Chapter Table of Contents

OVERVIEW
- Types of Input Data .. 697
- Types of Statistical Analyses 697
- Background: The Underlying Model 700
- Linear Models Contrasted with Log-Linear Models 701
- Using PROC CATMOD Interactively 702

GETTING STARTED
- Weighted-Least-Squares Analysis of Mean Response .. 703
- Generalized Logits Model 708

SYNTAX
- PROC CATMOD Statement 713
- BY Statement .. 714
- CONTRAST Statement 714
- DIRECT Statement ... 718
- FACTORS Statement 719
- LOGLIN Statement ... 722
- MODEL Statement ... 723
- POPULATION Statement 729
- REPEATED Statement 731
- RESPONSE Statement 733
- RESTRICT Statement 741
- WEIGHT Statement ... 741

DETAILS
- Missing Values .. 742
- Input Data Sets .. 742
- Ordering of Populations and Responses 744
- Specification of Effects 745
- Output Data Sets .. 747
- Logistic Analysis ... 749
- Log-Linear Model Analysis 751
- Repeated Measures Analysis 754
- Generation of the Design Matrix 757
- Cautions .. 766
Chapter 22. The CATMOD Procedure

Computation Method ... 770
Computational Formulas .. 771
Memory and Time Requirements 775
Displayed Output .. 775
ODS Table Names .. 779

EXAMPLES ... 780
Example 22.1 Linear Response Function, r=2 Responses ... 780
Example 22.2 Mean Score Response Function, r=3 Responses 785
Example 22.3 Logistic Regression, Standard Response Function 789
Example 22.4 Log-Linear Model, Three Dependent Variables 793
Example 22.5 Log-Linear Model, Structural and Sampling Zeros 796
Example 22.6 Repeated Measures, 2 Response Levels, 3 Populations 803
Example 22.7 Repeated Measures, 4 Response Levels, 1 Population 808
Example 22.8 Repeated Measures, Logistic Analysis of Growth Curve 810
Example 22.9 Repeated Measures, Two Repeated Measurement Factors 814
Example 22.10 Direct Input of Response Functions and Covariance Matrix 821
Example 22.11 Predicted Probabilities 826

REFERENCES ... 829
The CATMOD procedure performs categorical data modeling of data that can be represented by a contingency table. PROC CATMOD fits linear models to functions of response frequencies, and it can be used for linear modeling, log-linear modeling, logistic regression, and repeated measurement analysis. PROC CATMOD uses

- maximum likelihood (ML) estimation of parameters for log-linear models and the analysis of generalized logits
- weighted least-squares (WLS) estimation of parameters for a wide range of general linear models

The CATMOD procedure provides a wide variety of categorical data analyses, many of which are generalizations of continuous data analysis methods. For example, analysis of variance, in the traditional sense, refers to the analysis of means and the partitioning of variation among the means into various sources. Here, the term analysis of variance is used in a generalized sense to denote the analysis of response functions and the partitioning of variation among those functions into various sources. The response functions might be mean scores if the dependent variables are ordinally scaled. But they can also be marginal probabilities, cumulative logits, or other functions that incorporate the essential information from the dependent variables.

Types of Input Data

The data that PROC CATMOD analyzes are usually supplied in one of two ways. First, you can supply raw data, where each observation is a subject. Second, you can supply cell count data, where each observation is a cell in a contingency table. (A third way, which uses direct input of the covariance matrix, is also available; details are given in the “Inputting Response Functions and Covariances Directly” section on page 743.)

Suppose detergent preference is related to three other categorical variables: water softness, water temperature, and previous use of a brand of detergent. In the raw data case, each observation in the input data set identifies a given respondent in the study and contains information on all four variables. The data set contains the same number of observations as the survey had respondents. In the cell count case, each observation identifies a given cell in the four-way table of water softness, water temperature, previous use of brand, and brand preference. A fifth variable contains the number of respondents in the cell. In the analysis, this fifth variable is identified in a WEIGHT statement. The data set contains the same number of observations as the number of cross-classifications formed by the four categorical variables. For more on this
particular example, see Example 22.1 on page 780. For additional details, see the section “Input Data Sets” on page 742.

