Chapter 20
The CANCORR Procedure

Chapter Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERVIEW</td>
<td>635</td>
</tr>
<tr>
<td>Background</td>
<td>636</td>
</tr>
<tr>
<td>GETTING STARTED</td>
<td>637</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>641</td>
</tr>
<tr>
<td>PROC CANCORR Statement</td>
<td>641</td>
</tr>
<tr>
<td>BY Statement</td>
<td>647</td>
</tr>
<tr>
<td>FREQ Statement</td>
<td>648</td>
</tr>
<tr>
<td>PARTIAL Statement</td>
<td>648</td>
</tr>
<tr>
<td>VAR Statement</td>
<td>648</td>
</tr>
<tr>
<td>WEIGHT Statement</td>
<td>649</td>
</tr>
<tr>
<td>WITH Statement</td>
<td>649</td>
</tr>
<tr>
<td>DETAILS</td>
<td>649</td>
</tr>
<tr>
<td>Missing Values</td>
<td>649</td>
</tr>
<tr>
<td>Test Criterion</td>
<td>649</td>
</tr>
<tr>
<td>Output Data Sets</td>
<td>649</td>
</tr>
<tr>
<td>Computational Resources</td>
<td>651</td>
</tr>
<tr>
<td>Displayed Output</td>
<td>652</td>
</tr>
<tr>
<td>ODS Table Names</td>
<td>654</td>
</tr>
<tr>
<td>EXAMPLE</td>
<td>656</td>
</tr>
<tr>
<td>Example 20.1 Canonical Correlation Analysis of Fitness Club Data</td>
<td>656</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>662</td>
</tr>
</tbody>
</table>
Chapter 20
The CANCORR Procedure

Overview

The CANCORR procedure performs canonical correlation, partial canonical correlation, and canonical redundancy analysis.

Canonical correlation is a technique for analyzing the relationship between two sets of variables—each set can contain several variables. Canonical correlation is a variation on the concept of multiple regression and correlation analysis. In multiple regression and correlation, you examine the relationship between a linear combination of a set of X variables and a single Y variable. In canonical correlation analysis, you examine the relationship between a linear combination of the set of X variables with a linear combination of a set of Y variables. Simple and multiple correlation are special cases of canonical correlation in which one or both sets contain a single variable.

The CANCORR procedure tests a series of hypotheses that each canonical correlation and all smaller canonical correlations are zero in the population. PROC CANCORR uses an F approximation (Rao 1973; Kshirsagar 1972) that gives better small sample results than the usual χ^2 approximation. At least one of the two sets of variables should have an approximate multivariate normal distribution in order for the probability levels to be valid.

Both standardized and unstandardized canonical coefficients are produced, as well as all correlations between canonical variables and the original variables. A canonical redundancy analysis (Stewart and Love 1968; Cooley and Lohnes 1971) can also be performed. PROC CANCORR provides multiple regression analysis options to aid in interpreting the canonical correlation analysis. You can examine the linear regression of each variable on the opposite set of variables. PROC CANCORR uses the least-squares criterion in linear regression analysis.

PROC CANCORR can produce a data set containing the scores of each observation on each canonical variable, and you can use the PRINT procedure to list these values. A plot of each canonical variable against its counterpart in the other group is often useful, and you can use PROC PLOT with the output data set to produce these plots. A second output data set contains the canonical correlations, coefficients, and most other statistics computed by the procedure.
Background

Canonical correlation was developed by Hotelling (1935, 1936). The application of canonical correlation is discussed by Cooley and Lohnes (1971), Tatsuoka (1971), and Mardia, Kent, and Bibby (1979). One of the best theoretical treatments is given by Kshirsagar (1972).

Consider the situation in which you have a set of p X variables and q Y variables. The CANCORR procedure finds the linear combinations

$$w_1 = a_1x_1 + a_2x_2 + \ldots + a_px_p$$

$$v_1 = b_1y_1 + b_2y_2 + \ldots + b_qy_q$$

such that the correlation between the two canonical variables, w_1 and v_1, is maximized. This correlation between the two canonical variables is the first canonical correlation. The coefficients of the linear combinations are canonical coefficients or canonical weights. It is customary to normalize the canonical coefficients so that each canonical variable has a variance of 1.

PROC CANCORR continues by finding a second set of canonical variables, uncorrelated with the first pair, that produces the second highest correlation coefficient. The process of constructing canonical variables continues until the number of pairs of canonical variables equals the number of variables in the smaller group.

Each canonical variable is uncorrelated with all the other canonical variables of either set except for the one corresponding canonical variable in the opposite set. The canonical coefficients are not generally orthogonal, however, so the canonical variables do not represent jointly perpendicular directions through the space of the original variables.

The first canonical correlation is at least as large as the multiple correlation between any variable and the opposite set of variables. It is possible for the first canonical correlation to be very large while all the multiple correlations for predicting one of the original variables from the opposite set of canonical variables are small. Canonical redundancy analysis (Stewart and Love 1968; Cooley and Lohnes 1971; van den Wollenberg 1977), which is available with the CANCORR procedure, examines how well the original variables can be predicted from the canonical variables.

PROC CANCORR can also perform partial canonical correlation, which is a multivariate generalization of ordinary partial correlation (Cooley and Lohnes 1971; Timm 1975). Most commonly used parametric statistical methods, ranging from t tests to multivariate analysis of covariance, are special cases of partial canonical correlation.
The following example demonstrates how you can use the CANCORR procedure to calculate and test canonical correlations between two sets of variables.

Suppose you want to determine the degree of correspondence between a set of job characteristics and measures of employee satisfaction. Using a survey instrument for employees, you calculate three measures of job satisfaction. With another instrument designed for supervisors, you calculate the corresponding job characteristics profile.

