rose err_nucl disturb factnucl;
ram 1 1 3 1, /* sqrtrose <- factrose */

1 2 4 1, /* sqrtnucl <- factnucl */
1 3 4 beta, /* factrose <- factnucl */
2 1 1 .25, /* error variance for sqrtrose */

2 2 2 .25, /* error variance for sqrtnucl */
2 3 3 v_dist, /* disturbance variance for factrose */
2 4 4 v_factnu; /* variance of factnucl */

run;

proc print;
run;

The RAM output is displayed in Figure 14.8.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix ----Row----- ---Column--- Parameter Estimate Error t Value

1 2 sqrtrose 1 factrose 3 . 1.00000
1 2 sqrtnucl 2 factnucl 4 . 1.00000
1 2 factrose 3 factnucl 4 beta 0.39074 0.07708 5.07
1 3 err_rose 1 err_rose 1 . 0.25000
1 3 err_nucl 2 err_nucl 2 . 0.25000
1 3 disturb 3 disturb 3 v_dist 0.38153 0.28556 1.34
1 3 factnucl 4 factnucl 4 v_factnu 10.50458 4.58577 2.29

Figure 14.8. Spleen Data: RAM Model with Names for Latent Variables

The OUTRAM= data set contains the RAM model as you specified it in the RAM
statement, but it contains the final parameter estimates and standard errors instead of
the initial values.
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Obs _TYPE_ _NAME_ _MATNR_ _ROW_ _COL_ _ESTIM_ _STDERR_

1 MODEL _IDE_ 1 2 4 1.0000 0.00000
2 MODEL _A_ 2 4 4 6.0000 2.00000
3 MODEL _P_ 3 4 4 3.0000 0.00000
4 VARNAME sqrtrose 2 . 1 . .
5 VARNAME sqrtnucl 2 . 2 . .
6 VARNAME factrose 2 . 3 . .
7 VARNAME factnucl 2 . 4 . .
8 VARNAME err_rose 3 . 1 . .
9 VARNAME err_nucl 3 . 2 . .

10 VARNAME disturb 3 . 3 . .
11 VARNAME factnucl 3 . 4 . .
12 METHOD ML . . . . .
13 STAT N . . . 12.0000 .
14 STAT FIT . . . 0.0000 .
15 STAT GFI . . . 1.0000 .
16 STAT AGFI . . . . .
17 STAT RMR . . . 0.0000 .
18 STAT PGFI . . . 0.0000 .
19 STAT NPARM . . . 3.0000 .
20 STAT DF . . . 0.0000 .
21 STAT N_ACT . . . 0.0000 .
22 STAT CHISQUAR . . . 0.0000 .
23 STAT P_CHISQ . . . 0.0000 .
24 STAT CHISQNUL . . . 13.2732 .
25 STAT RMSEAEST . . . 0.0000 .
26 STAT RMSEALOB . . . . .
27 STAT RMSEAUPB . . . . .
28 STAT P_CLOSFT . . . . .
29 STAT ECVI_EST . . . 0.7500 .
30 STAT ECVI_LOB . . . . .
31 STAT ECVI_UPB . . . . .
32 STAT COMPFITI . . . 1.0000 .
33 STAT ADJCHISQ . . . . .
34 STAT P_ACHISQ . . . . .
35 STAT RLSCHISQ . . . 0.0000 .
36 STAT AIC . . . 0.0000 .
37 STAT CAIC . . . 0.0000 .
38 STAT SBC . . . 0.0000 .
39 STAT CENTRALI . . . 1.0000 .
40 STAT BB_NONOR . . . . .
41 STAT BB_NORMD . . . 1.0000 .
42 STAT PARSIMON . . . 0.0000 .
43 STAT ZTESTWH . . . . .
44 STAT BOL_RHO1 . . . . .
45 STAT BOL_DEL2 . . . 1.0000 .
46 STAT CNHOELT . . . . .
47 ESTIM 2 1 3 1.0000 0.00000
48 ESTIM 2 2 4 1.0000 0.00000
49 ESTIM beta 2 3 4 0.3907 0.07708
50 ESTIM 3 1 1 0.2500 0.00000
51 ESTIM 3 2 2 0.2500 0.00000
52 ESTIM v_dist 3 3 3 0.3815 0.28556
53 ESTIM v_factnu 3 4 4 10.5046 4.58577

Figure 14.9. Spleen Data: OUTRAM= Data Set with Final Parameter Estimates

This data set can be used as input to another run of PROC CALIS with the INRAM=
option in the PROC CALIS statement. For example, if the iteration limit is exceeded,
you can use the RAM data set to start a new run that begins with the final estimates
from the last run. Or you can change the data set to add or remove constraints or
modify the model in various other ways. The easiest way to change a RAM data set
is to use the FSEDIT procedure, but you can also use a DATA step. For example, you
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could set the variance of the disturbance term to zero, effectively removing the distur-
bance from the equation, by removing the parameter namev–dist in the–NAME–
variable and setting the value of the estimate to zero in the–ESTIM– variable:

data splram2(type=ram);
set splram1;
if _name_=’v_dist’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=spleen inram=splram2 cov stderr;
run;

The resulting RAM output is displayed in Figure 14.10.

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix ----Row----- ---Column--- Parameter Estimate Error t Value

1 2 sqrtrose 1 factrose 3 . 1.00000
1 2 sqrtnucl 2 factnucl 4 . 1.00000
1 2 factrose 3 factnucl 4 beta 0.40340 0.05078 7.94
1 3 err_rose 1 err_rose 1 . 0.25000
1 3 err_nucl 2 err_nucl 2 . 0.25000
1 3 disturb 3 disturb 3 . 0
1 3 factnucl 4 factnucl 4 v_factnu 10.45846 4.56608 2.29

Figure 14.10. Spleen Data: RAM Model with INRAM= Data Set

Some Measurement Models

Psychometric test theory involves many kinds of models relating scores on psycho-
logical and educational tests to latent variables representing intelligence or various
underlying abilities. The following example uses data on four vocabulary tests from
Lord (1957). TestsW andX have 15 items each and are administered with very liberal
time limits. TestsY andZ have 75 items and are administered under time pressure.
The covariance matrix is read by the following DATA step:

data lord(type=cov);
input _type_ $ _name_ $ w x y z;
datalines;

n . 649 . . .
cov w 86.3979 . . .
cov x 57.7751 86.2632 . .
cov y 56.8651 59.3177 97.2850 .
cov z 58.8986 59.6683 73.8201 97.8192
;
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The psychometric model of interest states thatW andX are determined by a single
common factorFWX , andY andZ are determined by a single common factorFY Z .
The two common factors are expected to have a positive correlation, and it is desired
to estimate this correlation. It is convenient to assume that the common factors have
unit variance, so their correlation will be equal to their covariance. The error terms
for all the manifest variables are assumed to be uncorrelated with each other and with
the common factors. The model (labeled here as Model Form D) is as follows.

Model Form D

W = �WFWX +EW

X = �XFWX +EX

Y = �Y FY Z +EY

Z = �ZFY Z +EZ

Var(FWX) = Var(FY Z) = 1

Cov(FWX ; FY Z) = �

Cov(EW ; EX) = Cov(EW ; EY ) = Cov(EW ; EZ) = Cov(EX ; EY )

= Cov(EX ; EZ) = Cov(EY ; EZ) = Cov(EW ; FWX)

= Cov(EW ; FY Z) = Cov(EX ; FWX) = Cov(EX ; FY Z)

= Cov(EY ; FWX) = Cov(EY ; FY Z) = Cov(EZ ; FWX)

= Cov(EZ ; FY Z) = 0

The corresponding path diagram is as follows.
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1: W

RHO

2: X 3: Y 4: Z

5: FWX 6: FYZ

VEW VEX VEY VEZ

1.01.0

BETAXBETAW BETAY BETAZ

Figure 14.11. Path Diagram: Lord

This path diagram can be converted to a RAM model as follows:

/* 1=w 2=x 3=y 4=z 5=fwx 6=fyz */
title ’H4: unconstrained’;
proc calis data=lord cov;

ram 1 1 5 betaw,
1 2 5 betax,
1 3 6 betay,
1 4 6 betaz,
2 1 1 vew,
2 2 2 vex,
2 3 3 vey,
2 4 4 vez,
2 5 5 1,
2 6 6 1,
2 5 6 rho;

run;

Here are the major results.
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H4: unconstrained

