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Overview

Structural equation modeling using covariance analysis is an important statistical
tool in economics and behavioral sciences. Structural equations express relation-
ships among several variables that can be either directly observed variables (manifest
variables) or unobserved hypothetical variables (latent variables). For an introduction
to latent variable models, refer to Loehlin (1987), Bollen (1989b), Everitt (1984), or
Long (1983); and for manifest variables, refer to Fuller (1987).

In structural models, as opposed to functional models, all variables are taken to be
random rather than having fixed levels. For maximum likelihood (default) and gen-
eralized least-squares estimation in PROC CALIS, the random variables are assumed
to have an approximately multivariate normal distribution. Nonnormality, especially
high kurtosis, can produce poor estimates and grossly incorrect standard errors and
hypothesis tests, even in large samples. Consequently, the assumption of normality
is much more important than in models with nonstochastic exogenous variables. You
should remove outliers and consider transformations of nonnormal variables before
using PROC CALIS with maximum likelihood (default) or generalized least-squares
estimation. If the number of observations is sufficiently large, Browne’s asymptoti-
cally distribution-free (ADF) estimation method can be used.

You can use the CALIS procedure to estimate parameters and test hypotheses for
constrained and unconstrained problems in

� multiple and multivariate linear regression

� linear measurement-error models

� path analysis and causal modeling

� simultaneous equation models with reciprocal causation

� exploratory and confirmatory factor analysis of any order

� canonical correlation

� a wide variety of other (non)linear latent variable models

The parameters are estimated using the criteria of

� unweighted least squares (ULS)

� generalized least squares (GLS, with optional weight matrix input)

� maximum likelihood (ML, for multivariate normal data)



438 � Chapter 19. The CALIS Procedure

� weighted least squares (WLS, ADF, with optional weight matrix input)

� diagonally weighted least squares (DWLS, with optional weight matrix input)

The default weight matrix for generalized least-squares estimation is the sample co-
variance or correlation matrix. The default weight matrix for weighted least-squares
estimation is an estimate of the asymptotic covariance matrix of the sample covari-
ance or correlation matrix. In this case, weighted least-squares estimation is equiv-
alent to Browne’s (1982, 1984) asymptotic distribution-free estimation. The default
weight matrix for diagonally weighted least-squares estimation is an estimate of the
asymptotic variances of the input sample covariance or correlation matrix. You can
also use an input data set to specify the weight matrix in GLS, WLS, and DWLS
estimation.

You can specify the model in several ways:

� You can do a constrained (confirmatory) first-order factor analysis or compo-
nent analysis using the FACTOR statement.

� You can specify simple path models using an easily formulated list-type RAM
statement similar to that originally developed by J. McArdle (McArdle and
McDonald 1984).

� If you have a set of structural equations to describe the model, you can use
an equation-type LINEQS statement similar to that originally developed by P.
Bentler (1985).

� You can analyze a broad family of matrix models using COSAN and MA-
TRIX statements that are similar to the COSAN program of R. McDonald and
C. Fraser (McDonald 1978, 1980). It enables you to specify complex matrix
models including nonlinear equation models and higher-order factor models.

You can specify linear and nonlinear equality and inequality constraints on the pa-
rameters with several different statements, depending on the type of input. Lagrange
multiplier test indices are computed for simple constant and equality parameter con-
straints and for active boundary constraints. General equality and inequality con-
straints can be formulated using program statements. For more information, see the
“SAS Program Statements” section on page 514.

PROC CALIS offers a variety of methods for the automatic generation of initial val-
ues for the optimization process:

� two-stage least-squares estimation

� instrumental variable factor analysis

� approximate factor analysis

� ordinary least-squares estimation

� McDonald’s (McDonald and Hartmann 1992) method

In many common applications, these initial values prevent computational problems
and save computer time.
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Because numerical problems can occur in the (non)linearly constrained optimization
process, the CALIS procedure offers several optimization algorithms:

� Levenberg-Marquardt algorithm (Moré, 1978)

� trust region algorithm (Gay 1983)

� Newton-Raphson algorithm with line search

� ridge-stabilized Newton-Raphson algorithm

� various quasi-Newton and dual quasi-Newton algorithms: Broyden-Fletcher-
Goldfarb-Shanno and Davidon-Fletcher-Powell, including a sequential
quadratic programming algorithm for processing nonlinear equality and in-
equality constraints

� various conjugate gradient algorithms: automatic restart algorithm of Powell
(1977), Fletcher-Reeves, Polak-Ribiere, and conjugate descent algorithm of
Fletcher (1980)

The quasi-Newton and conjugate gradient algorithms can be modified by several line-
search methods. All of the optimization techniques can impose simple boundary and
general linear constraints on the parameters. Only the dual quasi-Newton algorithm
is able to impose general nonlinear equality and inequality constraints.

The procedure creates an OUTRAM= output data set that completely describes the
model (except for program statements) and also contains parameter estimates. This
data set can be used as input for another execution of PROC CALIS. Small model
changes can be made by editing this data set, so you can exploit the old parameter
estimates as starting values in a subsequent analysis. An OUTEST= data set con-
tains information on the optimal parameter estimates (parameter estimates, gradient,
Hessian, projected Hessian and Hessian of Lagrange function for constrained opti-
mization, the information matrix, and standard errors). The OUTEST= data set can
be used as an INEST= data set to provide starting values and boundary and linear
constraints for the parameters. An OUTSTAT= data set contains residuals and, for
exploratory factor analysis, the rotated and unrotated factor loadings.

Automatic variable selection (using only those variables from the input data set that
are used in the model specification) is performed in connection with the RAM and
LINEQS input statements or when these models are recognized in an input model
file. Also in these cases, the covariances of the exogenous manifest variables are rec-
ognized as given constants. With the PREDET option, you can display the predeter-
mined pattern of constant and variable elements in the predicted model matrix before
the minimization process starts. For more information, see the section “Automatic
Variable Selection” on page 548 and the section “Exogenous Manifest Variables” on
page 549.

PROC CALIS offers an analysis of linear dependencies in the information matrix
(approximate Hessian matrix) that may be helpful in detecting unidentified models.
You also can save the information matrix and the approximate covariance matrix of
the parameter estimates (inverse of the information matrix), together with parameter
estimates, gradient, and approximate standard errors, in an output data set for further
analysis.
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PROC CALIS does not provide the analysis of multiple samples with different sample
size or a generalized algorithm for missing values in the data. However, the analysis
of multiple samples with equal sample size can be performed by the analysis of a
moment supermatrix containing the individual moment matrices as block diagonal
submatrices.

Structural Equation Models

The Generalized COSAN Model
PROC CALIS can analyze matrix models of the form

C = F1P1F
0

1 + � � � + FmPmF
0

m

whereC is a symmetric correlation or covariance matrix, each matrixFk, k =
1; : : : ;m; is the product ofn(k) matricesFk1 ; : : : ;Fkn(k) , and each matrixPk is
symmetric, that is,

Fk = Fk1 � � �Fkn(k) and Pk = P0

k; k = 1; : : : ;m

The matricesFkj andPk in the model are parameterized by the matricesGkj and
Qk

Fkj =

8<
:

Gkj

G�1
kj

(I�Gkj )
�1

j = 1; : : : ; n(k) and Pk =

�
Qk

Q�1
k

where you can specify the type of matrix desired.

The matricesGkj andQk can contain

� constant values

� parameters to be estimated

� values computed from parameters via programming statements

The parameters can be summarized in a parameter vectorX = (x1; : : : ; xt). For a
given covariance or correlation matrixC, PROC CALIS computes the unweighted
least-squares (ULS), generalized least-squares (GLS), maximum likelihood (ML),
weighted least-squares (WLS), or diagonally weighted least-squares (DWLS) esti-
mates of the vectorX.
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Some Special Cases of the Generalized COSAN Model
Original COSAN (Covariance Structure Analysis) Model (McDonald 1978, 1980)

Covariance Structure:

C = F1 � � �FnPF0

n � � �F0

1

RAM (Reticular Action) Model (McArdle 1980; McArdle and McDonald 1984)
Structural Equation Model:

v = Av + u

whereA is a matrix of coefficients, andv andu are vectors of random variables. The
variables inv andu can be manifest or latent variables. The endogenous variables
corresponding to the components inv are expressed as a linear combination of the
remaining variables and a residual component inu with covariance matrixP.

Covariance Structure:

C = J(I�A)�1P((I�A)�1)0J0

with selection matrixJ and

C = EfJvv0J0g and P = Efuu0g

LINEQS (Linear Equations) Model (Bentler and Weeks 1980)
Structural Equation Model:

� = �� + 
�

where� and
 are coefficient matrices, and� and� are vectors of random variables.
The components of� correspond to the endogenous variables; the components of�

correspond to the exogenous variables and to error variables. The variables in� and
� can be manifest or latent variables. The endogenous variables in� are expressed as
a linear combination of the remaining endogenous variables, of the exogenous vari-
ables of�, and of a residual component in�. The coefficient matrix� describes the
relationships among the endogenous variables of�, andI � � should be nonsin-
gular. The coefficient matrix
 describes the relationships between the endogenous
variables of� and the exogenous and error variables of�.
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Covariance Structure:

C = J(I�B)�1���0((I�B)�1)0J0

with selection matrixJ,� = Ef��0g, and

B =

�
� 0
0 0

�
and � =

�



I

�

Keesling - Wiley - J �oreskog LISREL (Linear Structural Relationship) Model
Structural Equation Model and Measurement Models:

� = B� + �� + � ; y = �y� + " ; x = �x� + �

where� and� are vectors of latent variables (factors), andx andy are vectors of
manifest variables. The components of� correspond to endogenous latent variables;
the components of� correspond to exogenous latent variables. The endogenous and
exogenous latent variables are connected by a system of linear equations (the struc-
tural model) with coefficient matricesB and� and an error vector�. It is assumed
that matrixI�B is nonsingular. The random vectorsy andx correspond to manifest
variables that are related to the latent variables� and� by two systems of linear equa-
tions (the measurement model) with coefficients�y and�x and with measurement
errors" and�.

Covariance Structure:

C = J(I�A)�1P((I�A)�1)0J0

A =

0
BB@

0 0 �y 0
0 0 0 �x

0 0 B �

0 0 0 0

1
CCA and P =

0
BB@
�"

��
	

�

1
CCA

with selection matrixJ, � = Ef��0g, 	 = Ef�� 0g, �� = Ef��0g, and�" =
Ef""0g.

Higher-Order Factor Analysis Models
First-order model:

C = F1P1F
0

1 +U
2
1

Second-order model:

C = F1F2P2F
0

2F
0

1 + F1U
2
2F

0

1 +U
2
1
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First-Order Autoregressive Longitudinal Factor Model
Example of McDonald (1980): k=3: Occasions of Measurement; n=3: Variables
(Tests); m=2: Common Factors

C = F1F2F3LF
�1
3 F

�1
2 P(F

�1
2 )0(F�1

3 )0L0F0

3F
0

2F
0

1 +U
2

F1 =

0
@B1

B2

B3

1
A ; F2 =

0
@ I2 D2

D2

1
A ; F3 =

0
@ I2 I2

D3

1
A

L =

0
@ I2 o o
I2 I2 o
I2 I2 I2

1
A ; P =

0
@ I2 S2

S3

1
A ; U =

0
@U11 U12 U13

U21 U22 U23

U31 U32 U33

1
A

S2 = I2 �D2
2 ; S3 = I2 �D2

3

For more information on this model, see Example 19.6 on page 623.

A Structural Equation Example
This example from Wheaton et al. (1977) illustrates the relationships among the
RAM, LINEQS, and LISREL models. Different structural models for these data are
in J�oreskog and S�orbom (1985) and in Bentler (1985, p. 28). The data set contains
covariances among six (manifest) variables collected from 932 people in rural regions
of Illinois:

Variable 1: V 1; y1 : Anomia 1967

Variable 2: V 2; y2 : Powerlessness 1967

Variable 3: V 3; y3 : Anomia 1971

Variable 4: V 4; y4 : Powerlessness 1971

Variable 5: V 5; x1 : Education (years of schooling)

Variable 6: V 6; x2 : Duncan’s Socioeconomic Index (SEI)

It is assumed that anomia and powerlessness are indicators of an alienation factor and
that education and SEI are indicators for a socioeconomic status (SES) factor. Hence,
the analysis contains three latent variables:

Variable 7: F1, �1 : Alienation 1967

Variable 8: F2, �2 : Alienation 1971

Variable 9: F3, �1 : Socioeconomic Status (SES)

The following path diagram shows the structural model used in Bentler (1985, p.
29) and slightly modified in J�oreskog and S�orbom (1985, p. 56). In this notation
for the path diagram, regression coefficients between the variables are indicated as
one-headed arrows. Variances and covariances among the variables are indicated as
two-headed arrows. Indicating error variances and covariances as two-headed arrows
with the same source and destination (McArdle 1988; McDonald 1985) is helpful in
transforming the path diagram to RAM model list input for the CALIS procedure.
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1: V1, y1 2: V2, y2 3: V3, y3 4: V4, y4
�
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�
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�
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�
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�3
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Figure 19.1. Path Diagram of Stability and Alienation Example

Variables in Figure 19.1 are as follows:

Variable 1: V 1; y1 : Anomia 1967

Variable 2: V 2; y2 : Powerlessness 1967

Variable 3: V 3; y3 : Anomia 1971

Variable 4: V 4; y4 : Powerlessness 1971

Variable 5: V 5; x1 : Education (years of schooling)

Variable 6: V 6; x2 : Duncan’s Socioeconomic Index (SEI)

Variable 7: F1, �1 : Alienation 1967

Variable 8: F2, �2 : Alienation 1971

Variable 9: F3, �1 : Socioeconomic Status (SES)
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RAM Model
The vectorv contains the six manifest variablesv1 = V 1; : : : ; v6 = V 6 and the
three latent variablesv7 = F1; v8 = F2; v9 = F3. The vectoru contains the
corresponding error variablesu1 = E1; : : : ; u6 = E6 andu7 = D1; u8 = D2; u9 =
D3. The path diagram corresponds to the following set of structural equations of the
RAM model:

v1 = 1:000v7 + u1

v2 = 0:833v7 + u2

v3 = 1:000v8 + u3

v4 = 0:833v8 + u4

v5 = 1:000v9 + u5

v6 = �v9 + u6

v7 = 
1v9 + u7

v8 = �v7 + 
2v9 + u8

v9 = u9

This gives the matricesA andP in the RAM model:

A =

0
BBBBBBBBBBBB@

o o o o o o 1:000 o o
o o o o o o 0:833 o o
o o o o o o o 1:000 o
o o o o o o o 0:833 o
o o o o o o o o 1:000
o o o o o o o o �
o o o o o o o o 
1
o o o o o o � o 
2
o o o o o o o o o

1
CCCCCCCCCCCCA

P =

0
BBBBBBBBBBBB@

�1 o �5 o o o o o o
o �2 o �5 o o o o o
�5 o �1 o o o o o o
o �5 o �2 o o o o o
o o o o �3 o o o o
o o o o o �4 o o o
o o o o o o  1 o o
o o o o o o o  2 o
o o o o o o o o �

1
CCCCCCCCCCCCA

The RAM model input specification of this example for the CALIS procedure is in
the “RAM Model Specification” section on page 451.
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LINEQS Model
The vector� contains the six endogenous manifest variablesV 1, : : : , V 6 and the
two endogenous latent variablesF1 andF2. The vector� contains the exogenous
error variablesE1, : : : , E6, D1, andD2 and the exogenous latent variableF3. The
path diagram corresponds to the following set of structural equations of the LINEQS
model:

V 1 = 1:0F1 +E1

V 2 = :833F1 +E2

V 3 = 1:0F2 +E3

V 4 = :833F2 +E4

V 5 = 1:0F3 +E5

V 6 = �F3 +E6

F1 = 
1F3 +D1

F2 = �F1 + 
2F3 +D2

This gives the matrices�, 
 and� in the LINEQS model:

� =

0
BBBBBBBBBB@

o o o o o o 1: o
o o o o o o :833 o
o o o o o o o 1:
o o o o o o o :833
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o � o

1
CCCCCCCCCCA
; 
 =

0
BBBBBBBBBB@

1 o o o o o o o o
o 1 o o o o o o o
o o 1 o o o o o o
o o o 1 o o o o o
o o o o 1 o o o 1:
o o o o o 1 o o �
o o o o o o 1 o 
1
o o o o o o o 1 
2

1
CCCCCCCCCCA

� =

0
BBBBBBBBBBBB@

�1 o �5 o o o o o o
o �2 o �5 o o o o o
�5 o �1 o o o o o o
o �5 o �2 o o o o o
o o o o �3 o o o o
o o o o o �4 o o o
o o o o o o  1 o o
o o o o o o o  2 o
o o o o o o o o �

1
CCCCCCCCCCCCA

The LINEQS model input specification of this example for the CALIS procedure is
in the section “LINEQS Model Specification” on page 450.
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LISREL Model
The vectory contains the four endogenous manifest variablesy1 = V 1; : : : ; y4 =
V 4; and the vectorx contains the exogenous manifest variablesx1 = V 5 and
x2 = V 6. The vector" contains the error variables"1 = E1; : : : ; "4 = E4 cor-
responding toy; and the vector� contains the error variables�1 = E5 and�2 = E6
corresponding tox. The vector� contains the endogenous latent variables (factors)
�1 = F1 and�2 = F2, while the vector� contains the exogenous latent variable
(factor) �1 = F3. The vector� contains the errors�1 = D1 and�2 = D2 in the
equations (disturbance terms) corresponding to�. The path diagram corresponds to
the following set of structural equations of the LISREL model:

y1 = 1:0�1 + �1

y2 = :833�1 + �2

y3 = 1:0�2 + �3

y4 = :833�2 + �4

x1 = 1:0�1 + �1

x2 = ��1 + �2

�1 = 
1�1 + �1

�2 = ��1 + 
2�1 + �2

This gives the matrices�y,�x,B, �, and� in the LISREL model:

�y =

0
BB@

1: o
:833 o
o 1:
o :833

1
CCA ;�x =

�
1:
�

�
;B =

�
o o
� o

�
;� =

�

1

2

�

�2
" =

0
BB@

�1 o �5 o
o �2 o �5
�5 o �1 o
o �5 o �2

1
CCA ;�2

� =

�
�3 o
�4 o

�
;	 =

�
 1 o
o  2

�
;� = (�)

The CALIS procedure does not provide a LISREL model input specification. How-
ever, any model that can be specified by the LISREL model can also be specified by
using the COSAN, LINEQS, or RAM model specifications in PROC CALIS.
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Getting Started

There are four sets of statements available in the CALIS procedure to specify a model.
Since a LISREL analysis can be performed easily by using a RAM, COSAN, or
LINEQS statement, there is no specific LISREL input form available in the CALIS
procedure.

For COSAN-style input, you can specify the following statements:

COSAN analysis model in matrix notation ;
MATRIX definition of matrix elements ;
VARNAMES names of additional variables ;
BOUNDS boundary constraints ;
PARAMETERS parameter names from program statements ;

For linear equations input, you can specify the following statements:

LINEQS analysis model in equations notation ;
STD variance pattern ;
COV covariance pattern ;
BOUNDS boundary constraints ;
PARAMETERS parameter names from program statements ;

For RAM-style input, you can specify the following statements:

RAM analysis model in list notation ;
VARNAMES names of latent and error variables ;
BOUNDS boundary constraints ;
PARAMETERS parameter names from program statements ;

For (confirmatory) factor analysis input, you can specify the following statements:

FACTOR options ;
MATRIX definition of matrix elements ;
VARNAMES names of latent and residual variables ;
BOUNDS boundary constraints ;
PARAMETERS parameter names from program statements ;

The model can also be obtained from an INRAM= data set, which is usually a ver-
sion of an OUTRAM= data set produced by a previous PROC CALIS analysis (and
possibly modified).

If no INRAM= data set is specified, you must use one of the four statements that
defines the input form of the analysis model: COSAN, RAM, LINEQS, or FACTOR.
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COSAN Model Specification
You specify the model for a generalized COSAN analysis with a COSAN statement
and one or more MATRIX statements. The COSAN statement determines the name,
dimension, and type (identity, diagonal, symmetric, upper, lower, general, inverse,
and so forth) of each matrix in the model. You can specify the values of the constant
elements in each matrix and give names and initial values to the elements that are
to be estimated as parameters or functions of parameters using MATRIX statements.
The resulting displayed output is in matrix form.

The following statements define the structural model of the alienation example as a
COSAN model:

Cosan J(9, Ide) * A(9, Gen, Imi) * P(9, Sym);
Matrix A

[ ,7] = 1. .833 5 * 0. Beta (.5) ,
[ ,8] = 2 * 0. 1. .833 ,
[ ,9] = 4 * 0. 1. Lamb Gam1-Gam2 (.5 2 * -.5);

Matrix P
[1,1] = The1-The2 The1-The4 (6 * 3.) ,
[7,7] = Psi1-Psi2 Phi (2 * 4. 6.) ,
[3,1] = The5 (.2) ,
[4,2] = The5 (.2) ;

The matrix model specified in the COSAN statement is the RAM model

C = J(I�A)�1P((I�A)�1)0J0

with selection matrixJ and

C = EfJvv0J0g; P = Efuu0g

The COSAN statement must contain only the matrices up to the central matrixP

because of the symmetry of each matrix term in a COSAN model. Each matrix
name is followed by one to three arguments in parentheses. The first argument is the
number of columns. The second and third arguments are optional, and they specify
the form of the matrix. The selection matrixJ in the RAM model is specified by
the 6 � 9 identity (IDE) (sub)matrixJ because the first six variables in vectorv
correspond to the six manifest variables in the data set. The9 � 9 parameter matrix
A has a general (GEN) form and is used as(I �A)�1 in the analysis, as indicated
by the identity-minus-inverse (IMI) argument. The central9� 9 matrix P is specified
as a symmetric (SYM) matrix.

The MATRIX statement for matrixA specifies the values in columns 7, 8, and 9,
which correspond to the three latent variablesF1, F2, andF3, in accordance with
the RAM model. The other columns ofA are assumed to be zero. The initial values
for the parameter elements inA are chosen as in the path diagram to be

� = � = :5; 
1 = 
2 = �:5
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In accordance with matrixP of the RAM model and the path model, the nine diagonal
elements of matrixP are parameters with initial values

�1 = �2 = �3 = �4 = 3;  1 =  2 = 4; � = 6

There are also two off-diagonal elements in each triangle ofP that are constrained to
be equal, and they have an initial value of 0.2.

See the section “COSAN Model Statement” on page 479 for more information about
the COSAN statement.

LINEQS Model Specification
You can also describe the model by a set of linear equations combined with variance
and covariance specifications, using notation similar to that originally developed by
P. Bentler for his EQS program. The displayed output can be in either equation form
or matrix form.

The following statements define the structural model of the alienation example as a
LINEQS model:

Lineqs
V1 = F1 + E1,
V2 = .833 F1 + E2,
V3 = F2 + E3,
V4 = .833 F2 + E4,
V5 = F3 + E5,
V6 = Lamb (.5) F3 + E6,
F1 = Gam1(-.5) F3 + D1,
F2 = Beta (.5) F1 + Gam2(-.5) F3 + D2;

Std
E1-E6 = The1-The2 The1-The4 (6 * 3.),
D1-D2 = Psi1-Psi2 (2 * 4.),
F3 = Phi (6.) ;

Cov
E1 E3 = The5 (.2),
E4 E2 = The5 (.2);

The LINEQS statement shows the equations in the section “LINEQS Model” on
page 446, except that in this case the coefficients to be estimated can be followed
(optionally) by the initial value to use in the optimization process. If you do not
specify initial values for the parameters in a LINEQS statement, PROC CALIS tries
to assign these values automatically. The endogenous variables used on the left side
can be manifest variables (with names that must be defined by the input data set) or
latent variables (which must have names starting with F). The variables used on the
right side can be manifest variables, latent variables (with names that must start with
an F), or error variables (which must have names starting with an E or D). Commas
separate the equations. The coefficients to be estimated are indicated by names. If
no name is used, the coefficient is constant, either equal to a specified number or, if
no number is used, equal to 1. The VAR statement in Bentler’s notation is replaced
here by the STD statement, because the VAR statement in PROC CALIS defines the
subset of manifest variables in the data set to be analyzed. The variable names used
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in the STD or COV statement must be exogenous (that is, they should not occur on
the left side of any equation). The STD and COV statements define the diagonal
and off-diagonal elements in the� matrix. The parameter specifications in the STD
and COV statements are separated by commas. Usingk variable names on the left
of an equal sign in a COV statement means that the parameter list on the right side
refers to allk(k � 1)=2 distinct variable pairs in the� matrix. Identical coefficient
names indicate parameters constrained to be equal. You can also use prefix names to
specify those parameters for which you do not need a precise name in any parameter
constraint.

See the section “LINEQS Model Statement” on page 488 for more information about
the precise syntax rules for a LINEQS statement.

RAM Model Specification
The RAM model allows a path diagram to be transcribed into a RAM statement in
list form. The displayed output from the RAM statement is in matrix or list form.

The following statement defines the structural model of the alienation example as a
RAM model:

Ram
1 1 7 1. ,
1 2 7 .833 ,
1 3 8 1. ,
1 4 8 .833 ,
1 5 9 1. ,
1 6 9 .5 Lamb ,
1 7 9 -.5 Gam1 ,
1 8 7 .5 Beta ,
1 8 9 -.5 Gam2 ,
2 1 1 3. The1 ,
2 2 2 3. The2 ,
2 3 3 3. The1 ,
2 4 4 3. The2 ,
2 5 5 3. The3 ,
2 6 6 3. The4 ,
2 1 3 .2 The5 ,
2 2 4 .2 The5 ,
2 7 7 4. Psi1 ,
2 8 8 4. Psi2 ,
2 9 9 6. Phi ;

You must assign numbers to the nodes in the path diagram. In the path diagram of
Figure 19.1, the boxes corresponding to the six manifest variablesV 1; : : : ; V 6 are
assigned the number of the variable in the covariance matrix (1,: : : ,6); the circles
corresponding to the three latent variablesF1, F2, andF3 are given the numbers 7,
8, and 9. The path diagram contains 20 paths between the nine nodes; nine of the
paths are one-headed arrows and eleven are two-headed arrows.

The RAM statement contains a list of items separated by commas. Each item corre-
sponds to an arrow in the path diagram. The first entry in each item is the number
of arrow heads (matrix number), the second entry shows where the arrow points to
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(row number), the third entry shows where the arrow comes from (column number),
the fourth entry gives the (initial) value of the coefficient, and the fifth entry assigns
a name if the path represents a parameter rather than a constant. If you specify the
fifth entry as a parameter name, then the fourth list entry can be omitted, since PROC
CALIS tries to assign an initial value to this parameter.

See the section “RAM Model Statement” on page 484 for more information about
the RAM statement.

FACTOR Model Specification
You can specify the FACTOR statement to compute factor loadingsF and unique
variancesU of an exploratory or confirmatory first-order factor (or component) anal-
ysis. By default, the factor correlation matrixP is an identity matrix.

C = FF0 +U; U = diag

For a first-order confirmatory factor analysis, you can use MATRIX statements to
define elements in the matricesF,P, andU of the more general model

C = FPF0 +U; P = P0; U = diag

To perform a component analysis, specify the COMPONENT option to constrain the
matrixU to a zero matrix; that is, the model is replaced by

C = FF0

Note that the rank ofFF0 is equal to the numberm of components inF, and if
m is smaller than the number of variables in the moment matrixC, the matrix of
predicted model values is singular and maximum likelihood estimates forF cannot
be computed. You should compute ULS estimates in this case.

The HEYWOOD option constrains the diagonal elements ofU to be nonnegative;
that is, the model is replaced by

C = FF0 +U2; U = diag

If the factor loadings are unconstrained, they can be orthogonally rotated by one of
the following methods:

� principal axes rotation

� quartimax

� varimax

� equamax

� parsimax
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The most common approach to factor analysis consists of two steps:

1. Obtain estimates for factor loadings and unique variances.

2. Apply an orthogonal or oblique rotation method.

Most programs of factor analysis do not provide standard errors for the rotated factor
loadings. PROC CALIS enables you to specify general linear and nonlinear equal-
ity and inequality constraints using the LINCON and NLINCON statements. You
can specify the NLINCON statement to estimate orthogonal or oblique rotated factor
loadings; refer to Browne and Du Toit (1992).

For default (exploratory) factor analysis, PROC CALIS computes initial estimates.
If you use a MATRIX statement together with a FACTOR model specification,
initial values are generally computed by McDonald’s (McDonald and Hartmann
1992) method or are set by the START= option. See the section “FACTOR Model
Statement” on page 493 and Example 19.3 for more information about the FACTOR
statement.

Constrained Estimation
� Simple equality constraints; xi = ci; ci = const; andxi = xj; can be defined

in each model by specifying constants or using the same name for parameters
constrained to be equal.

� BOUNDS statement: You can specify boundary constraints; li � xi �
ui; li; ui = const; with the BOUNDS statement for the COSAN, LINEQS,
and RAM models and in connection with an INRAM= data set. There may
be serious convergence problems if negative values appear in the diagonal lo-
cations (variances) of the central model matrices during the minimization pro-
cess. You can use the BOUNDS statement to constrain these parameters to
have nonnegative values.

� LINCON statement: You can specify general linear equality and inequality
constraints of the parameter estimates with the LINCON statement or by using
an INEST= data set. The variables listed in the LINCON statements must be
(a subset of) the model parameters. All optimization methods can be used with
linear constraints.

� NLINCON statement: You can specify general nonlinear equality and inequal-
ity constraints of the parameter estimates with the NLINCON statement. The
syntax of the NLINCON statement is almost the same as that for the BOUNDS
statement with the exception that the BOUNDS statement can contain only
names of the model parameters. However, the variables listed in the NLIN-
CON statement can be defined by program statements. Only the quasi-Newton
optimization method can be used when there are nonlinear constraints.

� Reparameterizing the Model: Complex linear equality and inequality con-
straints can be defined by means of program statements similar to those used in
the DATA step. In this case, some of the parametersxi are not elements of the
matricesGkj andQk but are instead defined in a PARAMETERS statement.
Elements of the model matrices can then be computed by program statements
as functions of parameters in the PARAMETERS statement. This approach is
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similar to the classical COSAN program of R. McDonald, implemented by C.
Fraser (McDonald 1978, 1980). One advantage of the CALIS procedure is that
you need not supply code for the derivatives of the specified functions. The an-
alytic derivatives of the user-written functions are computed automatically by
PROC CALIS. The specified functions must be continuous and have continu-
ous first-order partial derivatives. See the “SAS Program Statements” section
on page 514 and the “Constrained Estimation Using Program Code” section on
page 561 for more information about imposing linear and nonlinear restrictions
on parameters by using program statements.

Although much effort has been made to implement reliable and numerically stable
optimization methods, no practical algorithm exists that can always find the global
optimum of a nonlinear function, especially when there are nonlinear constraints.

Syntax

PROC CALIS < options > ;
COSAN matrix model ;

MATRIX matrix elements ;
VARNAMES variables ;

LINEQS model equations ;
STD variance pattern ;
COV covariance pattern ;

RAM model list ;
VARNAMES variables ;

FACTOR < options > ;
MATRIX matrix elements ;
VARNAMES variables ;

BOUNDS boundary constraints ;
BY variables ;
FREQ variable ;
LINCON linear constraints ;
NLINCON nonlinear constraints ;
NLOPTIONS optimization options ;
PARAMETERS parameters ;
PARTIAL variables ;
STRUCTEQ variables ;
VAR variables ;
WEIGHT variable ;
program statements

� If no INRAM= data set is specified, one of the four statements that defines the
input form of the analysis model, COSAN, LINEQS, RAM, or FACTOR, must
be used.

� The MATRIX statement can be used multiple times for the same or differ-
ent matrices along with a COSAN or FACTOR statement. If the MATRIX
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statement is used multiple times for the same matrix, later definitions override
earlier ones.

� The STD and COV statements can be used only with the LINEQS model state-
ment.

� You can formulate a generalized COSAN model using a COSAN statement.
MATRIX statements can be used to define the elements of a matrix used in the
COSAN statement. The input notation resembles the COSAN program of R.
McDonald and C. Fraser (McDonald 1978, 1980).

� The RAM statement uses a simple list input that is especially suitable for de-
scribing J. McArdle’s RAM analysis model (McArdle 1980, McArdle and Mc-
Donald 1984) for causal and path analysis problems.

� The LINEQS statement formulates the analysis model by means of a system
of linear equations similar to P. Bentler’s (1989) EQS program notation. The
STD and COV statements can be used to define the variances and covariances
corresponding to elements of matrix� in the LINEQS model.

� A FACTOR statement can be used to compute a first-order exploratory or con-
firmatory factor (or component) analysis. The analysis of a simple exploratory
factor analysis model performed by PROC CALIS is not as efficient as one
performed by the FACTOR procedure. The CALIS procedure is designed for
more general structural problems, and it needs significantly more computation
time for a simple unrestricted factor or component analysis than does PROC
FACTOR.

� You can add program statements to impose linear or nonlinear constraints on
the parameters if you specify the model by means of a COSAN, LINEQS, or
RAM statement. The PARAMETERS statement defines additional parameters
that are needed as independent variables in your program code and that belong
to the set of parameters to be estimated. Variable names used in the program
code should differ from the preceding statement names. The code should re-
spect the syntax rules of SAS statements usually used in the DATA step. See
the “SAS Program Statements” section on page 514 for more information.

� The BOUNDS statement can be used to specify simple lower and upper bound-
ary constraints for the parameters.

� You can specify general linear equality and inequality constraints with the LIN-
CON statement (or via an INEST= data set). The NLINCON statement can be
used to specify general nonlinear equality and inequality constraints by refer-
ring to nonlinear functions defined by program statements.

� The VAR, PARTIAL, WEIGHT, FREQ, and BY statements can be used in the
same way as in other procedures, for example, the FACTOR or PRINCOMP
procedure. You can select a subset of the input variables to analyze with the
VAR statement. The PARTIAL statement defines a set of input variables that
are chosen as partial variables for the analysis of a matrix of partial correlations
or covariances. The BY statement specifies groups in which separate covari-
ance structure analyses are performed.
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PROC CALIS Statement

PROC CALIS < options > ;

This statement invokes the procedure. The options available with the PROC CALIS
statement are summarized in Table 19.1 and discussed in the following six sections.

Table 19.1. PROC CALIS Statement Options

Data Set Options Short Description
DATA= input data set
INEST= input initial values, constraints
INRAM= input model
INWGT= input weight matrix
OUTEST= covariance matrix of estimates
OUTJAC Jacobian into OUTEST= data set
OUTRAM= output model
OUTSTAT= output statistic
OUTWGT= output weight matrix

Data Processing Short Description
AUGMENT analyzes augmented moment matrix
COVARIANCE analyzes covariance matrix
EDF= defines nobs by number error df
NOBS= defines number of observations nobs
NOINT analyzes uncorrected moments
RDF= defines nobs by number regression df
RIDGE specifies ridge factor for moment matrix
UCORR analyzes uncorrected CORR matrix
UCOV analyzes uncorrected COV matrix
VARDEF= specifies variance divisor

Estimation Methods Short Description
METHOD= estimation method
ASYCOV= formula of asymptotic covariances
DFREDUCE= reduces degrees of freedom
G4= algorithm for STDERR
NODIAG excludes diagonal elements from fit
WPENALTY= penalty weight to fit correlations
WRIDGE= ridge factor for weight matrix

Optimization Techniques Short Description
TECHNIQUE= minimization method
UPDATE= update technique
LINESEARCH= line-search method
FCONV= function convergence criterion
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Table 19.1. (continued)

Optimization Techniques Short Description
GCONV= gradient convergence criterion
INSTEP= initial step length (RADIUS=, SALPHA=)
LSPRECISION= line-search precision (SPRECISION=)
MAXFUNC= max number function calls
MAXITER= max number iterations

Displayed Output Options Short Description
KURTOSIS compute and display kurtosis
MODIFICATION modification indices
NOMOD no modification indices
NOPRINT suppresses the displayed output
PALL all displayed output (ALL)
PCORR analyzed and estimated moment matrix
PCOVES covariance matrix of estimates
PDETERM determination coefficients
PESTIM parameter estimates
PINITIAL pattern and initial values
PJACPAT displays structure of variable and constant

elements of the Jacobian matrix
PLATCOV latent variable covariances, scores
PREDET displays predetermined moment matrix
PRIMAT displays output in matrix form
PRINT adds default displayed output
PRIVEC displays output in vector form
PSHORT reduces default output (SHORT)
PSUMMARY displays only fit summary (SUMMARY)
PWEIGHT weight matrix
RESIDUAL= residual matrix and distribution
SIMPLE univariate statistics
STDERR standard errors
NOSTDERR computes no standard errors
TOTEFF displays total and indirect effects

Miscellaneous Options Short Description
ALPHAECV= probability Browne & Cudeck ECV
ALPHARMS= probability Steiger & Lind RMSEA
BIASKUR biased skewness and kurtosis
DEMPHAS= emphasizes diagonal entries
FDCODE uses numeric derivatives for code
HESSALG= algorithm for Hessian
NOADJDF no adjustment of df for active constraints
RANDOM= randomly generated initial values
SINGULAR= singularity criterion
ASINGULAR= absolute singularity information matrix
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Table 19.1. (continued)

Miscellaneous Options Short Description
COVSING= singularity tolerance of information matrix
MSINGULAR= relative M singularity of information matrix
VSINGULAR= relative V singularity of information matrix
SLMW= probability limit for Wald test
START= constant initial values

Data Set Options
DATA=SAS-data-set

specifies an input data set that can be an ordinary SAS data set or a specially struc-
tured TYPE=CORR, TYPE=COV, TYPE=UCORR, TYPE=UCOV, TYPE=SSCP, or
TYPE=FACTOR SAS data set, as described in the section “Input Data Sets” on
page 517. If the DATA= option is omitted, the most recently created SAS data set
is used.

INEST | INVAR | ESTDATA= SAS-data-set
specifies an input data set that contains initial estimates for the parameters used in the
optimization process and can also contain boundary and general linear constraints on
the parameters. If the model did not change too much, you can specify an OUTEST=
data set from a previous PROC CALIS analysis. The initial estimates are taken from
the values of the PARMS observation.

INRAM=SAS-data-set
specifies an input data set that contains in RAM list form all information needed to
specify an analysis model. The INRAM= data set is described in the section “In-
put Data Sets” on page 517. Typically, this input data set is an OUTRAM= data set
(possibly modified) from a previous PROC CALIS analysis. If you use an INRAM=
data set to specify the analysis model, you cannot use the model specification state-
ments COSAN, MATRIX, RAM, LINEQS, STD, COV, FACTOR, or VARNAMES,
but you can use the BOUNDS and PARAMETERS statements and program state-
ments. If the INRAM= option is omitted, you must define the analysis model with a
COSAN, RAM, LINEQS, or FACTOR statement.

INWGT=SAS-data-set
specifies an input data set that contains the weight matrixW used in generalized
least-squares (GLS), weighted least-squares (WLS, ADF), or diagonally weighted
least-squares (DWLS) estimation. If the weight matrixW defined by an INWGT=
data set is not positive definite, it can be ridged using the WRIDGE= option. See the
section “Estimation Criteria” on page 531 for more information. If no INWGT= data
set is specified, default settings for the weight matrices are used in the estimation
process. The INWGT= data set is described in the section “Input Data Sets” on
page 517. Typically, this input data set is an OUTWGT= data set from a previous
PROC CALIS analysis.

OUTEST | OUTVAR=SAS-data-set
creates an output data set containing the parameter estimates, their gradient, Hessian
matrix, and boundary and linear constraints. For METHOD=ML, METHOD=GLS,
and METHOD=WLS, the OUTEST= data set also contains the information matrix,
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the approximate covariance matrix of the parameter estimates ((generalized) inverse
of information matrix), and approximate standard errors. If linear or nonlinear equal-
ity or active inequality constraints are present, the Lagrange multiplier estimates of
the active constraints, the projected Hessian, and the Hessian of the Lagrange func-
tion are written to the data set. The OUTEST= data set also contains the Jacobian if
the OUTJAC option is used.

The OUTEST= data set is described in the section “OUTEST= SAS-data-set” on
page 521. If you want to create a permanent SAS data set, you must specify a two-
level name. Refer to the chapter titled “SAS Data Files” inSAS Language Reference:
Conceptsfor more information on permanent data sets.

OUTJAC
writes the Jacobian matrix, if it has been computed, to the OUTEST= data set. This
is useful when the information and Jacobian matrices need to be computed for other
analyses.

OUTSTAT=SAS-data-set
creates an output data set containing the BY group variables, the analyzed covari-
ance or correlation matrices, and the predicted and residual covariance or correlation
matrices of the analysis. You can specify the correlation or covariance matrix in an
OUTSTAT= data set as an input DATA= data set in a subsequent analysis by PROC
CALIS. The OUTSTAT= data set is described in the section “OUTSTAT= SAS-data-
set” on page 528. If the model contains latent variables, this data set also contains
the predicted covariances between latent and manifest variables and the latent vari-
ables scores regression coefficients (see the PLATCOV option on page 473). If the
FACTOR statement is used, the OUTSTAT= data set also contains the rotated and
unrotated factor loadings, the unique variances, the matrix of factor correlations, the
transformation matrix of the rotation, and the matrix of standardized factor loadings.

You can specify the latent variable score regression coefficients with PROC SCORE
to compute factor scores.

If you want to create a permanent SAS data set, you must specify a two-level name.
Refer to the chapter titled “SAS Data Files” inSAS Language Reference: Concepts
for more information on permanent data sets.

OUTRAM=SAS-data-set
creates an output data set containing the model information for the analysis, the pa-
rameter estimates, and their standard errors. An OUTRAM= data set can be used
as an input INRAM= data set in a subsequent analysis by PROC CALIS. The OUT-
RAM= data set also contains a set of fit indices; it is described in more detail in the
section “OUTRAM= SAS-data-set” on page 525. If you want to create a permanent
SAS data set, you must specify a two-level name. Refer to the chapter titled “SAS
Data Files” inSAS Language Reference: Conceptsfor more information on perma-
nent data sets.

OUTWGT=SAS-data-set
creates an output data set containing the weight matrixW used in the estimation pro-
cess. You cannot create an OUTWGT= data set with an unweighted least-squares or
maximum likelihood estimation. The fit function in GLS, WLS (ADF), and DWLS
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estimation contain the inverse of the (Cholesky factor of the) weight matrixW writ-
ten in the OUTWGT= data set. The OUTWGT= data set contains the weight matrix
on which the WRIDGE= and the WPENALTY= options are applied. An OUTWGT=
data set can be used as an input INWGT= data set in a subsequent analysis by PROC
CALIS. The OUTWGT= data set is described in the section “OUTWGT= SAS-data-
set” on page 530. If you want to create a permanent SAS data set, you must specify
a two-level name. Refer to the chapter titled “SAS Data Files” inSAS Language
Reference: Conceptsfor more information on permanent data sets.

Data Processing Options
AUGMENT | AUG

analyzes the augmented correlation or covariance matrix. Using the AUG option
is equivalent to specifying UCORR (NOINT but not COV) or UCOV (NOINT and
COV) for a data set that is augmented by an intercept variableINTERCEPT that
has constant values equal to 1. The variableINTERCEP can be used instead of the
default INTERCEPT only if you specify the SAS option OPTIONS VALIDVAR-
NAME=V6. The dimension of an augmented matrix is one higher than that of the
corresponding correlation or covariance matrix. The AUGMENT option is effective
only if the data set does not contain a variable called INTERCEPT and if you specify
the UCOV, UCORR, or NOINT option.

Caution: The INTERCEPT variable is included in the moment matrix as the variable
with numbern+1. Using the RAM model statement assumes that the firstn variable
numbers correspond to then manifest variables in the input data set. Therefore,
specifying the AUGMENT option assumes that the numbers of the latent variables
used in the RAM or path model have to start with numbern+ 2.

COVARIANCE | COV
analyzes the covariance matrix instead of the correlation matrix. By default, PROC
CALIS (like the FACTOR procedure) analyzes a correlation matrix. If the DATA=
input data set is a valid TYPE=CORR data set (containing a correlation matrix and
standard deviations), using the COV option means that the covariance matrix is com-
puted and analyzed.