Your three variables associated with job satisfaction are

- career track satisfaction: employee satisfaction with career direction and the possibility of future advancement, expressed as a percent
- management and supervisor satisfaction: employee satisfaction with supervisor’s communication and management style, expressed as a percent
- financial satisfaction: employee satisfaction with salary and other benefits, using a scale measurement from 1 to 10 (1=unsatisfied, 10=satisfied)

The three variables associated with job characteristics are

- task variety: degree of variety involved in tasks, expressed as a percent
- feedback: degree of feedback required in job tasks, expressed as a percent
- autonomy: degree of autonomy required in job tasks, expressed as a percent

The following statements create the SAS data set Jobs and request a canonical correlation analysis:

```sas
options ls=120;
data Jobs;
  input Career Supervisor Finance Variety Feedback Autonomy;
  label Career = 'Career Satisfaction' Variety = 'Task Variety'
    Supervisor = 'Supervisor Satisfaction' Feedback = 'Amount of Feedback'
    Finance = 'Financial Satisfaction' Autonomy = 'Degree of Autonomy';
datalines;
72 26 9     10 11 70
63 76 7     85 22 93
96 31 7     83 63 73
96 98 6     82 75 97
84 94 6     36 77 97
66 10 5     28 24 75
31 40 9     64 23 75
45 14 2     19 15 50
42 18 6     33 13 70
79 74 4     23 14 90
39 12 2     37 13 70
54 35 3     23 74 53
60 75 5     45 58 83
63 45 5     22 67 53
;
```

SAS OnlineDoc™: Version 8
The DATA= option in the PROC CANCORR statement specifies Jobs as the SAS data set to be analyzed. The VPREFIX and WPREFIX options specify the prefixes for naming the canonical variables from the VAR statement and the WITH statement, respectively. The VNAME option specifies ‘Satisfaction Areas’ to refer to the set of variables from the VAR statement. Similarly, the WNAME option specifies ‘Job Characteristics’ to refer to the set of variables from the WITH statement.

The VAR statement defines the first of the two sets of variables to be analyzed as Career, Supervisor and Finance. The WITH statement defines the second set of variables to be Variety, Feedback, and Autonomy. The results of this analysis are displayed in the following figures.

Figure 20.1. Canonical Correlations, Eigenvalues, and Likelihood Tests

Figure 20.1 displays the canonical correlation, adjusted canonical correlation, approximate standard error, and squared canonical correlation for each pair of canonical variables. The first canonical correlation (the correlation between the first pair of canonical variables) is 0.9194. This value represents the highest possible correlation between any linear combination of the job satisfaction variables and any linear combination of the job characteristics variables.

Figure 20.1 also lists the likelihood ratio and associated statistics for testing the hypothesis that the canonical correlations in the current row and all that follow are zero. The first approximate F value of 2.93 corresponds to the test that all three canonical correlations are zero. Since the p-value is small (0.0223), you would reject the null hypothesis at the 0.05 level. The second approximate F value of 0.49 corresponds to
the test that both the second and the third canonical correlations are zero. Since the
\(p \)-value is large (0.7450), you would fail to reject the hypothesis and conclude that
only the first canonical correlation is significant.

Figure 20.2 lists several multivariate statistics and \(F \) test approximations for the null hypothesis that all canonical correlations are zero. These statistics are described in the

The CANCORR Procedure

Canonical Correlation Analysis

Multivariate Statistics and \(F \) Approximations

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>(F) Value</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Pr > (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilks’ Lambda</td>
<td>0.12593148</td>
<td>2.93</td>
<td>9 19.621</td>
<td>0.0223</td>
<td></td>
</tr>
<tr>
<td>Pillai’s Trace</td>
<td>1.03343732</td>
<td>1.75</td>
<td>9 30</td>
<td>0.1204</td>
<td></td>
</tr>
<tr>
<td>Hotelling-Lawley Trace</td>
<td>5.69042615</td>
<td>4.76</td>
<td>9 9.8113</td>
<td>0.0119</td>
<td></td>
</tr>
<tr>
<td>Roy’s Greatest Root</td>
<td>5.46489324</td>
<td>18.22</td>
<td>3 10</td>
<td>0.0002</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: \(F \) Statistic for Roy’s Greatest Root is an upper bound.

Figure 20.2. Multivariate Statistics and Approximate \(F \) Tests

The small \(p \)-values for these tests (< 0.05), except for Pillai’s Trace, suggest rejecting the null hypothesis that all canonical correlations are zero in the population, confirming the results of the preceding likelihood ratio test (Figure 20.1). With only one of the tests resulting in a \(p \)-value larger than 0.05, you can assume that the first canonical correlation is significant. The next step is to interpret or identify the two canonical variables corresponding to this significant correlation.

Even though canonical variables are artificial, they can often be “identified” in terms of the original variables. This is done primarily by inspecting the standardized coefficients of the canonical variables and the correlations between the canonical variables and their original variables. Since only the first canonical correlation is significant, only the first pair of canonical variables (\(\text{Satisfaction1} \) and \(\text{Characteristics1} \)) need to be identified.

PROC CANCORR calculates and displays the raw canonical coefficients for the job satisfaction variables and the job characteristic variables. However, since the original variables do not necessarily have equal variance and are not measured in the same units, the raw coefficients must be standardized to allow interpretation. The coefficients are standardized by multiplying the raw coefficients with the standard deviation of the associated variable.

The standardized canonical coefficients in Figure 20.3 show that the first canonical variable for the \(\text{Satisfaction} \) group is a weighted sum of the variables \(\text{Supervisor} \) (0.7854) and \(\text{Career} \) (0.3028), with the emphasis on \(\text{Supervisor} \). The coefficient for the variable \(\text{Finance} \) is near 0. Thus, a person satisfied with his or her supervisor and with a large degree of career satisfaction would score high on the canonical variable \(\text{Satisfaction1} \).
Chapter 20. The CANCORR Procedure

The coefficients for the job characteristics variables show that degree of autonomy (Autonomy) and amount of feedback (Feedback) contribute heavily to the Characteristics1 canonical variable (0.8403 and 0.5520, respectively).

Figure 20.4 shows the table of correlations between the canonical variables and the original variables.
Although these univariate correlations must be interpreted with caution since they do not indicate how the original variables contribute jointly to the canonical analysis, they are often useful in the identification of the canonical variables.

Figure 20.4 shows that the supervisor satisfaction variable Supervisor is strongly associated with the Satisfaction1 canonical variable with a correlation of 0.9644. Slightly less influential is the variable Career, which has a correlation with the canonical variable of 0.7499. Thus, the canonical variable Satisfaction1 seems to represent satisfaction with supervisor and career track.

The correlations for the job characteristics variables show that the canonical variable Characteristics1 seems to represent all three measured variables, with degree of autonomy variable (Autonomy) being the most influential (0.8459).

Hence, you can interpret these results to mean that job characteristics and job satisfaction are related—jobs that possess a high degree of autonomy and level of feedback are associated with workers who are more satisfied with their supervisor and their career. While financial satisfaction is a factor in job satisfaction, it is not as important as the other measured satisfaction-related variables.

Syntax

The following statements are available in PROC CANCORR.

```
PROC CANCORR < options > ;
   WITH variables ;
   BY variables ;
   FREQ variable ;
   PARTIAL variables ;
   VAR variables ;
   WEIGHT variable ;
```

The PROC CANCORR statement and the WITH statement are required. The rest of this section provides detailed syntax information for each of the preceding statements, beginning with the PROC CANCORR statement. The remaining statements are covered in alphabetical order.