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0011
Goodness of Fit Index (GFI) 0.9995
GFI Adjusted for Degrees of Freedom (AGFI) 0.9946
Root Mean Square Residual (RMR) 0.2720
Parsimonious GFI (Mulaik, 1989) 0.1666
Chi-Square 0.7030
Chi-Square DF 1
Pr > Chi-Square 0.4018
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0974
ECVI Estimate 0.0291
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.0391
Probability of Close Fit 0.6854
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 0.7026
Akaike’s Information Criterion -1.2970
Bozdogan’s (1987) CAIC -6.7725
Schwarz’s Bayesian Criterion -5.7725
McDonald’s (1989) Centrality 1.0002
Bentler & Bonett’s (1980) Non-normed Index 1.0012
Bentler & Bonett’s (1980) NFI 0.9995
James, Mulaik, & Brett (1982) Parsimonious NFI 0.1666
Z-Test of Wilson & Hilferty (1931) 0.2363
Bollen (1986) Normed Index Rho1 0.9971
Bollen (1988) Non-normed Index Delta2 1.0002
Hoelter’s (1983) Critical N 3543

Figure 14.12. Lord Data: Major Results for RAM Model, Hypothesis H4

H4: unconstrained

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

RAM Estimates

Standard
Term Matrix --Row-- -Column- Parameter Estimate Error t Value

1 2 w 1 F1 5 betaw 7.50066 0.32339 23.19
1 2 x 2 F1 5 betax 7.70266 0.32063 24.02
1 2 y 3 F2 6 betay 8.50947 0.32694 26.03
1 2 z 4 F2 6 betaz 8.67505 0.32560 26.64
1 3 E1 1 E1 1 vew 30.13796 2.47037 12.20
1 3 E2 2 E2 2 vex 26.93217 2.43065 11.08
1 3 E3 3 E3 3 vey 24.87396 2.35986 10.54
1 3 E4 4 E4 4 vez 22.56264 2.35028 9.60
1 3 D1 5 D1 5 . 1.00000
1 3 D2 6 D1 5 rho 0.89855 0.01865 48.18
1 3 D2 6 D2 6 . 1.00000
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The same analysis can be performed with the LINEQS statement. Subsequent analy-
ses are illustrated with the LINEQS statement rather than the RAM statement because
it is slightly easier to understand the constraints as written in the LINEQS statement
without constantly referring to the path diagram. The LINEQS and RAM statements
may yield slightly different results due to the inexactness of the numerical optimiza-
tion; the discrepancies can be reduced by specifying a more stringent convergence
criterion such as GCONV=1E-4 or GCONV=1E-6. It is convenient to create an OUT-
RAM= data set for use in fitting other models with additional constraints.

title ’H4: unconstrained’;
proc calis data=lord cov outram=ram4;

lineqs w=betaw fwx + ew,
x=betax fwx + ex,
y=betay fyz + ey,
z=betaz fyz + ez;

std fwx fyz=1,
ew ex ey ez=vew vex vey vez;

cov fwx fyz=rho;
run;

The LINEQS displayed output is as follows.
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H4: unconstrained

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.5007*fwx + 1.0000 ew
Std Err 0.3234 betaw
t Value 23.1939
x = 7.7027*fwx + 1.0000 ex
Std Err 0.3206 betax
t Value 24.0235
y = 8.5095*fyz + 1.0000 ey
Std Err 0.3269 betay
t Value 26.0273
z = 8.6751*fyz + 1.0000 ez
Std Err 0.3256 betaz
t Value 26.6430

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fwx 1.00000
fyz 1.00000
ew vew 30.13796 2.47037 12.20
ex vex 26.93217 2.43065 11.08
ey vey 24.87396 2.35986 10.54
ez vez 22.56264 2.35028 9.60

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

fwx fyz rho 0.89855 0.01865 48.18

Figure 14.13. Lord Data: Using LINEQS Statement for RAM Model, Hypothesis
H4

In an analysis of these data by Jöreskog and Sörbom (1979, pp. 54–56; Loehlin 1987,
pp. 84–87), four hypotheses are considered:

H1: � = 1;

�W = �X ; Var(EW ) = Var(EX);

�Y = �Z ; Var(EY ) = Var(EZ)

H2: same asH1: except� is unconstrained

H3: � = 1

H4: Model Form D without any additional constraints
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The hypothesisH3 says that there is really just one common factor instead of two;
in the terminology of test theory,W, X, Y, andZ are said to be congeneric. The
hypothesisH2 says that W andX have the same true-scores and have equal error
variance; such tests are said to be parallel. The hypothesisH2 also requiresY andZ
to be parallel. The hypothesisH1 says thatW andX are parallel tests,Y andZ are
parallel tests, and all four tests are congeneric.

It is most convenient to fit the models in the opposite order from that in which they
are numbered. The previous analysis fit the model forH4 and created an OUTRAM=
data set calledram4. The hypothesisH3 can be fitted directly or by modifying the
ram4 data set. SinceH3 differs fromH4 only in that� is constrained to equal 1, the
ram4 data set can be modified by finding the observation for which–NAME–=’rho’
and changing the variable–NAME– to a blank value (meaning that the observation
represents a constant rather than a parameter to be fitted) and setting the variable

–ESTIM– to the value 1. Both of the following analyses produce the same results:

title ’H3: W, X, Y, and Z are congeneric’;
proc calis data=lord cov;

lineqs w=betaw f + ew,
x=betax f + ex,
y=betay f + ey,
z=betaz f + ez;

std f=1,
ew ex ey ez=vew vex vey vez;

run;

data ram3(type=ram);
set ram4;
if _name_=’rho’ then

do;
_name_=’ ’;
_estim_=1;

end;
run;

proc calis data=lord inram=ram3 cov;
run;

The resulting output from either of these analyses is displayed in Figure 14.14.
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H3: W, X, Y, and Z are congeneric

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0559
Goodness of Fit Index (GFI) 0.9714
GFI Adjusted for Degrees of Freedom (AGFI) 0.8570
Root Mean Square Residual (RMR) 2.4636
Parsimonious GFI (Mulaik, 1989) 0.3238
Chi-Square 36.2095
Chi-Square DF 2
Pr > Chi-Square <.0001
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.1625
RMSEA 90% Lower Confidence Limit 0.1187
RMSEA 90% Upper Confidence Limit 0.2108
ECVI Estimate 0.0808
ECVI 90% Lower Confidence Limit 0.0561
ECVI 90% Upper Confidence Limit 0.1170
Probability of Close Fit 0.0000
Bentler’s Comparative Fit Index 0.9766
Normal Theory Reweighted LS Chi-Square 38.1432
Akaike’s Information Criterion 32.2095
Bozdogan’s (1987) CAIC 21.2586
Schwarz’s Bayesian Criterion 23.2586
McDonald’s (1989) Centrality 0.9740
Bentler & Bonett’s (1980) Non-normed Index 0.9297
Bentler & Bonett’s (1980) NFI 0.9753
James, Mulaik, & Brett (1982) Parsimonious NFI 0.3251
Z-Test of Wilson & Hilferty (1931) 5.2108
Bollen (1986) Normed Index Rho1 0.9259
Bollen (1988) Non-normed Index Delta2 0.9766
Hoelter’s (1983) Critical N 109

Figure 14.14. Lord Data: Major Results for Hypothesis H3
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H3: W, X, Y, and Z are congeneric

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.1047*fwx + 1.0000 ew
Std Err 0.3218 betaw
t Value 22.0802
x = 7.2691*fwx + 1.0000 ex
Std Err 0.3183 betax
t Value 22.8397
y = 8.3735*fyz + 1.0000 ey
Std Err 0.3254 betay
t Value 25.7316
z = 8.5106*fyz + 1.0000 ez
Std Err 0.3241 betaz
t Value 26.2598

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fwx 1.00000
fyz 1.00000
ew vew 35.92087 2.41466 14.88
ex vex 33.42397 2.31038 14.47
ey vey 27.16980 2.24619 12.10
ez vez 25.38948 2.20839 11.50

The hypothesisH2 requires that several pairs of parameters be constrained to have
equal estimates. With PROC CALIS, you can impose this constraint by giving the
same name to parameters that are constrained to be equal. This can be done directly
in the LINEQS and STD statements or by using PROC FSEDIT or a DATA step to
change the values in theram4 data set:

title ’H2: W and X parallel, Y and Z parallel’;
proc calis data=lord cov;

lineqs w=betawx fwx + ew,
x=betawx fwx + ex,
y=betayz fyz + ey,
z=betayz fyz + ez;

std fwx fyz=1,
ew ex ey ez=vewx vewx veyz veyz;

cov fwx fyz=rho;
run;

data ram2(type=ram);
set ram4;
if _name_= ’betaw’ then _name_=’betawx’;
if _name_=’betax’ then _name_=’betawx’;
if _name_=’betay’ then _name_=’betayz’;
if _name_=’betaz’ then _name_=’betayz’;
if _name_=’vew’ then _name_=’vewx’;
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if _name_=’vex’ then _name_=’vewx’;
if _name_=’vey’ then _name_=’veyz’;
if _name_=’vez’ then _name_=’veyz’;

run;

proc calis data=lord inram=ram2 cov;
run;

The resulting output from either of these analyses is displayed in Figure 14.15.