DFE | EDF=n
makes the effective number of observationsn+i, wherei is 0 if the NOINT, UCORR,
or UCOV option is specified without the AUGMENT option or wherei is 1 otherwise.
You can also use the NOBS= option to specify the number of observations.

DFR | RDF=n
makes the effective number of observations the actual number of observations minus
the RDF= value. The degree of freedom for the intercept should not be included
in the RDF= option. If you use PROC CALIS to compute a regression model, you
can specify RDF=number-of-regressor-variablesto get approximate standard errors
equal to those computed by PROC REG.

NOBS= nobs
specifies the number of observations. If the DATA= input data set is a raw data
set,nobsis defined by default to be the number of observations in the raw data set.
The NOBS= and EDF= options override this default definition. You can use the
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RDF= option to modify thenobsspecification. If the DATA= input data set contains
a covariance, correlation, or scalar product matrix, you can specify the number of
observations either by using the NOBS=, EDF=, and RDF= options in the PROC
CALIS statement or by including a–TYPE–=’N’ observation in the DATA= input
data set.

NOINT
specifies that no intercept be used in computing covariances and correlations; that
is, covariances or correlations are not corrected for the mean. You can specify this
option (or UCOV or UCORR) to analyze mean structures in an uncorrected moment
matrix, that is, to compute intercepts in systems of structured linear equations (see
Example 19.2). The term NOINT is misleading in this case because an uncorrected
covariance or correlation matrix is analyzed containing a constant (intercept) variable
that is used in the analysis model. The degrees of freedom used in the variance divisor
(specified by the VARDEF= option) and some of the assessment of the fit function
(see the section “Assessment of Fit” on page 536) depend on whether an intercept
variable is included in the model (the intercept is used in computing the corrected
covariance or correlation matrix or is used as a variable in the uncorrected covariance
or correlation matrix to estimate mean structures) or not included (an uncorrected
covariance or correlation matrix is used that does not contain a constant variable).

RIDGE<=r >
defines a ridge factorr for the diagonal of the moment matrixS that is analyzed. The
matrixS is transformed to

S �! ~S = S+ r(diag(S))

If you do not specifyr in the RIDGE option, PROC CALIS tries to ridge the moment
matrixS so that the smallest eigenvalue is about10�3.

Caution: The moment matrix in the OUTSTAT= output data set does not contain the
ridged diagonal.

UCORR
analyzes the uncorrected correlation matrix instead of the correlation matrix corrected
for the mean. Using the UCORR option is equivalent to specifying the NOINT option
but not the COV option.

UCOV
analyzes the uncorrected covariance matrix instead of the covariance matrix corrected
for the mean. Using the UCOV option is equivalent to specifying both the COV
and NOINT options. You can specify this option to analyze mean structures in an
uncorrected covariance matrix, that is, to compute intercepts in systems of linear
structural equations (see Example 19.2).

VARDEF= DF | N | WDF | WEIGHT | WGT
specifies the divisor used in the calculation of covariances and standard deviations.
The default value is VARDEF=DF. The values and associated divisors are displayed
in the following table, wherei = 0 if the NOINT option is used andi = 1 otherwise
and wherek is the number of partial variables specified in the PARTIAL statement.
Using an intercept variable in a mean structure analysis, by specifying the AUG-
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MENT option, includes the intercept variable in the analysis. In this case,i = 1.
When a WEIGHT statement is used,wj is the value of the WEIGHT variable in the
jth observation, and the summation is performed only over observations with positive
weight.

Value Description Divisor
DF degrees of freedom N � k � i
N number of observationsN
WDF sum of weights DF

PN
j wj � k � i

WEIGHT j WGT sum of weights
PN

j wj

Estimation Methods
The default estimation method is maximum likelihood (METHOD=ML), assuming
a multivariate normal distribution of the observed variables. The two-stage esti-
mation methods METHOD=LSML, METHOD=LSGLS, METHOD=LSWLS, and
METHOD=LSDWLS first compute unweighted least-squares estimates of the model
parameters and their residuals. Afterward, these estimates are used as initial val-
ues for the optimization process to compute maximum likelihood, generalized least-
squares, weighted least-squares, or diagonally weighted least-squares parameter esti-
mates. You can do the same thing by using an OUTRAM= data set with least-squares
estimates as an INRAM= data set for a further analysis to obtain the second set of pa-
rameter estimates. This strategy is also discussed in the section “Use of Optimization
Techniques” on page 551. For more details, see the “Estimation Criteria” section on
page 531.

METHOD | MET=name
specifies the method of parameter estimation. The default is METHOD=ML. Valid
values fornameare as follows:

ML | M | MAX performs normal-theory maximum likelihood parameter
estimation. The ML method requires a nonsingular covari-
ance or correlation matrix.

GLS | G performs generalized least-squares parameter estimation.
If no INWGT= data set is specified, the GLS method
uses the inverse sample covariance or correlation matrix
as weight matrixW. Therefore, METHOD=GLS requires
a nonsingular covariance or correlation matrix.

WLS | W | ADF performs weighted least-squares parameter estimation. If
no INWGT= data set is specified, the WLS method uses
the inverse matrix of estimated asymptotic covariances of
the sample covariance or correlation matrix as the weight
matrix W. In this case, the WLS estimation method
is equivalent to Browne’s (1982, 1984) asymptotically
distribution-free estimation. The WLS method requires a
nonsingular weight matrix.

DWLS | D performs diagonally weighted least-squares parameter es-
timation. If no INWGT= data set is specified, the DWLS
method uses the inverse diagonal matrix of asymptotic
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variances of the input sample covariance or correlation ma-
trix as the weight matrixW. The DWLS method requires
a nonsingular diagonal weight matrix.

ULS | LS | U performs unweighted least-squares parameter estimation.

LSML | LSM | LSMAX performs unweighted least-squares followed by normal-
theory maximum likelihood parameter estimation.

LSGLS | LSG performs unweighted least-squares followed by general-
ized least-squares parameter estimation.

LSWLS | LSW | LSADF performs unweighted least-squares followed by weighted
least-squares parameter estimation.

LSDWLS | LSD performs unweighted least-squares followed by diagonally
weighted least-squares parameter estimation.

NONE | NO uses no estimation method. This option is suitable for
checking the validity of the input information and for dis-
playing the model matrices and initial values.

ASYCOV | ASC=name
specifies the formula for asymptotic covariances used in the weight matrixW for
WLS and DWLS estimation. The ASYCOV option is effective only if METHOD=
WLS or METHOD=DWLS and no INWGT= input data set is specified. The follow-
ing formulas are implemented:

BIASED: Browne’s (1984) formula (3.4)
biased asymptotic covariance estimates; the resulting weight ma-
trix is at least positive semidefinite. This is the default for analyz-
ing a covariance matrix.

UNBIASED: Browne’s (1984) formula (3.8)
asymptotic covariance estimates corrected for bias; the resulting
weight matrix can be indefinite (that is, can have negative eigen-
values), especially for smallN .

CORR: Browne and Shapiro’s (1986) formula (3.2)
(identical to DeLeeuw’s (1983) formulas (2,3,4)) the asymptotic
variances of the diagonal elements are set to the reciprocal of the
valuer specified by the WPENALTY= option (default:r = 100).
This formula is the default for analyzing a correlation matrix.

Caution: Using the WLS and DWLS methods with the ASYCOV=CORR option
means that you are fitting a correlation (rather than a covariance) structure. Since
the fixed diagonal of a correlation matrix for some models does not contribute to the
model’s degrees of freedom, you can specify the DFREDUCE=i option to reduce the
degrees of freedom by the number of manifest variables used in the model. See the
section “Counting the Degrees of Freedom” on page 563 for more information.
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DFREDUCE | DFRED=i
reduces the degrees of freedom of the�2 test byi. In general, the number of degrees
of freedom is the number of elements of the lower triangle of the predicted model
matrixC, n(n + 1)=2, minus the number of parameters,t. If the NODIAG option
is used, the number of degrees of freedom is additionally reduced byn. Because
negative values ofi are allowed, you can also increase the number of degrees of
freedom by using this option. If the DFREDUCE= or NODIAG option is used in a
correlation structure analysis, PROC CALIS does not additionally reduce the degrees
of freedom by the number of constant elements in the diagonal of the predicted model
matrix, which is otherwise done automatically. See the section “Counting the Degrees
of Freedom” on page 563 for more information.

G4=i
specifies the algorithm to compute the approximate covariance matrix of parame-
ter estimates used for computing the approximate standard errors and modification
indices when the information matrix is singular. If the number of parameterst
used in the model you analyze is smaller than the value ofi, the time-expensive
Moore-Penrose (G4) inverse of the singular information matrix is computed by eigen-
value decomposition. Otherwise, an inexpensive pseudo (G1) inverse is computed by
sweeping. By default,i = 60. For more details, see the section “Estimation Criteria”
on page 531.

NODIAG | NODI
omits the diagonal elements of the analyzed correlation or covariance matrix from
the fit function. This option is useful only for special models with constant error vari-
ables. The NODIAG option does not allow fitting those parameters that contribute to
the diagonal of the estimated moment matrix. The degrees of freedom are automat-
ically reduced byn. A simple example for the usefulness of the NODIAG option is
the fit of the first-order factor model,S = FF0 +U2. In this case, you do not have
to estimate the diagonal matrix of unique variancesU2 that are fully determined by
diag(S � FF0).

WPENALTY | WPEN= r
specifies the penalty weightr � 0 for the WLS and DWLS fit of the diagonal ele-
ments of a correlation matrix (constant 1s). The criterion for weighted least-squares
estimation of a correlation structure is

FWLS =

nX
i=2

i�1X
j=1

nX
k=2

k�1X
l=1

wij;kl(sij � cij)(skl � ckl) + r

nX
i

(sii � cii)
2

wherer is the penalty weight specified by the WPENALTY=r option and thewij;kl

are the elements of the inverse of the reduced(n(n� 1)=2) � (n(n� 1)=2) weight
matrix that contains only the nonzero rows and columns of the full weight matrix
W. The second term is a penalty term to fit the diagonal elements of the correlation
matrix. The default value is 100. The reciprocal of this value replaces the asymptotic
variance corresponding to the diagonal elements of a correlation matrix in the weight
matrixW, and it is effective only with the ASYCOV=CORR option. The often used
valuer = 1 seems to be too small in many cases to fit the diagonal elements of a
correlation matrix properly. The default WPENALTY= value emphasizes the impor-
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tance of the fit of the diagonal elements in the correlation matrix. You can decrease
or increase the value ofr if you want to decrease or increase the importance of the di-
agonal elements fit. This option is effective only with the WLS or DWLS estimation
method and the analysis of a correlation matrix. See the section “Estimation Criteria”
on page 531 for more details.

WRIDGE=r
defines a ridge factorr for the diagonal of the weight matrixW used in GLS, WLS,
or DWLS estimation. The weight matrixW is transformed to

W �! ~W =W+ r(diag(W))

The WRIDGE= option is applied on the weight matrix

� before the WPENALTY= option is applied on it

� before the weight matrix is written to the OUTWGT= data set

� before the weight matrix is displayed

Optimization Techniques
Since there is no single nonlinear optimization algorithm available that is clearly
superior (in terms of stability, speed, and memory) for all applications, different
types of optimization techniques are provided in the CALIS procedure. Each tech-
nique can be modified in various ways. The default optimization technique for
less than 40 parameters (t < 40) is TECHNIQUE=LEVMAR. For 40 � t <
400, TECHNIQUE=QUANEW is the default method, and fort � 400, TECH-
NIQUE=CONGRA is the default method. For more details, see the section “Use of
Optimization Techniques” on page 551. You can specify the following set of options
in the PROC CALIS statement or in the NLOPTIONS statement.

TECHNIQUE | TECH=name
OMETHOD | OM=name

specifies the optimization technique. Valid values fornameare as follows:

CONGRA | CG chooses one of four different conjugate-gradient optimization
algorithms, which can be more precisely defined with the UP-
DATE= option and modified with the LINESEARCH= op-
tion. The conjugate-gradient techniques need onlyO(t) mem-
ory compared to theO(t2) memory for the other three tech-
niques, wheret is the number of parameters. On the other hand,
the conjugate-gradient techniques are significantly slower than
other optimization techniques and should be used only when
memory is insufficient for more efficient techniques. When you
choose this option, UPDATE=PB by default. This is the default
optimization technique if there are more than 400 parameters to
estimate.
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DBLDOG | DD performs a version of double dogleg optimization, which uses
the gradient to update an approximation of the Cholesky factor
of the Hessian. This technique is, in many aspects, very similar
to the dual quasi-Newton method, but it does not use line search.
The implementation is based on Dennis and Mei (1979) and
Gay (1983).

LEVMAR | LM | MARQUARDT performs a highly stable but, for large problems,
memory- and time-consuming Levenberg-Marquardt optimiza-
tion technique, a slightly improved variant of the Mor�e (1978)
implementation. This is the default optimization technique if
there are fewer than 40 parameters to estimate.

NEWRAP | NR | NEWTON performs a usually stable but, for large problems,
memory- and time-consuming Newton-Raphson optimization
technique. The algorithm combines a line-search algorithm
with ridging, and it can be modified with the LINESEARCH=
option. In releases prior to Release 6.11, this option invokes the
NRRIDG option.

NRRIDG | NRR | NR performs a usually stable but, for large problems, memory-
and time-consuming Newton-Raphson optimization tech-
nique. This algorithm does not perform a line search. Since
TECH=NRRIDG uses an orthogonal decomposition of the
approximate Hessian, each iteration of TECH=NRRIDG can
be slower than that of TECH=NEWRAP, which works with
Cholesky decomposition. However, usually TECH=NRRIDG
needs less iterations than TECH=NEWRAP.

QUANEW | QN chooses one of four different quasi-Newton optimization algo-
rithms that can be more precisely defined with the UPDATE=
option and modified with the LINESEARCH= option. If
boundary constraints are used, these techniques sometimes con-
verge slowly. When you choose this option, UPDATE=DBFGS
by default. If nonlinear constraints are specified in the NLIN-
CON statement, a modification of Powell’s (1982a, 1982b)
VMCWD algorithm is used, which is a sequential quadratic
programming (SQP) method. This algorithm can be modified
by specifying VERSION=1, which replaces the update of the
Lagrange multiplier estimate vector� to the original update of
Powell (1978a, 1978b) that is used in the VF02AD algorithm.
This can be helpful for applications with linearly dependent ac-
tive constraints. The QUANEW technique is the default opti-
mization technique if there are nonlinear constraints specified
or if there are more than 40 and fewer than 400 parameters to
estimate. The QUANEW algorithm uses only first-order deriva-
tives of the objective function and, if available, of the nonlinear
constraint functions.
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TRUREG | TR performs a usually very stable but, for large problems, memory-
and time-consuming trust region optimization technique. The
algorithm is implemented similar to Gay (1983) and Mor�e and
Sorensen (1983).

NONE | NO does not perform any optimization. This option is simi-
lar to METHOD=NONE, but TECH=NONE also computes
and displays residuals and goodness-of-fit statistics. If you
specify METHOD=ML, METHOD=LSML, METHOD=GLS,
METHOD=LSGLS, METHOD=WLS, or METHOD=LSWLS,
this option allows computing and displaying (if the display op-
tions are specified) of the standard error estimates and modifi-
cation indices corresponding to the input parameter estimates.

UPDATE | UPD=name
specifies the update method for the quasi-Newton or conjugate-gradient optimization
technique.

For TECHNIQUE=CONGRA, the following updates can be used:

PB performs the automatic restart update methodof Powell (1977) and Beale
(1972). This is the default.

FR performs the Fletcher-Reeves update (Fletcher 1980, p. 63).

PR performs the Polak-Ribiere update (Fletcher 1980, p. 66).

CD performs a conjugate-descent update of Fletcher (1987).

For TECHNIQUE=DBLDOG, the following updates (Fletcher 1987) can be
used:

DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) up-
date of the Cholesky factor of the Hessian matrix. This is the default.

DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the
Cholesky factor of the Hessian matrix.

For TECHNIQUE=QUANEW, the following updates (Fletcher 1987) can be
used:

BFGS performs original BFGS update of the inverse Hessian matrix. This is the
default for earlier releases.

DFP performs the original DFP update of the inverse Hessian matrix.

DBFGS performs the dual BFGS update of the Cholesky factor of the Hessian
matrix. This is the default.

DDFP performs the dual DFP update of the Cholesky factor of the Hessian ma-
trix.
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LINESEARCH | LIS | SMETHOD | SM= i
specifies the line-search method for the CONGRA, QUANEW, and NEWRAP op-
timization techniques. Refer to Fletcher (1980) for an introduction to line-search
techniques. The value ofi can be1; : : : ; 8; the default isi = 2.

LIS=1 specifies a line-search method that needs the same number of function and
gradient calls for cubic interpolation and cubic extrapolation; this method
is similar to one used by the Harwell subroutine library.

LIS=2 specifies a line-search method that needs more function calls than gradient
calls for quadratic and cubic interpolation and cubic extrapolation; this
method is implemented as shown in Fletcher (1987) and can be modified
to an exact line search by using the LSPRECISION= option.

LIS=3 specifies a line-search method that needs the same number of function and
gradient calls for cubic interpolation and cubic extrapolation; this method
is implemented as shown in Fletcher (1987) and can be modified to an
exact line search by using the LSPRECISION= option.

LIS=4 specifies a line-search method that needs the same number of function
and gradient calls for stepwise extrapolation and cubic interpolation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.

LIS=6 specifies golden section line search (Polak 1971), which uses only func-
tion values for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only function
values for linear approximation.

LIS=8 specifies Armijo line-search technique (Polak 1971), which uses only
function values for linear approximation.

FCONV | FTOL=r
specifies the relative function convergence criterion. The optimization process is ter-
minated when the relative difference of the function values of two consecutive itera-
tions is smaller than the specified value ofr, that is

jf(x(k))� f(x(k�1))j
max(jf(x(k�1))j; FSIZE)

� r

whereFSIZE can be defined by the FSIZE= option in the NLOPTIONS statement.
The default value isr = 10�FDIGITS, whereFDIGITS either can be specified in
the NLOPTIONS statement or is set by default to� log10(�), where� is the machine
precision.
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GCONV | GTOL=r
specifies the relative gradient convergence criterion (see the ABSGCONV= option
on page 504 for the absolute gradient convergence criterion).

Termination of all techniques (except the CONGRA technique) requires the normal-
ized predicted function reduction to be small,

[g(x(k))]0[G(k)]�1g(x(k))

max(jf(x(k))j; FSIZE)
� r

whereFSIZE can be defined by the FSIZE= option in the NLOPTIONS statement.
For the CONGRA technique (where a reliable Hessian estimateG is not available),

k g(x(k)) k22 k s(x(k)) k2
k g(x(k))� g(x(k�1)) k2 max(jf(x(k))j; FSIZE)

� r

is used. The default value isr = 10�8.

Note that for releases prior to Release 6.11, the GCONV= option specified the abso-
lute gradient convergence criterion.

INSTEP=r
For highly nonlinear objective functions, such as the EXP function, the default ini-
tial radius of the trust-region algorithms TRUREG, DBLDOG, and LEVMAR or the
default step length of the line-search algorithms can produce arithmetic overflows.
If this occurs, specify decreasing values of0 < r < 1 such as INSTEP=1E�1,
INSTEP=1E�2, INSTEP=1E�4, : : :, until the iteration starts successfully.

� For trust-region algorithms (TRUREG, DBLDOG, and LEVMAR), the IN-
STEP option specifies a positive factor for the initial radius of the trust region.
The default initial trust-region radius is the length of the scaled gradient, and it
corresponds to the default radius factor ofr = 1.

� For line-search algorithms (NEWRAP, CONGRA, and QUANEW), INSTEP
specifies an upper bound for the initial step length for the line search during
the first five iterations. The default initial step length isr = 1.

For releases prior to Release 6.11, specify the SALPHA= and RADIUS= options. For
more details, see the section “Computational Problems” on page 564.

LSPRECISION | LSP= r
SPRECISION | SP=r

specifies the degree of accuracy that should be obtained by the line-search algorithms
LIS=2 and LIS=3. Usually an imprecise line search is inexpensive and successful.
For more difficult optimization problems, a more precise and more expensive line
search may be necessary (Fletcher 1980, p.22). The second (default for NEWRAP,
QUANEW, and CONGRA) and third line-search methods approach exact line search
for small LSPRECISION= values. If you have numerical problems, you should de-
crease the LSPRECISION= value to obtain a more precise line search. The default
LSPRECISION= values are displayed in the following table.
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TECH= UPDATE= LSP default
QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
CONGRA all r = 0.1
NEWRAP no update r = 0.9

For more details, refer to Fletcher (1980, pp. 25–29).

MAXFUNC | MAXFU= i
specifies the maximum numberi of function calls in the optimization process. The
default values are displayed in the following table.

TECH= MAXFUNC default
LEVMAR, NEWRAP, NRRIDG, TRUREG i=125
DBLDOG, QUANEW i=500
CONGRA i=1000

The default is used if you specify MAXFUNC=0. The optimization can be terminated
only after completing a full iteration. Therefore, the number of function calls that
is actually performed can exceed the number that is specified by the MAXFUNC=
option.

MAXITER | MAXIT= i <n>
specifies the maximum numberi of iterations in the optimization process. The default
values are displayed in the following table.

TECH= MAXITER default
LEVMAR, NEWRAP, NRRIDG, TRUREG i=50
DBLDOG, QUANEW i=200
CONGRA i=400

The default is used if you specify MAXITER=0 or if you omit the MAXITER option.

The optional second valuen is valid only for TECH=QUANEW with nonlinear con-
straints. It specifies an upper boundn for the number of iterations of an algorithm
and reduces the violation of nonlinear constraints at a starting point. The default is
n=20. For example, specifying

maxiter= . 0

means that you do not want to exceed the default number of iterations during the main
optimization process and that you want to suppress the feasible point algorithm for
nonlinear constraints.

RADIUS=r
is an alias for the INSTEP= option for Levenberg-Marquardt minimization.

SALPHA= r
is an alias for the INSTEP= option for line-search algorithms.
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SPRECISION | SP=r
is an alias for the LSPRECISION= option.

Displayed Output Options
There are three kinds of options to control the displayed output:

� The PCORR, KURTOSIS, MODIFICATION, NOMOD, PCOVES, PDE-
TERM, PESTIM, PINITIAL, PJACPAT, PLATCOV, PREDET, PWEIGHT,
RESIDUAL, SIMPLE, STDERR, and TOTEFF options refer to specific parts
of displayed output.

� The PALL, PRINT, PSHORT, PSUMMARY, and NOPRINT options refer to
special subsets of the displayed output options mentioned in the first item. If
the NOPRINT option is not specified, a default set of output is displayed. The
PRINT and PALL options add other output options to the default output, and
the PSHORT and PSUMMARY options reduce the default displayed output.

� The PRIMAT and PRIVEC options describe the form in which some of the
output is displayed (the only nonredundant information displayed by PRIVEC
is the gradient).

Output Options PALL PRINT default PSHORT PSUMMARY
fit indices * * * * *
linear dependencies * * * * *
PREDET * (*) (*) (*)
model matrices * * * *
PESTIM * * * *
iteration history * * * *
PINITIAL * * *
SIMPLE * * *
STDERR * * *
RESIDUAL * *
KURTOSIS * *
PLATCOV * *
TOTEFF * *
PCORR *
MODIFICATION *
PWEIGHT *
PCOVES
PDETERM
PJACPAT
PRIMAT
PRIVEC

KURTOSIS | KU
computes and displays univariate kurtosis and skewness, various coefficients of mul-
tivariate kurtosis, and the numbers of observations that contribute most to the nor-
malized multivariate kurtosis. See the section “Measures of Multivariate Kurtosis”
on page 544 for more information. Using the KURTOSIS option implies the SIM-
PLE display option. This information is computed only if the DATA= data set is a
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raw data set, and it is displayed by default if the PRINT option is specified. The mul-
tivariate LS kappa and the multivariate mean kappa are displayed only if you specify
METHOD=WLS and the weight matrix is computed from an input raw data set. All
measures of skewness and kurtosis are corrected for the mean. If an intercept variable
is included in the analysis, the measures of multivariate kurtosis do not include the
intercept variable in the corrected covariance matrix, as indicated by a displayed mes-
sage. Using the BIASKUR option displays the biased values of univariate skewness
and kurtosis.

MODIFICATION | MOD
computes and displays Lagrange multiplier test indices for constant parameter con-
straints, equality parameter constraints, and active boundary constraints, as well as
univariate and multivariate Wald test indices. The modification indices are not com-
puted in the case of unweighted or diagonally weighted least-squares estimation.

The Lagrange multiplier test (Bentler 1986; Lee 1985; Buse 1982) provides an es-
timate of the�2 reduction that results from dropping the constraint. For constant
parameter constraints and active boundary constraints, the approximate change of the
parameter value is displayed also. You can use this value to obtain an initial value if
the parameter is allowed to vary in a modified model. For more information, see the
section “Modification Indices” on page 560.

NOMOD
does not compute modification indices. The NOMOD option is useful in connection
with the PALL option because it saves computing time.

NOPRINT | NOP
suppresses the displayed output. Note that this option temporarily disables the Output
Delivery System (ODS). For more information, see Chapter 15, “Using the Output
Delivery System.”

PALL | ALL
displays all optional output except the output generated by the PCOVES, PDETERM,
PJACPAT, and PRIVEC options.

Caution: The PALL option includes the very expensive computation of the modifica-
tion indices. If you do not really need modification indices, you can save computing
time by specifying the NOMOD option in addition to the PALL option.

PCORR | CORR
displays the (corrected or uncorrected) covariance or correlation matrix that is ana-
lyzed and the predicted model covariance or correlation matrix.

PCOVES | PCE
displays the following:

� the information matrix (crossproduct Jacobian)

� the approximate covariance matrix of the parameter estimates (generalized in-
verse of the information matrix)

� the approximate correlation matrix of the parameter estimates
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The covariance matrix of the parameter estimates is not computed for estimation
methods ULS and DWLS. This displayed output is not included in the output gener-
ated by the PALL option.

PDETERM | PDE
displays three coefficients of determination: the determination of all equations
(DETAE), the determination of the structural equations (DETSE), and the determina-
tion of the manifest variable equations (DETMV). These determination coefficients
are intended to be global means of the squared multiple correlations for different
subsets of model equations and variables. The coefficients are displayed only when
you specify a RAM or LINEQS model, but they are displayed for all five estimation
methods: ULS, GLS, ML, WLS, and DWLS.

You can use the STRUCTEQ statement to define which equations are structural equa-
tions. If you don’t use the STRUCTEQ statement, PROC CALIS uses its own default
definition to identify structural equations.

The term “structural equation” is not defined in a unique way. The LISREL program
defines the structural equations by the user-defined BETA matrix. In PROC CALIS,
the default definition of a structural equation is an equation that has a dependent
left side variable that appears at least once on the right side of another equation, or an
equation that has at least one right side variable that is the left side variable of another
equation. Therefore, PROC CALIS sometimes identifies more equations as structural
equations than the LISREL program does.

If the model contains structural equations, PROC CALIS also displays the “Stabil-
ity Coefficient of Reciprocal Causation,” that is, the largest eigenvalue of theBB0

matrix, whereB is the causal coefficient matrix of the structural equations. These
coefficients are computed as in the LISREL VI program of J�oreskog and S�orbom
(1985). This displayed output is not included in the output generated by the PALL
option.

PESTIM | PES
displays the parameter estimates. In some cases, this includes displaying the standard
errors andt values.

PINITIAL | PIN
displays the input model matrices and the vector of initial values.

PJACPAT | PJP
displays the structure of variable and constant elements of the Jacobian matrix. This
displayed output is not included in the output generated by the PALL option.

PLATCOV | PLC
displays the following:

� the estimates of the covariances among the latent variables

� the estimates of the covariances between latent and manifest variables

� the latent variable score regression coefficients
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The estimated covariances between latent and manifest variables and the latent vari-
able score regression coefficients are written to the OUTSTAT= data set. You can use
the score coefficients with PROC SCORE to compute factor scores.

PREDET | PRE
displays the pattern of variable and constant elements of the predicted moment matrix
that is predetermined by the analysis model. It is especially helpful in finding mani-
fest variables that are not used or that are used as exogenous variables in a complex
model specified in the COSAN statement. Those entries of the predicted moment
matrix for which the model generates variable (rather than constant) elements are
displayed as missing values. This output is displayed even without specifying the
PREDET option if the model generates constant elements in the predicted model ma-
trix different from those in the analysis moment matrix and if you specify at least the
PSHORT amount of displayed output.

If the analyzed matrix is a correlation matrix (containing constant elements of 1s
in the diagonal) and the model generates a predicted model matrix withq constant
(rather than variable) elements in the diagonal, the degrees of freedom are automat-
ically reduced byq. The output generated by the PREDET option displays those
constant diagonal positions. If you specify the DFREDUCE= or NODIAG option,
this automatic reduction of the degrees of freedom is suppressed. See the section
“Counting the Degrees of Freedom” on page 563 for more information.

PRIMAT | PMAT
displays parameter estimates, approximate standard errors, andt values in matrix
form if you specify the analysis model in the RAM or LINEQS statement. When a
COSAN statement is used, this occurs by default.

PRINT | PRI
adds the options KURTOSIS, RESIDUAL, PLATCOV, and TOTEFF to the default
output.

PRIVEC | PVEC
displays parameter estimates, approximate standard errors, the gradient, andt values
in vector form. The values are displayed with more decimal places. This displayed
output is not included in the output generated by the PALL option.

PSHORT | SHORT | PSH
excludes the output produced by the PINITIAL, SIMPLE, and STDERR options from
the default output.

PSUMMARY | SUMMARY | PSUM
displays the fit assessment table and the ERROR, WARNING, and NOTE messages.

PWEIGHT | PW
displays the weight matrixW used in the estimation. The weight matrix is displayed
after the WRIDGE= and the WPENALTY= options are applied to it.

RESIDUAL | RES < = NORM | VARSTAND | ASYSTAND >
displays the absolute and normalized residual covariance matrix, the rank order of
the largest residuals, and a bar chart of the residuals. This information is displayed
by default when you specify the PRINT option.
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Three types of normalized or standardized residual matrices can be chosen with the
RESIDUAL= specification.

RESIDUAL= NORM Normalized Residuals

RESIDUAL= VARSTAND Variance Standardized Residuals

RESIDUAL= ASYSTAND Asymptotically Standardized Residuals

For more details, see the section “Assessment of Fit” on page 536.

SIMPLE | S
displays means, standard deviations, skewness, and univariate kurtosis if available.
This information is displayed when you specify the PRINT option. If you specify the
UCOV, UCORR, or NOINT option, the standard deviations are not corrected for the
mean. If the KURTOSIS option is specified, the SIMPLE option is set by default.

STDERR | SE
displays approximate standard errors if estimation methods other than unweighted
least squares (ULS) or diagonally weighted least squares (DWLS) are used (and the
NOSTDERR option is not specified). If you specify neither the STDERR nor the
NOSTDERR option, the standard errors are computed for the OUTRAM= data set.
This information is displayed by default when you specify the PRINT option.

NOSTDERR | NOSE
specifies that standard errors should not be computed. Standard errors are not
computed for unweighted least-squares (ULS) or diagonally weighted least-squares
(DWLS) estimation. In general, standard errors are computed even if the STDERR
display option is not used (for file output).

TOTEFF | TE
computes and displays total effects and indirect effects.

Miscellaneous Options
ALPHAECV=�

specifies the significance level for a1 � � confidence interval,0 � � � 1, for the
Browne & Cudeck (1993) expected cross validation index (ECVI) . The default value
is � = 0:1, which corresponds to a 90% confidence interval for the ECVI.

ALPHARMS=�
specifies the significance level for a1 � � confidence interval,0 � � � 1, for the
Steiger & Lind (1980) root mean squared error of approximation (RMSEA) coef-
ficient (refer to Browne and Du Toit 1992). The default value is� = 0:1, which
corresponds to a 90% confidence interval for the RMSEA.

ASINGULAR | ASING= r
specifies an absolute singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the covariance matrix. The following singularity
criterion is used:

jdj;jj � max(ASING; VSING � jHj;jj;MSING �max(jH1;1j; : : : ; jHn;nj))
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In the preceding criterion,dj;j is the diagonal pivot of the matrix, andVSINGandMS-
ING are the specified values of the VSINGULAR= and MSINGULAR= options. The
default value forASINGis the square root of the smallest positive double precision
value. Note that, in many cases, a normalized matrixD�1HD�1 is decomposed, and
the singularity criteria are modified correspondingly.

BIASKUR
computes univariate skewness and kurtosis by formulas uncorrected for bias. See the
section “Measures of Multivariate Kurtosis” on page 544 for more information.

COVSING=r
specifies a nonnegative thresholdr, which determines whether the eigenvalues of
the information matrix are considered to be zero. If the inverse of the information
matrix is found to be singular (depending on the VSINGULAR=, MSINGULAR=,
ASINGULAR=, or SINGULAR= option), a generalized inverse is computed using
the eigenvalue decomposition of the singular matrix. Those eigenvalues smaller than
r are considered to be zero. If a generalized inverse is computed and you do not
specify the NOPRINT option, the distribution of eigenvalues is displayed.

DEMPHAS | DE=r
changes the initial values of all parameters that are located on the diagonals of the
central model matrices by the relationship

diagnew = r(jdiagoldj+ 1)

The initial values of the diagonal elements of the central matrices should always be
nonnegative to generate positive definite predicted model matrices in the first itera-
tion. By using values ofr > 1, for example,r = 2, r = 10, : : :, you can increase
these initial values to produce predicted model matrices with high positive eigenval-
ues in the first iteration. The DEMPHAS= option is effective independent of the way
the initial values are set; that is, it changes the initial values set in the model specifi-
cation as well as those set by an INRAM= data set and those automatically generated
for RAM, LINEQS, or FACTOR model statements. It also affects the initial values
set by the START= option, which uses, by default, DEMPHAS=100 if a covariance
matrix is analyzed and DEMPHAS=10 for a correlation matrix.

FDCODE
replaces the analytic derivatives of the program statements by numeric derivatives
(finite difference approximations). In general, this option is needed only when you
have program statements that are too difficult for the built-in function compiler to
differentiate analytically. For example, if the program code for the nonlinear con-
straints contains many arrays and many DO loops with array processing, the built-in
function compiler can require too much time and memory to compute derivatives of
the constraints with respect to the parameters. In this case, the Jacobian matrix of
constraints is computed numerically by using finite difference approximations. The
FDCODE option does not modify the kind of derivatives specified with the HES-
SALG= option.
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HESSALG | HA = 1 | 2 | 3 | 4 | 5 | 6 | 11
specifies the algorithm used to compute the (approximate) Hessian matrix when
TECHNIQUE=LEVMAR and NEWRAP, to compute approximate standard errors
of the parameter estimates, and to compute Lagrange multipliers. There are different
groups of algorithms available.

� analytic formulas: HA=1,2,3,4,11

� finite difference approximation: HA=5,6

� dense storage: HA=1,2,3,4,5,6

� sparse storage: HA=11

If the Jacobian is more than 25% dense, the dense analytic algorithm, HA= 1, is
used by default. The HA= 1 algorithm is faster than the other dense algorithms,
but it needs considerably more memory for large problems than HA= 2,3,4. If the
Jacobian is more than 75% sparse, the sparse analytic algorithm, HA= 11, is used
by default. The dense analytic algorithm HA= 4 corresponds to the original COSAN
algorithm; you are advised not to specify HA= 4 due to its very slow performance.
If there is not enough memory available for the dense analytic algorithm HA= 1 and
you must specify HA= 2 or HA= 3, it may be more efficient to use one of the quasi-
Newton or conjugate-gradient optimization techniques since Levenberg-Marquardt
and Newton-Raphson optimization techniques need to compute the Hessian matrix in
each iteration. For approximate standard errors and modification indices, the Hessian
matrix has to be computed at least once, regardless of the optimization technique.

The algorithms HA= 5 and HA= 6 compute approximate derivatives by using for-
ward difference formulas. The HA= 5 algorithm corresponds to the analytic HA= 1:
it is faster than HA= 6, however it needs much more memory. The HA= 6 algorithm
corresponds to the analytic HA= 2: it is slower than HA= 5, however it needs much
less memory.

Test computations of large sparse problems show that the sparse algorithm HA= 11
can be up to ten times faster than HA= 1 (and needs much less memory).

MSINGULAR | MSING= r
specifies a relative singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the covariance matrix. The following singularity
criterion is used:

jdj;jj � max(ASING; VSING � jHj;jj;MSING �max(jH1;1j; : : : ; jHn;nj))

wheredj;j is the diagonal pivot of the matrix, andASINGandVSINGare the spec-
ified values of the ASINGULAR= and VSINGULAR= options. If you do not spec-
ify the SINGULAR= option, the default value forMSING is 1E�12; otherwise, the
default value is 1E�4 * SINGULAR. Note that, in many cases, a normalized ma-
trix D�1HD�1 is decomposed, and the singularity criteria are modified correspond-
ingly.
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NOADJDF
turns off the automatic adjustment of degrees of freedom when there are active con-
straints in the analysis. When the adjustment is in effect, most fit statistics and the
associated probability levels will be affected. This option should be used when the re-
searcher believes that the active constraints observed in the current sample will have
little chance to occur in repeated sampling.

RANDOM =i
specifies a positive integer as a seed value for the pseudo-random number generator
to generate initial values for the parameter estimates for which no other initial value
assignments in the model definitions are made. Except for the parameters in the diag-
onal locations of the central matrices in the model, the initial values are set to random
numbers in the range0 � r � 1. The values for parameters in the diagonals of the
central matrices are random numbers multiplied by10 or 100. For more information,
see the section “Initial Estimates” on page 547.

SINGULAR | SING = r
specifies the singularity criterionr, 0 < r < 1, used, for example, for matrix in-
version. The default value is the square root of the relative machine precision or,
equivalently, the square root of the largest double precision value that, when added to
1, results in 1.

SLMW=r
specifies the probability limit used for computing the stepwise multivariate Wald test.
The process stops when the univariate probability is smaller thanr. The default value
is r = 0:05.

START =r
In general, this option is needed only in connection with the COSAN model state-
ment, and it specifies a constantr as an initial value for all the parameter estimates
for which no other initial value assignments in the pattern definitions are made. Start
values in the diagonal locations of the central matrices are set to100jrj if a COV or
UCOV matrix is analyzed and10jrj if a CORR or UCORR matrix is analyzed. The
default value isr = :5. Unspecified initial values in a FACTOR, RAM, or LINEQS
model are usually computed by PROC CALIS. If none of the initialization methods
are able to compute all starting values for a model specified by a FACTOR, RAM, or
LINEQS statement, then the start values of parameters that could not be computed
are set tor, 10jrj, or 100jrj. If the DEMPHAS= option is used, the initial values
of the diagonal elements of the central model matrices are multiplied by the value
specified in the DEMPHAS= option. For more information, see the section “Initial
Estimates” on page 547.

VSINGULAR | VSING= r
specifies a relative singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the covariance matrix. The following singularity
criterion is used:

jdj;jj � max(ASING; VSING � jHj;jj;MSING �max(jH1;1j; : : : ; jHn;nj))

wheredj;j is the diagonal pivot of the matrix, andASINGandMSINGare the specified
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values of the ASINGULAR= and MSINGULAR= options. If you do not specify the
SINGULAR= option, the default value forVSINGis 1E�8; otherwise, the default
value is SINGULAR. Note that in many cases a normalized matrixD�1HD�1 is
decomposed, and the singularity criteria are modified correspondingly.

COSAN Model Statement

COSAN matrix–term < + matrix–term: : : > ;
wherematrix–termrepresents

matrix–definition< � matrix–definition ...>
andmatrix–definitionrepresents

matrix–name (column–number< ,general–form< ,transformation>> )

The COSAN statement constructs the symmetric matrix model for the covariance
analysis mentioned earlier (see the section “The Generalized COSAN Model” on
page 440):

C = F1P1F
0

1 + � � � + FmPmF
0

m;

Fk = Fk1 � � �Fkn(k) ; and Pk = P0

k; k = 1; : : : ;m

Fkj =

8<
:

Gkj

G�1
kj

(I�Gkj )
�1

j = 1; : : : ; n(k); and Pk =

�
Qk

Q�1
k

You can specify only one COSAN statement with each PROC CALIS statement.
The COSAN statement containsm matrix–terms corresponding to the generalized
COSAN formula. Thematrix–terms are separated by plus signs (+) according to the
addition of the terms within the model.

Eachmatrix–termof the COSAN statement contains the definitions of the firstn(k)+
1 matrices,Fkj andPk, separated by asterisks (*) according to the multiplication of
the matrices within the term. The matricesF0

k of the right-hand-side product are
redundant and are not specified within the COSAN statement.

Eachmatrix–definitionconsists of the name of the matrix (matrix–name), followed
in parentheses by the number of columns of the matrix (column–number) and, op-
tionally, one or two matrix properties, separated by commas, describing the form of
the matrix.

The number of rows of the first matrix in each term is defined by the input correlation
or covariance matrix. You can reorder and reduce the variables in the input moment
matrix using the VAR statement. The number of rows of the other matrices within
the term is defined by the number of columns of the preceding matrix.

The first matrix property describes the general form of the matrix in the model. You
can choose one of the following specifications of the first matrix property. The default
first matrix property is GEN.
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Code Description

IDE specifies an identity matrix; if the matrix is not square, this specification
describes an identity submatrix followed by a rectangular zero submatrix.

ZID specifies an identity matrix; if the matrix is not square, this specification
describes a rectangular zero submatrix followed by an identity submatrix.

DIA specifies a diagonal matrix; if the matrix is not square, this specification
describes a diagonal submatrix followed by a rectangular zero submatrix.

ZDI specifies a diagonal matrix; if the matrix is not square, this specification
describes a rectangular zero submatrix followed by a diagonal submatrix.

LOW specifies a lower triangular matrix; the matrix can be rectangular.

UPP specifies an upper triangular matrix; the matrix can be rectangular.

SYM specifies a symmetric matrix; the matrix cannot be rectangular.

GEN specifies a general rectangular matrix (default).

The second matrix property describes the kind of inverse matrix transformation. If
the second matrix property is omitted, no transformation is applied to the matrix.

Code Description

INV uses the inverse of the matrix.

IMI uses the inverse of the difference between the identity and the matrix.

You cannot specify a nonsquare parameter matrix as an INV or IMI model matrix.
Specifying a matrix of type DIA, ZDI, UPP, LOW, or GEN is not necessary if you do
not use theunspecified locationlist in the corresponding MATRIX statements. Af-
ter PROC CALIS processes the corresponding MATRIX statements, the matrix type
DIA, ZDI, UPP, LOW, or GEN is recognized from the pattern of possibly nonzero
elements. If you do not specify the first matrix property and you use theunspecified
location list in a corresponding MATRIX statement, the matrix is recognized as a
GEN matrix. You can also generate an IDE or ZID matrix by specifying a DIA, ZDI,
or IMI matrix and by using MATRIX statements that define the pattern structure.
However, PROC CALIS would be unable to take advantage of the fast algorithms
that are available for IDE and ZID matrices in this case.

For example, to specify a second-order factor analysis model

S = F1F2P2F
0

2F
0

1 +F1U
2
2F

0

1 +U
2
1

with m1 = 3 first-order factors andm2 = 2 second-order factors and withn = 9
variables, you can use the following COSAN statement:

cosan F1(3) * F2(2) * P2(2,SYM)+F1(3) * U2(3,DIA) * I1(3,IDE)
+U1(9,DIA) * I2(9,IDE)
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MATRIX Statement

MATRIX matrix-name < location > = list < , location = list : : : > ;

You can specify one or more MATRIX statements with a COSAN or FACTOR state-
ment. A MATRIX statement specifies which elements of the matrix are constant and
which are parameters. You can also assign values to the constant elements and initial
values for the parameters. The input notation resembles that used in the COSAN pro-
gram of R. McDonald and C. Fraser (personal communication), except that in PROC
CALIS, parameters are distinguished from constants by giving parameters names in-
stead of by using positive and negative integers.

A MATRIX statement cannot be used for an IDE or ZID matrix. For all other types of
matrices, each element is assumed to be a constant of 0 unless a MATRIX statement
specifies otherwise. Hence, there must be at least one MATRIX statement for each
matrix mentioned in the COSAN statement except for IDE and ZID matrices. There
can be more than one MATRIX statement for a given matrix. If the same matrix
element is given different definitions, later definitions override earlier definitions.