PROC CANCORR Statement

```
PROC CANCORR < options > ;
```

The PROC CANCORR statement starts the CANCORR procedure and optionally identifies input and output data sets, specifies the analyses performed, and controls displayed output. Table 20.1 summarizes the options.
Table 20.1. PROC CANCORR Statement Options

<table>
<thead>
<tr>
<th>Task</th>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify computational details</td>
<td>EDF=</td>
<td>specify error degrees of freedom if input observations are regression residuals</td>
</tr>
<tr>
<td></td>
<td>NOINT</td>
<td>omit intercept from canonical correlation and regression models</td>
</tr>
<tr>
<td></td>
<td>RDF=</td>
<td>specify regression degrees of freedom if input observations are regression residuals</td>
</tr>
<tr>
<td></td>
<td>SINGULAR=</td>
<td>specify the singularity criterion</td>
</tr>
<tr>
<td>Specify input and output data sets</td>
<td>DATA=</td>
<td>specify input data set name</td>
</tr>
<tr>
<td></td>
<td>OUT=</td>
<td>specify output data set name</td>
</tr>
<tr>
<td></td>
<td>OUTSTAT=</td>
<td>specify output data set name containing various statistics</td>
</tr>
<tr>
<td>Specify labeling options</td>
<td>VNAME=</td>
<td>specify a name to refer to VAR statement variables</td>
</tr>
<tr>
<td></td>
<td>VPREFIX=</td>
<td>specify a prefix for naming VAR statement canonical variables</td>
</tr>
<tr>
<td></td>
<td>WNAME=</td>
<td>specify a name to refer to WITH statement variables</td>
</tr>
<tr>
<td></td>
<td>WPREFIX=</td>
<td>specify a prefix for naming WITH statement canonical variables</td>
</tr>
<tr>
<td>Control amount of output</td>
<td>ALL</td>
<td>produce simple statistics, input variable correlations, and canonical redundancy analysis</td>
</tr>
<tr>
<td></td>
<td>CORR</td>
<td>produce input variable correlations</td>
</tr>
<tr>
<td></td>
<td>NCAN=</td>
<td>specify number of canonical variables for which full output is desired</td>
</tr>
<tr>
<td></td>
<td>NOPRINT</td>
<td>suppress all displayed output</td>
</tr>
<tr>
<td></td>
<td>REDUNDANCY</td>
<td>produce canonical redundancy analysis</td>
</tr>
<tr>
<td></td>
<td>SHORT</td>
<td>suppress default output from canonical analysis</td>
</tr>
<tr>
<td></td>
<td>SIMPLE</td>
<td>produce means and standard deviations</td>
</tr>
<tr>
<td>Request regression analyses</td>
<td>VDEP</td>
<td>request multiple regression analyses with the VAR variables as dependents and the WITH variables as regressors</td>
</tr>
<tr>
<td></td>
<td>WDEP</td>
<td>same as VREG</td>
</tr>
<tr>
<td></td>
<td>VREG</td>
<td>request multiple regression analyses with the VAR variables as regressors and the WITH variables as dependents</td>
</tr>
<tr>
<td></td>
<td>WREG</td>
<td>same as VREG</td>
</tr>
</tbody>
</table>
Table 20.1. (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify regression statistics</td>
<td>ALL</td>
<td>produce all regression statistics and includes these statistics in the OUT-STAT= data set</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>produce raw regression coefficients</td>
</tr>
<tr>
<td></td>
<td>CLB</td>
<td>produce 95% confidence interval limits for the regression coefficients</td>
</tr>
<tr>
<td></td>
<td>CORRB</td>
<td>produce correlations among regression coefficients</td>
</tr>
<tr>
<td></td>
<td>INT</td>
<td>request statistics for the intercept when you specify the B, CLB, SEB, T, or PROBT option</td>
</tr>
<tr>
<td></td>
<td>PCORR</td>
<td>display partial correlations between regressors and dependents</td>
</tr>
<tr>
<td></td>
<td>PROBT</td>
<td>display probability levels for t statistics</td>
</tr>
<tr>
<td></td>
<td>SEB</td>
<td>display standard errors of regression coefficients</td>
</tr>
<tr>
<td></td>
<td>SMC</td>
<td>display squared multiple correlations and F tests</td>
</tr>
<tr>
<td></td>
<td>SPCORR</td>
<td>display semipartial correlations between regressors and dependents</td>
</tr>
<tr>
<td></td>
<td>SQPCORR</td>
<td>display squared partial correlations between regressors and dependents</td>
</tr>
<tr>
<td></td>
<td>SQSPCORR</td>
<td>display squared semipartial correlations between regressors and dependents</td>
</tr>
<tr>
<td></td>
<td>STB</td>
<td>display standardized regression coefficients</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>display t statistics for regression coefficients</td>
</tr>
</tbody>
</table>

Following are explanations of the options that can be used in the PROC CANCORR statement (in alphabetic order):

ALL

Displays simple statistics, correlations among the input variables, the confidence limits for the regression coefficients, and the canonical redundancy analysis. If you specify the VDEP or WDEP option, the ALL option displays all related regression statistics (unless the NOPRINT option is specified) and includes these statistics in the OUTSTAT= data set.

B

produces raw regression coefficients from the regression analyses.
CLB produces the 95% confidence limits for the regression coefficients from the regression analyses.

CORR produces correlations among the original variables. If you include a PARTIAL statement, the CORR option produces a correlation matrix for all variables in the analysis, the regression statistics (R^2, RMSE), the standardized regression coefficients for both the VAR and WITH variables as predicted from the PARTIAL statement variables, and partial correlation matrices.

CORRB produces correlations among the regression coefficient estimates.

DATA=SAS-data-set names the SAS data set to be analyzed by PROC CANCORR. It can be an ordinary SAS data set or a TYPE=CORR, COV, FACTOR, SSCP, UCORR, or UCOV data set. By default, the procedure uses the most recently created SAS data set.

EDF=error-df specifies the error degrees of freedom if the input observations are residuals from a regression analysis. The effective number of observations is the EDF= value plus one. If you have 100 observations, then specifying EDF=99 has the same effect as omitting the EDF= option.

INT requests that statistics for the intercept be included when B, CLB, SEB, T, or PROBT is specified for the regression analyses.

NCAN=number specifies the number of canonical variables for which full output is desired. The number must be less than or equal to the number of canonical variables in the analysis.

The value of the NCAN= option specifies the number of canonical variables for which canonical coefficients and canonical redundancy statistics are displayed, and the number of variables shown in the canonical structure matrices. The NCAN= option does not affect the number of displayed canonical correlations.