H2: W and X parallel, Y and Z parallel

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0030
Goodness of Fit Index (GFI) 0.9985
GFI Adjusted for Degrees of Freedom (AGFI) 0.9970
Root Mean Square Residual (RMR) 0.6983
Parsimonious GFI (Mulaik, 1989) 0.8321
Chi-Square 1.9335
Chi-Square DF 5
Pr > Chi-Square 0.8583
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0293
ECVI Estimate 0.0185
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.0276
Probability of Close Fit 0.9936
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 1.9568
Akaike’s Information Criterion -8.0665
Bozdogan’s (1987) CAIC -35.4436
Schwarz’s Bayesian Criterion -30.4436
McDonald’s (1989) Centrality 1.0024
Bentler & Bonett’s (1980) Non-normed Index 1.0025
Bentler & Bonett’s (1980) NFI 0.9987
James, Mulaik, & Brett (1982) Parsimonious NFI 0.8322
Z-Test of Wilson & Hilferty (1931) -1.0768
Bollen (1986) Normed Index Rho1 0.9984
Bollen (1988) Non-normed Index Delta2 1.0021
Hoelter’s (1983) Critical N 3712

Figure 14.15. Lord Data: Major Results for Hypothesis H2
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H2: W and X parallel, Y and Z parallel

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.6010*fwx + 1.0000 ew
Std Err 0.2684 betawx
t Value 28.3158
x = 7.6010*fwx + 1.0000 ex
Std Err 0.2684 betawx
t Value 28.3158
y = 8.5919*fyz + 1.0000 ey
Std Err 0.2797 betayz
t Value 30.7215
z = 8.5919*fyz + 1.0000 ez
Std Err 0.2797 betayz
t Value 30.7215

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fwx 1.00000
fyz 1.00000
ew vewx 28.55545 1.58641 18.00
ex vewx 28.55545 1.58641 18.00
ey veyz 23.73200 1.31844 18.00
ez veyz 23.73200 1.31844 18.00

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

fwx fyz rho 0.89864 0.01865 48.18

The hypothesisH1 requires one more constraint in addition to those inH2:

title ’H1: W and X parallel, Y and Z parallel, all congeneric’;
proc calis data=lord cov;

lineqs w=betawx f + ew,
x=betawx f + ex,
y=betayz f + ey,
z=betayz f + ez;

std f=1,
ew ex ey ez=vewx vewx veyz veyz;

run;

data ram1(type=ram);
set ram2;
if _name_=’rho’ then

do;
_name_=’ ’;
_estim_=1;

end;
run;
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proc calis data=lord inram=ram1 cov;
run;

The resulting output from either of these analyses is displayed in Figure 14.16.

H1: W and X parallel, Y and Z parallel, all congeneric

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0576
Goodness of Fit Index (GFI) 0.9705
GFI Adjusted for Degrees of Freedom (AGFI) 0.9509
Root Mean Square Residual (RMR) 2.5430
Parsimonious GFI (Mulaik, 1989) 0.9705
Chi-Square 37.3337
Chi-Square DF 6
Pr > Chi-Square <.0001
Independence Model Chi-Square 1466.6
Independence Model Chi-Square DF 6
RMSEA Estimate 0.0898
RMSEA 90% Lower Confidence Limit 0.0635
RMSEA 90% Upper Confidence Limit 0.1184
ECVI Estimate 0.0701
ECVI 90% Lower Confidence Limit 0.0458
ECVI 90% Upper Confidence Limit 0.1059
Probability of Close Fit 0.0076
Bentler’s Comparative Fit Index 0.9785
Normal Theory Reweighted LS Chi-Square 39.3380
Akaike’s Information Criterion 25.3337
Bozdogan’s (1987) CAIC -7.5189
Schwarz’s Bayesian Criterion -1.5189
McDonald’s (1989) Centrality 0.9761
Bentler & Bonett’s (1980) Non-normed Index 0.9785
Bentler & Bonett’s (1980) NFI 0.9745
James, Mulaik, & Brett (1982) Parsimonious NFI 0.9745
Z-Test of Wilson & Hilferty (1931) 4.5535
Bollen (1986) Normed Index Rho1 0.9745
Bollen (1988) Non-normed Index Delta2 0.9785
Hoelter’s (1983) Critical N 220

Figure 14.16. Lord Data: Major Results for Hypothesis H1
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H1: W and X parallel, Y and Z parallel, all congeneric

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

w = 7.1862*fwx + 1.0000 ew
Std Err 0.2660 betawx
t Value 27.0180
x = 7.1862*fwx + 1.0000 ex
Std Err 0.2660 betawx
t Value 27.0180
y = 8.4420*fyz + 1.0000 ey
Std Err 0.2800 betayz
t Value 30.1494
z = 8.4420*fyz + 1.0000 ez
Std Err 0.2800 betayz
t Value 30.1494

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

fwx 1.00000
fyz 1.00000
ew vewx 34.68865 1.64634 21.07
ex vewx 34.68865 1.64634 21.07
ey veyz 26.28513 1.39955 18.78
ez veyz 26.28513 1.39955 18.78

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

fwx fyz 1.00000

The goodness-of-fit tests for the four hypotheses are summarized in the following
table.

Number of Degrees of
Hypothesis Parameters �2 Freedom p-value �̂

H1 4 37.33 6 0.0000 1.0
H2 5 1.93 5 0.8583 0.8986
H3 8 36.21 2 0.0000 1.0
H4 9 0.70 1 0.4018 0.8986

The hypothesesH1 andH3, which posit� = 1, can be rejected. HypothesesH2 and
H4 seem to be consistent with the available data. SinceH2 is obtained by adding
four constraints toH4, you can testH2 versusH4 by computing the differences of
the chi-square statistics and their degrees of freedom, yielding a chi-square of 1.23
with four degrees of freedom, which is obviously not significant. So hypothesisH2

is consistent with the available data.

The estimates of� for H2 andH4 are almost identical, about 0.90, indicating that
the speeded and unspeeded tests are measuring almost the same latent variable, even
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though the hypotheses that stated they measured exactly the same latent variable are
rejected.

A Combined Measurement-Structural Model
with Reciprocal Influence and
Correlated Residuals

To illustrate a more complex model, this example uses some well-known data from
Haller and Butterworth (1960). Various models and analyses of these data are given
by Duncan, Haller, and Portes (1968), Jöreskog and Sörbom (1988), and Loehlin
(1987).

The study is concerned with the career aspirations of high-school students and how
these aspirations are affected by close friends. The data are collected from 442
seventeen-year-old boys in Michigan. There are 329 boys in the sample who named
another boy in the sample as a best friend. The observations to be analyzed consist
of the data from these 329 boys paired with the data from their best friends.

The method of data collection introduces two statistical problems. First, restricting
the analysis to boys whose best friends are in the original sample causes the reduced
sample to be biased. Second, since the data from a given boy may appear in two or
more observations, the observations are not independent. Therefore, any statistical
conclusions should be considered tentative. It is difficult to accurately assess the
effects of the dependence of the observations on the analysis, but it could be argued
on intuitive grounds that since each observation has data from two boys and since
it seems likely that many of the boys will appear in the data set at least twice, the
effective sample size may be as small as half of the reported 329 observations.

The correlation matrix is taken from Jöreskog and Sörbom (1988).

title ’Peer Influences on Aspiration: Haller & Butterworth (1960)’;
data aspire(type=corr);

_type_=’corr’;
input _name_ $ riq rpa rses roa rea fiq fpa fses foa fea;
label riq=’Respondent: Intelligence’

rpa=’Respondent: Parental Aspiration’
rses=’Respondent: Family SES’
roa=’Respondent: Occupational Aspiration’
rea=’Respondent: Educational Aspiration’
fiq=’Friend: Intelligence’
fpa=’Friend: Parental Aspiration’
fses=’Friend: Family SES’
foa=’Friend: Occupational Aspiration’
fea=’Friend: Educational Aspiration’;

datalines;
riq 1. . . . . . . . . .
rpa .1839 1 . . . . . . . . .
rses .2220 .0489 1. . . . . . . .
roa .4105 .2137 .3240 1. . . . . . .
rea .4043 .2742 .4047 .6247 1. . . . . .
fiq .3355 .0782 .2302 .2995 .2863 1. . . . .
fpa .1021 .1147 .0931 .0760 .0702 .2087 1 . . . .
fses .1861 .0186 .2707 .2930 .2407 .2950 -.0438 1. . .
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foa .2598 .0839 .2786 .4216 .3275 .5007 .1988 .3607 1. .
fea .2903 .1124 .3054 .3269 .3669 .5191 .2784 .4105 .6404 1.
;

The model analyzed by Jöreskog and Sörbom (1988) is displayed in the following
path diagram:

COV:

THETA2

THETA4

THETA1

THETA3

PSI11

PSI22

LAMBDA2

LAMBDA3

1.0

1.0
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GAM2

GAM3

GAM4

GAM6

F_RAMB

F_FAMB
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REA

FPA

FIQ
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RSES

RIQ

RPA GAM1

GAM8

GAM7

GAM5

BETA1 BETA2

Figure 14.17. Path Diagram: Career Aspiration, Jöreskog and Sörbom

Two latent variables,f–ramb and f–famb, represent the respondent’s level of am-
bition and his best friend’s level of ambition, respectively. The model states that the
respondent’s ambition is determined by his intelligence and socioeconomic status, his
perception of his parents’ aspiration for him, and his friend’s socioeconomic status
and ambition. It is assumed that his friend’s intelligence and socioeconomic status
affect the respondent’s ambition only indirectly through his friend’s ambition. Ambi-
tion is indexed by the manifest variables of occupational and educational aspiration,
which are assumed to have uncorrelated residuals. The path coefficient from ambition
to occupational aspiration is set to 1.0 to determine the scale of the ambition latent
variable.
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This model can be analyzed with PROC CALIS using the LINEQS statement as fol-
lows, where the names of the parameters correspond to those used by Jöreskog and
Sörbom (1988). Since this TYPE=CORR data set does not contain an observation
with –TYPE–=’N’ giving the sample size, it is necessary to specify the degrees of
freedom (sample size minus one) with the EDF= option in the PROC CALIS state-
ment.

title2 ’Joreskog-Sorbom (1988) analysis 1’;
proc calis data=aspire edf=328;

lineqs /* measurement model for aspiration */
rea=lambda2 f_ramb + e_rea,
roa=f_ramb + e_roa,
fea=lambda3 f_famb + e_fea,
foa=f_famb + e_foa,

/* structural model of influences */
f_ramb=gam1 rpa + gam2 riq + gam3 rses +

gam4 fses + beta1 f_famb + d_ramb,
f_famb=gam8 fpa + gam7 fiq + gam6 fses +

gam5 rses + beta2 f_ramb + d_famb;
std d_ramb=psi11,

d_famb=psi22,
e_rea e_roa e_fea e_foa=theta:;

cov d_ramb d_famb=psi12,
rpa riq rses fpa fiq fses=cov:;

run;

Specify a name followed by a colon to represent a list of names formed by appending
numbers to the specified name. For example, in the COV statement, the line

rpa riq rses fpa fiq fses=cov:;

is equivalent to

rpa riq rses fpa fiq fses=cov1-cov15;

The results from this analysis are as follows.
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 1

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0814
Goodness of Fit Index (GFI) 0.9844
GFI Adjusted for Degrees of Freedom (AGFI) 0.9428
Root Mean Square Residual (RMR) 0.0202
Parsimonious GFI (Mulaik, 1989) 0.3281
Chi-Square 26.6972
Chi-Square DF 15
Pr > Chi-Square 0.0313
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0488
RMSEA 90% Lower Confidence Limit 0.0145
RMSEA 90% Upper Confidence Limit 0.0783
ECVI Estimate 0.2959
ECVI 90% Lower Confidence Limit 0.2823
ECVI 90% Upper Confidence Limit 0.3721
Probability of Close Fit 0.4876
Bentler’s Comparative Fit Index 0.9859
Normal Theory Reweighted LS Chi-Square 26.0113
Akaike’s Information Criterion -3.3028
Bozdogan’s (1987) CAIC -75.2437
Schwarz’s Bayesian Criterion -60.2437
McDonald’s (1989) Centrality 0.9824
Bentler & Bonett’s (1980) Non-normed Index 0.9576
Bentler & Bonett’s (1980) NFI 0.9694
James, Mulaik, & Brett (1982) Parsimonious NFI 0.3231
Z-Test of Wilson & Hilferty (1931) 1.8625
Bollen (1986) Normed Index Rho1 0.9082
Bollen (1988) Non-normed Index Delta2 0.9864
Hoelter’s (1983) Critical N 309

Figure 14.18. Career Aspiration Data: J&S Analysis 1

Jöreskog and Sörbom (1988) present more detailed results from a second analysis in
which two constraints are imposed:

� The coefficents connecting the latent ambition variables are equal.

� The covariance of the disturbances of the ambition variables is zero.

This analysis can be performed by changing the namesbeta1 andbeta2 to beta and
omitting the line from the COV statement forpsi12:

title2 ’Joreskog-Sorbom (1988) analysis 2’;
proc calis data=aspire edf=328;

lineqs /* measurement model for aspiration */
rea=lambda2 f_ramb + e_rea,
roa=f_ramb + e_roa,
fea=lambda3 f_famb + e_fea,
foa=f_famb + e_foa,

/* structural model of influences */
f_ramb=gam1 rpa + gam2 riq + gam3 rses +

gam4 fses + beta f_famb + d_ramb,
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f_famb=gam8 fpa + gam7 fiq + gam6 fses +
gam5 rses + beta f_ramb + d_famb;

std d_ramb=psi11,
d_famb=psi22,
e_rea e_roa e_fea e_foa=theta:;

cov rpa riq rses fpa fiq fses=cov:;
run;

The results are displayed in Figure 14.19.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0820
Goodness of Fit Index (GFI) 0.9843
GFI Adjusted for Degrees of Freedom (AGFI) 0.9492
Root Mean Square Residual (RMR) 0.0203
Parsimonious GFI (Mulaik, 1989) 0.3718
Chi-Square 26.8987
Chi-Square DF 17
Pr > Chi-Square 0.0596
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0421
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0710
ECVI Estimate 0.2839
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.3592
Probability of Close Fit 0.6367
Bentler’s Comparative Fit Index 0.9880
Normal Theory Reweighted LS Chi-Square 26.1595
Akaike’s Information Criterion -7.1013
Bozdogan’s (1987) CAIC -88.6343
Schwarz’s Bayesian Criterion -71.6343
McDonald’s (1989) Centrality 0.9851
Bentler & Bonett’s (1980) Non-normed Index 0.9683
Bentler & Bonett’s (1980) NFI 0.9692
James, Mulaik, & Brett (1982) Parsimonious NFI 0.3661
Z-Test of Wilson & Hilferty (1931) 1.5599
Bollen (1986) Normed Index Rho1 0.9183
Bollen (1988) Non-normed Index Delta2 0.9884
Hoelter’s (1983) Critical N 338

Figure 14.19. Career Aspiration Data: J&S Analysis 2
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.0610*f_ramb + 1.0000 e_rea
Std Err 0.0892 lambda2
t Value 11.8923
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.0736*f_famb + 1.0000 e_fea
Std Err 0.0806 lambda3
t Value 13.3150

Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0.1801*f_famb + 0.2540*riq + 0.1637*rpa
Std Err 0.0391 beta 0.0419 gam2 0.0387 gam1
t Value 4.6031 6.0673 4.2274

+ 0.2211*rses + 0.0773*fses + 1.0000 d_ramb
0.0419 gam3 0.0415 gam4
5.2822 1.8626

f_famb = 0.1801*f_ramb + 0.0684*rses + 0.3306*fiq
Std Err 0.0391 beta 0.0387 gam5 0.0412 gam7
t Value 4.6031 1.7681 8.0331

+ 0.1520*fpa + 0.2184*fses + 1.0000 d_famb
0.0364 gam8 0.0395 gam6
4.1817 5.5320
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Joreskog-Sorbom (1988) analysis 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

riq 1.00000
rpa 1.00000
rses 1.00000
fiq 1.00000
fpa 1.00000
fses 1.00000
e_rea theta1 0.33764 0.05178 6.52
e_roa theta2 0.41205 0.05103 8.07
e_fea theta3 0.31337 0.04574 6.85
e_foa theta4 0.40381 0.04608 8.76
d_ramb psi11 0.28113 0.04640 6.06
d_famb psi22 0.22924 0.03889 5.89

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

riq rpa cov1 0.18390 0.05246 3.51
riq rses cov3 0.22200 0.05110 4.34
rpa rses cov2 0.04890 0.05493 0.89
riq fiq cov8 0.33550 0.04641 7.23
rpa fiq cov7 0.07820 0.05455 1.43
rses fiq cov9 0.23020 0.05074 4.54
riq fpa cov5 0.10210 0.05415 1.89
rpa fpa cov4 0.11470 0.05412 2.12
rses fpa cov6 0.09310 0.05438 1.71
fiq fpa cov10 0.20870 0.05163 4.04
riq fses cov12 0.18610 0.05209 3.57
rpa fses cov11 0.01860 0.05510 0.34
rses fses cov13 0.27070 0.04930 5.49
fiq fses cov15 0.29500 0.04824 6.12
fpa fses cov14 -0.04380 0.05476 -0.80

The difference between the chi-square values for the two preceding models is
26.8987 - 26.6972= 0.2015 with 2 degrees of freedom, which is far from significant.
However, the chi-square test of the restricted model (analysis 2) against the alterna-
tive of a completely unrestricted covariance matrix yields ap-value of 0.0596, which
indicates that the model may not be entirely satisfactory (p-values from these data are
probably too small because of the dependence of the observations).