At the start, all elements of each model matrix, except IDE or ZID matrices, are set
equal to 0.

Description of location:

There are several ways to specify the startinglocation and continuation direction of
a list with n+ 1, n � 0, elements within the parameter matrix.

[ i , j ] The list elements correspond to the diagonally continued matrix elements
[i,j] , [ i+1,j+1] , ... , [i+n,j+n ]. The number of elements is defined by the
length of the list and eventually terminated by the matrix boundaries. If the
list contains just one element (constant or variable), then it is assigned to
the matrix element [i,j].

[ i , ] The list elements correspond to the horizontally continued matrix elements
[i,j], [ i,j+1] , ... , [i,j+n ], where the starting columnj is the diagonal position
for a DIA, ZDI, or UPP matrix and is the first column for all other matrix
types. For a SYM matrix, the list elements refer only to the matrix elements
in the lower triangle. For a DIA or ZDI matrix, only one list element is
accepted.

[ , j ] The list elements correspond to the vertically continued matrix elements
[i,j], [ i+1,j] , ... , [i+n,j ], where the starting rowi is equal to the diagonal
position for a DIA, ZDI, SYM, or LOW matrix and is the first row for each
other matrix type. For a SYM matrix, the list elements refer only to the
matrix elements in the lower triangle. For a DIA or ZDI matrix, only one
list element is accepted.

[ , ] unspecified location: Thelist is allocated to all valid matrix positions (ex-
cept for a ZDI matrix) starting at the element [1,1] and continuing rowwise.
The only valid matrix positions for a DIA or ZDI matrix are the diagonal
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elements; for an UPP or LOW matrix, the valid positions are the elements
above or below the diagonal; and for a symmetric matrix, the valid positions
are the elements in the lower triangle since the other triangle receives the
symmetric allocation automatically. Thislocation definition differs from
the definitions with specified pattern locations in one important respect: if
the number of elements in thelist is smaller than the number of valid matrix
elements, the list is repeated in the allocation process until all valid matrix
elements are filled.

Omitting the left-hand-side term is equivalent to using [ , ] for anunspecified loca-
tion.

Description of list:

The list contains numeric values or parameter names, or both, that are assigned to a
list of matrix elements starting at a specified position and proceeding in a specified
direction. A real numberr in the list defines the corresponding matrix element as a
constant element with this value. The notationn � r generatesn values ofr in the
list. A name in the list defines the corresponding matrix element as a parameter to be
estimated. You can use numbered name lists (X1-X10) or the asterisk notation (5 *X
means five occurrences of the parameterX). If a sublist ofn1 names inside alist is
followed by a list ofn2 � n1 real values inside parentheses, the lastn2 parameters
in the name sublist are given the initial values mentioned inside the parenthesis. For
example, the followinglist

0. 1. A2-A5 (1.4 1.9 2.5) 5.

specifies that the first two matrix elements (specified by thelocation to the left of the
equal sign) are constants with values 0 and 1. The next element is parameterA2 with
no specified initial value. The next three matrix elements are the variable parameters
A3, A4, andA5 with initial values 1.4, 1.9, and 2.5, respectively. The next matrix
element is specified by the seventh list element to be the constant 5.

If your model contains many unconstrained parameters and it is too cumbersome to
find different parameter names, you can specify all those parameters by the same
prefix name. A prefix is a short name followed by a colon. The CALIS procedure
generates a parameter name by appending an integer suffix to this prefix name. The
prefix name should have no more than five or six characters so that the generated
parameter name is not longer than eight characters. For example, if the prefixA (the
parameterA1) is already used once in alist, the previous example would be identical
to

0. 1. 4 * A: (1.4 1.9 2.5) 5.

To avoid unintentional equality constraints, the prefix names should not coincide with
explicitly defined parameter names.

If you do not assign initial values to the parameters (listed in parentheses following a
name sublist within the pattern list), PROC CALIS assigns initial values as follows:

� If the PROC CALIS statement contains a START=r option, each uninitialized
parameter is given the initial valuer. The uninitialized parameters in the diag-
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onals of the central model matrices are given the initial value10jrj, 100jrj, or
jrj multiplied by the value specified in the DEMPHAS= option.

� If the PROC CALIS statement contains a RANDOM=i option, each uninitial-
ized parameter is given a random initial value0 � r � 1. The uninitialized
parameters in the diagonals of the central model matrices are given the random
values multiplied by10, 100, or the value specified in the DEMPHAS= option.

� Otherwise, the initial value is set corresponding to START=0.5.

For example, to specify a confirmatory second-order factor analysis model

S = F1F2P2F
0

2F
0

1 +F1U
2
2F

0

1 +U
2
1

with m1 = 3 first-order factors,m2 = 2 second-order factors, andn = 9 variables
and the following matrix pattern,

F1 =

0
BBBBBBBBBBBB@

X1 0 0
X2 0 0
X3 0 0
0 X4 0
0 X5 0
0 X6 0
0 0 X7

0 0 X8

0 0 X9

1
CCCCCCCCCCCCA
; U1 =

0
BBBBBBBBBBBB@

U1

U2

U3

U4

U5

U6

U7

U8

U9

1
CCCCCCCCCCCCA

F2 =

0
@Y1 0
Y1 Y2
0 Y2

1
A ; P2 =

�
P 0
0 P

�
; U2 =

0
@V1 V2

V3

1
A

you can specify the following COSAN and MATRIX statements:

cosan f1(3) * f2(2) * p2(2,dia) + f1(3) * u2(3,dia) * i1(3,ide)
+ u1(9,dia) * i2(9,ide);

matrix f1
[ ,1]= x1-x3,
[ ,2]= 3 * 0 x4-x6,
[ ,3]= 6 * 0 x7-x9;

matrix u1
[1,1]=u1-u9;

matrix f2
[ ,1]= 2 * y1,
[ ,2]= 0. 2 * y2;

matrix u2 = 3 * v:;
matrix p2 = 2 * p;
run;
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The matrix pattern includes several equality constraints. Two loadings in the first and
second factor ofF2 (parameter namesY1 andY2) and the two factor correlations in
the diagonal of matrixP2 (parameter nameP) are constrained to be equal. There are
many other ways to specify the same model. See Figure 19.2 for the path diagram of
this model.

The MATRIX statment can also be used with the FACTOR model statement. See
“Using the FACTOR and MATRIX Statements” on page 494 for the usage.

RAM Model Statement

RAM list-entry < , list-entry : : : > ;
wherelist-entry represents

matrix-number row-number column-number<value><parameter-name>

The RAM statement defines the elements of the symmetric RAM matrix model

v = Av + u

in the form of a list type input (McArdle and McDonald 1984).

The covariance structure is given by

C = J(I�A)�1P((I�A)�1)0J0

with selection matrixJ and

C = EfJvv0J0g; P = Efuu0g

You can specify only one RAM statement with each PROC CALIS statement. Using
the RAM statement requires that the firstn variable numbers in the path diagram and
in the vectorv correspond to the numbers of then manifest variables of the given
covariance or correlation matrix. If you are not sure what the order of the manifest
variables in the DATA= data set is, use a VAR statement to specify the order of
these observed variables. Using the AUGMENT option includes theINTERCEPT
variable as a manifest variable with numbern + 1 in the RAM model. In this case,
latent variables have to start withn + 2. The box of each manifest variable in the
path diagram is assigned the number of the variable in the covariance or correlation
matrix.

The selection matrixJ is always a rectangular identity (IDE) matrix, and it does not
have to be specified in the RAM statement. A constant matrix element is defined in
a RAM statement by alist-entrywith four numbers. You define a parameter element
by three or four numbers followed by a name for the parameter. Separate the list
entries with a comma. Eachlist-entry in the RAM statement corresponds to a path in
the diagram, as follows:

� The first number in each list entry (matrix-number) is the number of arrow
heads of the path, which is the same as the number of the matrix in the RAM
model (1 :=A , 2 :=P).
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� The second number in each list entry (row-number) is the number of the node
in the diagram to which the path points, which is the same as the row number
of the matrix element.

� The third number in each list entry (column-number) is the number of the node
in the diagram from which the path originates, which is the same as the column
number of the matrix element.

� The fourth number (value) gives the (initial) value of the path coefficient. If you
do not specify a fifthlist-entry, this number specifies a constant coefficient;
otherwise, this number specifies the initial value of this parameter. It is not
necessary to specify the fourth item. If you specify neither the fourth nor the
fifth item, the constant is set to 1 by default. If the fourth item (value) is not
specified for a parameter, PROC CALIS tries to compute an initial value for
this parameter.

� If the path coefficient is a parameter rather than a constant, then a fifth item in
the list entry (parameter-name) is required to assign a name to the parameter.
Using the same name for different paths constrains the corresponding coeffi-
cients to be equal.

If the initial value of a parameter is not specified in the list, the initial value is chosen
in one of the following ways:

� If the PROC CALIS statement contains a RANDOM=i option, then the pa-
rameter obtains a randomly generated initial valuer, such that0 � r � 1.
The uninitialized parameters in the diagonals of the central model matrices are
given the random valuesr multiplied by10, 100, or the value specified in the
DEMPHAS= option.

� If the RANDOM= option is not used, PROC CALIS tries to estimate the initial
values.

� If the initial values cannot be estimated, the value of the START= option is
used as an initial value.

If your model contains many unconstrained parameters and it is too cumbersome to
find different parameter names, you can specify all those parameters by the same
prefix name. A prefix is a short name followed by a colon. The CALIS procedure
then generates a parameter name by appending an integer suffix to this prefix name.
The prefix name should have no more than five or six characters so that the generated
parameter name is not longer than eight characters. To avoid unintentional equality
constraints, the prefix names should not coincide with explicitly defined parameter
names.

For example, you can specify the confirmatory second-order factor analysis model
(mentioned on page 483)

S = F1F2P2F
0

2F
0

1 +F1U
2
2F

0

1 +U
2
1

using the following RAM model statement.
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ram
1 1 10 x1,
1 2 10 x2,
1 3 10 x3,
1 4 11 x4,
1 5 11 x5,
1 6 11 x6,
1 7 12 x7,
1 8 12 x8,
1 9 12 x9,
1 10 13 y1,
1 11 13 y1,
1 11 14 y2,
1 12 14 y2,
2 1 1 u:,
2 2 2 u:,
2 3 3 u:,
2 4 4 u:,
2 5 5 u:,
2 6 6 u:,
2 7 7 u:,
2 8 8 u:,
2 9 9 u:,
2 10 10 v:,
2 11 11 v:,
2 12 12 v:,
2 13 13 p ,
2 14 14 p ;

run;

The confirmatory second-order factor analysis model corresponds to the path diagram
displayed in Figure 19.2.
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Figure 19.2. Path Diagram of Second-Order Factor Analysis Model

There is a very close relationship between the RAM model algebra and the specifica-
tion of structural linear models by path diagrams. See Figure 19.3 for an example.
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x1 x2

y

-� �12��--1
����1

@
@
@
@R

�
�

�
�	

b1 b2

��
��
e

6

b

��66
1

1. Multiple Regression

x

y1

y2

?

?

a

b

����e

����d1

����d2

2. Chain Simplex

��
��
e1 ��

��
e2 ��

��
e3

��??s1 ��??s2 ��??s3

y1 y2 y3
? ? ?

1 1 1

��
��
f��66
1

@
@

@
@I 6

�
�
�
��

d1 d2 d3

3. First-Order Factor Analysis

y1 y2 y3

��??s1 ��??s2 ��??s3

��
��
f11 ��

��
f12

��--d1 ����d2
J
J
J
J]








�

J
J
J
J]








�

b11 b12 b13 b14

��
��
f2
A
A
A
AK

�
�
�
��

b21 b22

��66
d3

4. Second-Order Factor Analysis

Figure 19.3. Examples of RAM Nomography

Refer to McArdle (1980) for the interpretation of the models displayed in Figure 19.3.
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LINEQS Model Statement

LINEQS equation < , equation : : : > ;
whereequationrepresentsdependent = term< + term : : : >
and wheretermrepresents one of the following:

� coefficient-name< (number)> variable-name
� prefix-name< (number)> variable-name
� < number> variable-name

The LINEQS statement defines the LINEQS model

� = �� + 
�

C = J(I�B)�1���0((I�B)�1)0J0

You can specify only one LINEQS statement with each PROC CALIS statement.
There are some differences from Bentler’s notation in choosing the variable names.
The length of each variable name is restricted to eight characters. The names of the
manifest variables are defined in the DATA= input data set. The VAR statement can
be used to select a subset of manifest variables in the DATA= input data set to analyze.
You do not need to use a V prefix for manifest variables in the LINEQS statement nor
do you need to use a numerical suffix in any variable name. The names of the latent
variables must start with the prefix letter F (for Factor); the names of the residuals
must start with the prefix letters E (for Error) or D (for Disturbance). The trailing
part of the variable name can contain letters or digits. The prefix letter E is used for
the errors of the manifest variables, and the prefix letter D is used for the disturbances
of the latent variables. The names of the manifest variables in the DATA= input data
set can start with F, E, or D, but these names should not coincide with the names of
latent or error variables used in the model. The left-hand side (that is, endogenous
dependentvariable) of each equation should be either a manifest variable of the data
set or a latent variable with prefix letter F. The left-hand-side variable should not
appear on the right-hand side of the same equation; this means that matrix� should
not have a nonzero diagonal element. Each equation should contain, at most, one E
or D variable.

The equations must be separated by a comma. The order of the equations is arbitrary.
The displayed output generally contains equations and terms in an order different
from the input.

Coefficients to estimate are indicated in the equations by a name preceding the inde-
pendent variable’s name. The coefficient’s name can be followed by a number inside
parentheses indicating the initial value for this coefficient. A number preceding the
independent variable’s name indicates a constant coefficient. If neither a coefficient
name nor a number precedes the independent variable’s name, a constant coefficient
of 1 is assumed.

SAS OnlineDoc: Version 8



LINEQS Model Statement � 489

If the initial value of a parameter is not specified in the equation, the initial value is
chosen in one of the following ways:

� If you specify the RANDOM= option in the PROC CALIS statement, the vari-
able obtains a randomly generated initial valuer, such that0 � r � 1. The
uninitialized parameters in the diagonals of the central model matrices are
given the nonnegative random valuesr multiplied by 10, 100, or the value
specified in the DEMPHAS= option.

� If the RANDOM= option is not used, PROC CALIS tries to estimate the initial
values.

� If the initial values cannot be estimated, the value of the START= option is
used as an initial value.

In Bentler’s notation, estimated coefficients are indicated by asterisks. Referring to a
parameter in Bentler’s notation requires the specification of two variable names that
correspond to the row and column of the position of the parameter in the matrix.
Specifying the estimated coefficients by parameter names makes it easier to impose
additional constraints with code. You do not need any additional statements to express
equality constraints. Simply specify the same name for parameters that should have
equal values.

If your model contains many unconstrained parameters and it is too cumbersome to
find different parameter names, you can specify all those parameters by the same
prefix name. A prefix is a short name followed by a colon. The CALIS procedure
then generates a parameter name by appending an integer suffix to this prefix name.
The prefix name should have no more than five or six characters so that the generated
parameter name is not longer than eight characters. To avoid unintentional equality
constraints, the prefix names should not coincide with explicitly defined parameter
names.

For example, you can specify confirmatory second-order factor analysis model (men-
tioned on page 483)

S = F1F2P2F
0

2F
0

1 +F1U
2
2F

0

1 +U
2
1

by using the LINEQS and STD statements:

lineqs
V1 = X1 F1 + E1,
V2 = X2 F1 + E2,
V3 = X3 F1 + E3,
V4 = X4 F2 + E4,
V5 = X5 F2 + E5,
V6 = X6 F2 + E6,
V7 = X7 F3 + E7,
V8 = X8 F3 + E8,
V9 = X9 F3 + E9,
F1 = Y1 F4 + D1,
F2 = Y1 F4 + Y2 F5 + D2,
F3 = Y2 F5 + D3;
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std
E1-E9 = 9 * U:,
D1-D3 = 3 * V:,
F4 F5 = 2 * P;

run;

STD Statement

STD assignment < , assignment : : : > ;
whereassignmentrepresentsvariables = pattern-definition

The STD statement tells which variances are parameters to estimate and which are
fixed. The STD statement can be used only with the LINEQS statement. You can
specify only one STD statement with each LINEQS model statement. The STD state-
ment defines the diagonal elements of the central model matrix�. These elements
correspond to the variances of the exogenous variables and to the error variances of
the endogenous variables. Elements that are not defined are assumed to be 0.

Eachassignmentconsists of a variable list (variables) on the left-hand side and a pat-
tern list (pattern-definition) on the right-hand side of an equal sign. Theassignments
in the STD statement must be separated by commas. Thevariables list on the left-
hand side of the equal sign should contain only names of variables that do not appear
on the left-hand side of an equation in the LINEQS statement, that is, exogenous,
error, and disturbance variables.

Thepattern-definitionon the right-hand side is similar to that used in the MATRIX
statement. Each list element on the right-hand side defines the variance of the variable
on the left-hand side in the same list position. A name on the right-hand side means
that the corresponding variance is a parameter to estimate. A name on the right-hand
side can be followed by a number inside parentheses that gives the initial value. A
number on the right-hand side means that the corresponding variance of the variable
on the left-hand side is fixed. If the right-hand-side list is longer than the left-hand-
side variable list, the right-hand-side list is shortened to the length of the variable list.
If the right-hand-side list is shorter than the variable list, the right-hand-side list is
filled with repetitions of the last item in the list.

The right-hand side can also contain prefixes. A prefix is a short name followed
by a colon. The CALIS procedure then generates a parameter name by appending
an integer suffix to this prefix name. The prefix name should have no more than
five or six characters so that the generated parameter name is not longer than eight
characters. To avoid unintentional equality constraints, the prefix names should not
coincide with explicitly defined parameter names. For example, if the prefix A is not
used in any previous statement, this STD statement

std E1-E6=6 * A: (6 * 3.) ;

defines the six error variances as free parametersA1,: : :,A6, all with starting values
of 3.
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COV Statement

COV assignment < , assignment : : : > ;
whereassignmentrepresentsvariables< � variables2> = pattern-definition

The COV statement tells which covariances are parameters to estimate and which are
fixed. The COV statement can be used only with the LINEQS statement. The COV
statement differs from the STD statement only in the meaning of the left-hand-side
variables list. You can specify only one COV statement with each LINEQS state-
ment. The COV statement defines the off-diagonal elements of the central model
matrix�. These elements correspond to the covariances of the exogenous variables
and to the error covariances of the endogenous variables. Elements that are not de-
fined are assumed to be 0. Theassignments in the COV statement must be separated
by commas.

Thevariableslist on the left-hand side of the equal sign should contain only names
of variables that do not appear on the left-hand side of an equation in the LINEQS
statement, that is, exogenous, error, and disturbance variables.

Thepattern-definitionon the right-hand side is similar to that used in the MATRIX
statement. Each list element on the right-hand side defines the covariance of a pair
of variables in the list on the left-hand side. A name on the right-hand side can be
followed by a number inside parentheses that gives the initial value. A number on
the right-hand side means that the corresponding covariance of the variable on the
left-hand side is fixed. If the right-hand-side list is longer than the left-hand-side
variable list, the right-hand-side list is shortened to the length of the variable list. If
the right-hand-side list is shorter than the variable list, the right-hand-side list is filled
with repetitions of the last item in the list.

You can use one of two alternatives to refer to parts of�. The first alternative uses
only one variable list and refers to all distinct pairs of variables within the list. The
second alternative uses two variable lists separated by an asterisk and refers to all
pairs of variables among the two lists.

Within-List Covariances
Usingk variable names in thevariableslist on the left-hand side of an equal sign in
a COV statement means that the parameter list (pattern-definition) on the right-hand
side refers to allk(k � 1)=2 distinct variable pairs in the below-diagonal part of the
� matrix. Order is very important. The order relation between the left-hand-side
variable pairs and the right-hand-side parameter list is illustrated by the following
example:

COV E1-E4 = PHI1-PHI6 ;

This is equivalent to the following specification:

COV E2 E1 = PHI1,
E3 E1 = PHI2, E3 E2 = PHI3,
E4 E1 = PHI4, E4 E2 = PHI5, E4 E3 = PHI6;
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The symmetric elements are generated automatically. When you use prefix names on
the right-hand sides, you do not have to count the exact number of parameters. For
example,

COV E1-E4 = PHI: ;

generates the same list of parameter names if the prefix PHI is not used in a previous
statement.
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Figure 19.4. Within-List and Between-List Covariances

Between-List Covariances
Usingk1 andk2 variable names in the two lists (separated by an asterisk) on the left-
hand side of an equal sign in a COV statement means that the parameter list on the
right-hand side refers to allk1 � k2 distinct variable pairs in the� matrix. Order is
very important. The order relation between the left-hand-side variable pairs and the
right-hand-side parameter list is illustrated by the following example:

COV E1 E2 * E3 E4 = PHI1-PHI4 ;

This is equivalent to the following specification:

COV E1 E3 = PHI1, E1 E4 = PHI2,
E2 E3 = PHI3, E2 E4 = PHI4;

The symmetric elements are generated automatically.

Using prefix names on the right-hand sides lets you achieve the same purpose without
counting the number of parameters. That is,

COV E1 E2 * E3 E4 = PHI: ;
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FACTOR Model Statement

FACTOR < options > ;

You can use the FACTOR statement to specify an exploratory or confirmatory first-
order factor analysis of the given covariance or correlation matrixC,

C = FF0 +U; U = diag

or

C = FPF0 +U; P = P0

whereU is a diagonal matrix andP is symmetric. Within this section,n denotes the
number of manifest variables corresponding to the rows and columns of matrixC,
andm denotes the number of latent variables (factors or components) corresponding
to the columns of the loading matrixF.

You can specify only one FACTOR statement with each PROC CALIS statement.
You can specify higher-order factor analysis problems using a COSAN model speci-
fication. PROC CALIS requires more computing time and memory than PROC FAC-
TOR because it is designed for more general structural estimation problems and is
unable to exploit the special properties of the unconstrained factor analysis model.

For default (exploratory) factor analysis, PROC CALIS computes initial estimates for
factor loadings and unique variances by an algebraic method of approximate factor
analysis. If you use a MATRIX statement together with a FACTOR model specifi-
cation, initial values are computed by McDonald’s (McDonald and Hartmann 1992)
method (if possible). For details, see “Using the FACTOR and MATRIX Statements”
on page 494. If neither of the two methods are appropriate, the initial values are set
by the START= option.

The unrestricted factor analysis model is not identified because any orthogonal ro-
tated factor loading matrix~F = F� is equivalent to the resultF,

C = ~F~F0 +U; ~F = F�; where �0� = ��0 = I

To obtain an identified factor solution, the FACTOR statement imposes zero con-
straints on them(m� 1)=2 elements in the upper triangle ofF by default.

The following options are available in the FACTOR statement.

COMPONENT | COMP
computes a component analysis instead of a factor analysis (the diagonal matrixU in
the model is set to 0). Note that the rank ofFF0 is equal to the numberm of compo-
nents inF. If m is smaller than the number of variables in the moment matrixC, the
matrix of predicted model values is singular and maximum likelihood estimates for
F cannot be computed. You should compute ULS estimates in this case.
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HEYWOOD | HEY
constrains the diagonal elements ofU to be nonnegative; in other words, the model
is replaced by

C = FF0 +U2; U = diag

N = m
specifies the number of first-order factors or components. The numberm of factors
should not exceed the numbern of variables in the covariance or correlation matrix
analyzed. For the saturated model,m = n, the COMP option should generally be
specified forU = 0; otherwise,df < 0. Form = 0 no factor loadings are estimated,
and the model isC = U, withU = diag. By default,m = 1.

NORM
normalizes the rows of the factor pattern for rotation using Kaiser’s normalization.

ROTATE | R = name
specifies an orthogonal rotation. By default, ROTATE=NONE. The possible values
for nameare as follows:

PRINCIPAL | PC specifies a principal axis rotation. If ROTATE=PRINCIPAL is
used with a factor rather than a component model, the following
rotation is performed:

Fnew = FoldT; with F0

oldFold = T�T
0

where the columns of matrixT contain the eigenvectors of
F0

oldFold.

QUARTIMAX | Q specifies quartimax rotation.

VARIMAX | V specifies varimax rotation.

EQUAMAX | E specifies equamax rotation.

PARSIMAX | P specifies parsimax rotation.

NONE performs no rotation (default).

Using the FACTOR and MATRIX Statements
You can specify the MATRIX statement and the FACTOR statement to compute a
confirmatory first-order factor or component analysis. You can define the elements of
the matricesF,P, andU of the oblique model,

C = FPF0 +U2; P = P0; U = diag

To specify the structure for matrixF,P, orU, you have to refer to the matrix–F– ,

–P– , or –U– in the MATRIX statement. Matrix names automatically set by PROC
CALIS always start with an underscore. As you name your own matrices or variables,
you should avoid leading underscores.

The default matrix forms are as follows.

SAS OnlineDoc: Version 8



BOUNDS Statement � 495

–F– lower triangular matrix (0 upper triangle for problem identification, removing
rotational invariance)

–P– identity matrix (constant)

–U– diagonal matrix

For details about specifying the elements in matrices, see the section “MATRIX
Statement” on page 481. If you are using at least one MATRIX statement in con-
nection with a FACTOR model statement, you can also use the BOUNDS or PA-
RAMETERS statement and program statements to constrain the parameters named
in the MATRIX statement. Initial estimates are computed by McDonald’s (McDon-
ald and Hartmann 1992) method. McDonald’s method of computing initial values
works better if you scale the factors by setting the factor variances to 1 rather than by
setting the loadings of the reference variables equal to 1.

BOUNDS Statement

BOUNDS constraint < , constraint : : : > ;
whereconstraintrepresents

< number operator> parameter-list< operator number>

You can use the BOUNDS statement to define boundary constraints for any parameter
that has its name specified in a MATRIX, LINEQS, STD, COV, or RAM statement
or that is used in the model of an INRAM= data set. Valid operators are<=,<,>=,
>, and= or, equivalently, LE, LT, GE, GT, and EQ. The following is an example of
the BOUNDS statement:

bounds 0. <= a1-a9 x <= 1. ,
-1. <= c2-c5 ,

b1-b10 y >= 0. ;

You must separate boundary constraints with a comma, and you can specify more
than one BOUNDS statement. The feasible region for a parameter is the intersection
of all boundary constraints specified for that parameter; if a parameter has a maximum
lower boundary constraint larger than its minimum upper bound, the parameter is set
equal to the minimum of the upper bounds.

If you need to compute the values of the upper or lower bounds, create a TYPE=EST
data set containing–TYPE–=’UPPERBD’ or–TYPE–=’LOWERBD’ observations
and use it as an INEST= or INVAR= input data set in a later PROC CALIS run.

The BOUNDS statement can contain only parameter names and numerical constants.
You cannot use the names of variables created in program statements.

The active set strategies made available in PROC CALIS cannot realize the strict
inequality constraints< or >. For example, you cannot specifyBOUNDS x > 0;
to prevent infinite values fory = log(x). UseBOUNDS x > 1E-8; instead.

If the CALIS procedure encounters negative diagonal elements in the central model
matrices during the minimization process, serious convergence problems can occur.
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You can use the BOUNDS statement to constrain these parameters to nonnegative
values. Using negative values in these locations can lead to a smaller�2 value but
uninterpretable estimates.

LINCON Statement

LINCON constraint < , constraint : : : > ;
whereconstraintrepresents

number operator linear-termor
linear-term operator number,

andlinear-term is
<+|-><coefficient� > parameter<<+|-><coefficient� > parameter: : : >

The LINCON statement specifies a set of linear equality or inequality constraints of
the form

nX
j=1

aijxj � bi; i = 1; : : : ;m

The constraints must be separated by commas. Each linear constrainti in the state-
ment consists of a linear combination

P
j aijxj of a subset of then parameters

xj; j = 1; : : : ; n; and a constant valuebi separated by a comparison operator. Valid
operators are<=,<,>=,>, and= or, equivalently, LE, LT, GE, GT, and EQ. PROC
CALIS cannot enforce the strict inequalities< or >. Note that the coefficientsaij
in the linear combination must be constant numbers and must be followed by an as-
terisk and the name of a parameter (for example, listed in the PARMS, STD or COV
statement). The following is an example of the LINCON statement that sets a linear
constraint on parameters x1 and x2:

lincon x1 + 3 * x2 <= 1;

Although you can easily express boundary constraints in LINCON statements, for
many applications it is much more convenient to specify both the BOUNDS and the
LINCON statements in the same PROC CALIS call.

The LINCON statement can contain only parameter names, operators, and numerical
constants. If you need to compute the values of the coefficientsaij or right-hand sides
bi, you can run a preliminary DATA step and create a TYPE=EST data set containing

–TYPE–=’LE’, –TYPE–=’GE’, or –TYPE–=’EQ’ observations, then specify this
data set as an INEST= or INVAR= data set in a following PROC CALIS run.
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NLINCON Statement

NLINCON | NLC constraint < , constraint : : : > ;
whereconstraintrepresents

number operator variable-list number operatoror
variable-list operator numberor
number operator variable-list

You can specify nonlinear equality and inequality constraints with the NLINCON or
NLC statement. The QUANEW optimization subroutine is used when you specify
nonlinear constraints using the NLINCON statement.

The syntax of the NLINCON statement is similar to that of the BOUNDS statement,
except that the NLINCON statement must contain the names of variables that are de-
fined in the program statements and are defined as continuous functions of parameters
in the model. They must not be confused with the variables in the data set.

As with the BOUNDS statement, one- or two-sided constraints are allowed in the
NLINCON statement; equality constraints must be one sided. Valid operators are
<=,<,>=,>, and= or, equivalently, LE, LT, GE, GT, and EQ.

PROC CALIS cannot enforce the strict inequalities< or > but instead treats them
as<= and>=, respectively. The listed nonlinear constraints must be separated by
commas. The following is an example of the NLINCON statement that constrains
the nonlinear parametric functionx1 � x1 + u1, which is defined below in a program
statement, to a fixed value of 1:

nlincon xx = 1;
xx = x1 * x1 + u1;

Note thatx1 andu1 are parameters defined in the model. The following three NLIN-
CON statements, which requirexx1, xx2, andxx3 to be between zero and ten, are
equivalent:

nlincon 0. <= xx1-xx3,
xx1-xx3 <= 10;

nlincon 0. <= xx1-xx3 <= 10.;
nlincon 10. >= xx1-xx3 >= 0.;
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NLOPTIONS Statement

NLOPTIONS option(s) ;

Many options that are available in PROC NLP can now be specified for the optimiza-
tion subroutines in PROC CALIS using the NLOPTIONS statement. The NLOP-
TIONS statement provides more displayed and file output on the results of the opti-
mization process, and it permits the same set of termination criteria as in PROC NLP.
These are more technical options that you may not need to specify in most cases. The
available options are summarized in Table 19.2 through Table 19.4, and the options
are described in detail in the following three sections.

Table 19.2. Options Documented in the PROC CALIS Statement

Option Short Description

Estimation Methods
G4=i algorithm for computing STDERR

Optimization Techniques
TECHNIQUE=name minimization method
UPDATE=name update technique
LINESEARCH=i line-search method
FCONV=r relative change function convergence criterion
GCONV=r relative gradient convergence criterion
INSTEP=r initial step length (SALPHA=, RADIUS=)
LSPRECISION=r line-search precision
MAXFUNC=i maximum number of function calls
MAXITER= i <n> maximum number of iterations

Miscellaneous Options
ASINGULAR=r absolute singularity criterion for inversion of the

information matrix
COVSING=r singularity tolerance of the information matrix
MSINGULAR=r relative M singularity criterion for inversion of the

information matrix
SINGULAR=r singularity criterion for inversion of the Hessian
VSINGULAR=r relative V singularity criterion for inversion of the

information matrix
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Table 19.3. Termination Criteria Options

Option Short Description

Options Used by All Techniques
ABSCONV=r absolute function convergence criterion
MAXFUNC=i maximum number of function calls
MAXITER= i <n> maximum number of iterations
MAXTIME= r maximum CPU time
MINITER=i minimum number of iterations

Options for Unconstrained and Linearly Constrained Techniques
ABSFCONV=r <n> absolute change function convergence criterion
ABSGCONV=r <n> absolute gradient convergence criterion
ABSXCONV=r <n> absolute change parameter convergence criterion
FCONV=r <n> relative change function convergence criterion
FCONV2=r <n> function convergence criterion
FDIGITS=r precision in computation of the objective function
FSIZE=r parameter for FCONV= and GCONV=
GCONV=r <n> relative gradient convergence criterion
GCONV2=r <n> relative gradient convergence criterion
XCONV=r <n> relative change parameter convergence criterion
XSIZE=r parameter for XCONV=

Options for Nonlinearly Constrained Techniques
ABSGCONV=r <n> maximum absolute gradient of Lagrange function

criterion
FCONV2=r <n> predicted objective function reduction criterion
GCONV=r <n> normalized predicted objective function reduction

criterion
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Table 19.4. Miscellaneous Options

Option Short Description

Options for the Approximate Covariance Matrix of Parameter Estimates
CFACTOR=r scalar factor for STDERR
NOHLF use Hessian of the objective function for STDERR

Options for Additional Displayed Output
PALL display initial and final optimization values
PCRPJAC display approximate Hessian matrix
PHESSIAN display Hessian matrix
PHISTORY display optimization history
PINIT display initial values and derivatives (PALL)
PNLCJAC display Jacobian matrix of nonlinear constraints

(PALL)
PRINT display results of the optimization process

Additional Options for Optimization Techniques
DAMPSTEP< =r > controls initial line-search step size
HESCAL=n scaling version of Hessian or Jacobian
LCDEACT=r Lagrange multiplier threshold of constraint
LCEPSILON=r range for boundary and linear constraints
LCSINGULAR=r QR decomposition linear dependence criterion
NOEIGNUM suppress computation of matrices
RESTART=i restart algorithm with a steepest descent direction
VERSION=1 | 2 quasi-Newton optimization technique version

Options Documented in the PROC CALIS Statement

The following options are the same as in the PROC CALIS statement and are docu-
mented in the section “PROC CALIS Statement” on page 456.

Estimation Method Option
G4=i

specifies the method for computing the generalized (G2 or G4) inverse of a singular
matrix needed for the approximate covariance matrix of parameter estimates. This
option is valid only for applications where the approximate covariance matrix of pa-
rameter estimates is found to be singular.
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Optimization Technique Options
TECHNIQUE | TECH=name
OMETHOD | OM=name

specifies the optimization technique.

UPDATE | UPD=name
specifies the update method for the quasi-Newton or conjugate-gradient optimization
technique.

LINESEARCH | LIS= i
specifies the line-search method for the CONGRA, QUANEW, and NEWRAP opti-
mization techniques.

FCONV | FTOL=r
specifies the relative function convergence criterion. For more details, see the section
“Termination Criteria Options” on page 502.

GCONV | GTOL=r
specifies the relative gradient convergence criterion. For more details, see the section
“Termination Criteria Options” on page 502.

INSTEP | SALPHA | RADIUS= r
restricts the step length of an optimization algorithm during the first iterations.

LSPRECISION | LSP= r
specifies the degree of accuracy that should be obtained by the line-search algorithms
LIS=2 and LIS=3.

MAXFUNC | MAXFU= i
specifies the maximum numberi of function calls in the optimization process. For
more details, see the section “Termination Criteria Options” on page 502.

MAXITER | MAXIT= i <n>
specifies the maximum numberi of iterations in the optimization process. For more
details, see the section “Termination Criteria Options” on page 502.

Miscellaneous Options
ASINGULAR | ASING= r

specifies an absolute singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the approximate covariance matrix of parameter
estimates.

COVSING=r
specifies a nonnegative thresholdr, r > 0, that decides whether the eigenvalues of
the information matrix are considered to be zero. This option is valid only for appli-
cations where the approximate covariance matrix of parameter estimates is found to
be singular.

MSINGULAR | MSING= r
specifies a relative singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the approximate covariance matrix of parameter
estimates.
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SINGULAR | SING = r
specifies the singularity criterionr, 0 � r � 1, that is used for the inversion of the
Hessian matrix. The default value is 1E�8.

VSINGULAR | VSING= r
specifies a relative singularity criterionr, r > 0, for the inversion of the information
matrix, which is needed to compute the approximate covariance matrix of parameter
estimates.

Termination Criteria Options
Let x� be the point at which the objective functionf(�) is optimized, and letx(k) be
the parameter values attained at thekth iteration. All optimization techniques stop
at thekth iteration if at least one of a set of termination criteria is satisfied. The
specified termination criteria should allow termination in an area of sufficient size
aroundx�. You can avoid termination respective to any of the following function,
gradient, or parameter criteria by setting the corresponding option to zero. There is
a default set of termination criteria for each optimization technique; most of these
default settings make the criteria ineffective for termination. PROC CALIS may have
problems due to rounding errors (especially in derivative evaluations) that prevent an
optimizer from satisfying strong termination criteria.

Note that PROC CALIS also terminates if the pointx(k) is fully constrained by lin-
early independent active linear or boundary constraints, and all Lagrange multiplier
estimates of active inequality constraints are greater than a small negative tolerance.

The following options are available only in the NLOPTIONS statement (except for
FCONV, GCONV, MAXFUNC, and MAXITER), and they affect the termination
criteria.

Options Used by All Techniques
The following five criteria are used by all optimization techniques.

ABSCONV | ABSTOL= r
specifies an absolute function convergence criterion.

� For minimization, termination requires

f (k) = f(x(k)) � ABSCONV

� For maximization, termination requires

f (k) = f(x(k)) � ABSCONV

The default value of ABSCONV is
� for minimization, the negative square root of the largest double precision value

� for maximization, the positive square root of the largest double precision value

MAXFUNC | MAXFU= i
requires the number of function calls to be no larger thani. The default values are
listed in the following table.
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TECH= MAXFUNC default
LEVMAR, NEWRAP, NRRIDG, TRUREG i=125
DBLDOG, QUANEW i=500
CONGRA i=1000

The default is used if you specify MAXFUNC=0. The optimization can be terminated
only after completing a full iteration. Therefore, the number of function calls that
is actually performed can exceed the number that is specified by the MAXFUNC=
option.

MAXITER | MAXIT= i <n>
requires the number of iterations to be no larger thani. The default values are listed
in the following table.

TECH= MAXITER default
LEVMAR, NEWRAP, NRRIDG, TRUREG i=50
DBLDOG, QUANEW i=200
CONGRA i=400

The default is used if you specify MAXITER=0 or you omit the MAXITER option.

The optional second valuen is valid only for TECH=QUANEW with nonlinear con-
straints. It specifies an upper boundn for the number of iterations of an algorithm
and reduces the violation of nonlinear constraints at a starting point. The default
value isn=20. For example, specifyingMAXITER= . 0 means that you do not
want to exceed the default number of iterations during the main optimization process
and that you want to suppress the feasible point algorithm for nonlinear constraints.

MAXTIME=r
requires the CPU time to be no larger thanr. The default value of the MAXTIME=
option is the largest double floating point number on your computer.

MINITER | MINIT=i
specifies the minimum number of iterations. The default value isi = 0.

The ABSCONV=, MAXITER=, MAXFUNC=, and MAXTIME= options are useful
for dividing a time-consuming optimization problem into a series of smaller problems
by using the OUTEST= and INEST= data sets.

Options for Unconstrained and Linearly Constrained Techniques
This section contains additional termination criteria for all unconstrained, boundary,
or linearly constrained optimization techniques.

ABSFCONV | ABSFTOL= r <n>
specifies the absolute function convergence criterion. Termination requires a small
change of the function value in successive iterations,

jf(x(k�1))� f(x(k))j � r

The default value isr = 0. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.
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ABSGCONV | ABSGTOL= r <n>
specifies the absolute gradient convergence criterion. Termination requires the maxi-
mum absolute gradient element to be small,

max
j
jg(k)j j � r

The default value isr=1E�5. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

Note: In some applications, the small default value of the ABSGCONV= criterion is
too difficult to satisfy for some of the optimization techniques.

ABSXCONV | ABSXTOL= r <n>
specifies the absolute parameter convergence criterion. Termination requires a small
Euclidean distance between successive parameter vectors,

k x(k) � x(k�1) k2� r

The default value isr = 0. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

FCONV | FTOL=r <n>
specifies the relative function convergence criterion. Termination requires a small
relative change of the function value in successive iterations,

jf(x(k))� f(x(k�1))j
max(jf(x(k�1))j; FSIZE)

� r

where FSIZE is defined by the FSIZE= option. The default value isr =
10�FDIGITS, whereFDIGITS either is specified or is set by default to�log10(�),
where� is the machine precision. The optional integer valuen determines the num-
ber of successive iterations for which the criterion must be satisfied before the process
can be terminated.

FCONV2 | FTOL2=r <n>
specifies another function convergence criterion. For least-squares problems, termi-
nation requires a small predicted reduction

df (k) � f(x(k))� f(x(k) + s(k))

of the objective function.

SAS OnlineDoc: Version 8



NLOPTIONS Statement � 505

The predicted reduction

df (k) = �g(k)0s(k) � 1

2
s(k)

0

G(k)s(k)

= �1

2
s(k)

0

g(k)

� r

is computed by approximating the objective functionf by the first two terms of the
Taylor series and substituting the Newton step

s(k) = �G(k)�1g(k)

The FCONV2 criterion is the unscaled version of the GCONV criterion. The default
value isr = 0. The optional integer valuen determines the number of successive
iterations for which the criterion must be satisfied before the process can be termi-
nated.

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function. Frac-
tional values such as FDIGITS=4.7 are allowed. The default value isr = �log10�,
where� is the machine precision. The value ofr is used for the specification of the
default value of the FCONV= option.

FSIZE=r
specifies theFSIZE parameter of the relative function and relative gradient termi-
nation criteria. The default value isr = 0. See the FCONV= and GCONV= options.

GCONV | GTOL=r <n>
specifies the relative gradient convergence criterion. For all techniques except the
CONGRA technique, termination requires that the normalized predicted function re-
duction is small,

[g(k)]0[G(k)]�1g(k)

max(jf(x(k))j; FSIZE)
� r

whereFSIZE is defined by the FSIZE= option. For the CONGRA technique (where
a reliable Hessian estimateG is not available),

k g(k) k22 k s(k) k2
k g(k) � g(k�1) k2 max(jf(x(k))j; FSIZE)

� r

is used. The default value isr=1E�8. The optional integer valuen determines the
number of successive iterations for which the criterion must be satisfied before the
process can be terminated.

Note: The default setting for the GCONV= option sometimes leads to early termina-
tion far from the location of the optimum. This is especially true for the special
form of this criterion used in the CONGRA optimization.
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GCONV2 | GTOL2=r <n>
specifies another relative gradient convergence criterion. For least-squares problems
and the TRUREG, LEVMAR, NRRIDG, and NEWRAP techniques, the criterion of
Browne (1982) is used,

max
j

jg(k)j jq
f(x(k))G

(k)
j;j

� r

This criterion is not used by the other techniques. The default value isr = 0. The
optional integer valuen determines the number of successive iterations for which the
criterion must be satisfied before the process can be terminated.

XCONV | XTOL=r <n>
specifies the relative parameter convergence criterion. Termination requires a small
relative parameter change in subsequent iterations,

maxj jx(k)j � x
(k�1)
j j

max(jx(k)j j; jx(k�1)
j j;XSIZE)

� r

The default value isr = 0. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

XSIZE=r
specifies theXSIZE parameter of the relative function and relative gradient termi-
nation criteria. The default value isr = 0. See the XCONV= option.

Options for Nonlinearly Constrained Techniques
The non-NMSIMP algorithms available for nonlinearly constrained optimization
(currently only TECH=QUANEW) do not monotonically reduce either the value of
the objective function or some kind of merit function that combines objective and
constraint functions. Furthermore, the algorithm uses the watchdog technique with
backtracking (Chamberlain et al., 1982). Therefore, no termination criteria are im-
plemented that are based on the values (x or f ) of successive iterations. In addition to
the criteria used by all optimization techniques, only three more termination criteria
are currently available, and they are based on the Lagrange function

L(x; �) = f(x)�
mX
i=1

�ici(x)

and its gradient

rxL(x; �) = g(x) �
mX
i=1

�irxci(x)

Here,m denotes the total number of constraints,g = g(x) denotes the gradient of the
objective function, and� denotes them vector of Lagrange multipliers. The Kuhn-
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Tucker conditions require that the gradient of the Lagrange function is zero at the
optimal point(x�; ��):

rxL(x
�; ��) = 0

The termination criteria available for nonlinearly constrained optimization follow.