If an OUTSTAT= data set is requested, the NCAN= option controls the number of canonical variables for which statistics are output. If an OUT= data set is requested, the NCAN= option controls the number of canonical variables for which scores are output.

NOINT omits the intercept from the canonical correlation and regression models. Standard deviations, variances, covariances, and correlations are not corrected for the mean.

If you use a TYPE=SSCP data set as input to the CANCORR procedure and list the variable Intercept in the VAR or WITH statement, the procedure runs as if you also specified the NOINT option. If you use NOINT and also create an OUTSTAT= data set, the data set is TYPE=UCORR.
NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery System (ODS). For more information, see Chapter 15, “Using the Output Delivery System.”

OUT=SAS-data-set
creates an output SAS data set to contain all the original data plus scores on the canonical variables. If you want to create a permanent SAS data set, you must specify a two-level name. The OUT= option cannot be used when the DATA= data set is TYPE=CORR, COV, FACTOR, SSCP, UCORR, or UCOV. For details on OUT= data sets, see the section “Output Data Sets” on page 649. Refer to SAS Language Reference: Concepts for more information on permanent SAS data sets.

OUTSTAT=SAS-data-set
creates an output SAS data set containing various statistics, including the canonical correlations and coefficients and the multiple regression statistics you request. If you want to create a permanent SAS data set, you must specify a two-level name. For details on OUTSTAT= data sets, see the section “Output Data Sets” on page 649. Refer to SAS Language Reference: Concepts for more information on permanent SAS data sets.

PCORR
produces partial correlations between regressors and dependent variables, removing from each dependent variable and regressor the effects of all other regressors.

PROBT
produces probability levels for the t statistics in the regression analyses.

RDF=regression-df
specifies the regression degrees of freedom if the input observations are residuals from a regression analysis. The effective number of observations is the actual number minus the RDF= value. The degrees of freedom for the intercept should not be included in the RDF= option.

REDUNDANCY
RED
produces canonical redundancy statistics.

SEB
produces standard errors of the regression coefficients.

SHORT
suppresses all default output from the canonical analysis except the tables of canonical correlations and multivariate statistics.

SIMPLE
produces means and standard deviations.
SINGULAR=\(p \)
SING=\(p \)
specifies the singularity criterion, where \(0 < p < 1 \). If a variable in the PARTIAL
statement has an \(R^2 \) as large as \(1 - p \) (where \(p \) is the value of the SINGULAR= option)
when predicted from the variables listed before it in the statement, the variable is
assigned a standardized regression coefficient of 0, and the LOG generates a linear
dependency warning message. By default, SINGULAR=1E-8.

SMC
produces squared multiple correlations and \(F \) tests for the regression analyses.

SPCORR
produces semipartial correlations between regressors and dependent variables, re-
moving from each regressor the effects of all other regressors.

SQPCORR
produces squared partial correlations between regressors and dependent variables, re-
moving from each dependent variable and regressor the effects of all other regressors.

SQSPCORR
produces squared semipartial correlations between regressors and dependent vari-
ables, removing from each regressor the effects of all other regressors.

STB
produces standardized regression coefficients.

T
produces \(t \) statistics for the regression coefficients.

VDEP
WREG
requests multiple regression analyses with the VAR variables as dependent variables
and the WITH variables as regressors.

VNAME='label'
VN='label'
specifies a character constant to refer to variables from the VAR statement on the
output. Enclose the constant in single quotes. If you omit the VNAME= option,
these variables are referred to as the VAR Variables. The number of characters in the
label should not exceed the label length defined by the VALIDVARNAME= system
option. For more information on the VALIDVARNAME= system option, refer to SAS

VPREFIX=name
VP=name
specifies a prefix for naming canonical variables from the VAR statement. By de-
fault, these canonical variables are given the names V1, V2, and so on. If you specify
VPREFIX=ABC, the names are ABC1, ABC2, and so forth. The number of charac-
ters in the prefix plus the number of digits required to designate the variables should
not exceed the name length defined by the VALIDVARNAME= system option. For more
information on the VALIDVARNAME= system option, refer to SAS Language
Reference: Dictionary.
WDEP
VREG

requests multiple regression analyses with the WITH variables as dependent variables and the VAR variables as regressors.

WNAME=’label’
WN=’label’
specifies a character constant to refer to variables in the WITH statement on the output. Enclose the constant in quotes. If you omit the WNAME= option, these variables are referred to as the WITH Variables. The number of characters in the label should not exceed the label length defined by the VALIDVARNAME= system option. For more information, on the VALIDVARNAME= system option, refer to SAS Language Reference: Dictionary.

WPREFIX=name
WP=name

specifies a prefix for naming canonical variables from the WITH statement. By default, these canonical variables are given the names W1, W2, and so on. If you specify WPREFIX=XYZ, then the names are XYZ1, XYZ2, and so forth. The number of characters in the prefix plus the number of digits required to designate the variables should not exceed the label length defined by the VALIDVARNAME= system option. For more information, on the VALIDVARNAME= system option, refer to SAS Language Reference: Dictionary.

BY Statement

BY variables ;

You can specify a BY statement with PROC CANCORR to obtain separate analyses on observations in groups defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data using the SORT procedure with a similar BY statement.
- Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for the CANCORR procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables using the DATASETS procedure.
For more information on the BY statement, refer to the discussion in *SAS Language Reference: Concepts*. For more information on the DATASETS procedure, refer to the discussion in the *SAS Procedures Guide*.

FREQ Statement

```
FREQ variable;
```

If one variable in your input data set represents the frequency of occurrence for other values in the observation, specify the variable’s name in a FREQ statement. PROC CANCORR then treats the data set as if each observation appeared n times, where n is the value of the FREQ variable for the observation. If the value of the FREQ variable is less than one, the observation is not used in the analysis. Only the integer portion of the value is used. The total number of observations is considered to be equal to the sum of the FREQ variable when PROC CANCORR calculates significance probabilities.

PARTIAL Statement

```
PARTIAL variables;
```

You can use the PARTIAL statement to base the canonical analysis on partial correlations. The variables in the PARTIAL statement are partialled out of the VAR and WITH variables.

VAR Statement

```
VAR variables;
```

The VAR statement lists the variables in the first of the two sets of variables to be analyzed. The variables must be numeric. If you omit the VAR statement, all numeric variables not mentioned in other statements make up the first set of variables. If, however, the DATA= data set is TYPE=SSCP, the default set of variables used as VAR variables does not include the variable Intercept.
WEIGHT Statement

```
WEIGHT variable ;
```

If you want to compute weighted product-moment correlation coefficients, specify the name of the weighting variable in a WEIGHT statement. The WEIGHT and FREQ statements have a similar effect, except the WEIGHT statement does not alter the degrees of freedom or number of observations. An observation is used in the analysis only if the WEIGHT variable is greater than zero.