Loehlin (1987) points out that the models considered are unrealistic in at least two
aspects. First, the variables of parental aspiration, intelligence, and socioeconomic
status are assumed to be measured without error. Loehlin adds uncorrelated measure-
ment errors to the model and assumes, for illustrative purposes, that the reliabilities of
these variables are known to be 0.7, 0.8, and 0.9, respectively. In practice, these relia-
bilities would need to be obtained from a separate study of the same or a very similar
population. If these constraints are omitted, the model is not identified. However,
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constraining parameters to a constant in an analysis of a correlation matrix may make
the chi-square goodness-of-fit test inaccurate, so there is more reason to be skeptical
of thep-values. Second, the error terms for the respondent’s aspiration are assumed
to be uncorrelated with the corresponding terms for his friend. Loehlin introduces a
correlation between the two educational aspiration error terms and between the two
occupational aspiration error terms. These additions produce the following path dia-
gram for Loehlin’s model 1.
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Figure 14.20. Path Diagram: Carrer Aspiration – Loehlin

The statements for fitting this model are as follows:

title2 ’Loehlin (1987) analysis: Model 1’;
proc calis data=aspire edf=328;

lineqs /* measurement model for aspiration */
rea=lambda2 f_ramb + e_rea,
roa=f_ramb + e_roa,
fea=lambda3 f_famb + e_fea,
foa=f_famb + e_foa,
/* measurement model for intelligence and environment */
rpa=.837 f_rpa + e_rpa,
riq=.894 f_riq + e_riq,
rses=.949 f_rses + e_rses,
fpa=.837 f_fpa + e_fpa,
fiq=.894 f_fiq + e_fiq,
fses=.949 f_fses + e_fses,
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/* structural model of influences */
f_ramb=gam1 f_rpa + gam2 f_riq + gam3 f_rses +

gam4 f_fses + bet1 f_famb + d_ramb,
f_famb=gam8 f_fpa + gam7 f_fiq + gam6 f_fses +

gam5 f_rses + bet2 f_ramb + d_famb;
std d_ramb=psi11,

d_famb=psi22,
f_rpa f_riq f_rses f_fpa f_fiq f_fses=1,
e_rea e_roa e_fea e_foa=theta:,
e_rpa e_riq e_rses e_fpa e_fiq e_fses=err:;

cov d_ramb d_famb=psi12,
e_rea e_fea=covea,
e_roa e_foa=covoa,
f_rpa f_riq f_rses f_fpa f_fiq f_fses=cov:;

run;

The results are displayed in Figure 14.21.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 1

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0366
Goodness of Fit Index (GFI) 0.9927
GFI Adjusted for Degrees of Freedom (AGFI) 0.9692
Root Mean Square Residual (RMR) 0.0149
Parsimonious GFI (Mulaik, 1989) 0.2868
Chi-Square 12.0132
Chi-Square DF 13
Pr > Chi-Square 0.5266
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0512
ECVI Estimate 0.3016
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.3392
Probability of Close Fit 0.9435
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 12.0168
Akaike’s Information Criterion -13.9868
Bozdogan’s (1987) CAIC -76.3356
Schwarz’s Bayesian Criterion -63.3356
McDonald’s (1989) Centrality 1.0015
Bentler & Bonett’s (1980) Non-normed Index 1.0041
Bentler & Bonett’s (1980) NFI 0.9862
James, Mulaik, & Brett (1982) Parsimonious NFI 0.2849
Z-Test of Wilson & Hilferty (1931) -0.0679
Bollen (1986) Normed Index Rho1 0.9523
Bollen (1988) Non-normed Index Delta2 1.0011
Hoelter’s (1983) Critical N 612

Figure 14.21. Career Aspiration Data: Loehlin Model 1
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 1

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.0840*f_ramb + 1.0000 e_rea
Std Err 0.0942 lambda2
t Value 11.5105
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1163*f_famb + 1.0000 e_fea
Std Err 0.0863 lambda3
t Value 12.9394

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 1

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0.1190*f_famb + 0.1837*f_rpa + 0.2800*f_riq
Std Err 0.1140 bet1 0.0504 gam1 0.0614 gam2
t Value 1.0440 3.6420 4.5618

+ 0.2262*f_rses + 0.0870*f_fses + 1.0000 d_ramb
0.0522 gam3 0.0548 gam4
4.3300 1.5884

f_famb = 0.1302*f_ramb + 0.0633*f_rses + 0.1688*f_fpa
Std Err 0.1207 bet2 0.0522 gam5 0.0493 gam8
t Value 1.0792 1.2124 3.4205

+ 0.3539*f_fiq + 0.2154*f_fses + 1.0000 d_famb
0.0674 gam7 0.0512 gam6
5.2497 4.2060
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 1

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea theta1 0.32707 0.05452 6.00
e_roa theta2 0.42307 0.05243 8.07
e_fea theta3 0.28715 0.04804 5.98
e_foa theta4 0.42240 0.04730 8.93
e_rpa err1 0.29584 0.07774 3.81
e_riq err2 0.20874 0.07832 2.67
e_rses err3 0.09887 0.07803 1.27
e_fpa err4 0.29987 0.07807 3.84
e_fiq err5 0.19988 0.07674 2.60
e_fses err6 0.10324 0.07824 1.32
d_ramb psi11 0.25418 0.04469 5.69
d_famb psi22 0.19698 0.03814 5.17

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.24677 0.07519 3.28
f_rpa f_rses cov2 0.06184 0.06945 0.89
f_riq f_rses cov3 0.26351 0.06687 3.94
f_rpa f_fpa cov4 0.15789 0.07873 2.01
f_riq f_fpa cov5 0.13085 0.07418 1.76
f_rses f_fpa cov6 0.11517 0.06978 1.65
f_rpa f_fiq cov7 0.10853 0.07362 1.47
f_riq f_fiq cov8 0.42476 0.07219 5.88
f_rses f_fiq cov9 0.27250 0.06660 4.09
f_fpa f_fiq cov10 0.27867 0.07530 3.70
f_rpa f_fses cov11 0.02383 0.06952 0.34
f_riq f_fses cov12 0.22135 0.06648 3.33
f_rses f_fses cov13 0.30156 0.06359 4.74
f_fpa f_fses cov14 -0.05623 0.06971 -0.81
f_fiq f_fses cov15 0.34922 0.06771 5.16
e_rea e_fea covea 0.02308 0.03139 0.74
e_roa e_foa covoa 0.11206 0.03258 3.44
d_ramb d_famb psi12 -0.00935 0.05010 -0.19

Since thep-value for the chi-square test is 0.5266, this model clearly cannot be re-
jected. However, Schwarz’s Bayesian Criterion for this model (SBC = -63.3356) is
somewhat larger than for Jöreskog and Sörbom’s (1988) analysis 2 (SBC =-71.6343),
suggesting that a more parsimonious model would be desirable.

Since it is assumed that the same model applies to all the boys in the sample, the path
diagram should be symmetric with respect to the respondent and friend. In particular,
the corresponding coefficients should be equal. By imposing equality constraints
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on the 15 pairs of corresponding coefficents, this example obtains Loehlin’s model
2. The LINEQS model is as follows, where an OUTRAM= data set is created to
facilitate subsequent hypothesis tests:

title2 ’Loehlin (1987) analysis: Model 2’;
proc calis data=aspire edf=328 outram=ram2;

lineqs /* measurement model for aspiration */
rea=lambda f_ramb + e_rea, /* 1 ec! */
roa=f_ramb + e_roa,
fea=lambda f_famb + e_fea,
foa=f_famb + e_foa,
/* measurement model for intelligence and environment */
rpa=.837 f_rpa + e_rpa,
riq=.894 f_riq + e_riq,
rses=.949 f_rses + e_rses,
fpa=.837 f_fpa + e_fpa,
fiq=.894 f_fiq + e_fiq,
fses=.949 f_fses + e_fses,

/* structural model of influences */ /* 5 ec! */
f_ramb=gam1 f_rpa + gam2 f_riq + gam3 f_rses +

gam4 f_fses + beta f_famb + d_ramb,
f_famb=gam1 f_fpa + gam2 f_fiq + gam3 f_fses +

gam4 f_rses + beta f_ramb + d_famb;
std d_ramb=psi, /* 1 ec! */

d_famb=psi,
f_rpa f_riq f_rses f_fpa f_fiq f_fses=1,
e_rea e_fea=thetaea thetaea, /* 2 ec! */
e_roa e_foa=thetaoa thetaoa,
e_rpa e_fpa=errpa1 errpa2,
e_riq e_fiq=erriq1 erriq2,
e_rses e_fses=errses1 errses2;

cov d_ramb d_famb=psi12,
e_rea e_fea=covea,
e_roa e_foa = covoa,
f_rpa f_riq f_rses=cov1-cov3, /* 3 ec! */
f_fpa f_fiq f_fses=cov1-cov3,
f_rpa f_riq f_rses * f_fpa f_fiq f_fses = /* 3 ec! */

cov4 cov5 cov6
cov5 cov7 cov8
cov6 cov8 cov9;

run;