ABSGCONV | ABSGTOL= r <n>
specifies that termination requires the maximum absolute gradient element of the
Lagrange function to be small,

max
j
jfrxL(x

(k); �(k))gj j � r

The default value isr=1E�5. The optional integer valuen determines the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

FCONV2 | FTOL2=r <n>
specifies that termination requires the predicted objective function reduction to be
small:

jg(x(k))s(x(k))j+
mX
i=1

j�icij � r

The default value isr=1E�6. This is the criterion used by the programs VMCWD
and VF02AD (Powell 1982b). The optional integer valuen determines the number
of successive iterations for which the criterion must be satisfied before the process
can be terminated.

GCONV | GTOL=r <n>
specifies that termination requires the normalized predicted objective function reduc-
tion to be small:

jg(x(k))s(x(k))j+Pm
i=1 j�ici(x(k))j

max(jf(x(k))j; FSIZE)
� r

whereFSIZE is defined by the FSIZE= option. The default value isr=1E�8. The
optional integer valuen determines the number of successive iterations for which the
criterion must be satisfied before the process can be terminated.

Miscellaneous Options

Options for the Approximate Covariance Matrix of Parameter Estimates
You can specify the following options to modify the approximate covariance matrix
of parameter estimates.

CFACTOR=r
specifies the scalar factor for the covariance matrix of parameter estimates. The scalar
r � 0 replaces the default valuec=NM . For more details, see the section “Approxi-
mate Standard Errors” on page 535.
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NOHLF
specifies that the Hessian matrix of the objective function (rather than the Hessian
matrix of the Lagrange function) is used for computing the approximate covariance
matrix of parameter estimates and, therefore, the approximate standard errors.

It is theoretically not correct to use the NOHLF option. However, since most imple-
mentations use the Hessian matrix of the objective function and not the Hessian ma-
trix of the Lagrange function for computing approximate standard errors, the NOHLF
option can be used to compare the results.

Options for Additional Displayed Output
You can specify the following options to obtain additional displayed output.

PALL | ALL
displays information on the starting values and final values of the optimization pro-
cess.

PCRPJAC | PJTJ
displays the approximate Hessian matrix. If general linear or nonlinear constraints
are active at the solution, the projected approximate Hessian matrix is also displayed.

PHESSIAN | PHES
displays the Hessian matrix. If general linear or nonlinear constraints are active at the
solution, the projected Hessian matrix is also displayed.

PHISTORY | PHIS
displays the optimization history. The PHISTORY option is set automatically if the
PALL or PRINT option is set.

PINIT | PIN
displays the initial values and derivatives (if available). The PINIT option is set auto-
matically if the PALL option is set.

PNLCJAC
displays the Jacobian matrix of nonlinear constraints specified by the NLINCON
statement. The PNLCJAC option is set automatically if the PALL option is set.

PRINT | PRI
displays the results of the optimization process, such as parameter estimates and con-
straints.

More Options for Optimization Techniques
You can specify the following options, in addition to the options already listed, to
fine-tune the optimization process. These options should not be necessary in most
applications of PROC CALIS.

DAMPSTEP | DS <=r>
specifies that the initial step-size value�(0) for each line search (used by the
QUANEW, CONGRA, or NEWRAP techniques) cannot be larger thanr times the
step-size value used in the former iteration. If the factorr is not specified, the de-
fault value isr = 2. The DAMPSTEP option can prevent the line-search algorithm
from repeatedly stepping into regions where some objective functions are difficult to
compute or where they can lead to floating point overflows during the computation of
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objective functions and their derivatives. The DAMPSTEP<=r> option can prevent
time-costly function calls during line searches with very small step sizes� of objec-
tive functions. For more information on setting the start values of each line search,
see the section “Restricting the Step Length” on page 558.

HESCAL | HS = 0 | 1 | 2 | 3
specifies the scaling version of the Hessian or crossproduct Jacobian matrix used in
NRRIDG, TRUREG, LEVMAR, NEWRAP, or DBLDOG optimization. If HS is not
equal to zero, the first iteration and each restart iteration sets the diagonal scaling

matrixD(0) = diag(d
(0)
i ):

d
(0)
i =

q
max(jG(0)

i;i j; �)

whereG(0)
i;i are the diagonal elements of the Hessian or crossproduct Jacobian matrix.

In every other iteration, the diagonal scaling matrixD(0) = diag(d
(0)
i ) is updated

depending on the HS option:

HS=0 specifies that no scaling is done.

HS=1 specifies the Moré (1978) scaling update:

d
(k+1)
i = max(d

(k)
i ;

q
max(jG(k)

i;i j; �))

HS=2 specifies the Dennis, Gay, and Welsch (1981) scaling update:

d
(k+1)
i = max(0:6 � d(k)i ;

q
max(jG(k)

i;i j; �))

HS=3 specifies thatdi is reset in each iteration:

d
(k+1)
i =

q
max(jG(k)

i;i j; �)

In the preceding equations,� is the relative machine precision. The default is
HS=1 for LEVMAR minimization and HS=0 otherwise. Scaling of the Hessian or
crossproduct Jacobian can be time-consuming in the case where general linear con-
straints are active.

LCDEACT | LCD = r
specifies a thresholdr for the Lagrange multiplier that decides whether an active
inequality constraint remains active or can be deactivated. For maximization,r must
be greater than zero; for minimization,r must be smaller than zero. The default is

r = �min(0:01;max(0:1 �ABSGCONV; 0:001 � gmax(k)))

where “+” stands for maximization, “�” stands for minimization,ABSGCONV is
the value of the absolute gradient criterion, andgmax(k) is the maximum absolute
element of the (projected) gradientg(k) orZ 0g(k).

SAS OnlineDoc: Version 8



510 � Chapter 19. The CALIS Procedure

LCEPSILON | LCEPS | LCE = r
specifies the ranger, r � 0, for active and violated boundary and linear constraints.
If the pointx(k) satisfies the condition

j
nX
j=1

aijx
(k)
j � bij � r � (jbij+ 1)

the constrainti is recognized as an active constraint. Otherwise, the constrainti is ei-
ther an inactive inequality or a violated inequality or equality constraint. The default
value isr=1E�8. During the optimization process, the introduction of rounding er-
rors can force PROC NLP to increase the value ofr by factors of 10. If this happens,
it is indicated by a message displayed in the log.

LCSINGULAR | LCSING | LCS = r
specifies a criterionr, r � 0, used in the update of the QR decomposition that decides
whether an active constraint is linearly dependent on a set of other active constraints.
The default isr=1E�8. The largerr becomes, the more the active constraints are
recognized as being linearly dependent.

NOEIGNUM
suppresses the computation and displayed output of the determinant and the inertia
of the Hessian, crossproduct Jacobian, and covariance matrices. The inertia of a
symmetric matrix are the numbers of negative, positive, and zero eigenvalues. For
large applications, the NOEIGNUM option can save computer time.

RESTART | REST = i
specifies that the QUANEW or CONGRA algorithm is restarted with a steepest de-
scent/ascent search direction after at mosti iterations,i > 0. Default values are as
follows:

� CONGRA: UPDATE=PB: restart is done automatically so specification ofi is
not used.

� CONGRA: UPDATE6=PB: i = min(10n; 80), wheren is the number of pa-
rameters.

� QUANEW: i is the largest integer available.

VERSION | VS = 1 | 2
specifies the version of the quasi-Newton optimization technique with nonlinear con-
straints.

VS=1 specifies the update of the� vector as in Powell (1978a, 1978b) (update
like VF02AD).

VS=2 specifies the update of the� vector as in Powell (1982a, 1982b) (update
like VMCWD).

The default is VS=2.
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PARAMETERS Statement

PARAMETERS | PARMS parameter(s) << = > number(s) >
<< , > parameter(s) << = > number(s) > : : : > ;

The PARAMETERS statement defines additional parameters that are not elements of
a model matrix to use in your own program statements. You can specify more than
one PARAMETERS statement with each PROC CALIS statement. Theparameters
can be followed by an equal sign and a number list. The values of thenumberslist
are assigned as initial values to the preceding parameters in theparameterslist. For
example, each of the following statements assigns the initial values ALPHA=.5 and
BETA=-.5 for the parameters used in program statements:

parameters alfa beta=.5 -.5;
parameters alfa beta (.5 -.5);
parameters alfa beta .5 -.5;
parameters alfa=.5 beta (-.5);

The number of parameters and the number of values does not have to match. When
there are fewer values than parameter names, either the RANDOM= or START=
option is used. When there are more values than parameter names, the extra values
are dropped. Parameters listed in the PARAMETERS statement can be assigned
initial values by program statements or by the START= or RANDOM= option in the
PROC CALIS statement.

Caution: The OUTRAM= and INRAM= data sets do not contain any information
about the PARAMETERS statement or additional program statements.

STRUCTEQ Statement

STRUCTEQ variable < variable : : : > ;

The STRUCTEQ statement is used to list the dependent variables of the structural
equations. This statement is ignored if you omit the PDETERM option. This state-
ment is useful because the termstructural equationis not defined in a unique way,
and PROC CALIS has difficulty identifying the structural equations.

If LINEQS statements are used, the names of the left-hand-side (dependent) vari-
ables of those equations to be treated as structural equations should be listed in the
STRUCTEQ statement.

If the RAM statement is used, variable names in the STRUCTEQ statements depend
on the VARNAMES statement:

� If the VARNAMES statement is used, variable names must correspond to those
in the VARNAMES statement.
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� If the VARNAMES statement is not used, variable names must correspond to
the names of manifest variables or latent (F) variables.

The STRUCTEQ statement also defines the names of variables used in the causal co-
efficient matrix of the structural equations,B, for computing theStability Coefficient
of Reciprocal Causation(the largest eigenvalue of theBB0 matrix). If the PROC
CALIS option PDETERM is used without the STRUCTEQ statement, the structural
equations are defined as described in the PDETERM option. See the PROC CALIS
option PDETERM on page 473 for more details.

VARNAMES Statement

VARNAMES | VNAMES assignment < , assignment : : : > ;

whereassignmentrepresents

matrix-id variable-names or matrix-name = matrix-name

Use the VARNAMES statement in connection with the RAM, COSAN, or FACTOR
model statement to allocate names to latent variables including error and disturbance
terms. This statement is not needed if you are using the LINEQS statement.

In connection with the RAM model statement, thematrix-id must be specified by
the integer number as it is used in the RAM list input (1 for matrixA, 2 for matrix
P). Because the first variables of matrixA correspond to the manifest variables
in the input data set, you can specify names only for the latent variables following
the manifest variables in the rows ofA. For example, in the RAM notation of the
alienation example, you can specify the latent variables by names F1, F2, F3 and the
error variables by names E1,: : : , E6, D1, D2, D3 with the following statement:

vnames 1 F1-F3,
2 E1-E6 D1-D3;

If the RAM model statement is not accompanied by a VNAMES statement, default
variable names are assigned using the prefixes F, E, and D with numerical suffixes:
latent variables are F1, F2,: : : , and error variables are E1, E2,: : : .

Thematrix-idmust be specified by its name when used with the COSAN or FACTOR
statement. Thevariable-namesfollowing the matrix name correspond to the columns
of this matrix. The variable names corresponding to the rows of this matrix are set
automatically by

� the names of the manifest variables for the first matrix in each term

� the column variable names of the same matrix for the central symmetric matrix
in each term

� the column variable names of the preceding matrix for each other matrix
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You also can use the second kind of name assignment in connection with a COSAN
statement. Two matrix names separated by an equal sign allocate the column names
of one matrix to the column names of the other matrix. This assignment assumes that
the column names of at least one of the two matrices are already allocated. For exam-
ple, in the COSAN notation of the alienation example, you can specify the variable
names by using the following statements to allocate names to the columns ofJ, A,
andP:

vnames J V1-V6 F1-F3 ,
A =J ,
P E1-E6 D1-D3 ;

BY Statement

BY variables ;

You can specify a BY statement with PROC CALIS to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

� Sort the data using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CALIS procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

� Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

VAR Statement

VAR variables ;

The VAR statement lists the numeric variables to be analyzed. If the VAR statement
is omitted, all numeric variables not mentioned in other statements are analyzed. You
can use the VAR statement to ensure that the manifest variables appear in correct
order for use in the RAM statement. Only one VAR statement can be used with each
PROC CALIS statement. If you do not use all manifest variables when you specify
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the model with a RAM or LINEQS statement, PROC CALIS does automatic variable
selection. For more information, see the section “Automatic Variable Selection” on
page 548.

PARTIAL Statement

PARTIAL variables ;

If you want the analysis to be based on a partial correlation or covariance matrix,
use the PARTIAL statement to list the variables used to partial out the variables in
the analysis. You can specify only one PARTIAL statement with each PROC CALIS
statement.

FREQ Statement

FREQ variable ;

If one variable in your data set represents the frequency of occurrence for the other
values in the observation, specify the variable’s name in a FREQ statement. PROC
CALIS then treats the data set as if each observation appearsni times, whereni is the
value of the FREQ variable for observationi. Only the integer portion of the value is
used. If the value of the FREQ variable is less than 1 or is missing, that observation
is not included in the analysis. The total number of observations is considered to be
the sum of the FREQ values when the procedure computes significance probabilities.
You can use only one FREQ statement with each PROC CALIS statement.

WEIGHT Statement

WEIGHT variable ;

To compute weighted covariances or correlations, specify the name of the weight-
ing variable in a WEIGHT statement. This is often done when the error variance
associated with each observation is different and the values of the weight variable
are proportional to the reciprocals of the variances. You can use only one WEIGHT
statement with each PROC CALIS statement. The WEIGHT and FREQ statements
have a similar effect, except the WEIGHT statement does not alter the number of
observations unless VARDEF=WGT or VARDEF=WDF. An observation is used in
the analysis only if the WEIGHT variable is greater than 0 and is not missing.

SAS Program Statements

This section lists the program statements used to express the linear and nonlinear
constraints on the parameters and documents the differences between program state-
ments in PROC CALIS and program statements in the DATA step. The very different

SAS OnlineDoc: Version 8



SAS Program Statements � 515

use of the ARRAY statement by PROC CALIS is also discussed. Most of the pro-
gram statements that can be used in the SAS DATA step also can be used in PROC
CALIS. Refer toSAS Language Reference: Dictionaryfor a description of the SAS
program statements. You can specify the following SAS program statements to com-
pute parameter constraints with the CALIS procedure:

ABORT ;
CALL name < ( expression < , expression: : : > ) > ;
DELETE;
DO < variable = expression <TO expression> <BY expression>

<, expression <TO expression> <BY expression>: : : > >
< WHILE expression>
< UNTIL expression>;

END;
GOTO statement-label;
IF expression;
IF expressionTHEN program-statement;

ELSE program-statement;
variable = expression;
variable+expression;
LINK statement-label;
PUT <variable> <=> < : : : > ;
RETURN ;
SELECT < ( expression ) >;
STOP;
SUBSTR( variable, index, length ) = expression;
WHEN (expression) program-statement;

OTHERWISE program-statement;

For the most part, the SAS program statements work the same as they do in the SAS
DATA step as documented inSAS Language Reference: Concepts. However, there
are several differences that should be noted.

� The ABORT statement does not allow any arguments.

� The DO statement does not allow a character index variable. Thus,

do I=1,2,3;

is supported; however,

do I=’A’,’B’,’C’;

is not valid in PROC CALIS, although it is supported in the DATA step.

� The PUT statement, used mostly for program debugging in PROC CALIS,
supports only some of the features of the DATA step PUT statement, and it has
some new features that the DATA step PUT statement does not have:

� The CALIS procedure PUT statement does not support line pointers, fac-
tored lists, iteration factors, overprinting,–INFILE–, the colon (:) format
modifier, or $.
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� The CALIS procedure PUT statement does support expressions enclosed
in parentheses. For example, the following statement displays the square
root of x:

put (sqrt(x));

� The CALIS procedure PUT statement supports the print item–PDV– to
display a formatted listing of all variables in the program. For exam-
ple, the following statement displays a much more readable listing of the
variables than the–ALL – print item:

put _pdv_ ;

� The WHEN and OTHERWISE statements allow more than one target state-
ment. That is, DO/END groups are not necessary for multiple WHEN state-
ments. For example, the following syntax is valid:

select;
when ( expression1 ) statement1;

statement2;
when ( expression2 ) statement3;

statement4;
end;

You can specify one or more PARMS statements to define parameters used in the
program statements that are not defined in the model matrices (MATRIX, RAM,
LINEQS, STD, or COV statement).

Parameters that are used only on the right-hand side of your program statements are
called independent, and parameters that are used at least once on the left-hand side
of an equation in the program code are called dependent parameters. The depen-
dent parameters are used only indirectly in the minimization process. They should
be fully defined as functions of the independent parameters. The independent pa-
rameters are included in the setX of parameters used in the minimization. Be sure
that all independent parameters used in your program statements are somehow con-
nected to elements of the model matrices. Otherwise the minimization function does
not depend on those independent parameters, and the parameters vary without con-
trol (since the corresponding derivative is the constant 0). You also can specify the
PARMS statement to set the initial values of all independent parameters used in the
program statements that are not defined as elements of model matrices.
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ARRAY Statement

ARRAY arrayname <(dimensions)>< $ ><variables and constants> ;

The ARRAY statement is similar to, but not the same as, the ARRAY statement in
the DATA step. The ARRAY statement is used to associate a name with a list of
variables and constants. The array name can then be used with subscripts in the
program to refer to the items in the list.

The ARRAY statement supported by PROC CALIS does not support all the features
of the DATA step ARRAY statement. With PROC CALIS, the ARRAY statement
cannot be used to give initial values to array elements. Implicit indexing variables
cannot be used; all array references must have explicit subscript expressions. Only
exact array dimensions are allowed; lower-bound specifications are not supported. A
maximum of six dimensions is allowed.

On the other hand, the ARRAY statement supported by PROC CALIS does allow
both variables and constants to be used as array elements. Constant array elements
cannot be changed. Both the dimension specification and the list of elements are
optional, but at least one must be given. When the list of elements is not given or
fewer elements than the size of the array are listed, array variables are created by
suffixing element numbers to the array name to complete the element list.

Details

Input Data Sets

You can use four different kinds of input data sets in the CALIS procedure, and you
can use them simultaneously. The DATA= data set contains the data to be analyzed,
and it can be an ordinary SAS data set containing raw data or a special TYPE=COV,
TYPE=UCOV, TYPE=CORR, TYPE=UCORR, TYPE=SYMATRIX, TYPE=SSCP,
or TYPE=FACTOR data set containing previously computed statistics. The INEST=
data set specifies an input data set that contains initial estimates for the parameters
used in the optimization process, and it can also contain boundary and general linear
constraints on the parameters. If the model does not change too much, you can use
an OUTEST= data set from a previous PROC CALIS analysis; the initial estimates
are taken from the values of the PARMS observation. The INRAM= data set names a
third input data set that contains all information needed to specify the analysis model
in RAM list form (except for user-written program statements). Often the INRAM=
data set can be the OUTRAM= data set from a previous PROC CALIS analysis.
See the section “OUTRAM= SAS-data-set” on page 525 for the structure of both
OUTRAM= and INRAM= data sets. Using the INWGT= data set enables you to
read in the weight matrixW that can be used in generalized least-squares, weighted
least-squares, or diagonally weighted least-squares estimation.
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DATA= SAS-data-set
A TYPE=COV, TYPE=UCOV, TYPE=CORR, or TYPE=UCORR data set can be
created by the CORR procedure or various other procedures. It contains means, stan-
dard deviations, the sample size, the covariance or correlation matrix, and possibly
other statistics depending on which procedure is used.

If your data set has many observations and you plan to run PROC CALIS several
times, you can save computer time by first creating a TYPE=COV, TYPE=UCOV,
TYPE=CORR, or TYPE=UCORR data set and using it as input to PROC CALIS. For
example, assuming that PROC CALIS is first run with an OUTRAM=MOD option,
you can run

* create TYPE=COV data set;
proc corr cov nocorr data=raw outp=cov(type=cov);
run;
* analysis using correlations;
proc calis data=cov inram=mod;
run;
* analysis using covariances;
proc calis cov data=cov inram=mod;
run;

Most procedures automatically set the TYPE= option of an output data set appropri-
ately. However, the CORR procedure sets TYPE=CORR unless an explicit TYPE=
option is used. Thus,(TYPE=COV) is needed in the preceding PROC CORR request,
since the output data set is a covariance matrix. If you use a DATA step with a SET
statement to modify this data set, you must declare the TYPE=COV, TYPE=UCOV,
TYPE=CORR, or TYPE=UCORR attribute in the new data set.

You can use a VAR statement with PROC CALIS when reading a TYPE=COV,
TYPE=UCOV, TYPE=CORR, TYPE=UCORR, or TYPE=SSCP data set to select
a subset of the variables or change the order of the variables.

Caution: Problems can arise from using the CORR procedure when there are miss-
ing data. By default, PROC CORR computes each covariance or correlation from
all observations that have values present for the pair of variables involved (“pairwise
deletion”). The resulting covariance or correlation matrix can have negative eigen-
values. A correlation or covariance matrix with negative eigenvalues is recognized
as a singular matrix in PROC CALIS, and you cannot compute (default) generalized
least-squares or maximum likelihood estimates. You can specify the RIDGE option
to ridge the diagonal of such a matrix to obtain a positive definite data matrix. If the
NOMISS option is used with the CORR procedure, observations with any missing
values are completely omitted from the calculations (“listwise deletion”), and there
is no possibility of negative eigenvalues (but still a chance for a singular matrix).

PROC CALIS can also create a TYPE=COV, TYPE=UCOV, TYPE=CORR, or
TYPE=UCORR data set that includes all the information needed for repeated anal-
yses. If the data set DATA=RAW does not contain missing values, the following
statements should give the same PROC CALIS results as the previous example.
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* using correlations;
proc calis data=raw outstat=cov inram=mod;
run;
* using covariances;
proc calis cov data=cov inram=mod;
run;

You can create a TYPE=COV, TYPE=UCOV, TYPE=CORR, TYPE=UCORR, or
TYPE=SSCP data set in a DATA step. Be sure to specify the TYPE= option in paren-
theses after the data set name in the DATA statement, and include the–TYPE– and

–NAME– variables. If you want to analyze the covariance matrix but your DATA=
data set is a TYPE=CORR or TYPE=UCORR data set, you should include an ob-
servation with–TYPE–=STD giving the standard deviation of each variable. If you
specify the COV option, PROC CALIS analyzes the recomputed covariance matrix:

data correl(type=corr);
input _type_ $ _name_ $ X1-X3;
datalines;

std . 4. 2. 8.
corr X1 1.0 . .
corr X2 .7 1.0 .
corr X3 .5 .4 1.0
;
proc calis cov inram=model;
run;

If you want to analyze the UCOV or UCORR matrix but your DATA= data set
is a TYPE=COV or TYPE=CORR data set, you should include observations with

–TYPE–=STD and–TYPE–=MEAN giving the standard deviation and mean of
each variable.

INEST= SAS-data-set
You can use the INEST= (or INVAR= or ESTDATA=) input data set to specify the
initial values of the parameters used in the optimization and to specify boundary
constraints and the more general linear constraints that can be imposed on these pa-
rameters.

The variables of the INEST= data set must correspond to

� a character variable–TYPE– that indicates the type of the observation

� n numeric variables with the parameter names used in the specified PROC
CALIS model

� the BY variables that are used in a DATA= input data set

� a numeric variable–RHS– (right-hand side) (needed only if linear constraints
are used)

� additional variables with names corresponding to constants used in the program
statements
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The content of the–TYPE– variable defines the meaning of the observation of
the INEST= data set. PROC CALIS recognizes observations with the following

–TYPE– specifications.

PARMS specifies initial values for parameters that are defined in the
model statements of PROC CALIS. The–RHS– variable is not
used. Additional variables can contain the values of constants that
are referred to in program statements. At the beginning of each
run of PROC CALIS, the values of the constants are read from
the PARMS observation initializing the constants in the program
statements.

UPPERBD | UB specifies upper bounds with nonmissing values. The use of a
missing value indicates that no upper bound is specified for the
parameter. The–RHS– variable is not used.

LOWERBD | LB specifies lower bounds with nonmissing values. The use of a
missing value indicates that no lower bound is specified for the
parameter. The–RHS– variable is not used.

LE |<= |< specifies the linear constraint
P

j aijxj � bi. Then parameter
values contain the coefficientsaij , and the–RHS– variable con-
tains the right-hand-sidebi. The use of a missing value indicates
a zero coefficientaij .

GE |>= |> specifies the linear constraint
P

j aijxj � bi. Then parameter
values contain the coefficientsaij , and the–RHS– variable con-
tains the right-hand-sidebi. The use of a missing value indicates
a zero coefficientaij .

EQ |= specifies the linear constraint
P

j aijxj = bi. Then parameter
values contain the coefficientsaij , and the–RHS– variable con-
tains the right-hand-sidebi. The use of a missing value indicates
a zero coefficientaij .

The constraints specified in the INEST=, INVAR=, or ESTDATA= data set are added
to the constraints specified in BOUNDS and LINCON statements.

You can use an OUTEST= data set from a PROC CALIS run as an INEST= data set in
a new run. However, be aware that the OUTEST= data set also contains the bound-
ary and general linear constraints specified in the previous run of PROC CALIS.
When you are using this OUTEST= data set without changes as an INEST= data set,
PROC CALIS adds the constraints from the data set to the constraints specified by
a BOUNDS and LINCON statement. Although PROC CALIS automatically elimi-
nates multiple identical constraints, you should avoid specifying the same constraint
a second time.

INRAM= SAS-data-set
This data set is usually created in a previous run of PROC CALIS. It is useful if you
want to reanalyze a problem in a different way such as using a different estimation
method. You can alter an existing OUTRAM= data set, either in the DATA step or
using the FSEDIT procedure, to create the INRAM= data set describing a modified
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model. For more details on the INRAM= data set, see the section “OUTRAM= SAS-
data-set” on page 525.

In the case of a RAM or LINEQS analysis of linear structural equations, the OUT-
RAM= data set always contains the variable names of the model specified. These
variable names and the model specified in the INRAM= data set are the basis of the
automatic variable selection algorithm performed after reading the INRAM= data set.

INWGT= SAS-data-set
This data set enables you to specify a weight matrix other than the default matrix for
the generalized, weighted, and diagonally weighted least-squares estimation meth-
ods. The specification of any INWGT= data set for unweighted least-squares or maxi-
mum likelihood estimation is ignored. For generalized and diagonally weighted least-
squares estimation, the INWGT= data set must contain a–TYPE– and a–NAME–
variable as well as the manifest variables used in the analysis. The value of the

–NAME– variable indicates the row indexi of the weightwij. For weighted least
squares, the INWGT= data set must contain–TYPE–, –NAME– , –NAM2– , and

–NAM3– variables as well as the manifest variables used in the analysis. The values
of the–NAME– , –NAM2– , and–NAM3– variables indicate the three indicesi; j; k
of the weightwij;kl. You can store information other than the weight matrix in the
INWGT= data set, but only observations with–TYPE–=WEIGHT are used to spec-
ify the weight matrixW. This property enables you to store more than one weight
matrix in the INWGT= data set. You can then run PROC CALIS with each of the
weight matrices by changing only the–TYPE– observation in the INWGT= data set
with an intermediate DATA step.

For more details on the INWGT= data set, see the section “OUTWGT= SAS-data-
set” on page 530.

Output Data Sets

OUTEST= SAS-data-set
The OUTEST= (or OUTVAR=) data set is of TYPE=EST and contains the final pa-
rameter estimates, the gradient, the Hessian, and boundary and linear constraints.
For METHOD=ML, METHOD=GLS, and METHOD=WLS, the OUTEST= data set
also contains the approximate standard errors, the information matrix (crossproduct
Jacobian), and the approximate covariance matrix of the parameter estimates ((gen-
eralized) inverse of the information matrix). If there are linear or nonlinear equality
or active inequality constraints at the solution, the OUTEST= data set also contains
Lagrange multipliers, the projected Hessian matrix, and the Hessian matrix of the
Lagrange function.

The OUTEST= data set can be used to save the results of an optimization by PROC
CALIS for another analysis with either PROC CALIS or another SAS procedure.
Saving results to an OUTEST= data set is advised for expensive applications that
cannot be repeated without considerable effort.

The OUTEST= data set contains the BY variables, two character variables–TYPE–
and –NAME– , t numeric variables corresponding to the parameters used in the
model, a numeric variable–RHS– (right-hand side) that is used for the right-hand-
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side valuebi of a linear constraint or for the valuef = f(x) of the objective function
at the final pointx� of the parameter space, and a numeric variable–ITER– that is
set to zero for initial values, set to the iteration number for the OUTITER output, and
set to missing for the result output.

The –TYPE– observations in Table 19.5 are available in the OUTEST= data set,
depending on the request.

Table 19.5. –TYPE– Observations in the OUTEST= data set

–TYPE– Description

ACTBC If there are active boundary constraints at the solutionx�, three
observations indicate which of the parameters are actively con-
strained, as follows.

–NAME – Description
GE indicates the active lower bounds
LE indicates the active upper bounds
EQ indicates the active masks

COV contains the approximate covariance matrix of the parameter
estimates; used in computing the approximate standard errors.

COVRANK contains the rank of the covariance matrix of the parameter
estimates.

CRPJ–LF contains the Hessian matrix of the Lagrange function (based on
CRPJAC).

CRPJAC contains the approximate Hessian matrix used in the optimiza-
tion process. This is the inverse of the information matrix.

EQ If linear constraints are used, this observation contains the
ith linear constraint

P
j aijxj = bi. The parameter

variables contain the coefficientsaij , j = 1; : : : ; n, the

–RHS– variable containsbi, and –NAME–=ACTLC or

–NAME–=LDACTLC.

GE If linear constraints are used, this observation contains theith
linear constraint

P
j aijxj � bi. The parameter variables con-

tain the coefficientsaij , j = 1; : : : ; n, and the–RHS– variable
containsbi. If the constrainti is active at the solutionx�, then

–NAME–=ACTLC or –NAME–=LDACTLC.

GRAD contains the gradient of the estimates.

GRAD–LF contains the gradient of the Lagrange function. The–RHS–
variable contains the value of the Lagrange function.

HESSIAN contains the Hessian matrix.

HESS–LF contains the Hessian matrix of the Lagrange function (based on
HESSIAN).
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Table 19.5. –TYPE– Observations in the OUTEST= data set (continued)

–TYPE– Description

INFORMAT contains the information matrix of the parameter esti-
mates (only for METHOD=ML, METHOD=GLS, or
METHOD=WLS).

INITIAL contains the starting values of the parameter estimates.

JACNLC contains the Jacobian of the nonlinear constraints evaluated at
the final estimates.

JACOBIAN contains the Jacobian matrix (only if the OUTJAC option is
used).

LAGM BC contains Lagrange multipliers for masks and active boundary
constraints.

–NAME– Description
GE indicates the active lower bounds
LE indicates the active upper bounds
EQ indicates the active masks

LAGM LC contains Lagrange multipliers for linear equality and active in-
equality constraints in pairs of observations containing the con-
straint number and the value of the Lagrange multiplier.

–NAME– Description
LEC–NUM number of the linear equality constraint
LEC–VAL corresponding Lagrange multiplier value
LIC–NUM number of the linear inequality constraint
LIC–VAL corresponding Lagrange multiplier value

LAGM
NLC

contains Lagrange multipliers for nonlinear equality and active
inequality constraints in pairs of observations containing the
constraint number and the value of the Lagrange multiplier.

–NAME– Description
NLEC–NUM number of the nonlinear equality constraint
NLEC–VAL corresponding Lagrange multiplier value
NLIC–NUM number of the linear inequality constraint
NLIC–VAL corresponding Lagrange multiplier value

LE If linear constraints are used, this observation contains theith
linear constraint

P
j aijxj � bi. The parameter variables con-

tain the coefficientsaij , j = 1; : : : ; n, and the–RHS– variable
containsbi. If the constrainti is active at the solutionx�, then

–NAME–=ACTLC or –NAME–=LDACTLC.

LOWERBD
j LB

If boundary constraints are used, this observation contains the
lower bounds. Those parameters not subjected to lower bounds
contain missing values. The–RHS– variable contains a miss-
ing value, and the–NAME– variable is blank.
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Table 19.5. –TYPE– Observations in the OUTEST= data set (continued)

–TYPE– Description

NACTBC All parameter variables contain the numbernabc of active
boundary constraints at the solutionx�. The–RHS– variable
contains a missing value, and the–NAME– variable is blank.

NACTLC All parameter variables contain the numbernalc of active linear
constraints at the solutionx� that are recognized as linearly
independent. The–RHS– variable contains a missing value,
and the–NAME– variable is blank.

NLC–EQ
NLC–GE
NLC–LE

contains values and residuals of nonlinear constraints. The

–NAME– variable is described as follows.

–NAME– Description
NLC inactive nonlinear constraint
NLCACT linear independent active nonlinear constr.
NLCACTLD linear dependent active nonlinear constr.

NLDACTBC contains the number of active boundary constraints at the solu-
tion x� that are recognized as linearly dependent. The–RHS–
variable contains a missing value, and the–NAME– variable
is blank.

NLDACTLC contains the number of active linear constraints at the solution
x� that are recognized as linearly dependent. The–RHS– vari-
able contains a missing value, and the–NAME– variable is
blank.

–NOBS– contains the number of observations.

PARMS contains the final parameter estimates. The–RHS– variable
contains the value of the objective function.

PCRPJ–LF contains the projected Hessian matrix of the Lagrange function
(based on CRPJAC).

PHESS–LF contains the projected Hessian matrix of the Lagrange function
(based on HESSIAN).

PROJCRPJ contains the projected Hessian matrix (based on CRPJAC).

PROJGRAD If linear constraints are used in the estimation, this observation
contains then�nact values of the projected gradientgZ = Z 0g
in the variables corresponding to the firstn � nact parame-
ters. The–RHS– variable contains a missing value, and the

–NAME– variable is blank.

PROJHESS contains the projected Hessian matrix (based on HESSIAN).

SIGSQ contains the scalar factor of the covariance matrix of the pa-
rameter estimates.

STDERR contains approximate standard errors (only for METHOD=ML,
METHOD=GLS, or METHOD=WLS).
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Table 19.5. –TYPE– Observations in the OUTEST= data set (continued)

–TYPE– Description

TERMINAT The –NAME– variable contains the name of the termination
criterion.

UPPERBD
j UB

If boundary constraints are used, this observation contains the
upper bounds. Those parameters not subjected to upper bounds
contain missing values. The–RHS– variable contains a miss-
ing value, and the–NAME– variable is blank.

If the technique specified by the TECH= option cannot be performed (for example,
no feasible initial values can be computed, or the function value or derivatives cannot
be evaluated at the starting point), the OUTEST= data set may contain only some of
the observations (usually only the PARMS and GRAD observations).

OUTRAM= SAS-data-set
The OUTRAM= data set is of TYPE=RAM and contains the model specification
and the computed parameter estimates. This data set is intended to be reused as an
INRAM= data set to specify good initial values in a subsequent analysis by PROC
CALIS. For a structural equation model, after some alterations, this data set can be
used for plotting a path diagram by the NETDRAW procedure, a SAS/OR procedure.

The OUTRAM= data set contains the following variables:

� the BY variables, if any

� the character variable–TYPE– , which takes the values MODEL, ESTIM,
VARNAME, METHOD, and STAT

� six additional variables whose meaning depends on the–TYPE– of the obser-
vation

Each observation with–TYPE– =MODEL defines one matrix in the generalized
COSAN model. The additional variables are as follows.

Table 19.6. Additional Variables when –TYPE–=MODEL

Variable Contents

–NAME– name of the matrix (character)

–MATNR– number for the term and matrix in the model (numeric)

–ROW– matrix row number (numeric)

–COL– matrix column number (numeric)

–ESTIM– first matrix type (numeric)

–STDERR– second matrix type (numeric)

If the generalized COSAN model has only one matrix term, the–MATNR– variable
contains only the number of the matrix in the term. If there is more than one term,
then it is the term number multiplied by 10,000 plus the matrix number (assuming that
there are no more than 9,999 matrices specified in the COSAN model statement).

SAS OnlineDoc: Version 8



526 � Chapter 19. The CALIS Procedure

Each observation with–TYPE– =ESTIM defines one element of a matrix in the
generalized COSAN model. The variables are used as follows.

Table 19.7. Additional Variables when –TYPE–=ESTIM

Variable Contents

–NAME– name of the parameter (character)

–MATNR– term and matrix location of parameter (numeric)

–ROW– row location of parameter (numeric)

–COL– column location of parameter (numeric)

–ESTIM– parameter estimate or constant value (numeric)

–STDERR– standard error of estimate (numeric)

For constants rather than estimates, the–STDERR– variable is 0. The–STDERR–
variable is missing for ULS and DWLS estimates if NOSTDERR is specified or if the
approximate standard errors are not computed.

Each observation with–TYPE– =VARNAME defines a column variable name of a
matrix in the generalized COSAN model.

The observations with–TYPE–=METHOD and–TYPE–=STAT are not used to
build the model. The–TYPE–=METHOD observation contains the name of the es-
timation method used to compute the parameter estimates in the–NAME– variable.
If METHOD=NONE is not specified, the–ESTIM– variable of the–TYPE–=STAT
observations contains the information summarized in Table 19.8 (described in the
section “Assessment of Fit” on page 536).

Table 19.8. –ESTIM– Contents for –TYPE–=STAT

–NAME– –ESTIM–
N sample size

NPARM number of parameters used in the model
DF degrees of freedom

N–ACT number of active boundary constraints
for ML, GLS, and WLS estimation

FIT fit function
GFI goodness-of-fit index (GFI)

AGFI adjusted GFI for degrees of freedom
RMR root mean square residual
PGFI parsimonious GFI of Mulaik et al. (1989)

CHISQUAR overall�2

P–CHISQ probability> �2

CHISQNUL null (baseline) model�2

RMSEAEST Steiger & Lind’s (1980) RMSEA index estimate
RMSEALOB lower range of RMSEA confidence interval
RMSEAUPB upper range of RMSEA confidence interval
P–CLOSFT Browne & Cudeck’s (1993) probability of close fit
ECVI–EST Browne & Cudeck’s (1993) ECV index estimate
ECVI–LOB lower range of ECVI confidence interval
ECVI–UPB upper range of ECVI confidence interval
COMPFITI Bentler’s (1989) comparative fit index
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Table 19.8. –ESTIM– Contents for –TYPE–=STAT (continued)

–NAME– –ESTIM–
ADJCHISQ adjusted�2 for elliptic distribution
P–ACHISQ probability corresponding adjusted�2

RLSCHISQ reweighted least-squares�2 (only ML estimation)
AIC Akaike’s information criterion

CAIC Bozdogan’s consistent information criterion
SBC Schwarz’s Bayesian criterion

CENTRALI McDonald’s centrality criterion
PARSIMON Parsimonious index of James, Mulaik, and Brett
ZTESTWH z test of Wilson and Hilferty

BB–NONOR Bentler-Bonett (1980) nonnormed index�
BB–NORMD Bentler-Bonett (1980) normed index�
BOL–RHO1 Bollen’s (1986) normed index�1
BOL–DEL2 Bollen’s (1989a) nonnormed index�2

CNHOELT Hoelter’s critical N index

You can edit the OUTRAM= data set to use its contents for initial estimates in a
subsequent analysis by PROC CALIS, perhaps with a slightly changed model. But
you should be especially careful for–TYPE–=MODEL when changing matrix types.
The codes for the two matrix types are listed in Table 19.9.

Table 19.9. Matrix Type Codes

Code First Matrix Type Description
1: IDE identity matrix
2: ZID zero:identity matrix
3: DIA diagonal matrix
4: ZDI zero:diagonal matrix
5: LOW lower triangular matrix
6: UPP upper triangular matrix
7: temporarily not used
8: SYM symmetric matrix
9: GEN general-type matrix

10: BET identity minus general-type matrix
11: PER selection matrix
12: first matrix (J) in LINEQS model statement
13: second matrix (�) in LINEQS model statement
14: third matrix (
) in LINEQS model statement

Code Second Matrix Type Description
0: noninverse model matrix
1: INV inverse model matrix
2: IMI ’identity minus inverse’ model matrix
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OUTSTAT= SAS-data-set
The OUTSTAT= data set is similar to the TYPE=COV, TYPE=UCOV,
TYPE=CORR, or TYPE=UCORR data set produced by the CORR procedure.
The OUTSTAT= data set contains the following variables:

� the BY variables, if any

� two character variables,–TYPE– and–NAME–
� the variables analyzed, that is, those in the VAR statement, or if there is no VAR

statement, all numeric variables not listed in any other statement but used in
the analysis. (Caution: Using the LINEQS or RAM model statements selects
variables automatically.)

The OUTSTAT= data set contains the following information (when available):

� the mean and standard deviation

� the skewness and kurtosis (if the DATA= data set is a raw data set and the
KURTOSIS option is specified)

� the number of observations

� if the WEIGHT statement is used, sum of the weights

� the correlation or covariance matrix to be analyzed

� the predicted correlation or covariance matrix

� the standardized or normalized residual correlation or covariance matrix

� if the model contains latent variables, the predicted covariances between la-
tent and manifest variables, and the latent variable (or factor) score regression
coefficients (see the PLATCOV display option on page 473)

In addition, if the FACTOR model statement is used, the OUTSTAT= data set con-
tains:

� the unrotated factor loadings, the unique variances, and the matrix of factor
correlations

� the rotated factor loadings and the transformation matrix of the rotation

� the matrix of standardized factor loadings

Each observation in the OUTSTAT= data set contains some type of statistic as indi-
cated by the–TYPE– variable. The values of the–TYPE– variable are given in
Table 19.10.
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Table 19.10. –TYPE– Observations in the OUTSTAT= data set

–TYPE– Contents
MEAN means

STD standard deviations
USTD uncorrected standard deviations

SKEWNESS univariate skewness
KURTOSIS univariate kurtosis

N sample size
SUMWGT sum of weights (if WEIGHT statement is used)

COV covariances analyzed
CORR correlations analyzed
UCOV uncorrected covariances analyzed

UCORR uncorrected correlations analyzed
ULSPRED ULS predicted model values
GLSPRED GLS predicted model values

MAXPRED ML predicted model values
WLSPRED WLS predicted model values

DWLSPRED DWLS predicted model values

ULSNRES ULS normalized residuals
GLSNRES GLS normalized residuals

MAXNRES ML normalized residuals
WLSNRES WLS normalized residuals

DWLSNRES DWLS normalized residuals

ULSSRES ULS variance standardized residuals
GLSSRES GLS variance standardized residuals

MAXSRES ML variance standardized residuals
WLSSRES WLS variance standardized residuals

DWLSSRES DWLS variance standardized residuals

ULSASRES ULS asymptotically standardized residuals
GLSASRES GLS asymptotically standardized residuals

MAXASRES ML asymptotically standardized residuals
WLSASRES WLS asymptotically standardized residuals
DWLSASRS DWLS asymptotically standardized residuals

UNROTATE unrotated factor loadings
FCORR matrix of factor correlations

UNIQUE–V unique variances
TRANSFOR transformation matrix of rotation
LOADINGS rotated factor loadings
STD–LOAD standardized factor loadings

LSSCORE latent variable (or factor) score regression coefficients for ULS method
SCORE latent variable (or factor) score regression coefficients other than ULS method
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The–NAME– variable contains the name of the manifest variable corresponding to
each row for the covariance, correlation, predicted, and residual matrices and con-
tains the name of the latent variable in case of factor regression scores. For other
observations,–NAME– is blank.

The unique variances and rotated loadings can be used as starting values in more
difficult and constrained analyses.

If the model contains latent variables, the OUTSTAT= data set also contains the latent
variable score regression coefficients and the predicted covariances between latent
and manifest variables. You can use the latent variable score regression coefficients
with PROC SCORE to compute factor scores.

If the analyzed matrix is a (corrected or uncorrected) covariance rather than a cor-
relation matrix, the–TYPE–=STD or–TYPE–=USTD observation is not included
in the OUTSTAT= data set. In this case, the standard deviations can be obtained
from the diagonal elements of the covariance matrix. Dropping the–TYPE–=STD
or –TYPE–=USTD observation prevents PROC SCORE from standardizing the ob-
servations before computing the factor scores.