WITH Statement

```
WITH variables ;
```

The WITH statement lists the variables in the second set of variables to be analyzed. The variables must be numeric. The WITH statement is required.

Details

Missing Values

If an observation has a missing value for any of the variables in the analysis, that observation is omitted from the analysis.

Test Criterion

The CANCORR procedure uses an F approximation (Rao 1973; Kshirsagar 1972) that gives better small sample results than the usual χ^2 approximation. At least one of the two sets of variables should have an approximate multivariate normal distribution in order for the probability levels to be valid.

PROC CANCORR uses the least-squares criterion in linear regression analysis.

Output Data Sets

```
OUT= Data Set
```

The OUT= data set contains all the variables in the original data set plus new variables containing the canonical variable scores. The number of new variables is twice that specified by the NCAN= option. The names of the new variables are formed by concatenating the values given by the VPREFIX= and WPREFIX= options (the defaults are V and W) with the numbers 1, 2, 3, and so on. The new variables have mean 0 and variance equal to 1. An OUT= data set cannot be created if the DATA= data set is TYPE=CORR, COV, FACTOR, SSCP, UCORR, or UCOV or if a PARTIAL statement is used.
Chapter 20. The CANCORR Procedure

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR or TYPE=UCORR data set produced by the CORR procedure, but it contains several results in addition to those produced by PROC CORR.

The new data set contains the following variables:

- the BY variables, if any
- two new character variables, _TYPE_ and _NAME_
- Intercept, if the INT option is used
- the variables analyzed (those in the VAR statement and the WITH statement)

Each observation in the new data set contains some type of statistic as indicated by the _TYPE_ variable. The values of the _TYPE_ variable are as follows:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>USTD</td>
<td>uncorrected standard deviations. When you specify the NOINT option in the PROC CANCORR statement, the OUTSTAT= data set contains standard deviations not corrected for the mean (TYPE='USTD').</td>
</tr>
<tr>
<td>N</td>
<td>number of observations on which the analysis is based. This value is the same for each variable.</td>
</tr>
<tr>
<td>SUMWGT</td>
<td>sum of the weights if a WEIGHT statement is used. This value is the same for each variable.</td>
</tr>
<tr>
<td>CORR</td>
<td>correlations. The NAME variable contains the name of the variable corresponding to each row of the correlation matrix.</td>
</tr>
<tr>
<td>UCORR</td>
<td>uncorrected correlation matrix. When you specify the NOINT option in the PROC CANCORR statement, the OUTSTAT= data set contains a matrix of correlations not corrected for the means.</td>
</tr>
<tr>
<td>CANCORR</td>
<td>canonical correlations</td>
</tr>
<tr>
<td>SCORE</td>
<td>standardized canonical coefficients. The NAME variable contains the name of the canonical variable.</td>
</tr>
<tr>
<td>RAWSCORE</td>
<td>raw canonical coefficients</td>
</tr>
<tr>
<td>USCORE</td>
<td>scoring coefficients to be applied without subtracting the mean from the raw variables. These are standardized canonical coefficients computed under a NOINT model.</td>
</tr>
<tr>
<td>STRUCTUR</td>
<td>canonical structure</td>
</tr>
<tr>
<td>RSSQUARED</td>
<td>R^2's for the multiple regression analyses</td>
</tr>
<tr>
<td>ADJRSQ</td>
<td>adjusted R^2's</td>
</tr>
<tr>
<td>LCLRSQ</td>
<td>approximate 95% lower confidence limits for the R^2's</td>
</tr>
<tr>
<td>UCLRSQ</td>
<td>approximate 95% upper confidence limits for the R^2's</td>
</tr>
</tbody>
</table>
Computational Resources

F statistics for the multiple regression analyses
PROBF probability levels for the F statistics
CORRB correlations among the regression coefficient estimates
STB standardized regression coefficients. The _NAME_ variable contains the name of the dependent variable.
B raw regression coefficients
SEB standard errors of the regression coefficients
LCLB 95% lower confidence limits for the regression coefficients
MEAN means
STD standard deviations
UCLB 95% upper confidence limits for the regression coefficients
T t statistics for the regression coefficients
PROBT probability levels for the t statistics
SPCORR semipartial correlations between regressors and dependent variables
SQSPCORR squared semipartial correlations between regressors and dependent variables
PCORR partial correlations between regressors and dependent variables
SQPCORR squared partial correlations between regressors and dependent variables

Computational Resources

Notation

\(n \) = number of observations
\(v \) = number of variables
\(w \) = number of WITH variables
\(p = \max(v, w) \)
\(q = \min(v, w) \)
\(b = v + w \)
\(t = \) total number of variables (VAR, WITH, and PARTIAL)

Time Requirements

The time required to compute the correlation matrix is roughly proportional to

\[n(p + q)^2 \]

The time required for the canonical analysis is roughly proportional to

\[\frac{1}{6}p^3 + p^2q + \frac{3}{2}pq^2 + 5q^3 \]
but the coefficient for q^3 varies depending on the number of QR iterations in the singular value decomposition.

Memory Requirements

The minimum memory required is approximately

$$4(v^2 + w^2 + t^2)$$

bytes. Additional memory is required if you request the VDEP or WDEP option.

Displayed Output

If the SIMPLE option is specified, PROC CANCORR produces means and standard deviations for each input variable. If the CORR option is specified, PROC CANCORR produces correlations among the input variables. Unless the NOPRINT option is specified, PROC CANCORR displays a table of canonical correlations containing the following:

- Canonical Correlations. These are always nonnegative.
- Adjusted Canonical Correlations (Lawley 1959), which are asymptotically less biased than the raw correlations and may be negative. The adjusted canonical correlations may not be computable, and they are displayed as missing values if two canonical correlations are nearly equal or if some are close to zero. A missing value is also displayed if an adjusted canonical correlation is larger than a previous adjusted canonical correlation.
- Approx Standard Errors, which are the approximate standard errors of the canonical correlations
- Squared Canonical Correlations
- Eigenvalues of $\text{INV(E)}*H$, which are equal to $\text{CanRsq}/(1-\text{CanRsq})$, where CanRsq is the corresponding squared canonical correlation. Also displayed for each eigenvalue is the Difference from the next eigenvalue, the Proportion of the sum of the eigenvalues, and the Cumulative proportion.
- Likelihood Ratio for the hypothesis that the current canonical correlation and all smaller ones are 0 in the population. The likelihood ratio for all canonical correlations equals Wilks’ lambda.
- Approx F statistic based on Rao’s approximation to the distribution of the likelihood ratio (Rao 1973, p. 556; Kshirsagar 1972, p. 326)
- Num DF and Den DF (numerator and denominator degrees of freedom) and $Pr > F$ (probability level) associated with the F statistic