Most of the examples in this chapter use cell counts as input and use a WEIGHT statement.

Types of Statistical Analyses

This section illustrates, by example, the wide variety of categorical data analyses that PROC CATMOD provides. For each type of analysis, a brief description of the statistical problem and the SAS statements to provide the analysis are given. For each analysis, assume that the input data set consists of a set of cell counts from a contingency table. The variable specified in the WEIGHT statement contains these counts. In all these analyses, both the dependent and independent variables are categorical.

Linear Model Analysis

Suppose you want to analyze the relationship between the dependent variables \((r_1, r_2)\) and the independent variables \((a, b)\). Analyze the marginal probabilities of the dependent variables, and use a main-effects model.

```
proc catmod;
  weight wt;
  response marginals;
  model r1*r2=a b;
quit;
```

Log-Linear Model Analysis

Suppose you want to analyze the nominal dependent variables \((r_1, r_2, r_3)\) with a log-linear model. Use maximum likelihood analysis, and include the main effects and the \(r_1*r_2\) interaction in the model. Obtain the predicted cell frequencies.

```
proc catmod;
  weight wt;
  model r1*r2*r3=_response_ / pred=freq;
  loglin r1|r2 r3;
quit;
```

Logistic Regression

Suppose you want to analyze the relationship between the nominal dependent variable \((r)\) and the independent variables \((x_1, x_2)\) with a logistic regression analysis. Use maximum likelihood estimation.

```
proc catmod;
  weight wt;
  direct x1 x2;
  model r=x1 x2;
quit;
```
If \(x_1\) and \(x_2\) are continuous so that each observation has a unique value of these two variables, then it may be more appropriate to use the LOGISTIC, GENMOD, or PROBIT procedure. See the “Logistic Regression” section on page 750.

Repeated Measures Analysis

Suppose the dependent variables \((r_1, r_2, r_3)\) represent the same type of measurement taken at three different times. Analyze the relationship among the dependent variables, the repeated measurement factor \((\text{time})\), and the independent variable \((a)\).

```sas
proc catmod;
  weight wt;
  response marginals;
  model r1*r2*r3=_response_|a;
  repeated time 3 / _response_=time;
quit;
```

Analysis of Variance

Suppose you want to investigate the relationship between the dependent variable \((r)\) and the independent variables \((a, b)\). Analyze the mean of the dependent variable, and include all main effects and interactions in the model.

```sas
proc catmod;
  weight wt;
  response mean;
  model r=a|b;
quit;
```

Linear Regression

PROC CATMOD can analyze the relationship between the dependent variables \((r_1, r_2)\) and the independent variables \((x_1, x_2)\). Use a linear regression analysis to analyze the marginal probabilities of the dependent variables.

```sas
proc catmod;
  weight wt;
  direct x1 x2;
  response marginals;
  model r1*r2=x1 x2;
quit;
```

Logistic Analysis of Ordinal Data

Suppose you want to analyze the relationship between the ordinally scaled dependent variable \((r)\) and the independent variable \((a)\). Use cumulative logits to take into account the ordinal nature of the dependent variable. Use weighted least-squares estimation.

```sas
proc catmod;
  weight wt;
  response clogits;
  model r=_response_ a;
quit;
```
Sample Survey Analysis
Suppose the data set contains estimates of a vector of four functions and their covariance matrix, estimated in such a way as to correspond to the sampling process that is used. Analyze the functions with respect to the independent variables (a, b), and use a main-effects model.

```
proc catmod;
  response read b1-b10;
  model _f_= _response_;
  factors a 2 , b 5 / _response_=a b;
quit;
```