OUTWGT= SAS-data-set
You can create an OUTWGT= data set that is of TYPE=WEIGHT and contains the
weight matrix used in generalized, weighted, or diagonally weighted least-squares
estimation. Theinverseof the weight matrix is used in the corresponding fit function.
The OUTWGT= data set contains the weight matrix on which the WRIDGE= and
the WPENALTY= options are applied. For unweighted least-squares or maximum
likelihood estimation, no OUTWGT= data set can be written. The last weight matrix
used in maximum likelihood estimation is the predicted model matrix (observations
with –TYPE– =MAXPRED) that is included in the OUTSTAT= data set.

For generalized and diagonally weighted least-squares estimation, the weight matri-
cesW of the OUTWGT= data set contain all elementswij , where the indicesi andj
correspond to all manifest variables used in the analysis. Letvarnami be the name
of the ith variable in the analysis. In this case, the OUTWGT= data set containsn
observations with variables as displayed in the following table.

Table 19.11. Contents of OUTWGT= data set for GLS and DWLS Estimation

Variable Contents

–TYPE– WEIGHT (character)

–NAME– name of variablevarnami (character)
varnam1 weightwi1 for variablevarnam1 (numeric)
...

...
varnamn weightwin for variablevarnamn (numeric)

For weighted least-squares estimation, the weight matrixW of the OUTWGT= data
set contains only the nonredundant elementswij;kl. In this case, the OUTWGT= data
set containsn(n+ 1)(2n+ 1)=6 observations with variables as follows.
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Table 19.12. Contents of OUTWGT= data set for WLS Estimation

Variable Contents

–TYPE– WEIGHT (character)

–NAME– name of variablevarnami (character)

–NAM2– name of variablevarnamj (character)

–NAM3– name of variablevarnamk (character)
varnam1 weightwij;k1 for variablevarnam1 (numeric)
...

...
varnamn weightwij;kn for variablevarnamn (numeric)

Symmetric redundant elements are set to missing values.

Missing Values

If the DATA= data set contains raw data (rather than a covariance or correlation ma-
trix), observations with missing values for any variables in the analysis are omitted
from the computations. If a covariance or correlation matrix is read, missing values
are allowed as long as every pair of variables has at least one nonmissing value.

Estimation Criteria

The following five estimation methods are available in PROC CALIS:

� unweighted least squares (ULS)

� generalized least squares (GLS)

� normal-theory maximum likelihood (ML)

� weighted least squares (WLS, ADF)

� diagonally weighted least squares (DWLS)

An INWGT= data set can be used to specify other than the default weight matrices
W for GLS, WLS, and DWLS estimation.

In each case, the parameter vector is estimated iteratively by a nonlinear optimization
algorithm that optimizes a goodness-of-fit functionF . Whenn denotes the number
of manifest variables,S denotes the given sample covariance or correlation matrix
for a sample with sizeN , andC denotes the predicted moment matrix, then the fit
function for unweighted least-squares estimation is

FULS = :5Tr[(S�C)2]

For normal-theory generalized least-squares estimation, the function is

FGLS = :5Tr[(S�1(S�C))2]

For normal-theory maximum likelihood estimation, the function is

FML = Tr(SC�1)� n+ ln(det(C))� ln(det(S))
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The first three functions can be expressed by the generally weighted least-squares
criterion (Browne 1982):

FGWLS = :5Tr[(W�1(S�C))2]

For unweighted least squares, the weight matrixW is chosen as the identity matrixI;
for generalized least squares, the default weight matrixW is the sample covariance
matrix S; and for normal-theory maximum likelihood,W is the iteratively updated
predicted moment matrixC. The values of the normal-theory maximum likelihood
functionFML and the generally weighted least-squares criterionFGWLS with W =
C are asymptotically equivalent.

The goodness-of-fit function that is minimized in weighted least-squares estimation
is

FWLS = V ec(sij � cij)
0W�1V ec(sij � cij)

whereV ec(sij � cij) denotes the vector of then(n + 1)=2 elements of the lower
triangle of the symmetric matrixS � C, andW = (wij;kl) is a positive definite
symmetric matrix withn(n+ 1)=2 rows and columns.

If the moment matrixS is considered as a covariance rather than a correlation matrix,
the default setting ofW = (wij;kl) is the consistent but biased estimators of the
asymptotic covariances�ij;kl of the sample covariancesij with the sample covariance
skl

wij;kl = sij;kl � sijskl

where

sij;kl =
1

N

NX
r=1

(zri � zi)(zrj � zj)(zrk � zk)(zrl � zl)

The formula of the asymptotic covariances of uncorrected covariances (using the
UCOV or NOINT option) is a straightforward generalization of this expression.

The resulting weight matrixW is at least positive semidefinite (except for rounding
errors). Using the ASYCOV option, you can use Browne’s (1984, formula (3.8))
unbiased estimators

wij;kl =
N(N � 1)

(N � 2)(N � 3)
(sij;kl � sijskl)

� N

(N � 2)(N � 3)
(siksjl + silsjk � 2

N � 1
sijskl)

There is no guarantee that this weight matrix is positive semidefinite. However, the
second part is of orderO(N�1) and does not destroy the positive semidefinite first
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part for sufficiently largeN . For a large number of independent observations, default
settings of the weight matrixW result in asymptotically distribution-free parameter
estimates with unbiased standard errors and a correct�2 test statistic (Browne 1982,
1984).

If the moment matrixS is a correlation (rather than a covariance) matrix, the default
setting ofW = (wij;kl) is the estimators of the asymptotic covariances�ij;kl of the
correlationsS = (sij) (Browne and Shapiro 1986; DeLeeuw 1983)

wij;kl = rij;kl � 1

2
rij(rii;kl + rjj;kl)� 1

2
rkl(rkk;ij + rll;ij)

+
1

4
rijrkl(rii;kk + rii;ll + rjj;kk + rjj;ll)

where

rij;kl =
sij;klp

siisjjskksll

The asymptotic variances of the diagonal elements of a correlation matrix are 0.
Therefore, the weight matrix computed by Browne and Shapiro’s formula is always
singular. In this case the goodness-of-fit function for weighted least-squares estima-
tion is modified to

FWLS =

nX
i=2

i�1X
j=1

nX
k=2

k�1X
l=1

wij;kl(sij � cij)(skl � ckl) + r

nX
i

(sii � cii)
2

wherer is the penalty weight specified by the WPENALTY=r option and thewij;kl

are the elements of the inverse of the reduced(n(n� 1)=2) � (n(n� 1)=2) weight
matrix that contains only the nonzero rows and columns of the full weight matrixW.
The second term is a penalty term to fit the diagonal elements of the moment matrix
S. The default value ofr = 100 can be decreased or increased by the WPENALTY=
option. The often used value ofr = 1 seems to be too small in many cases to fit
the diagonal elements of a correlation matrix properly. If your model does not fit the
diagonal of the moment matrixS, you can specify the NODIAG option to exclude
the diagonal elements from the fit function.

Storing and inverting the huge weight matrixW in WLS estimation needs consid-
erable computer resources. A compromise is found by implementing the DWLS
method that uses only the diagonal of the weight matrixW from the WLS estimation
in the minimization function

FDWLS = V ec(sij � cij)
0diag(W)�1V ec(sij � cij)

The statistical properties of DWLS estimates are still not known.

In generalized, weighted, or diagonally weighted least-squares estimation, you can
change from the default settings of weight matricesW by using an INWGT= data
set. Because the diagonal elementswii;kk of the weight matrixW are interpreted
as asymptotic variances of the sample covariances or correlations, they cannot be
negative. The CALIS procedure requires a positive definite weight matrix that has
positive diagonal elements.
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Relationships among Estimation Criteria

The five estimation functions,FULS , FGLS , FML, FWLS , andFDWLS , belong to the
following two groups:

� The functionsFULS , FGLS , andFML take into account alln2 elements of the
symmetric residual matrixS �C. This means that the off-diagonal residuals
contribute twice toF , as lower and as upper triangle elements.

� The functionsFWLS andFDWLS take into account only then(n+1)=2 lower
triangular elements of the symmetric residual matrixS �C. This means that
the off-diagonal residuals contribute toF only once.

TheFDWLS function used in PROC CALIS differs from that used by the LISREL 7
program. Formula (1.25) of the LISREL 7 manual (J�oreskog and S�orbom 1988, p.
23) shows that LISREL groups theFDWLS function in the first group by taking into
account alln2 elements of the symmetric residual matrixS�C.

� Relationship between DWLS and WLS:
PROC CALIS: TheFDWLS andFWLS estimation functions deliver the same
results for the special case that the weight matrixW used by WLS estimation
is a diagonal matrix.
LISREL 7: This is not the case.

� Relationship between DWLS and ULS:
LISREL 7: TheFDWLS andFULS estimation functions deliver the same re-
sults for the special case that the diagonal weight matrixW used by DWLS
estimation is an identity matrix (contains only 1s).
PROC CALIS: To obtain the same results withFDWLS andFULS estimation,
set the diagonal weight matrixW used in DWLS estimation to

wii;kk =

�
1: if i = k
0:5 otherwise

Because the reciprocal elements of the weight matrix are used in the goodness-
of-fit function, the off-diagonal residuals are weighted by a factor of 2.

Testing Rank Deficiency in the Approximate Covariance
Matrix

The inverse of the information matrix (or approximate Hessian matrix) is used for the
covariance matrix of the parameter estimates, which is needed for the computation
of approximate standard errors and modification indices. The numerical condition
of the information matrix (computed as the crossproductJ0J of the Jacobian matrix
J) can be very poor in many practical applications, especially for the analysis of
unscaled covariance data. The following four-step strategy is used for the inversion
of the information matrix.

1. The inversion (usually of a normalized matrixD�1HD�1) is tried using a
modified form of the Bunch and Kaufman (1977) algorithm, which allows the
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specification of a different singularity criterion for each pivot. The following
three criteria for the detection of rank loss in the information matrix are used
to specify thresholds:

� ASINGspecifies absolute singularity.

� MSING specifies relative singularity depending on the whole matrix
norm.

� VSING specifies relative singularity depending on the column matrix
norm.

If no rank loss is detected, the inverse of the information matrix is used for the
covariance matrix of parameter estimates, and the next two steps are skipped.

2. The linear dependencies among the parameter subsets are displayed based on
the singularity criteria.

3. If the number of parameterst is smaller than the value specified by the G4=
option (the default value is 60), the Moore-Penrose inverse is computed based
on the eigenvalue decomposition of the information matrix. If you do not spec-
ify the NOPRINT option, the distribution of eigenvalues is displayed, and those
eigenvalues that are set to zero in the Moore-Penrose inverse are indicated. You
should inspect this eigenvalue distribution carefully.

4. If PROC CALIS did not set the right subset of eigenvalues to zero, you can
specify the COVSING= option to set a larger or smaller subset of eigenvalues
to zero in a further run of PROC CALIS.

Approximate Standard Errors

Except for unweighted and diagonally weighted least-squares estimation, approxi-
mate standard errors can be computed as the diagonal elements of the matrix

c

NM
H�1; where

NM =

8>><
>>:

(N � 1) if the CORR or COV matrix is analyzed
or the intercept variable is not used in the model

N if the UCORR or UCOV matrix is analyzed
and the intercept variable is not used in the model

The matrixH is the approximate Hessian matrix ofF evaluated at the final esti-
mates,c = 1 for the WLS estimation method,c = 2 for the GLS and ML method,
andN is the sample size. If a given correlation or covariance matrix is singular,
PROC CALIS offers two ways to compute a generalized inverse of the information
matrix and, therefore, two ways to compute approximate standard errors of implicitly
constrained parameter estimates,t values, and modification indices. Depending on
the G4= specification, either a Moore-Penrose inverse or a G2 inverse is computed.
The expensive Moore-Penrose inverse computes an estimate of the null space using
an eigenvalue decomposition. The cheaper G2 inverse is produced by sweeping the
linearly independent rows and columns and zeroing out the dependent ones. The
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information matrix, the approximate covariance matrix of the parameter estimates,
and the approximate standard errors are not computed in the cases of unweighted or
diagonally weighted least-squares estimation.

Assessment of Fit

This section contains a collection of formulas used in computing indices to assess the
goodness of fit by PROC CALIS. The following notation is used:

� N for the sample size

� n for the number of manifest variables

� t for the number of parameters to estimate

� NM =

8>><
>>:

(N � 1) if the CORR or COV matrix is analyzed
or the intercept variable is not used in the model

N if the UCORR or UCOV matrix is analyzed
and the intercept variable is not used in the model

� df for the degrees of freedom

� 
 = X for thet vector of optimal parameter estimates

� S = (sij) for then� n input COV, CORR, UCOV, or UCORR matrix

� C = (cij) = �̂ = �(
̂) for the predicted model matrix

� W for the weight matrix (W = I for ULS,W = S for default GLS, and
W = C for ML estimates)

� U for then2 � n2 asymptotic covariance matrix of sample covariances

� �(xj�; df) for the cumulative distribution function of the noncentral chi-
squared distribution with noncentrality parameter�

The following notation is for indices that allow testing nested models by a�2 differ-
ence test:

� f0 for the function value of the independence model

� df0 for the degrees of freedom of the independence model

� fmin = F for the function value of the fitted model

� dfmin = df for the degrees of freedom of the fitted model

The degrees of freedomdfmin and the number of parameterst are adjusted automat-
ically when there are active constraints in the analysis. The computation of many fit
statistics and indices are affected. You can turn off the automatic adjustment using the
NOADJDF option. See the section “Counting the Degrees of Freedom” on page 563
for more information.

Residuals
PROC CALIS computes four types of residuals and writes them to the OUTSTAT=
data set.
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� Raw Residuals

Res = S�C; Resij = sij � cij

The raw residuals are displayed whenever the PALL, the PRINT, or the RESID-
UAL option is specified.

� Variance Standardized Residuals

V SResij =
sij � cijp
siisjj

The variance standardized residuals are displayed when you specify

– the PALL, the PRINT, or the RESIDUAL option and METHOD=NONE,
METHOD=ULS, or METHOD=DWLS

– RESIDUAL=VARSTAND

The variance standardized residuals are equal to those computed by the EQS 3
program (Bentler 1989).

� Asymptotically Standardized Residuals

ASResij =
sij � cijp
cij;ij

; where

cij;ij = diag(U � JCov(
)J0)ij

The matrixJ is then2 � t Jacobian matrixd�=d
, andCov(
) is thet � t
asymptotic covariance matrix of parameter estimates (the inverse of the infor-
mation matrix). Asymptotically standardized residuals are displayed when one
of the following conditions is met:

– The PALL, the PRINT, or the RESIDUAL option is specified, and
METHOD=ML, METHOD=GLS, or METHOD=WLS, and the expen-
sive information and Jacobian matrices are computed for some other rea-
son.

– RESIDUAL= ASYSTAND is specified.

The asymptotically standardized residuals are equal to those computed by the
LISREL 7 program (J�oreskog and S�orbom 1988) except for the denominator
NM in the definition of matrixU.

� Normalized Residuals

NResij =
sij � cijp
uij;ij

where the diagonal elementsuij;ij of then2�n2 asymptotic covariance matrix
U of sample covariances are defined for the following methods.
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– GLS asuij;ij = 1
NM (siisjj + s2ij)

– ML asuij;ij = 1
NM (ciicjj + c2ij)

– WLS asuij;ij = wij;ij

Normalized residuals are displayed when one of the following conditions is
met:

– The PALL, the PRINT, or the RESIDUAL option is specified, and
METHOD=ML, METHOD=GLS, or METHOD=WLS, and the expen-
sive information and Jacobian matrices arenot computed for some other
reason.

– RESIDUAL=NORM is specified.

The normalized residuals are equal to those computed by the LISREL VI pro-
gram (J�oreskog and S�orbom 1985) except for the definition of the denominator
NM in matrixU.

For estimation methods that are not BGLS estimation methods (Browne 1982, 1984),
such as METHOD=NONE, METHOD=ULS, or METHOD=DWLS, the assumption
of an asymptotic covariance matrixU of sample covariances does not seem to be
appropriate. In this case, the normalized residuals should be replaced by the more
relaxed variance standardized residuals. Computation of asymptotically standardized
residuals requires computing the Jacobian and information matrices. This is compu-
tationally very expensive and is done only if the Jacobian matrix has to be computed
for some other reason, that is, if at least one of the following items is true:

� The default, PRINT, or PALL displayed output is requested, and neither the
NOMOD nor NOSTDERR option is specified.

� Either the MODIFICATION (included in PALL), PCOVES, or STDERR
(included in default, PRINT, and PALL output) option is requested or
RESIDUAL=ASYSTAND is specified.

� The LEVMAR or NEWRAP optimization technique is used.

� An OUTRAM= data set is specified without using the NOSTDERR option.

� An OUTEST= data set is specified without using the NOSTDERR option.

Since normalized residuals use an overestimate of the asymptotic covariance matrix
of residuals (the diagonal ofU), the normalized residuals cannot be larger than the
asymptotically standardized residuals (which use the diagonal ofU� JCov(
)J0).
Together with the residual matrices, the values of the average residual, the average
off-diagonal residual, and the rank order of the largest values are displayed. The
distribution of the normalized and standardized residuals is displayed also.

Goodness-of-Fit Indices Based on Residuals
The following items are computed for all five kinds of estimation:ULS, GLS, ML,
WLS, and DWLS. All these indices are written to the OUTRAM= data set. The
goodness of fit (GFI), adjusted goodness of fit (AGFI), and root mean square residual
(RMR) are computed as in the LISREL VI program of J�oreskog and S�orbom (1985).
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� Goodness-of-Fit Index
The goodness-of-fit index for the ULS, GLS, and ML estimation methods is

GFI = 1� Tr((W�1(S�C))2)

Tr((W�1S)2)

but for WLS and DWLS estimation, it is

GFI = 1� V ec(sij � cij)
0W�1V ec(sij � cij)

V ec(sij)0W�1V ec(sij)

whereW = diag for DWLS estimation, andV ec(sij� cij) denotes the vector
of then(n+1)=2 elements of the lower triangle of the symmetric matrixS�C.
For a constant weight matrixW, the goodness-of-fit index is 1 minus the ratio
of the minimum function value and the function value before any model has
been fitted. The GFI should be between 0 and 1. The data probably do not fit
the model if the GFI is negative or much larger than 1.

� Adjusted Goodness-of-Fit Index
The AGFI is the GFI adjusted for the degrees of freedom of the model

AGFI = 1� n(n+ 1)

2df
(1 �GFI)

The AGFI corresponds to the GFI in replacing the total sum of squares by the
mean sum of squares.

Caution:

– Large n and smalldf can result in a negative AGFI. For example,
GFI=0.90, n=19, and df=2 result in an AGFI of -8.5.

– AGFI is not defined for a saturated model, due to division bydf = 0.

– AGFI is not sensitive to losses indf .

The AGFI should be between 0 and 1. The data probably do not fit the model
if the AGFI is negative or much larger than 1. For more information, refer to
Mulaik et al. (1989).

� Root Mean Square Residual
The RMR is the mean of the squared residuals:

RMR =

vuut 2

n(n+ 1)

nX
i

iX
j

(sij � cij)2

� Parsimonious Goodness-of-Fit Index
The PGFI (Mulaik et al. 1989) is a modification of the GFI that takes the
parsimony of the model into account:

PGFI =
dfmin

df0
GFI

The PGFI uses the same parsimonious factor as the parsimonious normed
Bentler-Bonett index (James, Mulaik, and Brett 1982).
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Goodness-of-Fit Indices Based on the �2

The following items are transformations of the overall�2 value and in general depend
on the sample size N. These indices are not computed for ULS or DWLS estimates.

� Uncorrected�2

The overall�2 measure is the optimum function valueF multiplied byN � 1
if a CORR or COV matrix is analyzed, or multiplied byN if a UCORR or
UCOV matrix is analyzed. This gives the likelihood ratio test statistic for the
null hypothesis that the predicted matrixC has the specified model structure
against the alternative thatC is unconstrained. The�2 test is valid only if the
observations are independent and identically distributed, the analysis is based
on the nonstandardized sample covariance matrixS, and the sample sizeN is
sufficiently large (Browne 1982; Bollen 1989b; J�oreskog and S�orbom 1985).
For ML and GLS estimates, the variables must also have an approximately
multivariate normal distribution. The notation Prob>Chi**2 means “the prob-
ability under the null hypothesis of obtaining a greater�2 statistic than that
observed.”

�2 = NM � F

whereF is the function value at the minimum.

� �2
0 Value of the Independence Model

The�2
0 value of the independence model

�20 = NM � f0

and the corresponding degrees of freedomdf0 can be used (in large samples)
to evaluate the gain of explanation by fitting the specific model (Bentler 1989).

� RMSEA Index (Steiger and Lind 1980)
The Steiger and Lind (1980) root mean squared error approximation (RMSEA)
coefficient is

�� =

s
max(

F

df
� 1

NM
; 0)

The lower and upper limits of the confidence interval are computed using
the cumulative distribution function of the noncentral chi-squared distribution
�(xj�; df) = �, with x = NM � F , �L satisfying�(xj�L; df) = 1� �

2 , and
�U satisfying�(xj�U ; df) = �

2 :

(��L ; ��U ) = (

s
�L

NM � df ;
s

�U
NM � df )

Refer to Browne and Du Toit (1992) for more details. The size of the con-
fidence interval is defined by the option ALPHARMS=�, 0 � � � 1. The
default is� = 0:1, which corresponds to the 90% confidence interval for the
RMSEA.
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� Probability for Test of Close Fit (Browne and Cudeck 1993)
The traditional exact�2 test hypothesisH0: �� = 0 is replaced by the null
hypothesis of close fitH0: �� � 0:05 and the exceedance probabilityP is
computed as

P = 1� �(xj��; df)

wherex = NM � F and�� = 0:052 �NM � df . The null hypothesis of close
fit is rejected ifP is smaller than a prespecified level (for example,P < 0:05).

� Expected Cross Validation Index (Browne and Cudeck 1993)
For GLS and WLS, the estimatorc of the ECVI is linearly related to AIC:

c = F (S;C) +
2t

NM

For ML estimation,cML is used.

cML = FML(S;C) +
2t

NM � n� 1

The confidence interval(cL; cU ) for c is computed using the cumulative distri-
bution function�(xj�; df) of the noncentral chi-squared distribution,

(cL; cU ) = (
�L + nnt

NM
;
�U + nnt

NM
)

with nnt = n(n + 1)=2 + t, x = NM � F , �(xj�U ; df) = 1 � �
2 , and

�(xj�L; df) = �
2 . The confidence interval(c�L; c

�

U ) for cML is

(c�L; c
�

U ) = (
��L + nnt

NM � n� 1
;

��U + nnt

NM � n� 1
)

wherennt = n(n+ 1)=2 + t, x = (NM � n� 1) � F , �(xj��U ; df) = 1� �
2

and�(xj��L; df) = �
2 . Refer to Browne and Cudeck (1993). The size of the

confidence interval is defined by the option ALPHAECV=�, 0 � � � 1. The
default is� = 0:1, which corresponds to the 90% confidence interval for the
ECVI.

� Comparative Fit Index (Bentler 1989)

CFI = 1� max(NM � fmin � dfmin; 0)

max(NM � f0 � df0; 0)

� Adjusted �2 Value (Browne 1982)
If the variables aren-variate elliptic rather than normal and have significant
amounts of multivariate kurtosis (leptokurtic or platykurtic), the�2 value can
be adjusted to

�2ell =
�2

�2

where�2 is the multivariate relative kurtosis coefficient.
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� Normal Theory Reweighted LS�2 Value
This index is displayed only if METHOD=ML. Instead of the function value
FML, the reweighted goodness-of-fit functionFGWLS is used,

�2GWLS = NM � FGWLS

whereFGWLS is the value of the function at the minimum.

� Akaike’s Information Criterion (AIC) (Akaike 1974; Akaike 1987)
This is a criterion for selecting the best model among a number of candidate
models. The model that yields the smallest value of AIC is considered the best.

AIC = �2 � 2df

� Consistent Akaike’s Information Criterion (CAIC) (Bozdogan 1987)
This is another criterion, similar to AIC, for selecting the best model among
alternatives. The model that yields the smallest value of CAIC is considered
the best. CAIC is preferred by some people to AIC or the�2 test.

CAIC = �2 � (ln(N) + 1)df

� Schwarz’s Bayesian Criterion (SBC) (Schwarz 1978; Sclove 1987)
This is another criterion, similar to AIC, for selecting the best model. The
model that yields the smallest value of SBC is considered the best. SBC is
preferred by some people to AIC or the�2 test.

SBC = �2 � ln(N)df

� McDonald’s Measure of Centrality (McDonald and Hartmann 1992)

CENT = exp(�(�2 � df)

2N
)

� Parsimonious Normed Fit Index (James, Mulaik, and Brett 1982)
The PNFI is a modification of Bentler-Bonett’s normed fit index that takes
parsimony of the model into account,

PNFI =
dfmin

df0

(f0 � fmin)

f0

The PNFI uses the same parsimonious factor as the parsimonious GFI of Mu-
laik et al. (1989).

� Z-Test (Wilson and Hilferty 1931)
The Z-Test of Wilson and Hilferty assumes ann-variate normal distribution:

Z =

3

q
�2

df � (1� 2
9df )q

2
9df

Refer to McArdle (1988) and Bishop, Fienberg, and Holland (1977, p. 527) for
an application of the Z-Test.
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� Nonnormed Coefficient (Bentler and Bonett 1980)

� =
f0=df0 � fmin=dfmin

f0=df0 � 1=NM

Refer to Tucker and Lewis (1973).

� Normed Coefficient (Bentler and Bonett 1980)

� =
f0 � fmin

f0

Mulaik et al. (1989) recommend the parsimonious weighted form PNFI.

� Normed Index �1 (Bollen 1986)

�1 =
f0=df0 � fmin=dfmin

f0=df0

�1 is always less than or equal to1; �1 < 0 is unlikely in practice. Refer to the
discussion in Bollen (1989a).

� Nonnormed Index�2 (Bollen 1989a)

�2 =
f0 � fmin

f0 � df
NM

is a modification of Bentler & Bonett’s� that usesdf and “lessens the depen-
dence” onN . Refer to the discussion in Bollen (1989b).�2 is identical to
Mulaik et al.’s (1989) IFI2 index.

� Critical N Index (Hoelter 1983)

CN =
�2crit
F

+ 1

where�2crit is the critical chi-square value for the givendf degrees of freedom
and probability� = 0:05, andF is the value of the estimation criterion (min-
imization function). Refer to Bollen (1989b, p. 277). Hoelter (1983) suggests
that CN should be at least 200; however, Bollen (1989b) notes that the CN
value may lead to an overly pessimistic assessment of fit for small samples.

Squared Multiple Correlation
The following are measures of the squared multiple correlation for manifest and en-
dogenous variables and are computed for all five estimation methods: ULS, GLS,
ML, WLS, and DWLS. These coefficients are computed as in the LISREL VI pro-
gram of J�oreskog and S�orbom (1985). The DETAE, DETSE, and DETMV determi-
nation coefficients are intended to be global means of the squared multiple correla-
tions for different subsets of model equations and variables. These coefficients are
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displayed only when you specify the PDETERM option with a RAM or LINEQS
model.

� R2 Values Corresponding to Endogenous Variables

R2
i = 1�
\var(�i)

\var(�i)

� Total Determination of All Equations

DETAE = 1� det(�̂; 	̂)

det( \Cov(y; x;�))

� Total Determination of the Structural Equations

DETSE = 1� det(	̂)

det(\Cov(�))

� Total Determination of the Manifest Variables

DETMV = 1� det(�̂)

det(S)

Caution: In the LISREL program, the structural equations are defined by specifying
the BETA matrix. In PROC CALIS, a structural equation has a dependent left-hand-
side variable that appears at least once on the right-hand side of another equation, or
the equation has at least one right-hand-side variable that is the left-hand-side variable
of another equation. Therefore, PROC CALIS sometimes identifies more equations
as structural equations than the LISREL program does.

Measures of Multivariate Kurtosis

In many applications, the manifest variables are not even approximately multivariate
normal. If this happens to be the case with your data set, the default generalized
least-squares and maximum likelihood estimation methods are not appropriate, and
you should compute the parameter estimates and their standard errors by an asymptot-
ically distribution-free method, such as the WLS estimation method. If your manifest
variables are multivariate normal, then they have a zero relative multivariate kurtosis,
and all marginal distributions have zero kurtosis (Browne 1982). If your DATA= data
set contains raw data, PROC CALIS computes univariate skewness and kurtosis and
a set of multivariate kurtosis values. By default, the values of univariate skewness and
kurtosis are corrected for bias (as in PROC UNIVARIATE), but using the BIASKUR
option enables you to compute the uncorrected values also. The values are displayed
when you specify the PROC CALIS statement option KURTOSIS.
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� Corrected Variance for Variable zj

�2j =
1

N � 1

NX
i

(zij � zj)
2

� Corrected Univariate Skewness for Variablezj


1(j) =
N

(N � 1)(N � 2)

PN
i (zij � zj)

3

�3j

� Uncorrected Univariate Skewness for Variablezj


1(j) =
N
PN

i (zij � zj)
3q

N [
PN

i (zij � zj)2]3

� Corrected Univariate Kurtosis for Variable zj


2(j) =
N(N + 1)

(N � 1)(N � 2)(N � 3)

PN
i (zij � zj)

4

�4j
� 3(N � 1)2

(N � 2)(N � 3)

� Uncorrected Univariate Kurtosis for Variable zj


2(j) =
N
PN

i (zij � zj)
4

[
PN

i (zij � zj)2]2
� 3

� Mardia’s Multivariate Kurtosis


2 =
1

N

NX
i

[(zi � z)0S�1(zi � z)]2 � n(n+ 2)

� Relative Multivariate Kurtosis

�2 =

2 + n(n+ 2)

n(n+ 2)

� Normalized Multivariate Kurtosis

�0 =

2p

8n(n+ 2)=N
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� Mardia Based Kappa

�1 =

2

n(n+ 2)

� Mean Scaled Univariate Kurtosis

�2 =
1

3n

nX
j


2(j)

� Adjusted Mean Scaled Univariate Kurtosis

�3 =
1

3n

nX
j


�2(j)

with


�2(j) =

8<
:

2(j) ; if 
2(j) >

�6
n+2

�6
n+2 ; otherwise

If variable Zj is normally distributed, the uncorrected univariate kurtosis
2(j) is
equal to 0. IfZ has ann-variate normal distribution, Mardia’s multivariate kurto-
sis 
2 is equal to 0. A variableZj is calledleptokurtic if it has a positive value of

2(j) and is calledplatykurtic if it has a negative value of
2(j). The values of�1, �2,
and�3 should not be smaller than a lower bound (Bentler 1985):

�̂ � �2
n+ 2

PROC CALIS displays a message if this happens.

If weighted least-squares estimates (METHOD=WLS or METHOD=ADF) are spec-
ified and the weight matrix is computed from an input raw data set, the CALIS pro-
cedure computes two further measures of multivariate kurtosis.

� Multivariate Mean Kappa

�4 =
1

m

nX
i

iX
j

jX
k

kX
l

�̂ij;kl � 1

where

�̂ij;kl =
sij;kl

sijskl + siksjl + silsjk

andm = n(n+ 1)(n+ 2)(n + 3)=24 is the number of elements in the vector
sij;kl (Bentler 1985).
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� Multivariate Least-Squares Kappa

�5 =
s04s2
s02s2

� 1

where

sij;kl =
1

N

NX
r=1

(zri � zi)(zrj � zj)(zrk � zk)(zrl � zl)

s4 is the vector of thesij;kl, ands2 is the vector of the elements in the denomi-
nator of�̂ (Bentler 1985).

The occurrence of significant nonzero values of Mardia’s multivariate kurtosis
2 and
significant amounts of some of the univariate kurtosis values
2(j) indicate that your
variables are not multivariate normal distributed. Violating the multivariate normality
assumption in (default) generalized least-squares and maximum likelihood estimation
usually leads to the wrong approximate standard errors and incorrect fit statistics
based on the�2 value. In general, the parameter estimates are more stable against
violation of the normal distribution assumption. For more details, refer to Browne
(1974, 1982, 1984).

Initial Estimates

Each optimization technique requires a set of initial values for the parameters. To
avoid local optima, the initial values should be as close as possible to the globally
optimal solution. You can check for local optima by running the analysis with several
different sets of initial values; the RANDOM= option in the PROC CALIS statement
is useful in this regard.

� RAM and LINEQS: There are several default estimation methods available in
PROC CALIS for initial values of parameters in a linear structural equation
model specified by a RAM or LINEQS model statement, depending on the
form of the specified model.

� two-stage least-squares estimation

� instrumental variable method (H�agglund 1982; Jennrich 1987)

� approximative factor analysis method

� ordinary least-squares estimation

� estimation method of McDonald (McDonald and Hartmann 1992)

� FACTOR: For default (exploratory) factor analysis, PROC CALIS computes
initial estimates for factor loadings and unique variances by an algebraic
method of approximate factor analysis. If you use a MATRIX statement to-
gether with a FACTOR model specification, initial values are computed by
McDonald’s (McDonald and Hartmann 1992) method if possible. McDonald’s
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method of computing initial values works better if you scale the factors by set-
ting the factor variances to 1 rather than setting the loadings of the reference
variables equal to 1. If none of the two methods seems to be appropriate, the
initial values are set by the START= option.

� COSAN: For the more general COSAN model, there is no default estimation
method for the initial values. In this case, the START= or RANDOM= option
can be used to set otherwise unassigned initial values.

Poor initial values can cause convergence problems, especially with maximum like-
lihood estimation. You should not specify a constant initial value for all parameters
since this would produce a singular predicted model matrix in the first iteration. Suf-
ficiently large positive diagonal elements in the central matrices of each model matrix
term provide a nonnegative definite initial predicted model matrix. If maximum like-
lihood estimation fails to converge, it may help to use METHOD=LSML, which uses
the final estimates from an unweighted least-squares analysis as initial estimates for
maximum likelihood. Or you can fit a slightly different but better-behaved model and
produce an OUTRAM= data set, which can then be modified in accordance with the
original model and used as an INRAM= data set to provide initial values for another
analysis.

If you are analyzing a covariance or scalar product matrix, be sure to take into account
the scales of the variables. The default initial values may be inappropriate when some
variables have extremely large or small variances.

Automatic Variable Selection

You can use the VAR statement to reorder the variables in the model and to delete
the variables not used. Using the VAR statement saves memory and computation
time. If a linear structural equation model using the RAM or LINEQS statement
(or an INRAM= data set specifying a RAM or LINEQS model) does not use all the
manifest variables given in the input DATA= data set, PROC CALIS automatically
deletes those manifest variables not used in the model.

In some special circumstances, the automatic variable selection performed for the
RAM and LINEQS statements may be inappropriate, for example, if you are inter-
ested in modification indices connected to some of the variables that are not used in
the model. You can include such manifest variables as exogenous variables in the
analysis by specifying constant zero coefficients.

For example, the first three steps in a stepwise regression analysis of the Werner
Blood Chemistry data (J�oreskog and S�orbom 1988, p. 111) can be performed as
follows:

proc calis data=dixon method=gls nobs=180 print mod;
lineqs y=0 x1+0 x2+0 x3+0 x4+0 x5+0 x6+0 x7+e;
std e=var;

run;
proc calis data=dixon method=gls nobs=180 print mod;

lineqs y=g1 x1+0 x2+0 x3+0 x4+0 x5+0 x6+0 x7+e;
std e=var;
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run;
proc calis data=dixon method=gls nobs=180 print mod;

lineqs y=g1 x1+0 x2+0 x3+0 x4+0 x5+g6 x6+0 x7+e;
std e=var;

run;

Using the COSAN statement does not automatically delete those variables from the
analysis that are not used in the model. You can use the output of the predetermined
values in the predicted model matrix (PREDET option) to detect unused variables.
Variables that are not used in the model are indicated by 0 in the rows and columns
of the predetermined predicted model matrix.

Exogenous Manifest Variables

If there are exogenous manifest variables in the linear structural equation model, then
there is a one-to-one relationship between the given covariances and corresponding
estimates in the central model matrix (P or�). In general, using exogenous manifest
variables reduces the degrees of freedom since the corresponding sample correlations
or covariances are not part of the exogenous information provided for the parameter
estimation. See the section “Counting the Degrees of Freedom” on page 563 for more
information.

If you specify a RAM or LINEQS model statement, or if such a model is recognized
in an INRAM= data set, those elements in the central model matrices that correspond
to the exogenous manifest variables are reset to the sample values after computing
covariances or correlations within the current BY group.

The COSAN statement does not automatically set the covariances in the central
model matrices that correspond to manifest exogenous variables.

You can use the output of the predetermined values in the predicted model matrix
(PREDET option) that correspond to manifest exogenous variables to see which of
the manifest variables are exogenous variables and to help you set the corresponding
locations of the central model matrices with their covariances.

The following two examples show how different the results of PROC CALIS can be
if manifest variables are considered either as endogenous or as exogenous variables.
(See Figure 19.5.) In both examples, a correlation matrixS is tested against an iden-
tity model matrixC; that is, no parameter is estimated. The three runs of the first
example (specified by the COSAN, LINEQS, and RAM statements) consider the two
variablesy andx as endogenous variables.

title2 ’Data: FULLER (1987, p.18)’;
data corn;

input y x;
datalines;

86 70
115 97

90 53
86 64

110 95
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91 64
99 50
96 70
99 94

104 69
96 51

;

title3 ’Endogenous Y and X’;
proc calis data=corn;

cosal corr(2,ide);
run;
proc calis data=corn;

lineqs
y=ey,
x=ex;

std ey ex=2 * 1;
run;
proc calis data=corn;

ram
1 1 3 1.,
1 2 4 1.,
2 3 3 1.,
2 4 4 1.;

run;

The two runs of the second example (specified by the LINEQS and RAM statements)
considery andx as exogenous variables.

title3 ’Exogenous Y and X’;
proc calis data=corn;

std y x=2 * 1;
run;
proc calis data=corn;

ram
2 1 1 1.,
2 2 2 1.;

run;

x y

��??1 ��??1

Exogenous x, y

x y

��
��
ex

?
1
��
��
ey

?
1

��??1 ��??1

Endogenous x, y

Figure 19.5. Exogenous and Endogenous Variables
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The LINEQS and the RAM model statements set the covariances (correlations) of
exogenous manifest variables in the estimated model matrix and automatically reduce
the degrees of freedom.

Use of Optimization Techniques

No algorithm for optimizing general nonlinear functions exists that will always find
the global optimum for a general nonlinear minimization problem in a reasonable
amount of time. Since no single optimization technique is invariably superior to oth-
ers, PROC CALIS provides a variety of optimization techniques that work well in
various circumstances. However, you can devise problems for which none of the
techniques in PROC CALIS will find the correct solution. All optimization tech-
niques in PROC CALIS useO(n2) memory except the conjugate gradient methods,
which use onlyO(n) of memory and are designed to optimize problems with many
parameters.

The PROC CALIS statement NLOPTIONS can be especially helpful for tuning appli-
cations with nonlinear equality and inequality constraints on the parameter estimates.
Some of the options available in NLOPTIONS may also be invoked as PROC CALIS
options. The NLOPTIONS statement can specify almost the same options as the
SAS/OR NLP procedure.

Nonlinear optimization requires the repeated computation of

� the function value (optimization criterion)

� the gradient vector (first-order partial derivatives)

� for some techniques, the (approximate) Hessian matrix (second-order partial
derivatives)

� values of linear and nonlinear constraints

� the first-order partial derivatives (Jacobian) of nonlinear constraints

For the criteria used by PROC CALIS, computing the gradient takes more computer
time than computing the function value, and computing the Hessian takesmuchmore
computer time and memory than computing the gradient, especially when there are
many parameters to estimate. Unfortunately, optimization techniques that do not use
the Hessian usually require many more iterations than techniques that do use the
(approximate) Hessian, and so they are often slower. Techniques that do not use the
Hessian also tend to be less reliable (for example, they may terminate at local rather
than global optima).

The available optimization techniques are displayed in Table 19.13 and can be chosen
by the TECH=name option.
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Table 19.13. Optimization Techniques

TECH= Optimization Technique
LEVMAR Levenberg-Marquardt Method
TRUREG Trust-Region Method
NEWRAP Newton-Raphson Method with Line Search
NRRIDG Newton-Raphson Method with Ridging

QUANEW Quasi-Newton Methods (DBFGS, DDFP, BFGS, DFP)
DBLDOG Double-Dogleg Method (DBFGS, DDFP)
CONGRA Conjugate Gradient Methods (PB, FR, PR, CD)

Table 19.14 shows, for each optimization technique, which derivatives are needed
(first-order or second-order) and what kind of constraints (boundary, linear, or non-
linear) can be imposed on the parameters.

Table 19.14. Derivatives Needed and Constraints Allowed

Derivatives Constraints
TECH= First Order Second Order Boundary Linear Nonlinear

LEVMAR x x x x -
TRUREG x x x x -
NEWRAP x x x x -
NRRIDG x x x x -

QUANEW x - x x x
DBLDOG x - x x -
CONGRA x - x x -

The Levenberg-Marquardt, trust-region, and Newton-Raphson techniques are usually
the most reliable, work well with boundary and general linear constraints, and gener-
ally converge after a few iterations to a precise solution. However, these techniques
need to compute a Hessian matrix in each iteration. For HESSALG=1, this means
that you need about4(n(n+1)=2)t bytes of work memory (n = the number of mani-
fest variables,t = the number of parameters to estimate) to store the Jacobian and its
cross product. With HESSALG=2 or HESSALG=3, you do not need this work mem-
ory, but the use of a utility file increases execution time. Computing the approximate
Hessian in each iteration can be very time- and memory-consuming, especially for
large problems (more than 60 or 100 parameters, depending on the computer used).
For large problems, a quasi-Newton technique, especially with the BFGS update, can
be far more efficient.

For a poor choice of initial values, the Levenberg-Marquardt method seems to be
more reliable.

If memory problems occur, you can use one of the conjugate gradient techniques, but
they are generally slower and less reliable than the methods that use second-order
information.

There are several options to control the optimization process. First of all, you can
specify various termination criteria. You can specify the GCONV= option to specify
a relative gradient termination criterion. If there are active boundary constraints, only
those gradient components that correspond to inactive constraints contribute to the
criterion. When you want very precise parameter estimates, the GCONV= option is
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useful. Other criteria that use relative changes in function values or parameter esti-
mates in consecutive iterations can lead to early termination when active constraints
cause small steps to occur. The small default value for the FCONV= option helps
prevent early termination. Using the MAXITER= and MAXFUNC= options enables
you to specify the maximum number of iterations and function calls in the optimiza-
tion process. These limits are especially useful in combination with the INRAM=
and OUTRAM= options; you can run a few iterations at a time, inspect the results,
and decide whether to continue iterating.

Nonlinearly Constrained QN Optimization
The algorithm used for nonlinearly constrained quasi-Newton optimization is an ef-
ficient modification of Powell’s (1978a, 1978b, 1982a, 1982b)Variable Metric Con-
strained WatchDog(VMCWD) algorithm. A similar but older algorithm (VF02AD)
is part of the Harwell library. Both VMCWD and VF02AD use Fletcher’s VE02AD
algorithm (also part of the Harwell library) for positive definite quadratic program-
ming. The PROC CALIS QUANEW implementation uses a quadratic programming
subroutine that updates and downdates the approximation of the Cholesky factor
when the active set changes. The nonlinear QUANEW algorithm is not a feasible
point algorithm, and the value of the objective function need not decrease (mini-
mization) or increase (maximization) monotonically. Instead, the algorithm tries to
reduce a linear combination of the objective function and constraint violations, called
themerit function.

The following are similarities and differences between this algorithm and VMCWD:

� A modification of this algorithm can be performed by specifying VERSION=1,
which replaces the update of the Lagrange vector� with the original update of
Powell (1978a, 1978b), which is used in VF02AD. This can be helpful for
some applications with linearly dependent active constraints.

� If the VERSION= option is not specified or VERSION=2 is specified, the eval-
uation of the Lagrange vector� is performed in the same way as Powell (1982a,
1982b) describes.

� Instead of updating an approximate Hessian matrix, this algorithm uses the
dual BFGS (or DFP) update that updates the Cholesky factor of an approximate
Hessian. If the condition of the updated matrix gets too bad, a restart is done
with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

� The Cholesky factor is loaded into the quadratic programming subroutine,
automatically ensuring positive definiteness of the problem. During the
quadratic programming step, the Cholesky factor of the projected Hessian ma-
trix Z0

kGZk and theQT decomposition are updated simultaneously when the
active set changes. Refer to Gill et al. (1984) for more information.