The results are displayed in Figure 14.22.
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0581
Goodness of Fit Index (GFI) 0.9884
GFI Adjusted for Degrees of Freedom (AGFI) 0.9772
Root Mean Square Residual (RMR) 0.0276
Parsimonious GFI (Mulaik, 1989) 0.6150
Chi-Square 19.0697
Chi-Square DF 28
Pr > Chi-Square 0.8960
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0194
ECVI Estimate 0.2285
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2664
Probability of Close Fit 0.9996
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 19.2372
Akaike’s Information Criterion -36.9303
Bozdogan’s (1987) CAIC -171.2200
Schwarz’s Bayesian Criterion -143.2200
McDonald’s (1989) Centrality 1.0137
Bentler & Bonett’s (1980) Non-normed Index 1.0174
Bentler & Bonett’s (1980) NFI 0.9781
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6086
Z-Test of Wilson & Hilferty (1931) -1.2599
Bollen (1986) Normed Index Rho1 0.9649
Bollen (1988) Non-normed Index Delta2 1.0106
Hoelter’s (1983) Critical N 713

Figure 14.22. Career Aspiration Data: Loehlin Model 2

SAS OnlineDoc: Version 8



A Combined Measurement-Structural Model with Reciprocal Influence and
Correlated Residuals � 235

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.1007*f_ramb + 1.0000 e_rea
Std Err 0.0684 lambda
t Value 16.0879
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1007*f_famb + 1.0000 e_fea
Std Err 0.0684 lambda
t Value 16.0879

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0.1158*f_famb + 0.1758*f_rpa + 0.3223*f_riq
Std Err 0.0839 beta 0.0351 gam1 0.0470 gam2
t Value 1.3801 5.0130 6.8557

+ 0.2227*f_rses + 0.0756*f_fses + 1.0000 d_ramb
0.0363 gam3 0.0375 gam4
6.1373 2.0170

f_famb = 0.1158*f_ramb + 0.0756*f_rses + 0.1758*f_fpa
Std Err 0.0839 beta 0.0375 gam4 0.0351 gam1
t Value 1.3801 2.0170 5.0130

+ 0.3223*f_fiq + 0.2227*f_fses + 1.0000 d_famb
0.0470 gam2 0.0363 gam3
6.8557 6.1373
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 2

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea thetaea 0.30662 0.03726 8.23
e_roa thetaoa 0.42295 0.03651 11.58
e_fea thetaea 0.30662 0.03726 8.23
e_foa thetaoa 0.42295 0.03651 11.58
e_rpa errpa1 0.30758 0.07511 4.09
e_riq erriq1 0.26656 0.07389 3.61
e_rses errses1 0.11467 0.07267 1.58
e_fpa errpa2 0.28834 0.07369 3.91
e_fiq erriq2 0.15573 0.06700 2.32
e_fses errses2 0.08814 0.07089 1.24
d_ramb psi 0.22456 0.02971 7.56
d_famb psi 0.22456 0.02971 7.56

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.26470 0.05442 4.86
f_rpa f_rses cov2 0.00176 0.04996 0.04
f_riq f_rses cov3 0.31129 0.05057 6.16
f_rpa f_fpa cov4 0.15784 0.07872 2.01
f_riq f_fpa cov5 0.11837 0.05447 2.17
f_rses f_fpa cov6 0.06910 0.04996 1.38
f_rpa f_fiq cov5 0.11837 0.05447 2.17
f_riq f_fiq cov7 0.43061 0.07258 5.93
f_rses f_fiq cov8 0.24967 0.05060 4.93
f_fpa f_fiq cov1 0.26470 0.05442 4.86
f_rpa f_fses cov6 0.06910 0.04996 1.38
f_riq f_fses cov8 0.24967 0.05060 4.93
f_rses f_fses cov9 0.30190 0.06362 4.75
f_fpa f_fses cov2 0.00176 0.04996 0.04
f_fiq f_fses cov3 0.31129 0.05057 6.16
e_rea e_fea covea 0.02160 0.03144 0.69
e_roa e_foa covoa 0.11208 0.03257 3.44
d_ramb d_famb psi12 -0.00344 0.04931 -0.07

The test of Loehlin’s model 2 against model 1 yields a chi-square of
19.0697 - 12.0132 = 7.0565 with 15 degrees of freedom, which is clearly not sig-
nificant. Schwarz’s Bayesizn Criterion (SBC) is also much lower for model 2
(-143.2200) than model 1 (-63.3356). Hence, model 2 seems preferable on both
substantive and statistical grounds.

A question of substantive interest is whether the friend’s socioeconomic status (SES)
has a significant direct influence on a boy’s ambition. This can be addressed by
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omitting the paths fromf–fses to f–ramb and fromf–rses to f–famb designated by
the parameter namegam4, yielding Loehlin’s model 3:

title2 ’Loehlin (1987) analysis: Model 3’;
data ram3(type=ram);

set ram2;
if _name_=’gam4’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;
proc calis data=aspire edf=328 inram=ram3;
run;

The output is displayed in Figure 14.23.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 3

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0702
Goodness of Fit Index (GFI) 0.9858
GFI Adjusted for Degrees of Freedom (AGFI) 0.9731
Root Mean Square Residual (RMR) 0.0304
Parsimonious GFI (Mulaik, 1989) 0.6353
Chi-Square 23.0365
Chi-Square DF 29
Pr > Chi-Square 0.7749
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0295
ECVI Estimate 0.2343
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2780
Probability of Close Fit 0.9984
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 23.5027
Akaike’s Information Criterion -34.9635
Bozdogan’s (1987) CAIC -174.0492
Schwarz’s Bayesian Criterion -145.0492
McDonald’s (1989) Centrality 1.0091
Bentler & Bonett’s (1980) Non-normed Index 1.0112
Bentler & Bonett’s (1980) NFI 0.9736
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6274
Z-Test of Wilson & Hilferty (1931) -0.7563
Bollen (1986) Normed Index Rho1 0.9590
Bollen (1988) Non-normed Index Delta2 1.0071
Hoelter’s (1983) Critical N 607

Figure 14.23. Career Aspiration Data: Loehlin Model 3

The chi-square value for testing model 3 versus model 2 is 23.0365 - 19.0697 = 3.9668
with 1 degree of freedom and ap-value of 0.0464. Although the parameter is of
marginal significance, the estimate in model 2 (0.0756) is small compared to the
other coefficients, and SBC indicates that model 3 is preferable to model 2.
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Another important question is whether the reciprocal influences between the respon-
dent’s and friend’s ambitions are needed in the model. To test whether these paths
are zero, set the parameterbeta for the paths linkingf–ramb andf–famb to zero to
obtain Loehlin’s model 4:

title2 ’Loehlin (1987) analysis: Model 4’;
data ram4(type=ram);

set ram2;
if _name_=’beta’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=aspire edf=328 inram=ram4;
run;

The output is displayed in Figure 14.24.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0640
Goodness of Fit Index (GFI) 0.9873
GFI Adjusted for Degrees of Freedom (AGFI) 0.9760
Root Mean Square Residual (RMR) 0.0304
Parsimonious GFI (Mulaik, 1989) 0.6363
Chi-Square 20.9981
Chi-Square DF 29
Pr > Chi-Square 0.8592
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0234
ECVI Estimate 0.2281
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2685
Probability of Close Fit 0.9994
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 20.8040
Akaike’s Information Criterion -37.0019
Bozdogan’s (1987) CAIC -176.0876
Schwarz’s Bayesian Criterion -147.0876
McDonald’s (1989) Centrality 1.0122
Bentler & Bonett’s (1980) Non-normed Index 1.0150
Bentler & Bonett’s (1980) NFI 0.9759
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6289
Z-Test of Wilson & Hilferty (1931) -1.0780
Bollen (1986) Normed Index Rho1 0.9626
Bollen (1988) Non-normed Index Delta2 1.0095
Hoelter’s (1983) Critical N 666

Figure 14.24. Career Aspiration Data: Loehlin Model 4
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.1051*f_ramb + 1.0000 e_rea
Std Err 0.0680 lambda
t Value 16.2416
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1051*f_famb + 1.0000 e_fea
Std Err 0.0680 lambda
t Value 16.2416

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0 f_famb + 0.1776*f_rpa + 0.3486*f_riq
Std Err 0.0361 gam1 0.0463 gam2
t Value 4.9195 7.5362

+ 0.2383*f_rses + 0.1081*f_fses + 1.0000 d_ramb
0.0355 gam3 0.0299 gam4
6.7158 3.6134

f_famb = 0 f_ramb + 0.1081*f_rses + 0.1776*f_fpa
Std Err 0.0299 gam4 0.0361 gam1
t Value 3.6134 4.9195