Background: The Underlying Model

The CATMOD procedure analyzes data that can be represented by a two-dimensional contingency table. The rows of the table correspond to populations (or samples) formed on the basis of one or more independent variables. The columns of the table correspond to observed responses formed on the basis of one or more dependent variables. The frequency in the \((i, j)\)th cell is the number of subjects in the \(i\)th population that have the \(j\)th response. The frequencies in the table are assumed to follow a product multinomial distribution, corresponding to a sampling design in which a simple random sample is taken for each population. The contingency table can be represented as shown in Table 22.1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Response</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(n_{11})</td>
<td>(n_1)</td>
</tr>
<tr>
<td>2</td>
<td>(n_{21})</td>
<td>(n_2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(s)</td>
<td>(n_{s1})</td>
<td>(n_s)</td>
</tr>
</tbody>
</table>

For each sample \(i\), the probability of the \(j\)th response \((\pi_{ij})\) is estimated by the sample proportion, \(p_{ij} = n_{ij}/n_i\). The vector \((p)\) of all such proportions is then transformed into a vector of functions, denoted by \(\mathbf{F} = \mathbf{F}(p)\). If \(\pi\) denotes the vector of true probabilities for the entire table, then the functions of the true probabilities, denoted by \(\mathbf{F}(\pi)\), are assumed to follow a linear model

\[
\mathbf{E_A}(\mathbf{F}) = \mathbf{F}(\pi) = \mathbf{X}\beta
\]

where \(\mathbf{E_A}\) denotes asymptotic expectation, \(\mathbf{X}\) is the design matrix containing fixed constants, and \(\beta\) is a vector of parameters to be estimated.
PROC CATMOD provides two estimation methods:

- The maximum likelihood method estimates the parameters of the linear model so as to maximize the value of the joint multinomial likelihood function of the responses. Maximum likelihood estimation is available only for the standard response functions, logits and generalized logits, which are used for logistic regression analysis and log-linear model analysis. For details of the theory, refer to Bishop, Fienberg, and Holland (1975).

- The weighted least-squares method minimizes the weighted residual sum of squares for the model. The weights are contained in the inverse covariance matrix of the functions $\mathbf{F}(\mathbf{p})$. According to central limit theory, if the sample sizes within populations are sufficiently large, the elements of \mathbf{F} and \mathbf{b} (the estimate of $\mathbf{\beta}$) are distributed approximately as multivariate normal. This allows the computation of statistics for testing the goodness of fit of the model and the significance of other sources of variation. For details of the theory, refer to Grizzle, Starmer, and Koch (1969) or Koch et al. (1977, Appendix 1). Weighted least-squares estimation is available for all types of response functions.

Following parameter estimation, hypotheses about linear combinations of the parameters can be tested. For that purpose, PROC CATMOD computes generalized Wald (1943) statistics, which are approximately distributed as chi-square if the sample sizes are sufficiently large and the null hypotheses are true.

Linear Models Contrasted with Log-Linear Models

Linear model methods (as typified by the Grizzle, Starmer, Koch approach) make a very clear distinction between independent and dependent variables. The emphasis of these methods is estimation and hypothesis testing of the model parameters. Therefore, it is easy to test for differences among probabilities, perform repeated measurement analysis, and test for marginal homogeneity, but it is awkward to test independence and generalized independence. These methods are a natural extension of the usual ANOVA approach for continuous data.

In contrast, log-linear model methods (as typified by the Bishop, Fienberg, Holland approach) do not make an a priori distinction between independent and dependent variables, although model specifications that allow for the distinction can be made. The emphasis of these methods is on model building, goodness-of-fit tests, and estimation of cell frequencies or probabilities for the underlying contingency table. With these methods, it is easy to test independence and generalized independence, but it is awkward to test for differences among probabilities, do repeated measurement analysis, and test for marginal homogeneity.
Chapter 22. The CATMOD Procedure

Using PROC CATMOD Interactively

You can use the CATMOD procedure interactively. After specifying a model with a
MODEL statement and running PROC CATMOD with a RUN statement, you can ex-
cute any statement without reinvoking PROC CATMOD. You can execute the state-
ments singly or in groups by following the single statement or group of statements
with a RUN statement. Note that you can use more than one MODEL statement; this
is an important difference from the GLM procedure.

If you use PROC CATMOD interactively, you can end the CATMOD procedure with
a DATA step, another PROC step, an ENDSAS statement, or a QUIT statement. The
syntax of the QUIT statement is

 quit;

When you are using PROC CATMOD interactively, additional RUN statements do
not end the procedure but tell the procedure to execute additional statements.