� The line-search strategy is very similar to that of Powell (1982a, 1982b). How-
ever, this algorithm does not call for derivatives during the line search; hence,
it generally needs fewer derivative calls than function calls. The VMCWD al-
gorithm always requires the same number of derivative and function calls. It
was also found in several applications of VMCWD that Powell’s line-search
method sometimes uses steps that are too long during the first iterations. In
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those cases, you can use the INSTEP= option specification to restrict the step
length� of the first iterations.

� Also the watchdog strategy is similar to that of Powell (1982a, 1982b). How-
ever, this algorithm doesn’t return automatically after a fixed number of itera-
tions to a former better point. A return here is further delayed if the observed
function reduction is close to the expected function reduction of the quadratic
model.

� Although Powell’s termination criterion still is used (as FCONV2), the
QUANEW implementation uses two additional termination criteria (GCONV
and ABSGCONV).

This algorithm is automatically invoked when you specify the NLINCON state-
ment. The nonlinear QUANEW algorithm needs the Jacobian matrix of the first-order
derivatives (constraints normals) of the constraints

(rci) = (
@ci
@xj

); i = 1; : : : ; nc; j = 1; : : : ; n

wherenc is the number of nonlinear constraints for a given pointx.

You can specify two update formulas with the UPDATE= option:

� UPDATE=DBFGS performs the dual BFGS update of the Cholesky factor of
the Hessian matrix. This is the default.

� UPDATE=DDFP performs the dual DFP update of the Cholesky factor of the
Hessian matrix.

This algorithm uses its own line-search technique. All options and parameters (ex-
cept the INSTEP= option) controlling the line search in the other algorithms do not
apply here. In several applications, large steps in the first iterations are troublesome.
You can specify the INSTEP= option to impose an upper bound for the step size�
during the first five iterations. The values of the LCSINGULAR=, LCEPSILON=,
and LCDEACT= options, which control the processing of linear and boundary con-
straints, are valid only for the quadratic programming subroutine used in each itera-
tion of the nonlinear constraints QUANEW algorithm.

Optimization and Iteration History
The optimization and iteration histories are displayed by default because it is impor-
tant to check for possible convergence problems.

The optimization history includes the following summary of information about the
initial state of the optimization.

� the number of constraints that are active at the starting point, or more precisely,
the number of constraints that are currently members of the working set. If
this number is followed by a plus sign, there are more active constraints, of
which at least one is temporarily released from the working set due to negative
Lagrange multipliers.

� the value of the objective function at the starting point
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� if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

� for the TRUREG and LEVMAR subroutines, the initial radius of the trust re-
gion around the starting point

The optimization history ends with some information concerning the optimization
result:

� the number of constraints that are active at the final point, or more precisely,
the number of constraints that are currently members of the working set. If
this number is followed by a plus sign, there are more active constraints, of
which at least one is temporarily released from the working set due to negative
Lagrange multipliers.

� the value of the objective function at the final point

� if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

� other information specific to the optimization technique

The iteration history generally consists of one line of displayed output containing the
most important information for each iteration. The–LIST– variable (see the “SAS
Program Statements” section on page 514) also enables you to display the parameter
estimates and the gradient in some or all iterations.

The iteration history always includes the following (the words in parentheses are the
column header output):

� the iteration number (Iter)

� the number of iteration restarts (rest)

� the number of function calls (nfun)

� the number of active constraints (act)

� the value of the optimization criterion (optcrit)

� the difference between adjacent function values (difcrit)

� the maximum of the absolute gradient components corresponding to inactive
boundary constraints (maxgrad)

An apostrophe trailing the number of active constraints indicates that at least one of
the active constraints is released from the active set due to a significant Lagrange
multiplier.

For the Levenberg-Marquardt technique (LEVMAR), the iteration history also in-
cludes the following information:

� An asterisk trailing the iteration number means that the computed Hessian ap-
proximation is singular and consequently ridged with a positive lambda value.
If all or the last several iterations show a singular Hessian approximation, the
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problem is not sufficiently identified. Thus, there are other locally optimal so-
lutions that lead to the same optimum function value for different parameter
values. This implies that standard errors for the parameter estimates are not
computable without the addition of further constraints.

� the value of the Lagrange multiplier (lambda); this is 0 if the optimum of
the quadratic function approximation is inside the trust region (a trust-region-
scaled Newton step can be performed) and is greater than 0 when the opti-
mum of the quadratic function approximation is located at the boundary of the
trust region (the scaled Newton step is too long to fit in the trust region and
a quadratic constraint optimization is performed). Large values indicate opti-
mization difficulties. For a nonsingular Hessian matrix, the value of lambda
should go to 0 during the last iterations, indicating that the objective function
can be well approximated by a quadratic function in a small neighborhood of
the optimum point. An increasing lambda value often indicates problems in the
optimization process.

� the value of the ratio� (rho) between the actually achieved difference in func-
tion values and the predicted difference in the function values on the basis of the
quadratic function approximation. Values much less than 1 indicate optimiza-
tion difficulties. The value of the ratio� indicates the goodness of the quadratic
function approximation; in other words,� << 1 means that the radius of the
trust region has to be reduced. A fairly large value of� means that the radius
of the trust region need not be changed. And a value close to or larger than
1 means that the radius can be increased, indicating a good quadratic function
approximation.

For the Newton-Raphson technique (NRRIDG), the iteration history also includes the
following information:

� the value of the ridge parameter. This is 0 when a Newton step can be per-
formed, and it is greater than 0 when either the Hessian approximation is sin-
gular or a Newton step fails to reduce the optimization criterion. Large values
indicate optimization difficulties.

� the value of the ratio� (rho) between the actually achieved difference in func-
tion values and the predicted difference in the function values on the basis of
the quadratic function approximation. Values much less than 1.0 indicate opti-
mization difficulties.

For the Newton-Raphson with line-search technique (NEWRAP), the iteration history
also includes

� the step size� (alpha) computed with one of the line-search algorithms

� the slope of the search direction at the current parameter iterate. For minimiza-
tion, this value should be significantly negative. Otherwise, the line-search
algorithm has difficulty reducing the function value sufficiently.

For the Trust-Region technique (TRUREG), the iteration history also includes the
following information.
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� An asterisk after the iteration number means that the computed Hessian ap-
proximation is singular and consequently ridged with a positive lambda value.

� the value of the Lagrange multiplier (lambda). This value is zero when the
optimum of the quadratic function approximation is inside the trust region (a
trust-region-scaled Newton step can be performed) and is greater than zero
when the optimum of the quadratic function approximation is located at the
boundary of the trust region (the scaled Newton step is too long to fit in the
trust region and a quadratically constrained optimization is performed). Large
values indicate optimization difficulties. As in Gay (1983), a negative lambda
value indicates the special case of an indefinite Hessian matrix (the smallest
eigenvalue is negative in minimization).

� the value of the radius� of the trust region. Small trust region radius values
combined with large lambda values in subsequent iterations indicate optimiza-
tion problems.

For the quasi-Newton (QUANEW) and conjugate gradient (CONGRA) techniques,
the iteration history also includes the following information:

� the step size (alpha) computed with one of the line-search algorithms

� the descent of the search direction at the current parameter iterate. This value
should be significantly smaller than 0. Otherwise, the line-search algorithm
has difficulty reducing the function value sufficiently.

Frequent update restarts (rest) of a quasi-Newton algorithm often indicate numerical
problems related to required properties of the approximate Hessian update, and they
decrease the speed of convergence. This can happen particularly if the ABSGCONV=
termination criterion is too small, that is, when the requested precision cannot be
obtained by quasi-Newton optimization. Generally, the number of automatic restarts
used by conjugate gradient methods are much higher.

For the nonlinearly constrained quasi-Newton technique, the iteration history also
includes the following information:

� the maximum value of all constraint violations,

conmax= max(jci(x)j : ci(x) < 0)

� the value of the predicted function reduction used with the GCONV and
FCONV2 termination criteria,

pred= jg(x(k))s(x(k))j+
mX
i=1

j�ici(x(k))j

� the step size� of the quasi-Newton step. Note that this algorithm works with
a special line-search algorithm.
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� the maximum element of the gradient of the Lagrange function,

lfgmax = rxL(x
(k); �(k))

= rxf(x
(k))�

mX
i=1

�
(k)
i rxci(x

(k))

For the double dogleg technique, the iteration history also includes the following
information:

� the parameter� of the double-dogleg step. A value� = 0 corresponds to the
full (quasi) Newton step.

� the slope of the search direction at the current parameter iterate. For minimiza-
tion, this value should be significantly negative.

Line-Search Methods
In each iterationk, the (dual) quasi-Newton, hybrid quasi-Newton, conjugate gra-
dient, and Newton-Raphson minimization techniques use iterative line-search algo-
rithms that try to optimize a linear, quadratic, or cubic approximation of the nonlinear
objective functionf of n parametersx along a feasible descent search directions(k)

f(x(k+1)) = f(x(k) + �(k)s(k))

by computing an approximately optimal scalar�(k) > 0. Since the outside iteration
process is based only on the approximation of the objective function, the inside itera-
tion of the line-search algorithm does not have to be perfect. Usually, it is satisfactory
that the choice of� significantly reduces (in a minimization) the objective function.
Criteria often used for termination of line-search algorithms are the Goldstein condi-
tions (Fletcher 1987).

Various line-search algorithms can be selected by using the LIS= option (page 468).
The line-search methods LIS=1, LIS=2, and LIS=3 satisfy the left-hand-side and
right-hand-side Goldstein conditions (refer to Fletcher 1987). When derivatives are
available, the line-search methods LIS=6, LIS=7, and LIS=8 try to satisfy the right-
hand-side Goldstein condition; if derivatives are not available, these line-search algo-
rithms use only function calls.

The line-search method LIS=2 seems to be superior when function evaluation con-
sumes significantly less computation time than gradient evaluation. Therefore, LIS=2
is the default value for Newton-Raphson, (dual) quasi-Newton, and conjugate gradi-
ent optimizations.

Restricting the Step Length
Almost all line-search algorithms use iterative extrapolation techniques that can eas-
ily lead to feasible points where the objective functionf is no longer defined (result-
ing in indefinite matrices for ML estimation) or is difficult to compute (resulting in
floating point overflows). Therefore, PROC CALIS provides options that restrict the
step length or trust region radius, especially during the first main iterations.

The inner productg0s of the gradientg and the search directions is the slope of
f(�) = f(x + �s) along the search directions with step length�. The default
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starting value�(0) = �(k;0) in each line-search algorithm (min�>0 f(x+�s)) during
the main iterationk is computed in three steps.

1. Use either the differencedf = jf (k) � f (k�1)j of the function values during
the last two consecutive iterations or the final stepsize value�– of the previous

iterationk � 1 to compute a first value�(0)1 .

� Using the DAMPSTEP<=r> option:

�
(0)
1 = min(1; r�–)

The initial value for the new step length can be no larger thanr times the
final step length�– of the previous iteration. The default isr = 2.

� Not using the DAMPSTEP option:

�
(0)
1 =

8<
:

step if 0:1 � step � 10
10 if step > 10
0:1 if step < 0:1

with

step =

�
df=jg0sj if jg0sj � �max(100df; 1)
1 otherwise

This value of�(0)1 can be too large and can lead to a difficult or impossible
function evaluation, especially for highly nonlinear functions such as the
EXP function.

2. During the first five iterations, the second step enables you to reduce�
(0)
1 to a

smaller starting value�(0)2 using the INSTEP=r option:

�
(0)
2 = min(�

(0)
1 ; r)

After more than five iterations,�(0)2 is set to�(0)1 .

3. The third step can further reduce the step length by

�
(0)
3 = min(�

(0)
2 ;min(10; u))

whereu is the maximum length of a step inside the feasible region.

The INSTEP=r option lets you specify a smaller or larger radius of the trust re-
gion used in the first iteration by the trust-region, double-dogleg, and Levenberg-
Marquardt algorithm. The default initial trust region radius is the length of the scaled
gradient (Moré 1978). This step corresponds to the default radius factor ofr = 1.
This choice is successful in most practical applications of the TRUREG, DBLDOG,
and LEVMAR algorithms. However, for bad initial values used in the analysis of a
covariance matrix with high variances, or for highly nonlinear constraints (such as
using the EXP function) in your programming code, the default start radius can result
in arithmetic overflows. If this happens, you can try decreasing values of INSTEP=r,
0 < r < 1, until the iteration starts successfully. A small factorr also affects the
trust region radius of the next steps because the radius is changed in each iteration
by a factor0 < c � 4 depending on the� ratio. Reducing the radius corresponds to
increasing the ridge parameter� that produces smaller steps directed closer toward
the gradient direction.

SAS OnlineDoc: Version 8



560 � Chapter 19. The CALIS Procedure

Modification Indices

While fitting structural models, you may want to modify the specified model in order
to

� reduce the�2 value significantly

� reduce the number of parameters to estimate without increasing the�2 value
too much

If you specify the MODIFICATION or MOD option, PROC CALIS computes and
displays a default set of modification indices:

� Univariate Lagrange multiplier test indices for most elements in the model
matrices that are constrained toequal constants. These are second-order ap-
proximations of the decrease in the�2 value that would result from allowing
the constant matrix element to vary. Besides the value of the Lagrange multi-
plier, the corresponding probability (df = 1) and the approximate change of
the parameter value (should the constant be changed to a parameter) are dis-
played. If allowing the constant to be a free estimated parameter would result
in a singular information matrix, the string ’sing’ is displayed instead of the
Lagrange multiplier index. Not all elements in the model matrices should be
allowed to vary; the diagonal elements of the inverse matrices in the RAM or
LINEQS model must be constant ones. The univariate Lagrange multipliers
are displayed at the constant locations of the model matrices.

� Univariate Wald test indices for those matrix elements that correspond to
parameter estimatesin the model. These are second-order approximations of
the increase in the�2 value that would result from constraining the parameter
to a 0 constant. The univariate Wald test indices are the same as thet values
that are displayed together with the parameter estimates and standard errors.
The univariate Wald test indices are displayed at the parameter locations of the
model matrices.

� Univariate Lagrange multiplier test indices that are second-order approxi-
mations of the decrease in the�2 value that would result from the release of
equality constraints. Multiple equality constraints containingn > 2 parame-
ters are tested successively inn steps, each assuming the release of one of the
equality-constrained parameters. The expected change of the parameter values
of the separated parameter and the remaining parameter cluster are displayed,
too.

� Univariate Lagrange multiplier test indices for releasingactive boundary
constraintsspecified by the BOUNDS statement

� Stepwise multivariate Wald test indicesfor constraining estimated parame-
ters to 0 are computed and displayed. In each step, the parameter that would
lead to the smallest increase in the multivariate�2 value is set to 0. Besides
the multivariate�2 value and its probability, the univariate increments are also
displayed. The process stops when the univariate probability is smaller than
the specified value in the SLMW= option.
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All of the preceding tests are approximations. You can often get more accurate tests
by actually fitting different models and computing likelihood ratio tests. For more
details about the Wald and the Lagrange multiplier test, refer to MacCallum (1986),
Buse (1982), Bentler (1986), or Lee (1985).

Note that, for large model matrices, the computation time for the default modification
indices can considerably exceed the time needed for the minimization process.

The modification indices are not computed for unweighted least-squares or diago-
nally weighted least-squares estimation.

Caution: Modification indices are not computed if the model matrix is an identity
matrix (IDE or ZID), a selection matrix (PER), or the first matrixJ in the LINEQS
model. If you want to display the modification indices for such a matrix, you should
specify the matrix as another type; for example, specify an identity matrix used in the
COSAN statement as a diagonal matrix with constant diagonal elements of 1.

Constrained Estimation Using Program Code

The CALIS procedure offers a very flexible way to constrain parameter estimates.
You can use your own programming statements to express special properties of the
parameter estimates. This tool is also present in McDonald’s COSAN implementa-
tion but is considerably easier to use in the CALIS procedure. PROC CALIS is able
to compute analytic first- and second-order derivatives that you would have to specify
using the COSAN program. There are also three PROC CALIS statements you can
use:

� the BOUNDS statement, to specify simple bounds on the parameters used in
the optimization process

� the LINCON statement, to specify general linear equality and inequality con-
straints on the parameters used in the optimization process

� the NLINCON statement, to specify general nonlinear equality and inequality
constraints on the parameters used in the optimization process. The variables
listed in the NLINCON statement must be specified in the program code.

There are some traditional ways to enforce parameter constraints by using parameter
transformations (McDonald 1980).
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� One-sided boundary constraints:For example, the parameterqk should be at
least as large (or at most as small) as a given constant valuea (or b),

qk � a or qk � b

This inequality constraint can be expressed as an equality constraint

qk = a+ x2j or qk = b� x2j

in which the fundamental parameterxj is unconstrained.

� Two-sided boundary constraints: For example, the parameterqk should be
located between two given constant valuesa andb, a < b,

a � qk � b

This inequality constraint can be expressed as an equality constraint

qk = a+ b
exp(xj)

1 + exp(xj)

in which the fundamental parameterxj is unconstrained.

� One-sided order constraints:For example, the parametersq1 , : : : , qk should
be ordered in the form

q1 � q2; q1 � q3; : : : ; q1 � qk

These inequality constraints can be expressed as a set of equality constraints

q1 = x1; q2 = x1 + x22; : : : ; qk = x1 + x2k

in which the fundamental parametersx1 , : : : , xk are unconstrained.

� Two-sided order constraints: For example, the parametersq1 , : : : , qk should
be ordered in the form

q1 � q2 � q3 � : : : � qk

These inequality constraints can be expressed as a set of equality constraints

q1 = x1; q2 = q1 + x22; : : : ; qk = qk�1 + x2k

in which the fundamental parametersx1 , : : : , xk are unconstrained.

� Linear equation constraints: For example, the parametersq1, q2, q3 should
be linearly constrained in the form

q1 + q2 + q3 = a

which can be expressed in the form of three explicit equations in which the
fundamental parametersx1 andx2 are unconstrained:

q1 = x1; q2 = x2; q3 = a� x1 � x2
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Refer to McDonald (1980) and Browne (1982) for further notes on reparameterizing
techniques. If the optimization problem is not too large to apply the Levenberg-
Marquardt or Newton-Raphson algorithm, boundary constraints should be requested
by the BOUNDS statement rather than by reparameterizing code. If the problem is
so large that you must use a quasi-Newton or conjugate gradient algorithm, reparam-
eterizing techniques may be more efficient than the BOUNDS statement.

Counting the Degrees of Freedom

In a regression problem, the number of degrees of freedom for the error estimate is
the number of observations in the data set minus the number of parameters. The
NOBS=, DFR= (RDF=), and DFE= (EDF=) options refer to degrees of freedom in
this sense. However, these values are not related to the degrees of freedom of a test
statistic used in a covariance or correlation structure analysis. The NOBS=, DFR=,
and DFE= options should be used in PROC CALIS to specify only the effective
number of observations in the input DATA= data set.

In general, the number of degrees of freedom in a covariance or correlation structure
analysis is defined as the difference between the number of nonredundant valuesq
in the observedn � n correlation or covariance matrixS and the numbert of free
parametersX used in the fit of the specified model,df = q� t. Both values,q andt,
are counted differently in different situations by PROC CALIS.

The number of nonredundant valuesq is generally equal to the number of lower
triangular elements in then � n moment matrixS including all diagonal elements,
minus a constantc dependent upon special circumstances,

q = n(n+ 1)=2 � c

The numberc is evaluated by adding the following quantities:

� If you specify a linear structural equation model containing exogenous man-
ifest variables by using the RAM or LINEQS statement, PROC CALIS adds
to c the number of variances and covariances among these manifest exoge-
nous variables, which are automatically set in the corresponding locations of
the central model matrices (see the section “Exogenous Manifest Variables” on
page 549).

� If you specify the DFREDUCE=i option, PROC CALIS adds the specified
numberi to c. The numberi can be a negative integer.

� If you specify the NODIAG option to exclude the fit of the diagonal elements
of the data matrixS, PROC CALIS adds the numbern of diagonal elements to
c.

� If all the following conditions hold, then PROC CALIS adds toc the number
of the diagonal locations:

– NODIAG and DFREDUC= options are not specified.

– A correlation structure is being fitted.

– The predicted correlation matrix contains constants on the diagonal.
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In some complicated models, especially those using programming statements, PROC
CALIS may not be able to detect all the constant predicted values. In such cases, you
must specify the DFREDUCE= option to get the correct degrees of freedom.

The numbert is the number of different parameter names used in constructing the
model if you do not use programming statements to impose constraints on the param-
eters. Using programming statements in general introduces two kinds of parameters:

� independent parameters, which are used only at the right-hand side of the ex-
pressions

� dependent parameters, which are used at least once at the left-hand side of the
expressions

The independent parameters belong to the parameters involved in the estimation pro-
cess, whereas the dependent parameters are fully defined by the programming state-
ments and can be computed from the independent parameters. In this case, the num-
bert is the number of different parameter names used in the model specification, but
not used in the programming statements, plus the number of independent parame-
ters. The independent parameters and their initial values can be defined in a model
specification statement or in a PARMS statement.

The degrees of freedom are automatically increased by the number of active con-
straints in the solution. Similarly, the number of parameters are decreased by the
number of active constraints. This affects the computation of many fit statistics and
indices. Refer to Dijkstra (1992) for a discussion of the validity of statistical in-
ferences with active boundary constraints. If the researcher believes that the active
constraints will have a small chance of occurrence in repeated sampling, it may be
more suitable to turn off the automatic adjustment using the NOADJDF option.

Computational Problems

First Iteration Overflows
Analyzing a covariance matrix including high variances in the diagonal and using
bad initial estimates for the parameters can easily lead to arithmetic overflows in the
first iterations of the minimization algorithm. The line-search algorithms that work
with cubic extrapolation are especially sensitive to arithmetic overflows. If this occurs
with quasi-Newton or conjugate gradient minimization, you can specify the INSTEP=
option to reduce the length of the first step. If an arithmetic overflow occurs in the
first iteration of the Levenberg-Marquardt algorithm, you can specify the INSTEP=
option to reduce the trust region radius of the first iteration. You also can change the
minimization technique or the line-search method. If none of these help, you should
consider

� scaling the covariance matrix

� providing better initial values

� changing the model
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No Convergence of Minimization Process
If convergence does not occur during the minimization process, perform the following
tasks:

� If there arenegative variance estimatesin the diagonal locations of the central
model matrices, you can

� specify the BOUNDS statement to obtain nonnegative variance estimates

� specify the HEYWOOD option, if the FACTOR model statement is spec-
ified

� Change the estimation method to obtain a better set of initial estimates. For
example, if you use METHOD=ML, you can

� change to METHOD=LSML

� run some iterations with METHOD=DWLS or METHOD=GLS, write
the results in an OUTRAM= data set, and use the results as initial values
specified by an INRAM= data set in a second run with METHOD=ML

� Change the optimization technique. For example, if you use the default
TECH=LEVMAR, you can

� change to TECH=QUANEW or to TECH=NEWRAP

� run some iterations with TECH=CONGRA, write the results in an OUT-
RAM= data set, and use the results as initial values specified by an IN-
RAM= data set in a second run with a different TECH= technique

� Change or modify the update technique or the line-search algorithm, or both,
when using TECH=QUANEW or TECH=CONGRA. For example, if you use
the default update formula and the default line-search algorithm, you can

� change the update formula with the UPDATE= option

� change the line-search algorithm with the LIS= option

� specify a more precise line search with the LSPRECISION= option, if
you use LIS=2 or LIS=3

� You can allow more iterations and function calls by using the MAXIT= and
MAXFU= options.

� Change the initial values. For many categories of model specifications done
by the LINEQS, RAM, or FACTOR model, PROC CALIS computes an ap-
propriate set of initial values automatically. However, for some of the model
specifications (for example, structural equations with latent variables on the
left-hand side and manifest variables on the right-hand side), PROC CALIS
can generate very obscure initial values. In these cases, you have to set the
initial values yourself.

� Increase the initial values of the parameters located at the diagonal of
central matrices

� manually, by setting the values in the model specification
� automatically, by using the DEMPHAS= option
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� Use a slightly different, but more stable, model to obtain preliminary es-
timates.

� Use additional information to specify initial values, for example, by us-
ing other SAS software like the FACTOR, REG, SYSLIN, and MODEL
(SYSNLIN) procedures for the modified, unrestricted model case.

� Change the optimization technique. For example, if you use the default
TECH=LEVMAR, you can

� change to TECH=QUANEW or to TECH=NEWRAP

� run some iterations with TECH=CONGRA, write the results in an OUT-
RAM= data set, and use the results as initial values specified by an IN-
RAM= data set in a second run with a different TECH= technique

� Change or modify the update technique or the line-search algorithm, or both,
when using TECH=QUANEW or TECH=CONGRA. For example, if you use
the default update formula and the default line-search algorithm, you can

� change the update formula with the UPDATE= option

� change the line-search algorithm with the LIS= option

� specify a more precise line search with the LSPRECISION= option, if
you use LIS=2 or LIS=3

� Temporarily change the estimation method to obtain a better set of initial esti-
mates. For example, if you use METHOD=ML, you can

� change to METHOD=LSML

� run some iterations with METHOD=DWLS or GLS, write the results in
an OUTRAM= data set, and use the results as initial values specified by
an INRAM= data set in a second run with METHOD=ML

� You can allow more iterations and function calls by using the MAXIT= and
MAXFU= options.

Unidentified Model
The parameter vectorx in the covariance structure model

C = C(x)

is said to be identified in a parameter spaceG, if

C(x) = C(~x); ~x 2 G

impliesx = ~x. The parameter estimates that result from an unidentified model can be
very far from the parameter estimates of a very similar but identified model. They are
usually machine dependent. Don’t use parameter estimates of an unidentified model
as initial values for another run of PROC CALIS.

Singular Predicted Model Matrix
You can easily specify models with singular predicted model matrices, for example,
by fixing diagonal elements of central matrices to 0. In such cases, you cannot com-
pute maximum likelihood estimates (the ML function valueF is not defined). Since
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singular predicted model matrices can also occur temporarily in the minimization
process, PROC CALIS tries in such cases to change the parameter estimates so that
the predicted model matrix becomes positive definite. In such cases, the following
message is displayed:

NOTE: Parameter set changed.

This process does not always work well, especially if there are fixed instead of vari-
able diagonal elements in the central model matrices. A famous example where you
cannot compute ML estimates is a component analysis with fewer components than
given manifest variables. See the section “FACTOR Model Statement” on page 493
for more details. If you continue to get a singular predicted model matrix after chang-
ing initial values and optimization techniques, then your model is perhaps specified
so that ML estimates cannot be computed.

Saving Computing Time
For large models, the most computing time is needed to compute the modification in-
dices. If you don’t really need the Lagrange multipliers or multiple Wald test indices
(the univariate Wald test indices are the same as thet values), using the NOMOD
option can save a considerable amount of computing time.

Central Matrices with Negative Eigenvalues
A covariance matrix cannot have negative eigenvalues, since a negative eigenvalue
means that some linear combination of the variables has negative variance. PROC
CALIS displays a warning if a central model matrix has negative eigenvalues but
does not actually compute the eigenvalues. Sometimes this warning can be triggered
by 0 or very small positive eigenvalues that appear negative because of numerical
error. If you want to be sure that the central model matrix you are fitting can be
considered to be a variance-covariance matrix, you can use the SAS/IML command
VAL=EIGVAL(U)to compute the vectorVALof eigenvalues of matrixU.

Negative R 2 Values
The estimated squared multiple correlationsR2 of the endogenous variables are com-
puted using the estimated error variances

R2
i = 1�
\var(�i)

\var(�i)

If the model is a poor fit, it is possible that\var(�i) > \var(�i), which results in
R2
i < 0.

SAS OnlineDoc: Version 8



568 � Chapter 19. The CALIS Procedure

Displayed Output

The output displayed by PROC CALIS depends on the statement used to specify
the model. Since an analysis requested by the LINEQS or RAM statement implies
the analysis of a structural equation model, more statistics can be computed and dis-
played than for a covariance structure analysis following the generalized COSAN
model requested by the COSAN statement. The displayed output resulting from use
of the FACTOR statement includes all the COSAN displayed output as well as more
statistics displayed only when you specify the FACTOR statement. Since the dis-
played output using the RAM statement differs only in its form from that generated
by the LINEQS statement, in this section distinctions are made between COSAN and
LINEQS output only.

The unweighted least-squares and diagonally weighted least-squares estimation
methods do not provide a sufficient statistical basis to provide the following output
(neither displayed nor written to an OUTEST= data set):

� most of the fit indices

� approximate standard errors

� normalized or asymptotically standardized residuals

� modification indices

� information matrix

� covariance matrix of parameter estimates

The notationS = (sij) is used for the analyzed covariance or correlation matrix,
C = (cij) for the predicted model matrix,W for the weight matrix (for example,
W = I for ULS,W = S for GLS,W = C for ML estimates),X for the vector of
optimal parameter estimates,n for the number of manifest variables,t for the number
of parameter estimates, andN for the sample size.

The output of PROC CALIS includes the following:

� COSAN and LINEQS: List of the matrices and their properties specified by the
generalized COSAN model if you specify at least the PSHORT option.

� LINEQS: List of manifest variables that are not used in the specified model and
that are automatically omitted from the analysis. Note that there is no automatic
variable reduction with the COSAN or FACTOR statement. If necessary, you
should use the VAR statement in these cases.

� LINEQS: List of the endogenous and exogenous variables specified by the
LINEQS, STD, and COV statements if you specify at least the PSHORT op-
tion.

� COSAN: Initial values of the parameter matrices indicating positions of con-
stants and parameters. The output, or at least the default output, is displayed if
you specify the PINITIAL option.
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� LINEQS: The set of structural equations containing the initial values and in-
dicating constants and parameters, and output of the initial error variances and
covariances. The output, or at least the default output, is displayed if you spec-
ify the PINITIAL option.

� COSAN and LINEQS: The weight matrixW is displayed if GLS, WLS, or
DWLS estimation is used and you specify the PWEIGHT or PALL option.

� COSAN and LINEQS: General information about the estimation problem:
number of observations (N ), number of manifest variables (n), amount of in-
dependent information in the data matrix (information,n(n + 1)=2), number
of terms and matrices in the specified generalized COSAN model, and number
of parameters to be estimated (parameters,t). If there are no exogenous man-
ifest variables, the difference between the amount of independent information
(n(n+ 1)=2) and the number of requested estimates (t) is equal to the degrees
of freedom (df ). A necessary condition for a model to be identified is that the
degrees of freedom are nonnegative. The output, or at least the default output,
is displayed if you specify the SIMPLE option.

� COSAN and LINEQS: Mean and Std Dev (standard deviation) of each variable
if you specify the SIMPLE option, as well as skewness and kurtosis if the
DATA= data set is a raw data set and you specify the KURTOSIS option.

� COSAN and LINEQS: Various coefficients of multivariate kurtosis and the
numbers of observations that contribute most to the normalized multivariate
kurtosis if the DATA= data set is a raw data set and the KURTOSIS option, or
you specify at least the PRINT option. See the section “Measures of Multivari-
ate Kurtosis” on page 544 for more information.

� COSAN and LINEQS: Covariance or correlation matrix to be analyzed and the
value of its determinant if you specify the output option PCORR or PALL. A
0 determinant indicates a singular data matrix. In this case, the generalized
least-squares estimates with default weight matrixS and maximum likelihood
estimates cannot be computed.

� LINEQS: If exogenous manifest variables in the linear structural equation
model are specified, then there is a one-to-one relationship between the given
covariances and corresponding estimates in the central model matrix� or P .
The output indicates which manifest variables are recognized as exogenous,
that is, for which variables the entries in the central model matrix are set to
fixed parameters. The output, or at least the default output, is displayed if you
specify the PINITIAL option.

� COSAN and LINEQS: Vector of parameter names, initial values, and corre-
sponding matrix locations, also indicating dependent parameter names used in
your program statements that are not allocated to matrix locations and have
no influence on the fit function. The output, or at least the default output, is
displayed if you specify the PINITIAL option.

� COSAN and LINEQS: The pattern of variable and constant elements of the pre-
dicted moment matrix that is predetermined by the analysis model is displayed
if there are significant differences between constant elements in the predicted
model matrix and the data matrix and you specify at least the PSHORT option.
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It is also displayed if you specify the PREDET option. The output indicates
the differences between constant values in the predicted model matrix and the
data matrix that is analyzed.

� COSAN and LINEQS: Special features of the optimization technique chosen
if you specify at least the PSHORT option.

� COSAN and LINEQS: Optimization history if at least the PSHORT option is
specified. For more details, see the section “Use of Optimization Techniques”
on page 551.

� COSAN and LINEQS: Specific output requested by options in the
NLOPTIONS statement; for example, parameter estimates, gradient, gradient
of Lagrange function, constraints, Lagrange multipliers, projected gradient,
Hessian, projected Hessian, Hessian of Lagrange function, Jacobian of nonlin-
ear constraints.

� COSAN and LINEQS: The predicted model matrix and its determinant, if you
specify the output option PCORR or PALL.

� COSAN and LINEQS: Residual and normalized residual matrix if you specify
the RESIDUAL, or at least the PRINT option. The variance standardized or
asymptotically standardized residual matrix can be displayed also. The aver-
age residual and the average off-diagonal residual are also displayed. See the
section “Assessment of Fit” on page 536 for more details.

� COSAN and LINEQS: Rank order of the largest normalized residuals if you
specify the RESIDUAL, or at least the PRINT option.

� COSAN and LINEQS: Bar chart of the normalized residuals if you specify the
RESIDUAL, or at least the PRINT option.

� COSAN and LINEQS: Value of the fit functionF . See the section “Estimation
Criteria” on page 531 for more details. This output can be suppressed only by
the NOPRINT option.

� COSAN and LINEQS: Goodness-of-fit index (GFI), adjusted goodness-of-fit
index (AGFI), and root mean square residual (RMR) (J�oreskog and S�orbom
1985). See the section “Assessment of Fit” on page 536 for more details. This
output can be suppressed only by the NOPRINT option.

� COSAN and LINEQS: Parsimonious goodness-of-fit index (PGFI) of Mulaik
et al. (1989). See the section “Assessment of Fit” on page 536 for more detail.
This output can be suppressed only by the NOPRINT option.

� COSAN and LINEQS: Overall�2, df , and Prob>Chi**2 if the METHOD=
option is not ULS or DWLS. The�2 measure is the optimum function valueF
multiplied by(N � 1) if a CORR or COV matrix is analyzed or multiplied by
N if a UCORR or UCOV matrix is analyzed;�2 measures the likelihood ratio
test statistic for the null hypothesis that the predicted matrixC has the specified
model structure against the alternative thatC is unconstrained. The notation
Prob>Chi**2 means “the probability under the null hypothesis of obtaining a
greater�2 statistic than that observed.” This output can be suppressed only by
the NOPRINT option.
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� COSAN and LINEQS: If METHOD= is not ULS or DWLS, the�20 value of the
independence model and the corresponding degrees of freedom can be used (in
large samples) to evaluate the gain of explanation by fitting the specific model
(Bentler 1989). See the section “Assessment of Fit” on page 536 for more
detail. This output can be suppressed only by the NOPRINT option.

� COSAN and LINEQS: If METHOD= is not ULS or DWLS, the value of the
Steiger & Lind (1980) root mean squared error of approximation (RMSEA)
coefficient and the lower and upper limits of the confidence interval. The size
of the confidence interval is defined by the option ALPHARMS=�, 0 � � � 1.
The default is� = 0:1, which corresponds to a 90% confidence interval. See
the section “Assessment of Fit” on page 536 for more detail. This output can
be suppressed only by the NOPRINT option.

� COSAN and LINEQS: If the value of the METHOD= option is not ULS or
DWLS, the value of theprobability of close fit(Browne and Cudeck 1993).
See the section “Assessment of Fit” on page 536 for more detail. This output
can be suppressed only by the NOPRINT option.

� COSAN and LINEQS: If the value of the METHOD= option is not ULS or
DWLS, the value of the Browne & Cudeck (1993) expected cross validation
(ECVI) index and the lower and upper limits of the confidence interval. The
size of the confidence interval is defined by the option ALPHAECV=�, 0 �
� � 1. The default is� = 0:1, which corresponds to a 90% confidence
interval. See the section “Assessment of Fit” on page 536 for more detail. This
output can be suppressed only by the NOPRINT option.

� COSAN and LINEQS: If the value of the METHOD= option is not ULS or
DWLS, Bentler’s (1989) Comparative Fit Index. See the section “Assessment
of Fit” on page 536 for more detail. This output can be suppressed only by the
NOPRINT option.

� COSAN and LINEQS: If you specify METHOD=ML or METHOD=GLS, the
�2 value and corresponding probability adjusted by the relative kurtosis coef-
ficient �2, which should be a close approximation of the�2 value for ellipti-
cally distributed data (Browne 1982). See the section “Assessment of Fit” on
page 536 for more detail. This output can be suppressed only by the NOPRINT
option.

� COSAN and LINEQS: The Normal Theory Reweighted LS�2 Value is dis-
played if METHOD= ML. Instead of the function valueFML, the reweighted
goodness-of-fit functionFGWLS is used. See the section “Assessment of Fit”
on page 536 for more detail.

� COSAN and LINEQS: Akaike’s Information Criterion if the value of the
METHOD= option is not ULS or DWLS. See the section “Assessment of Fit”
on page 536. This output can be suppressed only by the NOPRINT option.

� COSAN and LINEQS: Bozdogan’s (1987) Consistent Information Criterion,
CAIC. See the section “Assessment of Fit” on page 536. This output can be
suppressed only by the NOPRINT option.

� COSAN and LINEQS: Schwarz’s Bayesian Criterion (SBC) if the value of the
METHOD= option is not ULS or DWLS (Schwarz 1978). See the section
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“Assessment of Fit” on page 536. This output can be suppressed only by the
NOPRINT option.

� COSAN and LINEQS: If the value of the METHOD= option is not ULS or
DWLS, the following fit indices based on the overall�2 value are displayed:

– McDonald’s (McDonald and Hartmann 1992) measure of centrality

– Parsimonious index of James, Mulaik, and Brett (1982)

– Z-Test of Wilson and Hilferty (1931)

– Bentler and Bonett’s (1980) nonnormed coefficient

– Bentler and Bonett’s (1980) normed coefficient

– Bollen’s (1986) normed index�1
– Bollen’s (1989a) nonnormed index�2

See the section “Assessment of Fit” on page 536 for more detail. This output
can be suppressed only by the NOPRINT option.

� COSAN and LINEQS: Hoelter’s (1983) Critical N Index is displayed (Bollen
1989b, p. 277). See the section “Assessment of Fit” on page 536 for more
detail. This output can be suppressed only by the NOPRINT option.

� COSAN and LINEQS: Equations of linear dependencies among the parame-
ters used in the model specification if the information matrix is recognized as
singular at the final solution.

� COSAN: Model matrices containing the parameter estimates. Except for ULS
or DWLS estimates, the approximate standard errors andt values are also dis-
played. This output is displayed if you specify the PESTIM option or at least
the PSHORT option.

� LINEQS: Linear equations containing the parameter estimates. Except for
ULS and DWLS estimates, the approximate standard errors andt values are
also displayed. This output is displayed if you specify the PESTIM option, or
at least the PSHORT option.

� LINEQS: Variances and covariances of the exogenous variables. This output is
displayed if you specify the PESTIM option, or at least the PSHORT.

� LINEQS: Linear equations containing the standardized parameter estimates.
This output is displayed if you specify the PESTIM option, or at least the
PSHORT option.

� LINEQS: Table of correlations among the exogenous variables. This output is
displayed if you specify the PESTIM option, or at least the PSHORT option.

� LINEQS: Correlations among the exogenous variables. This output is dis-
played if you specify the PESTIM option, or at least the PSHORT option.

� LINEQS: Squared Multiple Correlations table, which displays the error vari-
ances of the endogenous variables. These are the diagonal elements of the
predicted model matrix. Also displayed is the Total Variance and theR2 val-
ues corresponding to all endogenous variables. See the section “Assessment of
Fit” on page 536 for more detail. This output is displayed if you specify the
PESTIM option, or at least the PSHORT option.
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� LINEQS: If you specify the PDETERM or the PALL option, the total determi-
nation of all equations (DETAE), the total determination of the structural equa-
tions (DETSE), and the total determination of the manifest variables (DETMV)
are displayed. See the section “Assessment of Fit” on page 536 for more de-
tails. If one of the determinants in the formulas is 0, the corresponding coeffi-
cient is displayed as a missing value. If there are structural equations, PROC
CALIS also displays the Stability Coefficient of Reciprocal Causation, that is,
the largest eigenvalue of theBB0 matrix, whereB is the causal coefficient
matrix of the structural equations.

� LINEQS: The matrix of estimated covariances among the latent variables if
you specify the PLATCOV option, or at least the PRINT option.

� LINEQS: The matrix of estimated covariances between latent and manifest
variables used in the model if you specify the PLATCOV option, or at least the
PRINT option.

� LINEQS and FACTOR: The matrixFSR of latent variable scores regression
coefficients if you specify the PLATCOV option, or at least the PRINT option.
TheFSR matrix is a generalization of Lawley and Maxwell’s (1971, p.109)
factor scores regression matrix,

FSR = CyxC
�1
xx

whereCxx is then� n predicted model matrix (predicted covariances among
manifest variables) andCyx is thenlat�nmatrix of the predicted covariances
between latent and manifest variables. You can multiply the manifest observa-
tions by this matrix to estimate the scores of the latent variables used in your
model.

� LINEQS: The matrixTEF of total effects if you specify the TOTEFF option,
or at least the PRINT option. For the LINEQS model, the matrix of total effects
is

TEF = (I� �)�1
 � (O : I)

(For the LISREL model, refer to J�oreskog and S�orbom 1985) The matrix of
indirect effects is displayed also.

� FACTOR: The matrix of rotated factor loadings and the orthogonal transfor-
mation matrix if you specify the ROTATE= and PESTIM options, or at least
the PSHORT options.

� FACTOR: Standardized (rotated) factor loadings, variance estimates of en-
dogenous variables,R2 values, correlations among factors, and factor scores
regression matrix, if you specify the PESTIM option, or at least the PSHORT
option. The determination of manifest variables is displayed only if you specify
the PDETERM option.

� COSAN and LINEQS: Univariate Lagrange multiplier and Wald test indices
are displayed in matrix form if you specify the MODIFICATION (or MOD) or
the PALL option. Those matrix locations that correspond to constants in the
model in general contain three values: the value of the Lagrange multiplier, the
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corresponding probability (df = 1), and the estimated change of the parameter
value should the constant be changed to a parameter. If allowing the constant
to be an estimated parameter would result in a singular information matrix,
the string ’sing’ is displayed instead of the Lagrange multiplier index. Those
matrix locations that correspond to parameter estimates in the model contain
the Wald test index and the name of the parameter in the model. See the section
“Modification Indices” on page 560 for more detail.

� COSAN and LINEQS: Univariate Lagrange multiplier test indices for releas-
ing equality constraints if you specify the MODIFICATION (or MOD) or the
PALL option. See the section “Modification Indices” on page 560 for more
detail.

� COSAN and LINEQS: Univariate Lagrange multiplier test indices for releas-
ing active boundary constraints specified by the BOUNDS statement if you
specify the MODIFICATION (or MOD) or the PALL option. See the section
“Modification Indices” on page 560 for more detail.

� COSAN and LINEQS: If the MODIFICATION (or MOD) or the PALL option
is specified, the stepwise multivariate Wald test for constraining estimated pa-
rameters to zero constants is performed as long as the univariate probability is
larger than the value specified in the PMW= option (default PMW=0.05). See
the section “Modification Indices” on page 560 for more details.