+ 0.3486*f_fiq + 0.2383*f_fses + 1.0000 d_famb
0.0463 gam2 0.0355 gam3
7.5362 6.7158
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea thetaea 0.30502 0.03728 8.18
e_roa thetaoa 0.42429 0.03645 11.64
e_fea thetaea 0.30502 0.03728 8.18
e_foa thetaoa 0.42429 0.03645 11.64
e_rpa errpa1 0.31354 0.07543 4.16
e_riq erriq1 0.29611 0.07299 4.06
e_rses errses1 0.12320 0.07273 1.69
e_fpa errpa2 0.29051 0.07374 3.94
e_fiq erriq2 0.18181 0.06611 2.75
e_fses errses2 0.09873 0.07109 1.39
d_ramb psi 0.22738 0.03140 7.24
d_famb psi 0.22738 0.03140 7.24

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 4

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.27241 0.05520 4.94
f_rpa f_rses cov2 0.00476 0.05032 0.09
f_riq f_rses cov3 0.32463 0.05089 6.38
f_rpa f_fpa cov4 0.16949 0.07863 2.16
f_riq f_fpa cov5 0.13539 0.05407 2.50
f_rses f_fpa cov6 0.07362 0.05027 1.46
f_rpa f_fiq cov5 0.13539 0.05407 2.50
f_riq f_fiq cov7 0.46893 0.06980 6.72
f_rses f_fiq cov8 0.26289 0.05093 5.16
f_fpa f_fiq cov1 0.27241 0.05520 4.94
f_rpa f_fses cov6 0.07362 0.05027 1.46
f_riq f_fses cov8 0.26289 0.05093 5.16
f_rses f_fses cov9 0.30880 0.06409 4.82
f_fpa f_fses cov2 0.00476 0.05032 0.09
f_fiq f_fses cov3 0.32463 0.05089 6.38
e_rea e_fea covea 0.02127 0.03150 0.68
e_roa e_foa covoa 0.11245 0.03258 3.45
d_ramb d_famb psi12 0.05479 0.02699 2.03
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The chi-square value for testing model 4 versus model 2 is 20.9981 - 19.0697 = 1.9284
with 1 degree of freedom and ap-value of 0.1649. Hence, there is little evidence of
reciprocal influence.

Loehlin’s model 2 has not only the direct paths connecting the latent ambition vari-
ables f–ramb and f–famb but also a covariance between the disturbance terms
d–ramb andd–famb to allow for other variables omitted from the model that might
jointly influence the respondent and his friend. To test the hypothesis that this covari-
ance is zero, set the parameterpsi12 to zero, yielding Loehlin’s model 5:

title2 ’Loehlin (1987) analysis: Model 5’;
data ram5(type=ram);

set ram2;
if _name_=’psi12’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=aspire edf=328 inram=ram5;
run;

The output is displayed in Figure 14.25.
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 5

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0582
Goodness of Fit Index (GFI) 0.9884
GFI Adjusted for Degrees of Freedom (AGFI) 0.9780
Root Mean Square Residual (RMR) 0.0276
Parsimonious GFI (Mulaik, 1989) 0.6370
Chi-Square 19.0745
Chi-Square DF 29
Pr > Chi-Square 0.9194
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0152
ECVI Estimate 0.2222
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2592
Probability of Close Fit 0.9998
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 19.2269
Akaike’s Information Criterion -38.9255
Bozdogan’s (1987) CAIC -178.0111
Schwarz’s Bayesian Criterion -149.0111
McDonald’s (1989) Centrality 1.0152
Bentler & Bonett’s (1980) Non-normed Index 1.0186
Bentler & Bonett’s (1980) NFI 0.9781
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6303
Z-Test of Wilson & Hilferty (1931) -1.4014
Bollen (1986) Normed Index Rho1 0.9661
Bollen (1988) Non-normed Index Delta2 1.0118
Hoelter’s (1983) Critical N 733

Figure 14.25. Career Aspiration Data: Loehlin Model 5
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 5

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.1009*f_ramb + 1.0000 e_rea
Std Err 0.0684 lambda
t Value 16.1041
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1009*f_famb + 1.0000 e_fea
Std Err 0.0684 lambda
t Value 16.1041

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 5

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0.1107*f_famb + 0.1762*f_rpa + 0.3235*f_riq
Std Err 0.0428 beta 0.0350 gam1 0.0435 gam2
t Value 2.5854 5.0308 7.4435

+ 0.2233*f_rses + 0.0770*f_fses + 1.0000 d_ramb
0.0353 gam3 0.0323 gam4
6.3215 2.3870

f_famb = 0.1107*f_ramb + 0.0770*f_rses + 0.1762*f_fpa
Std Err 0.0428 beta 0.0323 gam4 0.0350 gam1
t Value 2.5854 2.3870 5.0308

+ 0.3235*f_fiq + 0.2233*f_fses + 1.0000 d_famb
0.0435 gam2 0.0353 gam3
7.4435 6.3215
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 5

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea thetaea 0.30645 0.03721 8.24
e_roa thetaoa 0.42304 0.03650 11.59
e_fea thetaea 0.30645 0.03721 8.24
e_foa thetaoa 0.42304 0.03650 11.59
e_rpa errpa1 0.30781 0.07510 4.10
e_riq erriq1 0.26748 0.07295 3.67
e_rses errses1 0.11477 0.07265 1.58
e_fpa errpa2 0.28837 0.07366 3.91
e_fiq erriq2 0.15653 0.06614 2.37
e_fses errses2 0.08832 0.07088 1.25
d_ramb psi 0.22453 0.02973 7.55
d_famb psi 0.22453 0.02973 7.55

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.26494 0.05436 4.87
f_rpa f_rses cov2 0.00185 0.04995 0.04
f_riq f_rses cov3 0.31164 0.05039 6.18
f_rpa f_fpa cov4 0.15828 0.07846 2.02
f_riq f_fpa cov5 0.11895 0.05383 2.21
f_rses f_fpa cov6 0.06924 0.04993 1.39
f_rpa f_fiq cov5 0.11895 0.05383 2.21
f_riq f_fiq cov7 0.43180 0.07084 6.10
f_rses f_fiq cov8 0.25004 0.05039 4.96
f_fpa f_fiq cov1 0.26494 0.05436 4.87
f_rpa f_fses cov6 0.06924 0.04993 1.39
f_riq f_fses cov8 0.25004 0.05039 4.96
f_rses f_fses cov9 0.30203 0.06360 4.75
f_fpa f_fses cov2 0.00185 0.04995 0.04
f_fiq f_fses cov3 0.31164 0.05039 6.18
e_rea e_fea covea 0.02120 0.03094 0.69
e_roa e_foa covoa 0.11197 0.03254 3.44
d_ramb d_famb 0

The chi-square value for testing model 5 versus model 2 is 19.0745 - 19.0697 = 0.0048
with 1 degree of freedom. Omitting the covariance between the disturbance terms,
therefore, causes hardly any deterioration in the fit of the model.

These data fail to provide evidence of direct reciprocal influence between the re-
spondent’s and friend’s ambitions or of a covariance between the disturbance terms
when these hypotheses are considered separately. Notice, however, that the covari-
ancepsi12 between the disturbance terms increases from -0.003344 for model 2 to
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0.05479 for model 4. Before you conclude that all of these paths can be omitted from
the model, it is important to test both hypotheses together by setting bothbeta and
psi12 to zero as in Loehlin’s model 7:

title2 ’Loehlin (1987) analysis: Model 7’;
data ram7(type=ram);

set ram2;
if _name_=’psi12’|_name_=’beta’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=aspire edf=328 inram=ram7;
run;

The relevant output is displayed in Figure 14.26.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 7

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0773
Goodness of Fit Index (GFI) 0.9846
GFI Adjusted for Degrees of Freedom (AGFI) 0.9718
Root Mean Square Residual (RMR) 0.0363
Parsimonious GFI (Mulaik, 1989) 0.6564
Chi-Square 25.3466
Chi-Square DF 30
Pr > Chi-Square 0.7080
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0326
ECVI Estimate 0.2350
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.2815
Probability of Close Fit 0.9975
Bentler’s Comparative Fit Index 1.0000
Normal Theory Reweighted LS Chi-Square 25.1291
Akaike’s Information Criterion -34.6534
Bozdogan’s (1987) CAIC -178.5351
Schwarz’s Bayesian Criterion -148.5351
McDonald’s (1989) Centrality 1.0071
Bentler & Bonett’s (1980) Non-normed Index 1.0084
Bentler & Bonett’s (1980) NFI 0.9709
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6473
Z-Test of Wilson & Hilferty (1931) -0.5487
Bollen (1986) Normed Index Rho1 0.9564
Bollen (1988) Non-normed Index Delta2 1.0055
Hoelter’s (1983) Critical N 568