When the CATMOD procedure detects a BY statement, it disables interactive pro-
cessing; that is, once the BY statement and the next RUN statement are encountered,
processing proceeds for each BY group in the data set, and no additional statements
are accepted by the procedure. For example, the following statements tell PROC
CATMOD to do three analyses: one for the entire data set, one for males, and one for
females.

 proc catmod;
 weight wt;
 response marginals;
 model r1*r2=a|b;
 run;
 by sex;
 run;

Note that the BY statement may appear after the first RUN statement; this is an im-
portant difference from PROC GLM, which requires that the BY statement appear
before the first RUN statement.
Getting Started

The CATMOD procedure is a general modeling procedure for categorical data analysis, and it can be used for very sophisticated analyses that require matrix specification of the response function and the design matrix. It can be used to perform very basic analysis-of-variance-type analyses that require very few statements. The following is a basic example.

Weighted-Least-Squares Analysis of Mean Response

Consider the data in the following table (Stokes, Davis, and Koch 1995).

Table 22.2. Colds in Children

<table>
<thead>
<tr>
<th>Sex</th>
<th>Residence</th>
<th>Periods with Colds</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Female</td>
<td>Rural</td>
<td>45</td>
<td>64</td>
</tr>
<tr>
<td>Female</td>
<td>Urban</td>
<td>80</td>
<td>104</td>
</tr>
<tr>
<td>Male</td>
<td>Rural</td>
<td>84</td>
<td>124</td>
</tr>
<tr>
<td>Male</td>
<td>Urban</td>
<td>106</td>
<td>117</td>
</tr>
</tbody>
</table>

For males and females in rural and urban counties, the number of periods (of two) in which subjects report cold symptoms are recorded. Thus, 45 subjects who were female and in rural counties report no cold symptoms, and 71 subjects who are female and from rural counties report colds in both periods.

The question of interest is whether the mean number of periods with colds reported is associated with gender or type of county. There is no reason to believe that the mean number of periods with colds is normally distributed, so a weighted least-squares analysis of these data is performed with PROC CATMOD instead of an analysis of variance with PROC ANOVA or PROC GLM.

The input data for categorical data is often recorded in frequency form, with the counts for each particular profile being the input values. Thus, for the colds data, the input SAS data set **colds** is created with the following statements. The variable **count** contains the frequency of observations that have the particular profile described by the values of the other variables on that input line.

```sas
data colds;
  input sex $ residence $ periods count @@;
  datalines;
  female rural 0 45 female rural 1 64 female rural 2 71
  female urban 0 80 female urban 1 104 female urban 2 116
  male rural 0 84 male rural 1 124 male rural 2 82
  male urban 0 106 male urban 1 117 male urban 2 87
; run;
```

In order to fit a model to the mean number of periods with colds, you have to specify the response function in PROC CATMOD. The default response function is the logit if the response variable has two values, and it is generalized logits if the response
variable has more than two values. If you want a different response function, then you request that function in the RESPONSE statement. To request the mean number of periods with colds, you specify the MEANS option in the RESPONSE statement.

You can request a model consisting of the main effects and interaction of the variables sex and residence just as you would in the GLM procedure. Unlike the GLM procedure, you don’t need to use a CLASS statement in PROC CATMOD to treat a variable as a classification variable. All variables in the MODEL statement in the CATMOD procedure are treated as classification variables unless you specify otherwise with a DIRECT statement.

Thus, the PROC CATMOD statements required to model mean periods of colds with a main effects and interaction model are

```sas
proc catmod data=colds;
  weight count;
  response means;
  model periods = sex residence sex*residence;
run;
```

The results of this analysis are shown in Figure 22.1 through Figure 22.3.