ODS Table Names

PROC CALIS assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 19.15. ODS Tables Created in PROC CALIS

ODS Table Name Model1 Description Option2

AddParms C, F, L, R Additional parameters in the
PARAMETERS statement

PINITIAL, or default

AsymStdRes C, F, L, R Asymptotically standardized residual
matrix

RESIDUAL=, or PRINT

AveAsymStdRes C, F, L, R Average absolute asymptotically
standardized residuals

RESIDUAL=, or PRINT

AveNormRes C, F, L, R Average absolute normalized residuals RESIDUAL=, or PRINT
AveRawRes C, F, L, R Average absolute raw residuals RESIDUAL=, or PRINT
AveVarStdRes C, F, L, R Average absolute variance standardized

residuals
RESIDUAL=, or PRINT

CholeskyWeights C, F, L, R Cholesky factor of weights PWEIGHT, or PALL
ContKurtosis C, F, L, R Contributions to kurtosis KURTOSIS, or PRINT
ConvergenceStatus C, F, L, R Convergence status PSHORT
CorrExog L Correlations among exogenous variables PESTIM, or PSHORT
CorrParm C, F, L, R Correlations among parameter estimates PCOVES, and default
CovMat C, F, L, R Assorted cov matrices PCOVES, and default
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Table 19.15. (continued)

ODS Table Name Model1 Description Option2

DependParms C, F, L, R Dependent parameters (if specified by
program statements)

PRIVEC, and default

Determination L, F, R Coefficients of determination PDETERM, and default
DistAsymStdRes C, F, L, R Distribution of asymptotically

standardized residuals
RESIDUAL=, or PRINT

DistNormRes C, F, L, R Distribution of normalized residuals RESIDUAL=, or PRINT
DistRawRes C, F, L, R Distribution of residuals RESIDUAL=, or PRINT
DistVarStdRes C, F, L, R Distribution of variance standardized

residuals
RESIDUAL=, or PRINT

EndogenousVar L Endogenous variables PESTIM, or PSHORT
EstCovExog L Estimated covariances among exogenous

variables
PESTIM, or PSHORT

Estimates C, F, L, R Vector of estimates PRIVEC
EstLatentEq L Estimated latent variable equations PESTIM, or PSHORT
EstManifestEq L Estimated manifest variable equations PESTIM, or PSHORT
EstParms C, F Estimated parameter matrix PESTIM, or PSHORT
EstVarExog L Estimated variances of exogenous

variables
PESTIM, or PSHORT

ExogenousVar L List of exogenous variables PESTIM, or PSHORT
FACTCorrExog F Correlations among factors PESTIM, or PSHORT
FactScoreCoef F Factor score regression coefficients PESTIM, or PSHORT
FirstDer C, F, L, R Vector of the first partial derivatives PRIVEC, and default
Fit C, F, L, R Fit statistics PSUMMARY
GenModInfo C, F, L, R General modeling information PSIMPLE, or default
Gradient C, F, L, R First partial derivatives (Gradient) PRIVEC, and default
InCorr C, F, L, R Input correlation matrix PCORR, or PALL
InCorrDet C, F, L, R Determinant of the input correlation

matrix
PCORR, or PALL

InCov C, F, L, R Input covariance matrix PCORR, or PALL
InCovDet C, F, L, R Determinant of the input covariance

matrix
PCORR, or PALL

InCovExog L Input covariances among exogenous
variables

PESTIM, or PSHORT

Indirect Effects L, R Indirect effects TOTEFF, or PRINT
Information C, F, L, R Information matrix PCOVES, and default
InitEstimates C, F, L, R Initial vector of parameter estimates PINITIAL, or default
InitParms C, F Initial matrix of parameter estimates PINITIAL, or default
InitParms L, R Initial matrix of parameter estimates PRIMAT, and default
InitRAMEstimates R Initial RAM estimates PESTIM, or PSHORT
InLatentEq L Input latent variable equations PESTIM, or PSHORT
InManifestEq L Input manifest variable equations PESTIM, or PSHORT
InSymmetric C, F, L, R Input symmetric matrix PCORR, or PALL
InVarExog L Input variances of exogenous variables PESTIM, or PSHORT
InvDiagWeights C, F, L, R Inverse of diagonal of weights PWEIGHT, or PALL
IterHist C, F, L, R Iteration history PSHORT
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Table 19.15. (continued)

ODS Table Name Model1 Description Option2

IterStart C, F, L, R Iteration start PSHORT
IterStop C, F, L, R Iteration stop PSHORT
Jacobian C, F, L, R Jacobi column pattern PJACPAT
Kurtosis C, F, L, R Kurtosis, with raw data input KURTOSIS, or PRINT
LagrangeBoundary C, F, L, R Lagrange, releasing active boundary

constraints
MODIFICATION, or PALL

LagrangeEquality C, F, L, R Lagrange, releasing equality constraints MODIFICATION, or PALL
LatentScoreCoef L, R Latent variable regression score

coefficients
PLATCOV, or PRINT

ModelStatement C, F, L, R Model summary PSHORT
ModIndices C, F, L, R Lagrange multiplier and Wald test

statistics
MODIFICATION, or PALL

NormRes C, F, L, R Normalized residual matrix RESIDUAL=, or PRINT
PredetElements C, F, L, R Predetermined elements PREDET, or PALL
PredModel C, F, L, R Predicted model matrix PCORR, or PALL
PredModelDet C, F, L, R Predicted model determinant PCORR, or PALL
PredMomentLatent L, R Predicted latent variable moments PLATCOV, or PRINT
PredMomentManLat L, R Predicted manifest and latent variable

moments
PLATCOV, or PRINT

ProblemDescription C, F, L, R Problem description PSHORT
RAMCorrExog R Correlations among exogenous variables PESTIM, or PSHORT
RAMEstimates R RAM Final Estimates PESTIM, or PSHORT
RAMStdEstimates R Standardized estimates PESTIM, or PSHORT
RankAsymStdRes C, F, L, R Ranking of the largest asymptotically

standardized residuals
RESIDUAL=, or PRINT

RankLagrange C, F, L, R Ranking of the largest Lagrange indices RESIDUAL=, or PRINT
RankNormRes C, F, L, R Ranking of the largest normalized

residuals
RESIDUAL=, or PRINT

RankRawRes C, F, L, R Ranking of the largest raw residuals RESIDUAL=, or PRINT
RankVarStdRes C, F, L, R Ranking of the largest variance

standardized residuals
RESIDUAL=, or PRINT

RawRes C, F, L, R Raw residual matrix RESIDUAL=, or PRINT
RotatedLoadings F Rotated loadings, with ROTATE= option

in FACTOR statement
PESTIM, or PSHORT

Rotation F Rotation Matrix, with ROTATE= option
in FACTOR statement

PESTIM, or PSHORT

SetCovExog L, R Set covariance parameters for manifest
exogenous variables

PINITIAL, or default

SimpleStatistics C, F, L, R Simple statistics, with raw data input SIMPLE, or default
SqMultCorr F, L, R Squared multiple correlations PESTIM, or PSHORT
Stability L, R Stability of reciprocal causation PDETERM, and default
StdErrs C, F, L, R Vector of standard errors PRIVEC, and default
StdLatentEq L Standardized latent variable equations PESTIM, or PSHORT
StdLoadings F Standardized factor loadings PESTIM, or PSHORT
StdManifestEq L Standardized manifest variable equations PESTIM, or PSHORT
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Table 19.15. (continued)

ODS Table Name Model1 Description Option2

StructEq L, R Variables in the structural equations PDETERM, and default
SumSqDif C, F, L, R Sum of squared differences of pre-

determined elements
PREDET, or PALL

TotalEffects L, R Total effects TOTEFF, or PRINT
tValues C, F, L, R Vector of t values PRIVEC, and default
VarSelection L, R Manifest variables, if not all are used,

selected for Modeling
default

VarStdRes C, F, L, R Variance standardized residual matrix RESIDUAL=, or PRINT
WaldTest C, F, L, R Wald test MODIFICATION, or PALL
Weights C, F, L, R Weight matrix PWEIGHT, or PALL
WeightsDet C, F, L, R Determinant of the weight matrix PWEIGHT, or PALL

1. Most CALIS output tables are specific to the model statement used. Keys: C: COSAN model, F:

FACTOR model, L: LINEQS model, R: RAM model.

2. The printing options PALL, PRINT, “default”, PSHORT, and PSUMM form hierarchical levels of

output control, with PALL including all the output enabled by the options at the lower levels, and so

on. The “default” option means that NOPRINT is not specified. Therefore, in the table, for example,

if PSHORT is the printing option for an output, PALL, PRINT, or “default” will also enable the same

output printing.

Examples

Example 19.1. Path Analysis: Stability of Alienation

The following covariance matrix from Wheaton, Muthen, Alwin, and Summers
(1977) has served to illustrate the performance of several implementations for the
analysis of structural equation models. Two different models have been analyzed
by an early implementation of LISREL and are mentioned in J�oreskog (1978). You
also can find a more detailed discussion of these models in the LISREL VI manual
(J�oreskog and S�orbom 1985). A slightly modified model for this covariance matrix
is included in the EQS 2.0 manual (Bentler 1985, p. 28). The path diagram of this
model is displayed in Figure 19.1. The same model is reanalyzed here by PROC
CALIS. However, for the analysis with the EQS implementation, the last variable
(V6) is rescaled by a factor of 0.1 to make the matrix less ill-conditioned. Since
the Levenberg-Marquardt or Newton-Raphson optimization techniques are used with
PROC CALIS, rescaling the data matrix is not necessary and, therefore, is not done
here. The results reported here reflect the estimates based on the original covariance
matrix.

data Wheaton(TYPE=COV);
title "Stability of Alienation";
title2 "Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)";

_type_ = ’cov’; input _name_ $ v1-v6;
label v1=’Anomia (1967)’ v2=’Anomia (1971)’ v3=’Education’

v4=’Powerlessness (1967)’ v5=’Powerlessness (1971)’
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v6=’Occupational Status Index’;
datalines;

v1 11.834 . . . . .
v2 6.947 9.364 . . . .
v3 6.819 5.091 12.532 . . .
v4 4.783 5.028 7.495 9.986 . .
v5 -3.839 -3.889 -3.841 -3.625 9.610 .
v6 -21.899 -18.831 -21.748 -18.775 35.522 450.288
;

proc calis cov data=Wheaton tech=nr edf=931 pall;
Lineqs

V1 = F1 + E1,
V2 = .833 F1 + E2,
V3 = F2 + E3,
V4 = .833 F2 + E4,
V5 = F3 + E5,
V6 = Lamb (.5) F3 + E6,
F1 = Gam1(-.5) F3 + D1,
F2 = Beta (.5) F1 + Gam2(-.5) F3 + D2;

Std
E1-E6 = The1-The2 The1-The4 (6 * 3.),
D1-D2 = Psi1-Psi2 (2 * 4.),
F3 = Phi (6.) ;

Cov
E1 E3 = The5 (.2),
E4 E2 = The5 (.2);

run;

The COV option in the PROC CALIS statement requests the analysis of the covari-
ance matrix. Without the COV option, the correlation matrix would be computed and
analyzed. Since no METHOD= option has been used, maximum likelihood estimates
are computed by default. The TECH=NR option requests the Newton-Raphson op-
timization method. The PALL option produces the almost complete set of displayed
output, as displayed in Output 19.1.1 through Output 19.1.11. Note that, when you
specify the PALL option, you can produce large amounts of output. The PALL option
is used in this example to show how you can get a wide spectrum of useful informa-
tion from PROC CALIS.

Output 19.1.1 displays the model specification in matrix terms, followed by the lists
of endogenous and exogenous variables. Equations and initial parameter estimates
are also displayed. You can use this information to ensure that the desired model is
the model being analyzed.
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Output 19.1.1. Model Specification

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Pattern and Initial Values

LINEQS Model Statement

Matrix Rows Columns ------Matrix Type-------

Term 1 1 _SEL_ 6 17 SELECTION
2 _BETA_ 17 17 EQSBETA IMINUSINV
3 _GAMMA_ 17 9 EQSGAMMA
4 _PHI_ 9 9 SYMMETRIC

The 8 Endogenous Variables

Manifest v1 v2 v3 v4 v5 v6
Latent F1 F2

The 9 Exogenous Variables

Manifest
Latent F3
Error E1 E2 E3 E4 E5 E6 D1 D2

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Pattern and Initial Values

v1 = 1.0000 F1 + 1.0000 E1
v2 = 0.8330 F1 + 1.0000 E2
v3 = 1.0000 F2 + 1.0000 E3
v4 = 0.8330 F2 + 1.0000 E4
v5 = 1.0000 F3 + 1.0000 E5
v6 = 0.5000*F3 + 1.0000 E6

Lamb

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Pattern and Initial Values

F1 = -0.5000*F3 + 1.0000 D1
Gam1

F2 = 0.5000*F1 + -0.5000*F3 + 1.0000 D2
Beta Gam2
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580 � Chapter 19. The CALIS Procedure

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Pattern and Initial Values

Variances of Exogenous Variables

Variable Parameter Estimate

F3 Phi 6.00000
E1 The1 3.00000
E2 The2 3.00000
E3 The1 3.00000
E4 The2 3.00000
E5 The3 3.00000
E6 The4 3.00000
D1 Psi1 4.00000
D2 Psi2 4.00000

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate

E1 E3 The5 0.20000
E2 E4 The5 0.20000

General modeling information and simple descriptive statistics are displayed in Out-
put 19.1.2. Because the input data set contains only the covariance matrix, the means
of the manifest variables are assumed to be zero. Note that this has no impact on the
estimation, unless a mean structure model is being analyzed. The twelve parameter
estimates in the model and their respective locations in the parameter matrices are
also displayed. Each of the parameters,The1, The2, andThe5, is specified for two
elements in the parameter matrix–PHI– .

Output 19.1.2. Modeling Information, Simple Statistics and Parameter Vector

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Observations 932 Model Terms 1
Variables 6 Model Matrices 4
Informations 21 Parameters 12

Variable Mean Std Dev

v1 Anomia (1967) 0 3.44006
v2 Anomia (1971) 0 3.06007
v3 Education 0 3.54006
v4 Powerlessness (1967) 0 3.16006
v5 Powerlessness (1971) 0 3.10000
v6 Occupational Status Index 0 21.21999
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Example 19.1. Path Analysis: Stability of Alienation � 581

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Covariances

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) 11.83400000 6.94700000 6.81900000 4.78300000 -3.83900000 -21.8990000
v2 Anomia (1971) 6.94700000 9.36400000 5.09100000 5.02800000 -3.88900000 -18.8310000
v3 Education 6.81900000 5.09100000 12.53200000 7.49500000 -3.84100000 -21.7480000
v4 Powerlessness (1967) 4.78300000 5.02800000 7.49500000 9.98600000 -3.62500000 -18.7750000
v5 Powerlessness (1971) -3.83900000 -3.88900000 -3.84100000 -3.62500000 9.61000000 35.5220000
v6 Occupational Status Index -21.89900000 -18.83100000 -21.74800000 -18.77500000 35.52200000 450.2880000

Determinant 6080570 Ln 15.620609

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Vector of Initial Estimates

Parameter Estimate Type

1 Beta 0.50000 Matrix Entry: _BETA_[8:7]
2 Lamb 0.50000 Matrix Entry: _GAMMA_[6:1]
3 Gam1 -0.50000 Matrix Entry: _GAMMA_[7:1]
4 Gam2 -0.50000 Matrix Entry: _GAMMA_[8:1]
5 Phi 6.00000 Matrix Entry: _PHI_[1:1]
6 The1 3.00000 Matrix Entry: _PHI_[2:2] _PHI_[4:4]
7 The2 3.00000 Matrix Entry: _PHI_[3:3] _PHI_[5:5]
8 The5 0.20000 Matrix Entry: _PHI_[4:2] _PHI_[5:3]
9 The3 3.00000 Matrix Entry: _PHI_[6:6]

10 The4 3.00000 Matrix Entry: _PHI_[7:7]
11 Psi1 4.00000 Matrix Entry: _PHI_[8:8]
12 Psi2 4.00000 Matrix Entry: _PHI_[9:9]

PROC CALIS examines whether each element in the moment matrix is modeled by
the parameters defined in the model. If an element is not structured by the model
parameters, it is predetermined by its observed value. This occurs, for example, when
there are exogenous manifest variables in the model. If present, the predetermined
values of the elements will be displayed. In the current example, the ‘.’ displayed for
all elements in the predicted moment matrix (Output 19.1.3) indicates that there are
no predetermined elements in the model.
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582 � Chapter 19. The CALIS Procedure

Output 19.1.3. Predetermined Elements

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Predetermined Elements of the Predicted Moment Matrix

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) . . . . . .
v2 Anomia (1971) . . . . . .
v3 Education . . . . . .
v4 Powerlessness (1967) . . . . . .
v5 Powerlessness (1971) . . . . . .
v6 Occupational Status Inde x . . . . . .

Sum of Squared Differences 0

Output 19.1.4 displays the optimization information. You can check this table to
determine whether the convergence criterion is satisfied. PROC CALIS displays an
error message when problematic solutions are encountered.

Output 19.1.4. Optimization

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 12
Functions (Observations) 21

Optimization Start

Active Constraints 0 Objective Function 119.33282242
Max Abs Gradient Element 74.016932345

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Ridge Change

1 0 2 0 0.82689 118.5 1.3507 0 0.0154
2 0 3 0 0.09859 0.7283 0.2330 0 0.716
3 0 4 0 0.01581 0.0828 0.00684 0 1.285
4 0 5 0 0.01449 0.00132 0.000286 0 1.042
5 0 6 0 0.01448 9.936E-7 0.000045 0 1.053
6 0 7 0 0.01448 4.227E-9 1.685E-6 0 1.056

Optimization Results

Iterations 6 Function Calls 8
Jacobian Calls 7 Active Constraints 0
Objective Function 0.0144844811 Max Abs Gradient Element 1.6847829E-6
Ridge 0 Actual Over Pred Change 1.0563187228

ABSGCONV convergence criterion satisfied.

The predicted model matrix is displayed next, followed by a list of model test statis-
tics or fit indices (Output 19.1.5). Depending on your modeling philosophy, some
indices may be preferred to others. In this example, all indices and test statistics
point to a good fit of the model.
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Example 19.1. Path Analysis: Stability of Alienation � 583

Output 19.1.5. Predicted Model Matrix and Fit Statistics

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Predicted Model Matrix

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) 11.90390632 6.91059048 6.83016211 4.93499582 -4.16791157 -22.3768816
v2 Anomia (1971) 6.91059048 9.35145064 4.93499582 5.01664889 -3.47187034 -18.6399424
v3 Education 6.83016211 4.93499582 12.61574998 7.50355625 -4.06565606 -21.8278873
v4 Powerlessness (1967) 4.93499582 5.01664889 7.50355625 9.84539112 -3.38669150 -18.1826302
v5 Powerlessness (1971) -4.16791157 -3.47187034 -4.06565606 -3.38669150 9.61000000 35.5219999
v6 Occupational Status Index -22.37688158 -18.63994236 -21.82788734 -18.18263015 35.52199986 450.2879993

Determinant 6169285 Ln 15.635094

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0145
Goodness of Fit Index (GFI) 0.9953
GFI Adjusted for Degrees of Freedom (AGFI) 0.9890
Root Mean Square Residual (RMR) 0.2281
Parsimonious GFI (Mulaik, 1989) 0.5972
Chi-Square 13.4851
Chi-Square DF 9
Pr > Chi-Square 0.1419
Independence Model Chi-Square 2131.4
Independence Model Chi-Square DF 15
RMSEA Estimate 0.0231
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0470
ECVI Estimate 0.0405
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.0556
Probability of Close Fit 0.9705
Bentler’s Comparative Fit Index 0.9979
Normal Theory Reweighted LS Chi-Square 13.2804
Akaike’s Information Criterion -4.5149
Bozdogan’s (1987) CAIC -57.0509
Schwarz’s Bayesian Criterion -48.0509
McDonald’s (1989) Centrality 0.9976
Bentler & Bonett’s (1980) Non-normed Index 0.9965
Bentler & Bonett’s (1980) NFI 0.9937
James, Mulaik, & Brett (1982) Parsimonious NFI 0.5962
Z-Test of Wilson & Hilferty (1931) 1.0754
Bollen (1986) Normed Index Rho1 0.9895
Bollen (1988) Non-normed Index Delta2 0.9979
Hoelter’s (1983) Critical N 1170

PROC CALIS can perform a detailed residual analysis. Large residuals may indicate
misspecification of the model. In Output 19.1.6 for example, note the table for the
10 largest asymptotically standardized residuals. As the table shows, the specified
model performs the poorest concerning the variableV5 and its covariance withV2,
V1, andV3. This may be the result of a misspecification of the model equation for
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584 � Chapter 19. The CALIS Procedure

V5. However, because the model fit is quite good, such a possible misspecification
may have no practical significance and is not a serious concern in the analysis.

Output 19.1.6. Residual Analysis

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Raw Residual Matrix

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) -.0699063150 0.0364095216 -.0111621061 -.1519958205 0.3289115712 0.4778815840
v2 Anomia (1971) 0.0364095216 0.0125493646 0.1560041795 0.0113511059 -.4171296612 -.1910576405
v3 Education -.0111621061 0.1560041795 -.0837499788 -.0085562504 0.2246560598 0.0798873380
v4 Powerlessness (1967) -.1519958205 0.0113511059 -.0085562504 0.1406088766 -.2383085022 -.5923698474
v5 Powerlessness (1971) 0.3289115712 -.4171296612 0.2246560598 -.2383085022 0.0000000000 0.0000000000
v6 Occupational Status Index 0.4778815840 -.1910576405 0.0798873380 -.5923698474 0.0000000000 0.0000000000

Average Absolute Residual 0.153928
Average Off-diagonal Absolute Residual 0.195045

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 10 Largest Raw Residuals

Row Column Residual

v6 v4 -0.59237
v6 v1 0.47788
v5 v2 -0.41713
v5 v1 0.32891
v5 v4 -0.23831
v5 v3 0.22466
v6 v2 -0.19106
v3 v2 0.15600
v4 v1 -0.15200
v4 v4 0.14061

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Asymptotically Standardized Residual Matrix

v1 v2 v3 v4 v5 v6

v1 Anomia (1967) -0.308548787 0.526654452 -0.056188826 -0.865070455 2.553366366 0.464866661
v2 Anomia (1971) 0.526654452 0.054363484 0.876120855 0.057354415 -2.763708659 -0.170127806
v3 Education -0.056188826 0.876120855 -0.354347092 -0.121874301 1.697931678 0.070202664
v4 Powerlessness (1967) -0.865070455 0.057354415 -0.121874301 0.584930625 -1.557412695 -0.495982427
v5 Powerlessness (1971) 2.553366366 -2.763708659 1.697931678 -1.557412695 0.000000000 0.000000000
v6 Occupational Status Index 0.464866661 -0.170127806 0.070202664 -0.495982427 0.000000000 0.000000000

Average Standardized Residual 0.646622
Average Off-diagonal Standardized Residual 0.818457
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Example 19.1. Path Analysis: Stability of Alienation � 585

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 10 Largest Asymptotically Standardized Residuals

Row Column Residual

v5 v2 -2.76371
v5 v1 2.55337
v5 v3 1.69793
v5 v4 -1.55741
v3 v2 0.87612
v4 v1 -0.86507
v4 v4 0.58493
v2 v1 0.52665
v6 v4 -0.49598
v6 v1 0.46487

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Distribution of Asymptotically Standardized Residuals

Each * Represents 1 Residuals

----------Range--------- Freq Percent

-3.00000 -2.75000 1 4.76 *
-2.75000 -2.50000 0 0.00
-2.50000 -2.25000 0 0.00
-2.25000 -2.00000 0 0.00
-2.00000 -1.75000 0 0.00
-1.75000 -1.50000 1 4.76 *
-1.50000 -1.25000 0 0.00
-1.25000 -1.00000 0 0.00
-1.00000 -0.75000 1 4.76 *
-0.75000 -0.50000 0 0.00
-0.50000 -0.25000 3 14.29 ***
-0.25000 0 3 14.29 ***

0 0.25000 6 28.57 ******
0.25000 0.50000 1 4.76 *
0.50000 0.75000 2 9.52 **
0.75000 1.00000 1 4.76 *
1.00000 1.25000 0 0.00
1.25000 1.50000 0 0.00
1.50000 1.75000 1 4.76 *
1.75000 2.00000 0 0.00
2.00000 2.25000 0 0.00
2.25000 2.50000 0 0.00
2.50000 2.75000 1 4.76 *

Output 19.1.7 displays the equations and parameter estimates. Each parameter esti-
mate is displayed with its standard error and the correspondingt ratio. As a general
rule, at ratio larger than 2 represents a statistically significant departure from 0. From
these results, it is observed that bothF1 (Alienation 1967) andF2 (Alienation 1971)
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586 � Chapter 19. The CALIS Procedure

are regressed negatively onF3 (Socioeconomic Status), andF1 has a positive effect
on F2. The estimates and significance tests for the variance and covariance of the
exogenous variables are also displayed.

Output 19.1.7. Equations and Parameter Estimates

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

v1 = 1.0000 F1 + 1.0000 E1
v2 = 0.8330 F1 + 1.0000 E2
v3 = 1.0000 F2 + 1.0000 E3
v4 = 0.8330 F2 + 1.0000 E4
v5 = 1.0000 F3 + 1.0000 E5
v6 = 5.3688*F3 + 1.0000 E6
Std Err 0.4337 Lamb
t Value 12.3788

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

F1 = -0.6299*F3 + 1.0000 D1
Std Err 0.0563 Gam1
t Value -11.1809
F2 = 0.5931*F1 + -0.2409*F3 + 1.0000 D2
Std Err 0.0468 Beta 0.0549 Gam2
t Value 12.6788 -4.3885
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Example 19.1. Path Analysis: Stability of Alienation � 587

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

F3 Phi 6.61632 0.63914 10.35
E1 The1 3.60788 0.20092 17.96
E2 The2 3.59493 0.16448 21.86
E3 The1 3.60788 0.20092 17.96
E4 The2 3.59493 0.16448 21.86
E5 The3 2.99368 0.49861 6.00
E6 The4 259.57580 18.31150 14.18
D1 Psi1 5.67047 0.42301 13.41
D2 Psi2 4.51480 0.33532 13.46

Covariances Among Exogenous Variables

Standard
Var1 Var2 Parameter Estimate Error t Value

E1 E3 The5 0.90580 0.12167 7.44
E2 E4 The5 0.90580 0.12167 7.44

The measurement scale of variables is often arbitrary. Therefore, it can be useful to
look at the standardized equations produced by PROC CALIS. Output 19.1.8 displays
the standardized equations and predicted moments. From the standardized structural
equations forF1 and F2, you can conclude that SES (F3) has a larger impact on
earlier Alienation (F1) than on later Alienation (F3).

The squared multiple correlation for each equation, the correlation among the exoge-
nous variables, and the covariance matrices among the latent variables and between
the observed and the latent variables help to describe the relationships among all
variables.
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588 � Chapter 19. The CALIS Procedure

Output 19.1.8. Standardized Equations and Predicted Moments

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

v1 = 0.8348 F1 + 0.5505 E1
v2 = 0.7846 F1 + 0.6200 E2
v3 = 0.8450 F2 + 0.5348 E3
v4 = 0.7968 F2 + 0.6043 E4
v5 = 0.8297 F3 + 0.5581 E5
v6 = 0.6508*F3 + 0.7593 E6

Lamb

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

F1 = -0.5626*F3 + 0.8268 D1
Gam1

F2 = 0.5692*F1 + -0.2064*F3 + 0.7080 D2
Beta Gam2

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Squared Multiple Correlations

Error Total
Variable Variance Variance R-Square

1 v1 3.60788 11.90391 0.6969
2 v2 3.59493 9.35145 0.6156
3 v3 3.60788 12.61575 0.7140
4 v4 3.59493 9.84539 0.6349
5 v5 2.99368 9.61000 0.6885
6 v6 259.57580 450.28800 0.4235
7 F1 5.67047 8.29603 0.3165
8 F2 4.51480 9.00787 0.4988

Correlations Among Exogenous Variables

Var1 Var2 Parameter Estimate

E1 E3 The5 0.25106
E2 E4 The5 0.25197

SAS OnlineDoc: Version 8



Example 19.1. Path Analysis: Stability of Alienation � 589

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Predicted Moments of Latent Variables

F1 F2 F3

F1 8.296026985 5.924364730 -4.167911571
F2 5.924364730 9.007870649 -4.065656060
F3 -4.167911571 -4.065656060 6.616317547

Predicted Moments between Manifest and Latent Variables

F1 F2 F3

v1 8.29602698 5.92436473 -4.16791157
v2 6.91059048 4.93499582 -3.47187034
v3 5.92436473 9.00787065 -4.06565606
v4 4.93499582 7.50355625 -3.38669150
v5 -4.16791157 -4.06565606 6.61631755
v6 -22.37688158 -21.82788734 35.52199986

Output 19.1.9 displays the latent variable score regression coefficients that produce
the latent variable scores. Each latent variable is expressed as a linear combination of
the observed variables. See Chapter 57, “The SCORE Procedure,” for more informa-
tion on the creation of latent variable scores. Note that the total effects and indirect
effects of the exogenous variables are also displayed.
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590 � Chapter 19. The CALIS Procedure

Output 19.1.9. Latent Variable Score Regression, Direct and Indirect Effects

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Latent Variable Score Regression Coefficients

F1 F2 F3

v1 Anomia (1967) 0.4131113567 0.0482681051 -.0521264408
v2 Anomia (1971) 0.3454029627 0.0400143300 -.0435560637
v3 Education 0.0526632293 0.4306175653 -.0399927539
v4 Powerlessness (1967) 0.0437036855 0.3600452776 -.0334000265
v5 Powerlessness (1971) -.0749215200 -.0639697183 0.5057060770
v6 Occupational Status Index -.0046390513 -.0039609288 0.0313127184

Total Effects

F3 F1 F2

v1 -0.629944307 1.000000000 0.000000000
v2 -0.524743608 0.833000000 0.000000000
v3 -0.614489258 0.593112208 1.000000000
v4 -0.511869552 0.494062469 0.833000000
v5 1.000000000 0.000000000 0.000000000
v6 5.368847492 0.000000000 0.000000000
F1 -0.629944307 0.000000000 0.000000000
F2 -0.614489258 0.593112208 0.000000000

Indirect Effects

F3 F1 F2

v1 -.6299443069 0.0000000000 0
v2 -.5247436076 0.0000000000 0
v3 -.6144892580 0.5931122083 0
v4 -.5118695519 0.4940624695 0
v5 0.0000000000 0.0000000000 0
v6 0.0000000000 0.0000000000 0
F1 0.0000000000 0.0000000000 0
F2 -.3736276589 0.0000000000 0

PROC CALIS can display Lagrange multiplier and Wald statistics for model mod-
ifications. Modification indices are displayed for each parameter matrix. Only the
Lagrange multiplier statistics have significance levels and approximate changes of
values displayed. The significance level of the Wald statistic for a given parame-
ter is the same as that shown in the equation output. An insignificantp-value for a
Wald statistic means that the corresponding parameter can be dropped from the model
without significantly worsening the fit of the model.

A significantp-value for a Lagrange multiplier test indicates that the model would
achieve a better fit if the corresponding parameter is free. To aid in determining
significant results, PROC CALIS displays the rank order of the ten largest Lagrange
multiplier statistics. For example, [E5:E2] in the–PHI– matrix is associated with the
largest Lagrange multiplier statistic; the associatedp-value is 0.0067. This means that
adding a parameter for the covariance between E5 and E2 will lead to a significantly
better fit of the model. However, adding parameters indiscriminately can result in
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Example 19.1. Path Analysis: Stability of Alienation � 591

specification errors. An over-fitted model may not perform well with future samples.
As always, the decision to add parameters should be accompanied with consideration
and knowledge of the application area.

Output 19.1.10. Lagrange Multiplier and Wald Tests

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Lagrange Multiplier and Wald Test Indices _PHI_[9:9]
Symmetric Matrix

Univariate Tests for Constant Constraints
Lagrange Multiplier or Wald Index / Probability / Approx Change of Value

F3 E1 E2 E3 E4 E5 E6 D1 D2

F3 107.1619 3.3903 3.3901 0.5752 0.5753 . . . .
. 0.0656 0.0656 0.4482 0.4482 . . . .
. 0.5079 -0.4231 0.2090 -0.1741 . . . .
[Phi] Sing Sing Sing Sing

E1 3.3903 322.4501 0.1529 55.4237 1.2037 5.8025 0.7398 0.4840 0.0000
0.0656 . 0.6958 . 0.2726 0.0160 0.3897 0.4866 0.9961
0.5079 . 0.0900 . -0.3262 0.5193 -1.2587 0.2276 0.0014

[The1] [The5]

E2 3.3901 0.1529 477.6768 0.5946 55.4237 7.3649 1.4168 0.4840 0.0000
0.0656 0.6958 . 0.4406 . 0.0067 0.2339 0.4866 0.9961

-0.4231 0.0900 . 0.2328 . -0.5060 1.5431 -0.1896 -0.0011
[The2] [The5]

E3 0.5752 55.4237 0.5946 322.4501 0.1528 1.5982 0.0991 1.1825 0.5942
0.4482 . 0.4406 . 0.6958 0.2062 0.7529 0.2768 0.4408
0.2090 . 0.2328 . -0.0900 0.2709 -0.4579 0.2984 -0.2806

[The5] [The1]

E4 0.5753 1.2037 55.4237 0.1528 477.6768 1.2044 0.0029 1.1825 0.5942
0.4482 0.2726 . 0.6958 . 0.2724 0.9568 0.2768 0.4408

-0.1741 -0.3262 . -0.0900 . -0.2037 0.0700 -0.2486 0.2338
[The5] [The2]

E5 . 5.8025 7.3649 1.5982 1.2044 36.0486 . 0.1033 0.1035
. 0.0160 0.0067 0.2062 0.2724 . . 0.7479 0.7477
. 0.5193 -0.5060 0.2709 -0.2037 . . -0.2776 0.1062

Sing [The3] Sing

E6 . 0.7398 1.4168 0.0991 0.0029 . 200.9466 0.1034 0.1035
. 0.3897 0.2339 0.7529 0.9568 . . 0.7478 0.7477
. -1.2587 1.5431 -0.4579 0.0700 . . 1.4906 -0.5700

Sing Sing [The4]

D1 . 0.4840 0.4840 1.1825 1.1825 0.1033 0.1034 179.6950 .
. 0.4866 0.4866 0.2768 0.2768 0.7479 0.7478 . .
. 0.2276 -0.1896 0.2984 -0.2486 -0.2776 1.4906 . .

Sing [Psi1] Sing

D2 . 0.0000 0.0000 0.5942 0.5942 0.1035 0.1035 . 181.2787
. 0.9961 0.9961 0.4408 0.4408 0.7477 0.7477 . .
. 0.0014 -0.0011 -0.2806 0.2338 0.1062 -0.5700 . .

Sing Sing [Psi2]
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Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 10 Largest Lagrange Multipliers in _PHI_

Row Column Chi-Square Pr > ChiSq

E5 E2 7.36486 0.0067
E5 E1 5.80246 0.0160
E1 F3 3.39030 0.0656
E2 F3 3.39013 0.0656
E5 E3 1.59820 0.2062
E6 E2 1.41677 0.2339
E5 E4 1.20437 0.2724
E4 E1 1.20367 0.2726
D1 E3 1.18251 0.2768
D1 E4 1.18249 0.2768
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Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Lagrange Multiplier and Wald Test Indices _GAMMA_[8:1]
General Matrix

Univariate Tests for Constant Constraints
Lagrange Multiplier or Wald Index / Probability / Approx Change of Value

F3

v1 3.3903
0.0656
0.0768

v2 3.3901
0.0656

-0.0639

v3 0.5752
0.4482
0.0316

v4 0.5753
0.4482

-0.0263

v5 .
.
.

Sing

v6 153.2354
.
.

[Lamb]

F1 125.0132
.
.

[Gam1]

F2 19.2585
.
.

[Gam2]
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Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 4 Largest Lagrange Multipliers in _GAMMA_

Row Column Chi-Square Pr > ChiSq

v1 F3 3.39030 0.0656
v2 F3 3.39013 0.0656
v4 F3 0.57526 0.4482
v3 F3 0.57523 0.4482

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Lagrange Multiplier and Wald Test Indices _BETA_[8:8]
General Matrix

Identity-Minus-Inverse Model Matrix
Univariate Tests for Constant Constraints

Lagrange Multiplier or Wald Index / Probability / Approx Change of Value

v1 v2 v3 v4 v5 v6 F1 F2

v1 . 0.1647 0.0511 0.8029 5.4083 0.1233 0.4047 0.4750
. 0.6849 0.8212 0.3702 0.0200 0.7255 0.5247 0.4907
. -0.0159 -0.0063 -0.0284 0.0697 0.0015 -0.0257 -0.0239

Sing

v2 0.5957 . 0.6406 0.0135 5.8858 0.0274 0.4047 0.4750
0.4402 . 0.4235 0.9076 0.0153 0.8686 0.5247 0.4907
0.0218 . 0.0185 0.0032 -0.0609 -0.0006 0.0214 0.0199

Sing

v3 0.3839 0.3027 . 0.1446 1.1537 0.0296 0.1588 0.0817
0.5355 0.5822 . 0.7038 0.2828 0.8634 0.6902 0.7750
0.0178 0.0180 . -0.0145 0.0322 0.0007 0.0144 -0.0110

Sing

v4 0.4487 0.2519 0.0002 . 0.9867 0.1442 0.1588 0.0817
0.5030 0.6157 0.9877 . 0.3206 0.7041 0.6903 0.7750

-0.0160 -0.0144 -0.0004 . -0.0249 -0.0014 -0.0120 0.0092
Sing

v5 5.4085 8.6455 2.7123 2.1457 . . 0.1033 0.1035
0.0200 0.0033 0.0996 0.1430 . . 0.7479 0.7476
0.1242 -0.1454 0.0785 -0.0674 . . -0.0490 0.0329

Sing Sing

v6 0.4209 1.4387 0.3044 0.0213 . . 0.1034 0.1035
0.5165 0.2304 0.5811 0.8841 . . 0.7478 0.7477

-0.2189 0.3924 -0.1602 0.0431 . . 0.2629 -0.1765
Sing Sing

F1 1.0998 1.1021 1.6114 1.6128 0.1032 0.1035 . .
0.2943 0.2938 0.2043 0.2041 0.7480 0.7477 . .
0.0977 -0.0817 0.0993 -0.0831 -0.0927 0.0057 . .

Sing Sing

F2 0.0193 0.0194 0.4765 0.4760 0.1034 0.1035 160.7520 .
0.8896 0.8892 0.4900 0.4902 0.7477 0.7477 . .

-0.0104 0.0087 -0.0625 0.0522 0.0355 -0.0022 . .
[Beta] Sing
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Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Rank Order of the 10 Largest Lagrange Multipliers in _BETA_

Row Column Chi-Square Pr > ChiSq

v5 v2 8.64546 0.0033
v2 v5 5.88576 0.0153
v5 v1 5.40848 0.0200
v1 v5 5.40832 0.0200
v5 v3 2.71233 0.0996
v5 v4 2.14572 0.1430
F1 v4 1.61279 0.2041
F1 v3 1.61137 0.2043
v6 v2 1.43867 0.2304
v3 v5 1.15372 0.2828

When you specify equality constraints, PROC CALIS displays Lagrange multiplier
tests for releasing the constraints. In the current example, none of the three constraints
achieve ap-value smaller than 0.05. This means that releasing the constraints may not
lead to a significantly better fit of the model. Therefore, all constraints are retained in
the model.

Output 19.1.11. Tests for Equality Constraints

Stability of Alienation
Data Matrix of WHEATON, MUTHEN, ALWIN & SUMMERS (1977)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Univariate Lagrange Multiplier Test for Releasing Equality Constraints

Equality Constraint -----Changes----- Chi-Square Pr > ChiSq

[E1:E1] = [E3:E3] 0.0293 -0.0308 0.02106 0.8846
[E2:E2] = [E4:E4] -0.1342 0.1388 0.69488 0.4045
[E3:E1] = [E4:E2] 0.2468 -0.1710 1.29124 0.2558

The model is specified using the LINEQS, STD, and COV statements. The section
“Getting Started” on page 448 also contains the COSAN and RAM specifications of
this model. These model specifications would give essentially the same results.

proc calis cov data=Wheaton tech=nr edf=931;
Cosan J(9, Ide) * A(9, Gen, Imi) * P(9, Sym);
Matrix A

[ ,7] = 1. .833 5 * 0. Beta (.5) ,
[ ,8] = 2 * 0. 1. .833 ,
[ ,9] = 4 * 0. 1. Lamb Gam1-Gam2 (.5 2 * -.5);

Matrix P
[1,1] = The1-The2 The1-The4 (6 * 3.) ,
[7,7] = Psi1-Psi2 Phi (2 * 4. 6.) ,
[3,1] = The5 (.2) ,
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[4,2] = The5 (.2) ;
Vnames J V1-V6 F1-F3 ,

A = J ,
P E1-E6 D1-D3 ;

run;

proc calis cov data=Wheaton tech=nr edf=931;
Ram

1 1 7 1. ,
1 2 7 .833 ,
1 3 8 1. ,
1 4 8 .833 ,
1 5 9 1. ,
1 6 9 .5 Lamb ,
1 7 9 -.5 Gam1 ,
1 8 7 .5 Beta ,
1 8 9 -.5 Gam2 ,
2 1 1 3. The1 ,
2 2 2 3. The2 ,
2 3 3 3. The1 ,
2 4 4 3. The2 ,
2 5 5 3. The3 ,
2 6 6 3. The4 ,
2 1 3 .2 The5 ,
2 2 4 .2 The5 ,
2 7 7 4. Psi1 ,
2 8 8 4. Psi2 ,
2 9 9 6. Phi ;

Vnames 1 F1-F3,
2 E1-E6 D1-D3;

run;

Example 19.2. Simultaneous Equations with Intercept

The demand-and-supply food example of Kmenta (1971, pp. 565, 582) is used to
illustrate the use of PROC CALIS for the estimation of intercepts and coefficients
of simultaneous equations. The model is specified by two simultaneous equations
containing two endogenous variablesQ andP and three exogenous variablesD, F ,
andY ,

Qt(demand) = �1 + �1Pt + 
1Dt

Qt(supply) = �2 + �2Pt + 
2Ft + 
3Yt

for t = 1, : : : , 20.