Unless you specify the NOPRINT option, PROC CANCORR produces a table of multivariate statistics for the null hypothesis that all canonical correlations are zero in the population. These statistics are described in the section “Multivariate Tests” in Chapter 3, “Introduction to Regression Procedures.” The statistics are as follows.
• Wilks’ Lambda
• Pillai’s Trace
• Hotelling-Lawley Trace
• Roy’s Greatest Root

For each of the preceding statistics, PROC CANCORR displays

• an F approximation or upper bound
• Num DF, the numerator degrees of freedom
• Den DF, the denominator degrees of freedom
• Pr > F, the probability level

Unless you specify the SHORT or NOPRINT option, PROC CANCORR displays the following:

• both Raw (unstandardized) and Standardized Canonical Coefficients normalized to give canonical variables with unit variance. Standardized coefficients can be used to compute canonical variable scores from the standardized (zero mean and unit variance) input variables. Raw coefficients can be used to compute canonical variable scores from the input variables without standardizing them.
• all four Canonical Structure matrices, giving Correlations Between the canonical variables and the original variables

If you specify the REDUNDANCY option, PROC CANCORR displays

• the Canonical Redundancy Analysis (Stewart and Love 1968; Cooley and Lohnes 1971), including Raw (unstandardized) and Standardized Variance and Cumulative Proportion of the Variance of each set of variables Explained by Their Own Canonical Variables and Explained by The Opposite Canonical Variables
• the Squared Multiple Correlations of each variable with the first m canonical variables of the opposite set, where m varies from 1 to the number of canonical correlations

If you specify the VDEP option, PROC CANCORR performs multiple regression analyses with the VAR variables as dependent variables and the WITH variables as regressors. If you specify the WDEP option, PROC CANCORR performs multiple regression analyses with the WITH variables as dependent variables and the VAR variables as regressors. If you specify the VDEP or WDEP option and also specify the ALL option, PROC CANCORR displays the following items. You can also specify individual options to request a subset of the output generated by the ALL option; or you can suppress the output by specifying the NOPRINT option.
• if you specify the SMC option, Squared Multiple Correlations and F Tests. For each regression model, identified by its dependent variable name, PROC CANCORR displays the R-Squared, Adjusted R-Squared (Wherry 1931), F Statistic, and Pr > F. Also for each regression model, PROC CANCORR displays an Approximate 95% Confidence Interval for the population R^2 (Helland 1987). These confidence limits are valid only when the regressors are random and when the regressors and dependent variables are approximately distributed according to a multivariate normal distribution.

The average R^2s for the models considered, unweighted and weighted by variance, are also given.

• if you specify the CORRB option, Correlations Among the Regression Coefficient Estimates
• if you specify the STB option, Standardized Regression Coefficients
• if you specify the B option, Raw Regression Coefficients
• if you specify the SEB option, Standard Errors of the Regression Coefficients
• if you specify the CLB option, 95% confidence limits for the regression coefficients
• if you specify the T option, T Statistics for the Regression Coefficients
• if you specify the PROBT option, Probability > $|T|$ for the Regression Coefficients
• if you specify the SPCorr option, Semipartial Correlations between regressors and dependent variables, Removing from Each Regressor the Effects of All Other Regressors
• if you specify the SQSPCorr option, Squared Semipartial Correlations between regressors and dependent variables, Removing from Each Regressor the Effects of All Other Regressors
• if you specify the PCorr option, Partial Correlations between regressors and dependent variables, Removing the Effects of All Other Regressors from Both Regressor and Criterion
• if you specify the SQPCorr option, Squared Partial Correlations between regressors and dependent variables, Removing the Effects of All Other Regressors from Both Regressor and Criterion

ODS Table Names

PROC CANCORR assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table. For more information on ODS, see Chapter 15, “Using the Output Delivery System.”
<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvgRSquare</td>
<td>Average R-Squares (weighted and unweighted)</td>
<td>PROC CANCORR</td>
<td>VDEP (or WDEP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SMC (or ALL)</td>
</tr>
<tr>
<td>CanCorr</td>
<td>Canonical correlations</td>
<td>PROC CANCORR</td>
<td>default</td>
</tr>
<tr>
<td>CanStructureVCan</td>
<td>Correlations between the VAR canonical variables and the VAR and WITH variables</td>
<td>PROC CANCORR</td>
<td>default (unless SHORT)</td>
</tr>
<tr>
<td>CanStructureWCan</td>
<td>Correlations between the WITH canonical variables and the WITH and VAR variables</td>
<td>PROC CANCORR</td>
<td>default (unless SHORT)</td>
</tr>
<tr>
<td>ConfidenceLimits</td>
<td>95% Confidence limits for the regression coefficients</td>
<td>PROC CANCORR</td>
<td>VDEP (or WDEP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CLB (or ALL)</td>
</tr>
<tr>
<td>Corr</td>
<td>Correlations among the original variables</td>
<td>PROC CANCORR</td>
<td>CORR (or ALL)</td>
</tr>
<tr>
<td>CorrOnPartial</td>
<td>Partial correlations</td>
<td>PARTIAL</td>
<td>CORR (or ALL)</td>
</tr>
<tr>
<td>CorrRegCoefEst</td>
<td>Correlations among the regression coefficient estimates</td>
<td>PROC CANCORR</td>
<td>VDEP (or WDEP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CORRB (or ALL)</td>
</tr>
<tr>
<td>MultStat</td>
<td>Multivariate statistics</td>
<td>default</td>
<td>SIMPLE (or ALL)</td>
</tr>
<tr>
<td>NObsNVar</td>
<td>Number of observations and variables</td>
<td>PROC CANCORR</td>
<td>SIMPLE (or ALL)</td>
</tr>
<tr>
<td>ParCorr</td>
<td>Partial correlations</td>
<td>PROC CANCORR</td>
<td>VDEP (or WDEP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCORR (or ALL)</td>
</tr>
<tr>
<td>ProbtRegCoef</td>
<td>Prob ></td>
<td>t</td>
<td>for the regression coefficients</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PROBT (or ALL)</td>
</tr>
<tr>
<td>RawCanCoefV</td>
<td>Raw canonical coefficients for the VAR variables</td>
<td>PROC CANCORR</td>
<td>default (unless SHORT)</td>
</tr>
<tr>
<td>RawCanCoefW</td>
<td>Raw canonical coefficients for the WITH variables</td>
<td>PROC CANCORR</td>
<td>default (unless SHORT)</td>
</tr>
<tr>
<td>RawRegCoef</td>
<td>Raw regression coefficients</td>
<td>PROC CANCORR</td>
<td>VDEP (or WDEP) B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(or ALL)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>Canonical redundancy analysis</td>
<td>PROC CANCORR</td>
<td>REDUNDANCY (or ALL)</td>
</tr>
<tr>
<td>Regression</td>
<td>Squared multiple correlations and F tests</td>
<td>PROC CANCORR</td>
<td>VDEP (or WDEP) SMC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(or ALL)</td>
</tr>
<tr>
<td>RSquareRMSEOnPartial</td>
<td>R-Squares and RMSEs on PARTIAL</td>
<td>PARTIAL</td>
<td>CORR (or ALL)</td>
</tr>
<tr>
<td>SemiParCorr</td>
<td>Semi-partial correlations</td>
<td>PROC CANCORR</td>
<td>VDEP (or WDEP) SPCORR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(or ALL)</td>
</tr>
<tr>
<td>SimpleStatistics</td>
<td>Simple statistics</td>
<td>PROC CANCORR</td>
<td>SIMPLE (or ALL)</td>
</tr>
<tr>
<td>SqMultCorr</td>
<td>Canonical redundancy analysis: squared multiple correlations</td>
<td>PROC CANCORR</td>
<td>REDUNDANCY (or ALL)</td>
</tr>
<tr>
<td>SqParCorr</td>
<td>Squared partial correlations</td>
<td>PROC CANCORR</td>
<td>VDEP (or WDEP) SQPCORR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(or ALL)</td>
</tr>
</tbody>
</table>
Table 20.2. (continued)