Figure 22.1. Model Information and Profile Tables

The CATMOD procedure first displays a summary of the contingency table you are analyzing. The “Population Profiles” table lists the values of the explanatory variables that define each population, or row of the underlying contingency table, and labels each group with a sample number. The number of observations in each population is also displayed. The “Response Profiles” table lists the variable levels that define the response, or columns of the underlying contingency table.
The CATMOD Procedure

Response Design Matrix

<table>
<thead>
<tr>
<th>Sample</th>
<th>Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.14444</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td></td>
<td>1.12000</td>
<td>1 1 -1 -1</td>
</tr>
<tr>
<td></td>
<td>0.99310</td>
<td>1 -1 1 -1</td>
</tr>
<tr>
<td></td>
<td>0.93871</td>
<td>1 -1 -1 1</td>
</tr>
</tbody>
</table>

Figure 22.2. Observed Response Functions and Design Matrix

The “Design Matrix” table contains the observed response functions—in this case, the mean number of periods with colds for each of the populations—and the design matrix. The first column of the design matrix contains the coefficients for the intercept parameter, the second column coefficients are for the sex parameter (note that the sum-to-zero constraint of a full-rank parameterization implies that the coefficient for males is the negative of that for females. The parameter is called the differential effect for females), the third column is similarly set up for residence, and the last column is for the interaction.

The CATMOD Procedure

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>1841.13</td>
<td><.0001</td>
</tr>
<tr>
<td>sex</td>
<td>1</td>
<td>11.57</td>
<td>0.0007</td>
</tr>
<tr>
<td>residence</td>
<td>1</td>
<td>0.65</td>
<td>0.4202</td>
</tr>
<tr>
<td>sex*residence</td>
<td>1</td>
<td>0.09</td>
<td>0.7594</td>
</tr>
<tr>
<td>Residual</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Figure 22.3. ANOVA Table for the Saturated Model

The model-fitting results are displayed in the “Analysis of Variance” table (Figure 22.3), which is similar to an ANOVA table. The effects from the right-hand side of the MODEL statement are listed under the “Source” column.

The interaction effect is nonsignificant, so the data is reanalyzed using a main-effects model. Since PROC CATMOD is an interactive procedure, you can analyze the main-effects model by simply submitting the new MODEL statement as follows. The resulting tables are displayed in Figure 22.4 through Figure 22.7.

```sas
model periods = sex residence;
run;
```
The CATMOD Procedure

<table>
<thead>
<tr>
<th>Response periods</th>
<th>Response Levels 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Variable</td>
<td>count</td>
</tr>
<tr>
<td>Data Set</td>
<td>COLDS</td>
</tr>
<tr>
<td>Frequency Missing</td>
<td>count</td>
</tr>
<tr>
<td>Total Frequency</td>
<td>1080</td>
</tr>
</tbody>
</table>

Population Profiles

<table>
<thead>
<tr>
<th>Sample</th>
<th>sex</th>
<th>residence</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>female</td>
<td>rural</td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>female</td>
<td>urban</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>male</td>
<td>rural</td>
<td>290</td>
</tr>
<tr>
<td>4</td>
<td>male</td>
<td>urban</td>
<td>310</td>
</tr>
</tbody>
</table>

Response Profiles

<table>
<thead>
<tr>
<th>Response</th>
<th>periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 22.4. Population and Response Profiles, Main-Effects Model

The CATMOD Procedure

<table>
<thead>
<tr>
<th>Sample</th>
<th>Response Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.14444</td>
<td>1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>1.12000</td>
<td>1 1 -1</td>
</tr>
<tr>
<td>3</td>
<td>0.99310</td>
<td>1 -1 1</td>
</tr>
<tr>
<td>4</td>
<td>0.93871</td>
<td>1 -1 -1</td>
</tr>
</tbody>
</table>

Figure 22.5. Design Matrix for the Main-Effects Model

The CATMOD Procedure

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>1882.77</td>
<td><.0001</td>
</tr>
<tr>
<td>sex</td>
<td>1</td>
<td>12.08</td>
<td>0.0005</td>
</tr>
<tr>
<td>residence</td>
<td>1</td>
<td>0.76</td>
<td>0.3839</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
<td>0.09</td>
<td>0.7594</td>
</tr>
</tbody>
</table>