The LINEQS statement requires that each endogenous variable appear on the left-
hand side of exactly one equation. Instead of analyzing the system

B�� = �� + �
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PROC CALIS analyzes the equivalent system

� = B� + �� + �

withB� = I�B. This requires that one of the preceding equations be solved forPt.
Solving the second equation forPt yields

Pt =
1

�2
Qt � �2

�2
� 
2
�2
Ft � 
3

�2
Yt

You can estimate the intercepts of a system of simultaneous equations by applying
PROC CALIS on the uncorrected covariance (UCOV) matrix of the data set that
is augmented by an additional constant variable with the value 1. In the following
example, the uncorrected covariance matrix is augmented by an additional variable
INTERCEPT by using the AUGMENT option. The PROC CALIS statement contains
the options UCOV and AUG to compute and analyze an augmented UCOV matrix
from the input data set FOOD.

data food;
Title ’Food example of KMENTA(1971, p.565 & 582)’;

Input Q P D F Y;
Label Q=’Food Consumption per Head’

P=’Ratio of Food Prices to General Price’
D=’Disposable Income in Constant Prices’
F=’Ratio of Preceding Years Prices’
Y=’Time in Years 1922-1941’;

datalines;
98.485 100.323 87.4 98.0 1
99.187 104.264 97.6 99.1 2

102.163 103.435 96.7 99.1 3
101.504 104.506 98.2 98.1 4
104.240 98.001 99.8 110.8 5
103.243 99.456 100.5 108.2 6
103.993 101.066 103.2 105.6 7

99.900 104.763 107.8 109.8 8
100.350 96.446 96.6 108.7 9
102.820 91.228 88.9 100.6 10

95.435 93.085 75.1 81.0 11
92.424 98.801 76.9 68.6 12
94.535 102.908 84.6 70.9 13
98.757 98.756 90.6 81.4 14

105.797 95.119 103.1 102.3 15
100.225 98.451 105.1 105.0 16
103.522 86.498 96.4 110.5 17

99.929 104.016 104.4 92.5 18
105.223 105.769 110.7 89.3 19
106.232 113.490 127.1 93.0 20
;
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proc calis ucov aug data=food pshort;
Title2 ’Compute ML Estimates With Intercept’;
Lineqs

Q = alf1 Intercept + alf2 P + alf3 D + E1,
P = gam1 Intercept + gam2 Q + gam3 F + gam4 Y + E2;

Std
E1-E2 = eps1-eps2;

Cov
E1-E2 = eps3;

Bounds
eps1-eps2 >= 0. ;

run;

The following, essentially equivalent model definition uses program code to repa-
rameterize the model in terms of the original equations; the output is displayed in
Output 19.2.1.

proc calis data=food ucov aug pshort;
Lineqs

Q = alphal Intercept + beta1 P + gamma1 D + E1,
P = alpha2_b Intercept + gamma2_b F + gamma3_b Y + _b Q + E2;

Std
E1-E2 = eps1-eps2;

Cov
E1-E2 = eps3;

Parameters alpha2 (50.) beta2 gamma2 gamma3 (3*.25);
alpha2_b = -alpha2 / beta2;
gamma2_b = -gamma2 / beta2;
gamma3_b = -gamma3 / beta2;
_b = 1 / beta2;

Bounds
eps1-eps2 >= 0. ;

run;
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Output 19.2.1. Food Example of Kmenta

Food example of KMENTA(1971, p.565 & 582)

The CALIS Procedure
Covariance Structure Analysis: Pattern and Initial Values

LINEQS Model Statement

Matrix Rows Columns ------Matrix Type-------

Term 1 1 _SEL_ 6 8 SELECTION
2 _BETA_ 8 8 EQSBETA IMINUSINV
3 _GAMMA_ 8 6 EQSGAMMA
4 _PHI_ 6 6 SYMMETRIC

The 2 Endogenous Variables

Manifest Q P
Latent

The 6 Exogenous Variables

Manifest D F Y Intercept
Latent
Error E1 E2
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Food example of KMENTA(1971, p.565 & 582)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 10
Functions (Observations) 21
Lower Bounds 2
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 2.3500065042
Max Abs Gradient Element 203.9741437 Radius 62167.829174

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Lambda Change

1 0 2 0 1.19094 1.1591 3.9410 0 0.688
2 0 5 0 0.32678 0.8642 9.9864 0.00127 2.356
3 0 7 0 0.19108 0.1357 5.5100 0.00006 0.685
4 0 10 0 0.16682 0.0243 2.0513 0.00005 0.867
5 0 12 0 0.16288 0.00393 1.0570 0.00014 0.828
6 0 13 0 0.16132 0.00156 0.3643 0.00004 0.864
7 0 15 0 0.16077 0.000557 0.2176 0.00006 0.984
8 0 16 0 0.16052 0.000250 0.1819 0.00001 0.618
9 0 17 0 0.16032 0.000201 0.0662 0 0.971

10 0 18 0 0.16030 0.000011 0.0195 0 1.108
11 0 19 0 0.16030 6.116E-7 0.00763 0 1.389
12 0 20 0 0.16030 9.454E-8 0.00301 0 1.389
13 0 21 0 0.16030 1.461E-8 0.00118 0 1.388
14 0 22 0 0.16030 2.269E-9 0.000465 0 1.395
15 0 23 0 0.16030 3.59E-10 0.000182 0 1.427

Optimization Results

Iterations 15 Function Calls 24
Jacobian Calls 16 Active Constraints 0
Objective Function 0.1603035477 Max Abs Gradient Element 0.0001820805
Lambda 0 Actual Over Pred Change 1.4266532872
Radius 0.0010322573

GCONV convergence criterion satisfied.

SAS OnlineDoc: Version 8



Example 19.2. Simultaneous Equations with Intercept � 601

Food example of KMENTA(1971, p.565 & 582)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.1603
Goodness of Fit Index (GFI) 0.9530
GFI Adjusted for Degrees of Freedom (AGFI) 0.0120
Root Mean Square Residual (RMR) 2.0653
Parsimonious GFI (Mulaik, 1989) 0.0635
Chi-Square 3.0458
Chi-Square DF 1
Pr > Chi-Square 0.0809
Independence Model Chi-Square 534.27
Independence Model Chi-Square DF 15
RMSEA Estimate 0.3281
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.7777
ECVI Estimate 1.8270
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 3.3493
Probability of Close Fit 0.0882
Bentler’s Comparative Fit Index 0.9961
Normal Theory Reweighted LS Chi-Square 2.8142
Akaike’s Information Criterion 1.0458
Bozdogan’s (1987) CAIC -0.9500
Schwarz’s Bayesian Criterion 0.0500
McDonald’s (1989) Centrality 0.9501
Bentler & Bonett’s (1980) Non-normed Index 0.9409
Bentler & Bonett’s (1980) NFI 0.9943
James, Mulaik, & Brett (1982) Parsimonious NFI 0.0663
Z-Test of Wilson & Hilferty (1931) 1.4250
Bollen (1986) Normed Index Rho1 0.9145
Bollen (1988) Non-normed Index Delta2 0.9962
Hoelter’s (1983) Critical N 25

Food example of KMENTA(1971, p.565 & 582)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Q = -0.2295*P + 0.3100*D + 93.6193*Intercept + 1.0000 E1
beta1 gamma1 alphal

P = 4.2140*Q + -0.9305*F + -1.5579*Y + -218.9*Intercept + 1.0000 E2
_b gamma2_b gamma3_b alpha2_b
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Food example of KMENTA(1971, p.565 & 582)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Variable Parameter Estimate

D 10154
F 9989
Y 151.05263
Intercept 1.05263
E1 eps1 3.51274
E2 eps2 105.06746

Covariances Among Exogenous Variables

Var1 Var2 Parameter Estimate

D F 9994
D Y 1101
F Y 1046
D Intercept 102.66842
F Intercept 101.71053
Y Intercept 11.05263
E1 E2 eps3 -18.87270
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Food example of KMENTA(1971, p.565 & 582)

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Q = -0.2278*P + 0.3016*D + 0.9272*Intercept + 0.0181 E1
beta1 gamma1 alphal

P = 4.2467*Q + -0.9048*F + -0.1863*Y + -2.1849*Intercept + 0.0997 E2
_b gamma2_b gamma3_b alpha2_b

Squared Multiple Correlations

Error Total
Variable Variance Variance R-Square

1 Q 3.51274 10730 0.9997
2 P 105.06746 10565 0.9901

Correlations Among Exogenous Variables

Var1 Var2 Parameter Estimate

D F 0.99237
D Y 0.88903
F Y 0.85184
D Intercept 0.99308
F Intercept 0.99188
Y Intercept 0.87652
E1 E2 eps3 -0.98237

Additional PARMS and Dependent Parameters

The Number of Dependent Parameters is 4

Standard
Parameter Estimate Error t Value

alpha2 51.94453 . .
beta2 0.23731 . .
gamma2 0.22082 . .
gamma3 0.36971 . .
_b 4.21397 . .
gamma2_b -0.93053 . .
gamma3_b -1.55794 . .
alpha2_b -218.89288 . .

You can obtain almost equivalent results by applying the SAS/ETS procedure SYS-
LIN on this problem.

Example 19.3. Second-Order Confirmatory Factor Analysis

A second-order confirmatory factor analysis model is applied to a correlation matrix
of Thurstone reported by McDonald (1985). Using the LINEQS statement, the three-
term second-order factor analysis model is specified in equations notation. The first-
order loadings for the three factors,F1, F2, andF3, each refer to three variables,
X1-X3, X4-X6, andX7-X9. One second-order factor,F4, reflects the correlations
among the three first-order factors. The second-order factor correlation matrixP is
defined as a1 � 1 identity matrix. Choosing the second-order uniqueness matrix
U2 as a diagonal matrix with parametersU21-U23 gives an unidentified model. To
compute identified maximum likelihood estimates, the matrixU2 is defined as a3�3
identity matrix. The following code generates results that are partially displayed in
Output 19.3.1.
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data Thurst(TYPE=CORR);
Title "Example of THURSTONE resp. McDONALD (1985, p.57, p.105)";

_TYPE_ = ’CORR’; Input _NAME_ $ Obs1-Obs9;
Label Obs1=’Sentences’ Obs2=’Vocabulary’ Obs3=’Sentence Completion’

Obs4=’First Letters’ Obs5=’Four-letter Words’ Obs6=’Suffices’
Obs7=’Letter series’ Obs8=’Pedigrees’ Obs9=’Letter Grouping’;

datalines;
Obs1 1. . . . . . . . .
Obs2 .828 1. . . . . . . .
Obs3 .776 .779 1. . . . . . .
Obs4 .439 .493 .460 1. . . . . .
Obs5 .432 .464 .425 .674 1. . . . .
Obs6 .447 .489 .443 .590 .541 1 . . . .
Obs7 .447 .432 .401 .381 .402 .288 1. . .
Obs8 .541 .537 .534 .350 .367 .320 .555 1. .
Obs9 .380 .358 .359 .424 .446 .325 .598 .452 1.
;

proc calis data=Thurst method=max edf=212 pestim se;
Title2 "Identified Second Order Confirmatory Factor Analysis";
Title3 "C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide";
Lineqs

Obs1 = X1 F1 + E1,
Obs2 = X2 F1 + E2,
Obs3 = X3 F1 + E3,
Obs4 = X4 F2 + E4,
Obs5 = X5 F2 + E5,
Obs6 = X6 F2 + E6,
Obs7 = X7 F3 + E7,
Obs8 = X8 F3 + E8,
Obs9 = X9 F3 + E9,
F1 = X10 F4 + E10,
F2 = X11 F4 + E11,
F3 = X12 F4 + E12;

Std
F4 = 1. ,
E1-E9 = U11-U19 ,
E10-E12 = 3 * 1.;

Bounds
0. <= U11-U19;

run;
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Output 19.3.1. Second-Order Confirmatory Factor Analysis

Example of THURSTONE resp. McDONALD (1985, p.57, p.105)
Identified Second Order Confirmatory Factor Analysis

C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 21
Functions (Observations) 45
Lower Bounds 9
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 0.7151823452
Max Abs Gradient Element 0.4067179803 Radius 2.2578762496

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Lambda Change

1 0 2 0 0.23113 0.4840 0.1299 0 1.363
2 0 3 0 0.18322 0.0479 0.0721 0 1.078
3 0 4 0 0.18051 0.00271 0.0200 0 1.006
4 0 5 0 0.18022 0.000289 0.00834 0 1.093
5 0 6 0 0.18018 0.000041 0.00251 0 1.201
6 0 7 0 0.18017 6.523E-6 0.00114 0 1.289
7 0 8 0 0.18017 1.085E-6 0.000388 0 1.347
8 0 9 0 0.18017 1.853E-7 0.000173 0 1.380
9 0 10 0 0.18017 3.208E-8 0.000063 0 1.399

10 0 11 0 0.18017 5.593E-9 0.000028 0 1.408
11 0 12 0 0.18017 9.79E-10 0.000011 0 1.414

Optimization Results

Iterations 11 Function Calls 13
Jacobian Calls 12 Active Constraints 0
Objective Function 0.1801712147 Max Abs Gradient Element 0.0000105805
Lambda 0 Actual Over Pred Change 1.4135857595
Radius 0.0002026368

GCONV convergence criterion satisfied.
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Example of THURSTONE resp. McDONALD (1985, p.57, p.105)
Identified Second Order Confirmatory Factor Analysis

C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.1802
Goodness of Fit Index (GFI) 0.9596
GFI Adjusted for Degrees of Freedom (AGFI) 0.9242
Root Mean Square Residual (RMR) 0.0436
Parsimonious GFI (Mulaik, 1989) 0.6397
Chi-Square 38.1963
Chi-Square DF 24
Pr > Chi-Square 0.0331
Independence Model Chi-Square 1101.9
Independence Model Chi-Square DF 36
RMSEA Estimate 0.0528
RMSEA 90% Lower Confidence Limit 0.0153
RMSEA 90% Upper Confidence Limit 0.0831
ECVI Estimate 0.3881
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.4888
Probability of Close Fit 0.4088
Bentler’s Comparative Fit Index 0.9867
Normal Theory Reweighted LS Chi-Square 40.1947
Akaike’s Information Criterion -9.8037
Bozdogan’s (1987) CAIC -114.4747
Schwarz’s Bayesian Criterion -90.4747
McDonald’s (1989) Centrality 0.9672
Bentler & Bonett’s (1980) Non-normed Index 0.9800
Bentler & Bonett’s (1980) NFI 0.9653
James, Mulaik, & Brett (1982) Parsimonious NFI 0.6436
Z-Test of Wilson & Hilferty (1931) 1.8373
Bollen (1986) Normed Index Rho1 0.9480
Bollen (1988) Non-normed Index Delta2 0.9868
Hoelter’s (1983) Critical N 204
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Example of THURSTONE resp. McDONALD (1985, p.57, p.105)
Identified Second Order Confirmatory Factor Analysis

C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Obs1 = 0.5151*F1 + 1.0000 E1
Std Err 0.0629 X1
t Value 8.1868
Obs2 = 0.5203*F1 + 1.0000 E2
Std Err 0.0634 X2
t Value 8.2090
Obs3 = 0.4874*F1 + 1.0000 E3
Std Err 0.0608 X3
t Value 8.0151
Obs4 = 0.5211*F2 + 1.0000 E4
Std Err 0.0611 X4
t Value 8.5342
Obs5 = 0.4971*F2 + 1.0000 E5
Std Err 0.0590 X5
t Value 8.4213
Obs6 = 0.4381*F2 + 1.0000 E6
Std Err 0.0560 X6
t Value 7.8283
Obs7 = 0.4524*F3 + 1.0000 E7
Std Err 0.0660 X7
t Value 6.8584
Obs8 = 0.4173*F3 + 1.0000 E8
Std Err 0.0622 X8
t Value 6.7135
Obs9 = 0.4076*F3 + 1.0000 E9
Std Err 0.0613 X9
t Value 6.6484

Example of THURSTONE resp. McDONALD (1985, p.57, p.105)
Identified Second Order Confirmatory Factor Analysis

C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

F1 = 1.4438*F4 + 1.0000 E10
Std Err 0.2565 X10
t Value 5.6282
F2 = 1.2538*F4 + 1.0000 E11
Std Err 0.2114 X11
t Value 5.9320
F3 = 1.4065*F4 + 1.0000 E12
Std Err 0.2689 X12
t Value 5.2307
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Example of THURSTONE resp. McDONALD (1985, p.57, p.105)
Identified Second Order Confirmatory Factor Analysis

C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Variances of Exogenous Variables

Standard
Variable Parameter Estimate Error t Value

F4 1.00000
E1 U11 0.18150 0.02848 6.37
E2 U12 0.16493 0.02777 5.94
E3 U13 0.26713 0.03336 8.01
E4 U14 0.30150 0.05102 5.91
E5 U15 0.36450 0.05264 6.93
E6 U16 0.50642 0.05963 8.49
E7 U17 0.39032 0.05934 6.58
E8 U18 0.48138 0.06225 7.73
E9 U19 0.50509 0.06333 7.98
E10 1.00000
E11 1.00000
E12 1.00000
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Example of THURSTONE resp. McDONALD (1985, p.57, p.105)
Identified Second Order Confirmatory Factor Analysis

C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Obs1 = 0.9047*F1 + 0.4260 E1
X1

Obs2 = 0.9138*F1 + 0.4061 E2
X2

Obs3 = 0.8561*F1 + 0.5168 E3
X3

Obs4 = 0.8358*F2 + 0.5491 E4
X4

Obs5 = 0.7972*F2 + 0.6037 E5
X5

Obs6 = 0.7026*F2 + 0.7116 E6
X6

Obs7 = 0.7808*F3 + 0.6248 E7
X7

Obs8 = 0.7202*F3 + 0.6938 E8
X8

Obs9 = 0.7035*F3 + 0.7107 E9
X9

Example of THURSTONE resp. McDONALD (1985, p.57, p.105)
Identified Second Order Confirmatory Factor Analysis

C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

F1 = 0.8221*F4 + 0.5694 E10
X10

F2 = 0.7818*F4 + 0.6235 E11
X11

F3 = 0.8150*F4 + 0.5794 E12
X12
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Example of THURSTONE resp. McDONALD (1985, p.57, p.105)
Identified Second Order Confirmatory Factor Analysis

C = F1 * F2 * P * F2’ * F1’ + F1 * U2 * F1’ + U1, With P=U2=Ide

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Squared Multiple Correlations

Error Total
Variable Variance Variance R-Square

1 Obs1 0.18150 1.00000 0.8185
2 Obs2 0.16493 1.00000 0.8351
3 Obs3 0.26713 1.00000 0.7329
4 Obs4 0.30150 1.00000 0.6985
5 Obs5 0.36450 1.00000 0.6355
6 Obs6 0.50642 1.00000 0.4936
7 Obs7 0.39032 1.00000 0.6097
8 Obs8 0.48138 1.00000 0.5186
9 Obs9 0.50509 1.00000 0.4949

10 F1 1.00000 3.08452 0.6758
11 F2 1.00000 2.57213 0.6112
12 F3 1.00000 2.97832 0.6642

To compute McDonald’s unidentified model, you would have to change the STD and
BOUNDS statements to include three more parameters:

Std
F4 = 1. ,
E1-E9 = U11-U19 ,
E10-E12 = U21-U23 ;

Bounds
0. <= U11-U19,
0. <= U21-U23;

The unidentified model is indicated in the output by an analysis of the linear depen-
dencies in the approximate Hessian matrix (not shown). Because the information ma-
trix is singular, standard errors are computed based on a Moore-Penrose inverse. The
results computed by PROC CALIS differ from those reported by McDonald (1985).
In the case of an unidentified model, the parameter estimates are not unique.

To specify the identified model using the COSAN model statement, you can use the
following statements:

Title2 "Identified Second Order Confirmatory Factor Analysis Using COSAN";
Title3 "C = F1*F2*P*F2’*F1’ + F1*U2*F1’ + U1, With P=U2=Ide";
proc calis data=Thurst method=max edf=212 pestim se;

Cosan F1(3) * F2(1) * P(1,Ide) + F1(3) * U2(3,Ide) + U1(9,Dia);
Matrix F1

[ ,1] = X1-X3,
[ ,2] = 3 * 0. X4-X6,
[ ,3] = 6 * 0. X7-X9;

Matrix F2
[ ,1] = X10-X12;
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Matrix U1
[1,1] = U11-U19;

Bounds
0. <= U11-U19;

run;

Because PROC CALIS cannot compute initial estimates for a model specified by the
general COSAN statement, this analysis may require more iterations than one using
the LINEQS statement, depending on the precision of the processor.

Example 19.4. Linear Relations Among Factor Loadings

The correlation matrix from Kinzer and Kinzer (N=326) is used by Guttman (1957)
as an example that yields an approximate simplex. McDonald (1980) uses this data
set as an example of factor analysis where he supposes that the loadings of the second
factor are a linear function of the loadings on the first factor, for example

bj2 = �+ �bj1; j = 1; : : : ; n

This example is also discussed in Browne (1982). The matrix specification of the
model is

C = F1F
0

1

with

F1 =

0
BBBBBB@

b11 �+ �b11 u11
b21 �+ �b21 u22
b31 �+ �b31 u33
b41 �+ �b41 u44
b51 �+ �b51 u55
b61 �+ �b61 u66

1
CCCCCCA

This example is recomputed by PROC CALIS to illustrate a simple application of
the COSAN model statement combined with program statements. This example also
serves to illustrate the identification problem.

data Kinzer(TYPE=CORR);
Title "Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)";

_TYPE_ = ’CORR’; INPUT _NAME_ $ Obs1-Obs6;
datalines;

Obs1 1.00 . . . . .
Obs2 .51 1.00 . . . .
Obs3 .46 .51 1.00 . . .
Obs4 .46 .47 .54 1.00 . .
Obs5 .40 .39 .49 .57 1.00 .
Obs6 .33 .39 .47 .45 .56 1.00
;
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In a first test run of PROC CALIS, the same model is used as reported in McDon-
ald (1980). Using the Levenberg-Marquardt optimization algorithm, this example
specifies maximum likelihood estimation in the following code:

proc calis data=Kinzer method=max outram=ram nobs=326;
Title2 "Linearly Related Factor Analysis, (Mcdonald,1980)";
Title3 "Identification Problem";
Cosan F(8,Gen) * I(8,Ide);
Matrix F

[ ,1]= X1-X6,
[ ,2]= X7-X12,
[1,3]= X13-X18;

Parms Alfa = .5 Beta = -.5;
X7 = Alfa + Beta * X1;
X8 = Alfa + Beta * X2;
X9 = Alfa + Beta * X3;
X10 = Alfa + Beta * X4;
X11 = Alfa + Beta * X5;
X12 = Alfa + Beta * X6;

Bounds X13-X18 >= 0.;
Vnames F Fact1 Fact2 Uvar1-Uvar6;

run;

The pattern of the initial values is displayed in vector and in matrix form. You should
always read this output very carefully, particularly when you use your own program-
ming statements to constrain the matrix elements. The vector form shows the map-
ping of the model parameters to indices of the vectorX that is optimized. The matrix
form indicates parameter elements that are constrained by program statements by in-
dices ofX in angle brackets ( < > ). An asterisk trailing the iteration number in the
displayed optimization history of the Levenberg-Marquardt algorithm indicates that
the optimization process encountered a singular Hessian matrix. When this happens,
especially in the last iterations, the model may not be properly identified. The com-
puted�2 value of 10.337 for 7 degrees of freedom and the computed unique loadings
agree with those reported by McDonald (1980), but the maximum likelihood esti-
mates for the common factor loadings differ to some degree. The common factor
loadings can be subjected to transformations that do not increase the value of the
optimization criterion because the problem is not identified. An estimation problem
that is not fully identified can lead to different solutions caused only by different ini-
tial values, different optimization techniques, or computers with different machine
precision or floating-point arithmetic.

To overcome the identification problem in the first model, restart PROC CALIS with
a simple modification to the model in which the former parameter X1 is fixed to 0.
This leads to 8 instead of 7 degrees of freedom. The following code produces results
that are partially displayed in Output 19.4.1.
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data ram2(TYPE=RAM); set ram;
if _type_ = ’ESTIM’ then

if _name_ = ’X1’ then do;
_name_ = ’ ’; _estim_ = 0.;

end;
run;

proc calis data=Kinzer method=max inram=ram2 nobs=326;
Title2 "Linearly Related Factor Analysis, (Mcdonald,1980)";
Title3 "Identified Model";
Parms Alfa = .5 Beta = -.5;

X7 = Alfa;
X8 = Alfa + Beta * X2;
X9 = Alfa + Beta * X3;
X10 = Alfa + Beta * X4;
X11 = Alfa + Beta * X5;
X12 = Alfa + Beta * X6;

Bounds X13-X18 >= 0.;
run;

Output 19.4.1. Linearly Related Factor Analysis: Identification Problem

Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Linearly Related Factor Analysis, (Mcdonald,1980)

Identified Model

The CALIS Procedure
Covariance Structure Analysis: Pattern and Initial Values

COSAN Model Statement

Matrix Rows Columns ------Matrix Type-------

Term 1 1 F 6 8 GENERAL
2 I 8 8 IDENTITY

Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Linearly Related Factor Analysis, (Mcdonald,1980)

Identified Model

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 13
Functions (Observations) 21
Lower Bounds 6
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 0.3234289189
Max Abs Gradient Element 2.2633860283 Radius 5.8468569273
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Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Linearly Related Factor Analysis, (Mcdonald,1980)

Identified Model

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Lambda Change

1 0 2 0 0.07994 0.2435 0.3984 0 0.557
2 0 3 0 0.03334 0.0466 0.0672 0 1.202
3 0 4 0 0.03185 0.00150 0.00439 0 1.058
4 0 5 0 0.03181 0.000034 0.00236 0 0.811
5 0 6 0 0.03181 3.982E-6 0.000775 0 0.591
6 0 7 0 0.03181 9.275E-7 0.000490 0 0.543
7 0 8 0 0.03181 2.402E-7 0.000206 0 0.526
8 0 9 0 0.03181 6.336E-8 0.000129 0 0.514
9 0 10 0 0.03181 1.687E-8 0.000054 0 0.505

10 0 11 0 0.03181 4.521E-9 0.000034 0 0.498
11 0 12 0 0.03181 1.217E-9 0.000014 0 0.493
12 0 13 0 0.03181 3.29E-10 8.971E-6 0 0.489

Optimization Results

Iterations 12 Function Calls 14
Jacobian Calls 13 Active Constraints 0
Objective Function 0.0318073951 Max Abs Gradient Element 8.9711916E-6
Lambda 0 Actual Over Pred Change 0.4888109559
Radius 0.0002016088

ABSGCONV convergence criterion satisfied.
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Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Linearly Related Factor Analysis, (Mcdonald,1980)

Identified Model

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0318
Goodness of Fit Index (GFI) 0.9897
GFI Adjusted for Degrees of Freedom (AGFI) 0.9730
Root Mean Square Residual (RMR) 0.0409
Parsimonious GFI (Mulaik, 1989) 0.5278
Chi-Square 10.3374
Chi-Square DF 8
Pr > Chi-Square 0.2421
Independence Model Chi-Square 682.87
Independence Model Chi-Square DF 15
RMSEA Estimate 0.0300
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.0756
ECVI Estimate 0.1136
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.1525
Probability of Close Fit 0.7137
Bentler’s Comparative Fit Index 0.9965
Normal Theory Reweighted LS Chi-Square 10.1441
Akaike’s Information Criterion -5.6626
Bozdogan’s (1987) CAIC -43.9578
Schwarz’s Bayesian Criterion -35.9578
McDonald’s (1989) Centrality 0.9964
Bentler & Bonett’s (1980) Non-normed Index 0.9934
Bentler & Bonett’s (1980) NFI 0.9849
James, Mulaik, & Brett (1982) Parsimonious NFI 0.5253
Z-Test of Wilson & Hilferty (1931) 0.7019
Bollen (1986) Normed Index Rho1 0.9716
Bollen (1988) Non-normed Index Delta2 0.9965
Hoelter’s (1983) Critical N 489
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Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Linearly Related Factor Analysis, (Mcdonald,1980)

Identified Model

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Estimated Parameter Matrix F[6:8]
Standard Errors and t Values

General Matrix

Fact1 Fact2 Uvar1 Uvar2 Uvar3 Uvar4 Uvar5 Uvar6

Obs1 0 0.7151 0.728 3 0 0 0 0 0
0 0.0405 0.040 8 0 0 0 0 0
0 17.6382 17.827 6 0 0 0 0 0

<X7> [X13]

Obs2 -0.0543 0.7294 0 0.670 7 0 0 0 0
0.1042 0.0438 0 0.047 2 0 0 0 0

-0.5215 16.6655 0 14.205 9 0 0 0 0
[X2] <X8> [X14]

Obs3 0.1710 0.6703 0 0 0.698 3 0 0 0
0.0845 0.0396 0 0 0.032 4 0 0 0
2.0249 16.9077 0 0 21.5473 0 0 0

[X3] <X9> [X15]

Obs4 0.2922 0.6385 0 0 0 0.6876 0 0
0.0829 0.0462 0 0 0 0.0319 0 0
3.5224 13.8352 0 0 0 21.5791 0 0

[X4] <X10> [X16]

Obs5 0.5987 0.5582 0 0 0 0 0.5579 0
0.1003 0.0730 0 0 0 0 0.0798 0
5.9665 7.6504 0 0 0 0 6.9938 0

[X5] <X11> [X17]

Obs6 0.4278 0.6029 0 0 0 0 0 0.7336
0.0913 0.0586 0 0 0 0 0 0.0400
4.6844 10.2928 0 0 0 0 0 18.3580

[X6] <X12> [X18]

Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Linearly Related Factor Analysis, (Mcdonald,1980)

Identified Model

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Additional PARMS and Dependent Parameters

The Number of Dependent Parameters is 6

Standard
Parameter Estimate Error t Value

Alfa 0.71511 0.04054 17.64
Beta -0.26217 0.12966 -2.02
X7 0.71511 0.04054 17.64
X8 0.72936 0.04376 16.67
X9 0.67027 0.03964 16.91
X10 0.63851 0.04615 13.84
X11 0.55815 0.07296 7.65
X12 0.60295 0.05858 10.29

The lambda value of the iteration history indicates that Newton steps can always be
performed. Because no singular Hessian matrices (which can slow down the conver-
gence rate considerably) are computed, this example needs just 12 iterations com-
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pared to the 17 needed in the previous example. Note that the number of iterations
may be machine-dependent. The value of the fit funciton, the residuals, and the�2

value agree with the values obtained in fitting the first model. This indicates that this
second model is better identified than the first one. It is fully identified, as indicated
by the fact that the Hessian matrix is nonsingular.

Example 19.5. Ordinal Relations Among Factor Loadings

McDonald (1980) uses the same data set to compute a factor analysis with ordinally
constrained factor loadings. The results of the linearly constrained factor analysis
show that the loadings of the two factors are ordered as 2, 1, 3, 4, 6, 5. McDonald
(1980) then tests the hypothesis that the factor loadings are all nonnegative and can
be ordered in the following manner:

b11 � b21 � b31 � b41 � b51 � b61

b12 � b22 � b32 � b42 � b52 � b62

This example is recomputed by PROC CALIS to illustrate a further application of
the COSAN model statement combined with program statements. The same identi-
fication problem as in Example 19.4 on page 611 occurs here. The following model
specification describes an unidentified model:

proc calis data=Kinzer method=max outram=ram tech=nr nobs=326;
Title2 "Ordinally Related Factor Analysis, (Mcdonald,1980)";
Title3 "Identification Problem";
Cosan F(8,Gen) * I(8,Ide);

MATRIX F
[,1] = x1-x6,
[,2] = x7-x12,
[1,3] = x13-x18;

PARAMETERS t1-t10=1.;
x2 = x1 + t1 * t1;
x3 = x2 + t2 * t2;
x4 = x3 + t3 * t3;
x5 = x4 + t4 * t4;
x6 = x5 + t5 * t5;
x11 = x12 + t6 * t6;
x10 = x11 + t7 * t7;
x9 = x10 + t8 * t8;
x8 = x9 + t9 * t9;
x7 = x8 + t10 * t10;

Bounds x13-x18 >= 0.;
Vnames F Fact1 Fact2 Uvar1-Uvar6;

run;

SAS OnlineDoc: Version 8



618 � Chapter 19. The CALIS Procedure

You can specify the same model with the LINCON statement:

proc calis data=Kinzer method=max tech=lm edf=325;
Title3 "Identified Problem 2";
cosan f(8,gen)*I(8,ide);
matrix F

[,1] = x1-x6,
[,2] = x7-x12,
[1,3] = x13-x18;

lincon x1 <= x2,
x2 <= x3,
x3 <= x4,
x4 <= x5,
x5 <= x6,
x7 >= x8,
x8 >= x9,
x9 >= x10,
x10 >= x11,
x11 >= x12;

Bounds x13-x18 >= 0.;
Vnames F Fact1 Fact2 Uvar1-Uvar6;

run;

To have an identified model, the loading,b11 (x1), is fixed at 0. The information in the
OUTRAM= data set (the data setram), produced by the unidentified model, can be
used to specify the identified model. However, becausex1 is now a fixed constant in
the identified model, it should not have a parameter name in the new analysis. Thus,
the data setram is modified as follows:

data ram2(type=ram); set ram;
if _name_ = ’x1’ then do;

_name_ = ’ ’; _estim_ = 0.;
end;

run;

The data setram2 is now an OUTRAM= data set in whichx1 is no longer a pa-
rameter. PROC CALIS reads the information (that is, the set of parameters and the
model specification) in the data setram2 for the identified model. As displayed in
the following code, you can use the PARMS statement to specify the desired ordinal
relationships between the parameters.

proc calis data=Kinzer method=max inram=ram2 tech=nr nobs=326;
title2 "Ordinally Related Factor Analysis, (Mcdonald,1980)";
title3 "Identified Model with X1=0";
parms t1-t10= 10 * 1.;

x2 = + t1 * t1;
x3 = x2 + t2 * t2;
x4 = x3 + t3 * t3;
x5 = x4 + t4 * t4;
x6 = x5 + t5 * t5;
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x11 = x12 + t6 * t6;
x10 = x11 + t7 * t7;
x9 = x10 + t8 * t8;
x8 = x9 + t9 * t9;
x7 = x8 + t10 * t10;

bounds x13-x18 >= 0.;
run;

Selected output for the identified model is displayed in Output 19.5.1.

Output 19.5.1. Factor Analysis with Ordinal Constraints

Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Ordinally Related Factor Analysis, (Mcdonald,1980)

Identified Model with X1=0

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Parameter Estimates 17
Functions (Observations) 21
Lower Bounds 6
Upper Bounds 0

Optimization Start

Active Constraints 0 Objective Function 5.2552270182
Max Abs Gradient Element 0.8821788922

Ratio
Between

Actual
Objective Max Abs and

Function Active Objective Function Gradient Predicted
Iter Restarts Calls Constraints Function Change Element Ridge Change

1 0 2 0 3.14901 2.1062 1.0712 0 2.226
2 0 3 0 1.42725 1.7218 1.0902 0 2.064
3 0 4 0 0.41661 1.0106 0.7472 0 1.731
4 0 5 0 0.09260 0.3240 0.3365 0 1.314
5 0 6 0 0.09186 0.000731 0.3880 0 0.0123
6 0 8 0 0.04570 0.0462 0.2870 0.0313 0.797
7 0 10 0 0.03269 0.0130 0.0909 0.0031 0.739
8 0 16 0 0.02771 0.00498 0.0890 0.0800 0.682
9 0 17 0 0.02602 0.00168 0.0174 0.0400 0.776

10 0 19 0 0.02570 0.000323 0.0141 0.0800 0.630
11 0 21 0 0.02560 0.000103 0.00179 0.160 1.170
12 0 23 0 0.02559 7.587E-6 0.000670 0.160 1.423
13 0 24 0 0.02559 2.993E-6 0.000402 0.0400 1.010
14 0 27 0 0.02559 1.013E-6 0.000206 0.160 1.388
15 0 28 0 0.02559 1.889E-7 0.000202 0.0400 0.530
16 0 30 0 0.02559 1.803E-7 0.000097 0.0800 0.630
17 0 32 0 0.02559 4.845E-8 0.000035 0.160 1.340
18 0 33 0 0.02559 1.837E-9 0.000049 0.0400 0.125
19 0 35 0 0.02559 9.39E-9 0.000024 0.0800 0.579
20 0 37 0 0.02559 2.558E-9 6.176E-6 0.160 1.305

Optimization Results

Iterations 20 Function Calls 38
Jacobian Calls 21 Active Constraints 0
Objective Function 0.0255871615 Max Abs Gradient Element 6.1764582E-6
Ridge 0.04 Actual Over Pred Change 1.3054374955

ABSGCONV convergence criterion satisfied.
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Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Ordinally Related Factor Analysis, (Mcdonald,1980)

Identified Model with X1=0

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function 0.0256
Goodness of Fit Index (GFI) 0.9916
GFI Adjusted for Degrees of Freedom (AGFI) 0.9557
Root Mean Square Residual (RMR) 0.0180
Parsimonious GFI (Mulaik, 1989) 0.2644
Chi-Square 8.3158
Chi-Square DF 4
Pr > Chi-Square 0.0807
Independence Model Chi-Square 682.87
Independence Model Chi-Square DF 15
RMSEA Estimate 0.0576
RMSEA 90% Lower Confidence Limit .
RMSEA 90% Upper Confidence Limit 0.1133
ECVI Estimate 0.1325
ECVI 90% Lower Confidence Limit .
ECVI 90% Upper Confidence Limit 0.1711
Probability of Close Fit 0.3399
Bentler’s Comparative Fit Index 0.9935
Normal Theory Reweighted LS Chi-Square 8.2901
Akaike’s Information Criterion 0.3158
Bozdogan’s (1987) CAIC -18.8318
Schwarz’s Bayesian Criterion -14.8318
McDonald’s (1989) Centrality 0.9934
Bentler & Bonett’s (1980) Non-normed Index 0.9758
Bentler & Bonett’s (1980) NFI 0.9878
James, Mulaik, & Brett (1982) Parsimonious NFI 0.2634
Z-Test of Wilson & Hilferty (1931) 1.4079
Bollen (1986) Normed Index Rho1 0.9543
Bollen (1988) Non-normed Index Delta2 0.9936
Hoelter’s (1983) Critical N 372
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Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Ordinally Related Factor Analysis, (Mcdonald,1980)

Identified Model with X1=0

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Estimated Parameter Matrix F[6:8]
Standard Errors and t Values

General Matrix

Fact1 Fact2 Uvar1 Uvar2 Uvar3 Uvar4 Uvar5 Uvar6

Obs1 0 0.7101 0.713 1 0 0 0 0 0
0 0.0435 0.040 4 0 0 0 0 0
0 16.3317 17.642 7 0 0 0 0 0

<x7> [x13]

Obs2 0.0261 0.7101 0 0.695 0 0 0 0 0
0.0875 0.0435 0 0.039 1 0 0 0 0
0.2977 16.3317 0 17.757 1 0 0 0 0

<x2> <x8> [x14]

Obs3 0.2382 0.6827 0 0 0.690 7 0 0 0
0.0851 0.0604 0 0 0.033 8 0 0 0
2.7998 11.3110 0 0 20.4239 0 0 0

<x3> <x9> [x15]

Obs4 0.3252 0.6580 0 0 0 0.6790 0 0
0.0823 0.0621 0 0 0 0.0331 0 0
3.9504 10.5950 0 0 0 20.5361 0 0

<x4> <x10> [x16]

Obs5 0.5395 0.5528 0 0 0 0 0.6249 0
0.0901 0.0705 0 0 0 0 0.0534 0
5.9887 7.8359 0 0 0 0 11.7052 0

<x5> <x11> [x17]

Obs6 0.5395 0.4834 0 0 0 0 0 0.7005
0.0918 0.0726 0 0 0 0 0 0.0524
5.8776 6.6560 0 0 0 0 0 13.3749

<x6> [x12] [x18]

SAS OnlineDoc: Version 8



622 � Chapter 19. The CALIS Procedure

Data Matrix of Kinzer & Kinzer, see GUTTMAN (1957)
Ordinally Related Factor Analysis, (Mcdonald,1980)

Identified Model with X1=0

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Additional PARMS and Dependent Parameters

The Number of Dependent Parameters is 10

Standard
Parameter Estimate Error t Value

t1 0.16143 0.27111 0.60
t2 0.46060 0.09289 4.96
t3 0.29496 0.13702 2.15
t4 0.46297 0.10756 4.30
t5 0.0000522 1311 0.00
t6 0.26347 0.12203 2.16
t7 0.32430 0.09965 3.25
t8 0.15721 0.21134 0.74
t9 0.16543 0.20537 0.81
t10 -4.2528E-7 0.47736 -0.00
x7 0.71007 0.04348 16.33
x2 0.02606 0.08753 0.30
x8 0.71007 0.04348 16.33
x3 0.23821 0.08508 2.80
x9 0.68270 0.06036 11.31
x4 0.32521 0.08232 3.95
x10 0.65799 0.06210 10.60
x5 0.53955 0.09009 5.99
x11 0.55282 0.07055 7.84
x6 0.53955 0.09180 5.88

By fixing the loadingb11 (x1) to constant 0, you obtain�2 = 8:316 on df = 4
(p < :09). McDonald reports the same�2 value, but ondf = 3, and thus, he obtains
a smallerp-value. An analysis without the fixed loading shows typical signs of an
unidentified problem: after more iterations it leads to a parameter set with a�2 value
of 8.174 ondf = 3. A singular Hessian matrix occurs.

The singular Hessian matrix of the unidentified problem slows down the convergence
rate of the Levenberg-Marquardt algorithm considerably. Compared to the unidenti-
fied problem with 30 iterations, the identified problem needs only 20 iterations. Note
that the number of iterations may depend on the precision of the processor.

The same model can also be specified using the LINCON statement for linear con-
straints:

proc calis data=Kinzer method=max tech=lm edf=325;
Title3 "Identified Model 2";
cosan f(8,gen)*I(8,ide);
matrix f

[,1] = 0. x2-x6,
[,2] = x7-x12,
[1,3] = x13-x18;
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lincon x2 <= x3,
x3 <= x4,
x4 <= x5,
x5 <= x6,
x7 >= x8,
x8 >= x9,
x9 >= x10,
x10 >= x11,
x11 >= x12;

bounds x2 x13-x18 >= 0.;
run;

Example 19.6. Longitudinal Factor Analysis

The following example (McDonald 1980) illustrates both the ability of PROC CALIS
to formulate complex covariance structure analysis problems by the generalized
COSAN matrix model and the use of program statements to impose nonlinear con-
straints on the parameters. The example is a longitudinal factor analysis using the
Swaminathan (1974) model. Form = 3 tests,k = 3 occasions, andr = 2 factors the
matrix model is formulated in the section “First-Order Autoregressive Longitudinal
Factor Model” on page 443 as follows:

C = F1F2F3LF
�1
3 F

�1
2 P(F

�1
2 )0(F�1

3 )0L0F0

3F
0

2F
0

1 +U
2

F1 =

0
@B1

B2

B3

1
A ; F2 =

0
@ I2 D2

D2

1
A ; F3 =

0
@ I2 I2

D3

1
A

L =

0
@ I2 o o
I2 I2 o
I2 I2 I2

1
A ; P =

0
@ I2 S2

S3

1
A ; U =

0
@U11 U12 U13

U21 U22 U23

U31 U32 U33

1
A

S2 = I2 �D2
2; S3 = I2 �D2

3

The Swaminathan longitudinal factor model assumes that the factor scores for each
(m) common factor change from occasion to occasion (k) according to a first-
order autoregressive scheme. The matrixF1 contains thek factor loading matrices
B1;B2;B3 (each isn �m). The matricesD2;D3;S2;S3 andUij ; i; j = 1; : : : ; k;
are diagonal, and the matricesDi andSi; i = 2; : : : ; k; are subjected to the constraint

Si +D
2
i = I

Since the constructed correlation matrix given in McDonald’s (1980) paper is singu-
lar, only unweighted least-squares estimates can be computed.
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data Mcdon(TYPE=CORR);
Title "Swaminathan’s Longitudinal Factor Model, Data: McDONALD(1980)";
Title2 "Constructed Singular Correlation Matrix, GLS & ML not possible";

_TYPE_ = ’CORR’; INPUT _NAME_ $ Obs1-Obs9;
datalines;

Obs1 1.000 . . . . . . . .
Obs2 .100 1.000 . . . . . . .
Obs3 .250 .400 1.000 . . . . . .
Obs4 .720 .108 .270 1.000 . . . . .
Obs5 .135 .740 .380 .180 1.000 . . . .
Obs6 .270 .318 .800 .360 .530 1.000 . . .
Obs7 .650 .054 .135 .730 .090 .180 1.000 . .
Obs8 .108 .690 .196 .144 .700 .269 .200 1.000 .
Obs9 .189 .202 .710 .252 .336 .760 .350 .580 1.000

;

proc calis data=Mcdon method=ls tech=nr nobs=100;
cosan B(6,Gen) * D1(6,Dia) * D2(6,Dia) * T(6,Low) * D3(6,Dia,Inv) *

D4(6,Dia,Inv) * P(6,Dia) + U(9,Sym);
Matrix B

[ ,1]= X1-X3,
[ ,2]= 0. X4-X5,
[ ,3]= 3 * 0. X6-X8,
[ ,4]= 4 * 0. X9-X10,
[ ,5]= 6 * 0. X11-X13,
[ ,6]= 7 * 0. X14-X15;

Matrix D1
[1,1]= 2 * 1. X16 X17 X16 X17;

Matrix D2
[1,1]= 4 * 1. X18 X19;

Matrix T
[1,1]= 6 * 1.,
[3,1]= 4 * 1.,
[5,1]= 2 * 1.;

Matrix D3
[1,1]= 4 * 1. X18 X19;

Matrix D4
[1,1]= 2 * 1. X16 X17 X16 X17;

Matrix P
[1,1]= 2 * 1. X20-X23;

Matrix U
[1,1]= X24-X32,
[4,1]= X33-X38,
[7,1]= X39-X41;

Bounds 0. <= X24-X32,
-1. <= X16-X19 <= 1.;

X20 = 1. - X16 * X16;
X21 = 1. - X17 * X17;
X22 = 1. - X18 * X18;
X23 = 1. - X19 * X19;

run;
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Because this formulation of Swaminathan’s model in general leads to an unidenti-
fied problem, the results given here are different from those reported by McDonald
(1980). The displayed output of PROC CALIS also indicates that the fitted central
model matricesP andU are not positive definite. The BOUNDS statement constrains
the diagonals of the matricesP andU to be nonnegative, but this cannot preventU

from having three negative eigenvalues. The fact that many of the published results
for more complex models in covariance structure analysis are connected to unidenti-
fied problems implies that more theoretical work should be done to study the general
features of such models.
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