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>SqSemiParCorr</td>
<td>Squared semi-partial</td>
<td>PROC CANCORR VDEP</td>
<td>SQSPCORR (or ALL)</td>
</tr>
<tr>
<td>StdCanCoefV</td>
<td>Standardized Canonical</td>
<td>PROC CANCORR</td>
<td>default (unless SHORT)</td>
</tr>
<tr>
<td>StdCanCoefW</td>
<td>Canonical coefficients for the</td>
<td>PROC CANCORR</td>
<td>default (unless SHORT)</td>
</tr>
<tr>
<td>StdErrRawRegCoef</td>
<td>Standard errors of the raw</td>
<td>PROC CANCORR VDEP</td>
<td>SEB (or ALL)</td>
</tr>
<tr>
<td>StdRegCoef</td>
<td>regression coefficients</td>
<td>PROC CANCORR VDEP</td>
<td>STB (or ALL)</td>
</tr>
<tr>
<td>StdRegCoefOnPartial</td>
<td>regression coefficients on</td>
<td>PARTIAL</td>
<td>CORR (or ALL)</td>
</tr>
<tr>
<td>tValueRegCoef</td>
<td>t values for the regression</td>
<td>PROC CANCORR VDEP</td>
<td>T (or ALL)</td>
</tr>
</tbody>
</table>

Example

Example 20.1. Canonical Correlation Analysis of Fitness Club Data

Three physiological and three exercise variables are measured on twenty middle-aged men in a fitness club. You can use the CANCORR procedure to determine whether the physiological variables are related in any way to the exercise variables. The following statements create the SAS data set Fit:

```sas
data Fit;
  input Weight Waist Pulse Chins Situps Jumps;
datalines;
  191 36 50 5 162 60
  189 37 52 2 110 60
  193 38 58 12 101 101
  162 35 62 12 105 37
  189 35 46 13 155 58
  182 36 56 4 101 42
  211 38 56 8 101 38
  167 34 60 6 125 40
  176 31 74 15 200 40
  154 33 56 17 251 250
  169 34 50 17 120 38
  166 33 52 13 210 115
  154 34 64 14 215 105
  247 46 50 1 50 50
```
Example 20.1. Canonical Correlation Analysis of Fitness Club Data

```
193 36 46 6 70 31
202 37 62 12 210 120
176 37 54 4 60 25
157 32 52 11 230 80
156 33 54 15 225 73
138 33 68 2 110 43
;
proc cancorr data=Fit all
    vprefix=Physiological vname='Physiological Measurements'
    wprefix=Exercises wname='Exercises';
    var Weight Waist Pulse;
    with Chins Situps Jumps;
    title 'Middle-Aged Men in a Health Fitness Club';
    title2 'Data Courtesy of Dr. A. C. Linnerud, NC State Univ';
run;
```

Output 20.1.1. Correlations among the Original Variables

```
Output 20.1.1 displays the correlations among the original variables. The correlations between the physiological and exercise variables are moderate, the largest being \(-0.6456\) between Waist and Situps. There are larger within-set correlations: 0.8702 between Weight and Waist, 0.6957 between Chins and Situps, and 0.6692 between Situps and Jumps.
```
Output 20.1.2. Canonical Correlations and Multivariate Statistics

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Correlation Analysis

<table>
<thead>
<tr>
<th>Canonical Correlation</th>
<th>Adjusted Canonical Correlation</th>
<th>Approximate Standard Error</th>
<th>Squared Canonical Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.795608</td>
<td>0.754056</td>
<td>0.084197</td>
</tr>
<tr>
<td>2</td>
<td>0.200556</td>
<td>-0.076399</td>
<td>0.220188</td>
</tr>
<tr>
<td>3</td>
<td>0.072270</td>
<td></td>
<td>0.228208</td>
</tr>
</tbody>
</table>

Eigenvalues of Inv(E)*H

= CanRsq/(1-CanRsq)

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7247</td>
<td>0.9734</td>
<td>0.9734</td>
</tr>
<tr>
<td>2</td>
<td>0.0419</td>
<td>0.0237</td>
<td>0.9970</td>
</tr>
<tr>
<td>3</td>
<td>0.0053</td>
<td>0.0030</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Test of H0: The canonical correlations in the current row and all that follow are zero

<table>
<thead>
<tr>
<th>Likelihood Ratio</th>
<th>Approximate F Value</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.35039053</td>
<td>2.05</td>
<td>9</td>
<td>0.0635</td>
</tr>
<tr>
<td>2</td>
<td>0.95472266</td>
<td>0.18</td>
<td>4</td>
<td>0.9491</td>
</tr>
<tr>
<td>3</td>
<td>0.99473355</td>
<td>0.08</td>
<td>1</td>
<td>0.7748</td>
</tr>
</tbody>
</table>

Multivariate Statistics and F Approximations

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
<th>F Value</th>
<th>Num DF</th>
<th>Den DF</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilks’ Lambda</td>
<td>0.35039053</td>
<td>2.05</td>
<td>9</td>
<td>34.223</td>
<td>0.0635</td>
</tr>
<tr>
<td>Pillai’s Trace</td>
<td>0.67848151</td>
<td>1.56</td>
<td>9</td>
<td>48</td>
<td>0.1551</td>
</tr>
<tr>
<td>Hotelling-Lawley Trace</td>
<td>1.77194146</td>
<td>2.64</td>
<td>9</td>
<td>19.053</td>
<td>0.0357</td>
</tr>
<tr>
<td>Roy’s Greatest Root</td>
<td>1.72473874</td>
<td>9.20</td>
<td>3</td>
<td>16</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

As Output 20.1.2 shows, the first canonical correlation is 0.7956, which would appear to be substantially larger than any of the between-set correlations. The probability level for the null hypothesis that all the canonical correlations are 0 in the population is only 0.0635, so no firm conclusions can be drawn. The remaining canonical correlations are not worthy of consideration, as can be seen from the probability levels and especially from the negative adjusted canonical correlations.