Figure 14.26. Career Aspiration Data: Loehlin Model 7
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 7

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

riq = 0.8940 f_riq + 1.0000 e_riq
rpa = 0.8370 f_rpa + 1.0000 e_rpa
rses = 0.9490 f_rses + 1.0000 e_rses
roa = 1.0000 f_ramb + 1.0000 e_roa
rea = 1.1037*f_ramb + 1.0000 e_rea
Std Err 0.0678 lambda
t Value 16.2701
fiq = 0.8940 f_fiq + 1.0000 e_fiq
fpa = 0.8370 f_fpa + 1.0000 e_fpa
fses = 0.9490 f_fses + 1.0000 e_fses
foa = 1.0000 f_famb + 1.0000 e_foa
fea = 1.1037*f_famb + 1.0000 e_fea
Std Err 0.0678 lambda
t Value 16.2701

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 7

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

f_ramb = 0 f_famb + 0.1765*f_rpa + 0.3573*f_riq
Std Err 0.0360 gam1 0.0461 gam2
t Value 4.8981 7.7520

+ 0.2419*f_rses + 0.1109*f_fses + 1.0000 d_ramb
0.0363 gam3 0.0306 gam4
6.6671 3.6280

f_famb = 0 f_ramb + 0.1109*f_rses + 0.1765*f_fpa
Std Err 0.0306 gam4 0.0360 gam1
t Value 3.6280 4.8981

+ 0.3573*f_fiq + 0.2419*f_fses + 1.0000 d_famb
0.0461 gam2 0.0363 gam3
7.7520 6.6671
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Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 7

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

f_rpa 1.00000
f_riq 1.00000
f_rses 1.00000
f_fpa 1.00000
f_fiq 1.00000
f_fses 1.00000
e_rea thetaea 0.31633 0.03648 8.67
e_roa thetaoa 0.42656 0.03610 11.82
e_fea thetaea 0.31633 0.03648 8.67
e_foa thetaoa 0.42656 0.03610 11.82
e_rpa errpa1 0.31329 0.07538 4.16
e_riq erriq1 0.30776 0.07307 4.21
e_rses errses1 0.14303 0.07313 1.96
e_fpa errpa2 0.29286 0.07389 3.96
e_fiq erriq2 0.19193 0.06613 2.90
e_fses errses2 0.11804 0.07147 1.65
d_ramb psi 0.21011 0.02940 7.15
d_famb psi 0.21011 0.02940 7.15

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

f_rpa f_riq cov1 0.27533 0.05552 4.96
f_rpa f_rses cov2 0.00611 0.05085 0.12
f_riq f_rses cov3 0.33510 0.05150 6.51
f_rpa f_fpa cov4 0.17099 0.07872 2.17
f_riq f_fpa cov5 0.13859 0.05431 2.55
f_rses f_fpa cov6 0.07563 0.05077 1.49
f_rpa f_fiq cov5 0.13859 0.05431 2.55
f_riq f_fiq cov7 0.48105 0.06993 6.88
f_rses f_fiq cov8 0.27235 0.05157 5.28
f_fpa f_fiq cov1 0.27533 0.05552 4.96
f_rpa f_fses cov6 0.07563 0.05077 1.49
f_riq f_fses cov8 0.27235 0.05157 5.28
f_rses f_fses cov9 0.32046 0.06517 4.92
f_fpa f_fses cov2 0.00611 0.05085 0.12
f_fiq f_fses cov3 0.33510 0.05150 6.51
e_rea e_fea covea 0.04535 0.02918 1.55
e_roa e_foa covoa 0.12085 0.03214 3.76
d_ramb d_famb 0

When model 7 is tested against models 2, 4, and 5, thep-values are respectively
0.0433, 0.0370, and 0.0123, indicating that the combined effect of the reciprocal in-
fluence and the covariance of the disturbance terms is statistically significant. Thus,
the hypothesis tests indicate that it is acceptable to omit either the reciprocal influ-
ences or the covariance of the disturbances but not both.

It is also of interest to test the covariances between the error terms for educational
(COVEA) and occupational aspiration (COVOA), since these terms are omitted from
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Jöreskog and Sörbom’s models. Constraining COVEA and COVOA to zero produces
Loehlin’s model 6:

title2 ’Loehlin (1987) analysis: Model 6’;
data ram6(type=ram);

set ram2;
if _name_=’covea’|_name_=’covoa’ then

do;
_name_=’ ’;
_estim_=0;

end;
run;

proc calis data=aspire edf=328 inram=ram6;
run;

The relevant output is displayed in Figure 14.27.

Peer Influences on Aspiration: Haller & Butterworth (1960)
Loehlin (1987) analysis: Model 6

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.1020
Goodness of Fit Index (GFI) 0.9802
GFI Adjusted for Degrees of Freedom (AGFI) 0.9638
Root Mean Square Residual (RMR) 0.0306
Parsimonious GFI (Mulaik, 1989) 0.6535
Chi-Square 33.4475
Chi-Square DF 30
Pr > Chi-Square 0.3035
Independence Model Chi-Square 872.00
Independence Model Chi-Square DF 45
RMSEA Estimate 0.0187
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0471
ECVI Estimate 0.2597
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.3164
Probability of Close Fit 0.9686
Bentler’s Comparative Fit Index 0.9958
Normal Theory Reweighted LS Chi-Square 32.9974
Akaike’s Information Criterion -26.5525
Bozdogan’s (1987) CAIC -170.4342
Schwarz’s Bayesian Criterion -140.4342
McDonald’s (1989) Centrality 0.9948
Bentler & Bonett’s (1980) Non-normed Index 0.9937
Bentler & Bonett’s (1980) NFI 0.9616
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6411
Z-Test of Wilson & Hilferty (1931) 0.5151
Bollen (1986) Normed Index Rho1 0.9425
Bollen (1988) Non-normed Index Delta2 0.9959
Hoelter’s (1983) Critical N 431

Figure 14.27. Career Aspiration Data: Loehlin Model 6

The chi-square value for testing model 6 versus model 2 is 33.4476 - 19.0697 = 14.3779
with 2 degrees of freedom and ap-value of 0.0008, indicating that there is consider-
able evidence of correlation between the error terms.
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The following table summarizes the results from Loehlin’s seven models.

Model �2 df p-value SBC
1. Full model 12.0132 13 0.5266 -63.3356
2. Equality constraints 19.0697 28 0.8960 -143.2200
3. No SES path 23.0365 29 0.7749 -145.0492
4. No reciprocal influence 20.9981 29 0.8592 -147.0876
5. No disturbance correlation 19.0745 29 0.9194 -149.0111
6. No error correlation 33.4475 30 0.3035 -140.4342
7. Constraints from both 4 & 5 25.3466 30 0.7080 -148.5351

For comparing models, you can use a DATA step to compute the differences of the
chi-square statistics andp-values.

title ’Comparisons among Loehlin’’s models’;
data _null_;

array achisq[7] _temporary_
(12.0132 19.0697 23.0365 20.9981 19.0745 33.4475 25.3466);

array adf[7] _temporary_
(13 28 29 29 29 30 30);

retain indent 16;
file print;
input ho ha @@;
chisq = achisq[ho] - achisq[ha];
df = adf[ho] - adf[ha];
p = 1 - probchi( chisq, df);
if _n_ = 1 then put

/ +indent ’model comparison chi**2 df p-value’
/ +indent ’---------------------------------------’;

put +indent +3 ho ’ versus ’ ha @18 +indent chisq 8.4 df 5. p 9.4;
datalines;
2 1 3 2 4 2 5 2 7 2 7 4 7 5 6 2
;

The DATA step displays the following table.

Comparisons among Loehlin’s models

model comparison chi**2 df p-value
---------------------------------------

2 versus 1 7.0565 15 0.9561
3 versus 2 3.9668 1 0.0464
4 versus 2 1.9284 1 0.1649
5 versus 2 0.0048 1 0.9448
7 versus 2 6.2769 2 0.0433
7 versus 4 4.3485 1 0.0370
7 versus 5 6.2721 1 0.0123
6 versus 2 14.3778 2 0.0008

Although none of the seven models can be rejected when tested against the alterna-
tive of an unrestricted covariance matrix, the model comparisons make it clear that
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there are important differences among the models. Schwarz’s Bayesian Criterion in-
dicates model 5 as the model of choice. The constraints added to model 5 in model
7 can be rejected (p=0.0123), while model 5 cannot be rejected when tested against
the less-constrained model 2 (p=0.9448). Hence, among the small number of mod-
els considered, model 5 has strong statistical support. However, as Loehlin (1987,
p. 106) points out, many other models for these data could be constructed. Further
analysis should consider, in addition to simple modifications of the models, the pos-
sibility that more than one friend could influence a boy’s aspirations, and that a boy’s
ambition might have some effect on his choice of friends. Pursuing such theories
would be statistically challenging.
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