Because the variables are not measured in the same units, the standardized coefficients rather than the raw coefficients should be interpreted. The correlations given in the canonical structure matrices should also be examined.
Output 20.1.3. Raw and Standardized Canonical Coefficients

The first canonical variable for the physiological variables, displayed in Output 20.1.3, is a weighted difference of Waist (1.5793) and Weight (−0.7754), with more emphasis on Waist. The coefficient for Pulse is near 0. The correlations between Waist and Weight and the first canonical variable are both positive, 0.9254 for Waist and 0.6206 for Weight. Weight is therefore a suppressor variable, meaning that its coefficient and its correlation have opposite signs.

The first canonical variable for the exercise variables also shows a mixture of signs, subtracting Situps (−1.0540) and Chins (−0.3495) from Jumps (0.7164), with the most weight on Situps. All the correlations are negative, indicating that Jumps is also a suppressor variable.
It may seem contradictory that a variable should have a coefficient of opposite sign from that of its correlation with the canonical variable. In order to understand how this can happen, consider a simplified situation: predicting Situps from Waist and Weight by multiple regression. In informal terms, it seems plausible that fat people should do fewer sit-ups than skinny people. Assume that the men in the sample do not vary much in height, so there is a strong correlation between Waist and Weight (0.8702). Examine the relationships between fatness and the independent variables:

- People with large waists tend to be fatter than people with small waists. Hence, the correlation between Waist and Situps should be negative.

- People with high weights tend to be fatter than people with low weights. Therefore, Weight should correlate negatively with Situps.

- For a fixed value of Weight, people with large waists tend to be shorter and fatter. Thus, the multiple regression coefficient for Waist should be negative.

- For a fixed value of Waist, people with higher weights tend to be taller and skinnier. The multiple regression coefficient for Weight should, therefore, be positive, of opposite sign from the correlation between Weight and Situps.

Therefore, the general interpretation of the first canonical correlation is that Weight and Jumps act as suppressor variables to enhance the correlation between Waist and Situps. This canonical correlation may be strong enough to be of practical interest, but the sample size is not large enough to draw definite conclusions.

The canonical redundancy analysis (Output 20.1.4) shows that neither of the first pair of canonical variables is a good overall predictor of the opposite set of variables, the proportions of variance explained being 0.2854 and 0.2584. The second and third canonical variables add virtually nothing, with cumulative proportions for all three canonical variables being 0.2969 and 0.2767.
Output 20.1.4. Canonical Redundancy Analysis

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Redundancy Analysis

Standardized Variance of the Physiological Measurements Explained by Their Own and the Opposite Canonical Variables

<table>
<thead>
<tr>
<th>Canonical Variable Number</th>
<th>Proportion</th>
<th>Cumulative Proportion</th>
<th>Canonical R-Square</th>
<th>Cumulative Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4508</td>
<td>0.4508</td>
<td>0.6330</td>
<td>0.2854</td>
</tr>
<tr>
<td>2</td>
<td>0.2470</td>
<td>0.6978</td>
<td>0.0402</td>
<td>0.2953</td>
</tr>
<tr>
<td>3</td>
<td>0.3022</td>
<td>1.0000</td>
<td>0.0053</td>
<td>0.2969</td>
</tr>
</tbody>
</table>

Standardized Variance of the Exercises Explained by Their Own and the Opposite Canonical Variables

<table>
<thead>
<tr>
<th>Canonical Variable Number</th>
<th>Proportion</th>
<th>Cumulative Proportion</th>
<th>Canonical R-Square</th>
<th>Cumulative Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4081</td>
<td>0.4081</td>
<td>0.6330</td>
<td>0.2584</td>
</tr>
<tr>
<td>2</td>
<td>0.4345</td>
<td>0.8426</td>
<td>0.0402</td>
<td>0.2758</td>
</tr>
<tr>
<td>3</td>
<td>0.1574</td>
<td>1.0000</td>
<td>0.0053</td>
<td>0.2767</td>
</tr>
</tbody>
</table>

Middle-Aged Men in a Health Fitness Club
Data Courtesy of Dr. A. C. Linnerud, NC State Univ

The CANCORR Procedure

Canonical Redundancy Analysis

Squared Multiple Correlations Between the Physiological Measurements and the First M Canonical Variables of the Exercises

<table>
<thead>
<tr>
<th>M</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>0.2438</td>
<td>0.2678</td>
<td>0.2679</td>
</tr>
<tr>
<td>Waist</td>
<td>0.5421</td>
<td>0.5478</td>
<td>0.5478</td>
</tr>
<tr>
<td>Pulse</td>
<td>0.0701</td>
<td>0.0702</td>
<td>0.0749</td>
</tr>
</tbody>
</table>

Squared Multiple Correlations Between the Exercises and the First M Canonical Variables of the Physiological Measurements

<table>
<thead>
<tr>
<th>M</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chins</td>
<td>0.3351</td>
<td>0.3374</td>
<td>0.3396</td>
</tr>
<tr>
<td>Situps</td>
<td>0.4233</td>
<td>0.4365</td>
<td>0.4365</td>
</tr>
<tr>
<td>Jumps</td>
<td>0.0167</td>
<td>0.0536</td>
<td>0.0539</td>
</tr>
</tbody>
</table>
Chapter 20. The CANCORR Procedure

The squared multiple correlations indicate that the first canonical variable of the physiological measurements has some predictive power for Chins (0.3351) and Situps (0.4233) but almost none for Jumps (0.0167). The first canonical variable of the exercises is a fairly good predictor of Waist (0.5421), a poorer predictor of Weight (0.2438), and nearly useless for predicting Pulse (0.0701).

References

Kshirsagar, A.M. (1972), Multivariate Analysis, New York: Marcel Dekker, Inc.