Figure 22.6. ANOVA Table for the Main-Effects Model

The goodness-of-fit chi-square statistic is 0.09 with one degree of freedom and a p-value of 0.7594; hence, the model fits the data. Note that the chi-square tests in Figure 22.6 test whether all the parameters for a given effect are zero. In this model, each effect has only one parameter, and therefore only one degree of freedom.
The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>1.0501</td>
<td>0.0242</td>
<td>1882.77</td>
<td><.0001</td>
</tr>
<tr>
<td>sex</td>
<td>2</td>
<td>0.0842</td>
<td>0.0242</td>
<td>12.08</td>
<td>0.0005</td>
</tr>
<tr>
<td>residence</td>
<td>3</td>
<td>0.0210</td>
<td>0.0241</td>
<td>0.76</td>
<td>0.3839</td>
</tr>
</tbody>
</table>

Figure 22.7. Parameter Estimates for the Main-Effects Model

The “Analysis of Weighted-Least-Squares Estimates” table lists the parameters and their estimates for the model, as well as the standard errors, Wald statistics, and *p*-values. These chi-square tests are single degree-of-freedom tests that the individual parameter is equal to zero. They are equal to the tests shown in Figure 22.6 since each effect is composed of exactly one parameter.

You can compute the mean number of periods of colds for the first population (Sample 1, females in rural residences) from Table 22.2 as follows.

\[
\text{mean colds} = 0 \times \frac{45}{180} + 1 \times \frac{64}{180} + 2 \times \frac{71}{180} = 1.1444
\]

This is the same value as reported for the Response Function for Sample 1 in Figure 22.5.

PROC CATMOD is fitting a model to the mean number of colds in each population as follows:

\[
\begin{bmatrix}
\text{Expected number of colds for rural females} \\
\text{urban females} \\
\text{rural males} \\
\text{urban males}
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1 \\
1 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{bmatrix}
\]

where the design matrix is the same one displayed in Figure 22.5, \(\beta_0\) is the mean number of colds averaged over all the populations, \(\beta_1\) is the differential effect for females, and \(\beta_2\) is the differential effect for rural residences. The parameter estimates are shown in Figure 22.7; thus, the expected number of periods with colds for rural females from this model is

\[
1 \times 1.0501 + 1 \times 0.0842 + 1 \times 0.0210 = 1.1553
\]

and the expected number for rural males from this model is

\[
1 \times 1.0501 - 1 \times 0.0842 + 1 \times 0.0210 = 0.9869
\]

Notice also, in Figure 22.7, that the differential effect for residence is nonsignificant (\(p = 0.3839\)): If you continued the analysis by fitting a single effect model (sex), you would need to include a POPULATION statement to maintain the same underlying contingency table.
population sex residence;
model periods = sex;
run;

Generalized Logits Model

Over the course of one school year, third graders from three different schools are exposed to three different styles of mathematics instruction: a self-paced computer-learning style, a team approach, and a traditional class approach. The students are asked which style they prefer and their responses, classified by the type of program they are in (a regular school day versus a regular day supplemented with an afternoon school program) are displayed in Table 22.3. The data set is from Stokes, Davis, and Koch (1995).

Table 22.3. School Program Data

<table>
<thead>
<tr>
<th>School</th>
<th>Program</th>
<th>Learning Style Preference</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Self</td>
<td>Team</td>
<td>Class</td>
</tr>
<tr>
<td>1</td>
<td>Regular</td>
<td>10</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>Afternoon</td>
<td>5</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Regular</td>
<td>21</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>Afternoon</td>
<td>16</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>Regular</td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Afternoon</td>
<td>12</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

The levels of the response variable (self, team, and class) have no essential ordering, hence a logistic regression is performed on the generalized logits. The model to be fit is

\[
\log \left(\frac{\pi_{hij}}{\pi_{hir}} \right) = \alpha_j + \mathbf{x}_{hi}^{T} \beta_j
\]

where \(\pi_{hij}\) is the probability that a student in school \(h\) and program \(i\) prefers teaching style \(j\), \(j \neq r\), and style \(r\) is the class style. There are separate sets of intercept parameters \(\alpha_j\) and regression parameters \(\beta_j\) for each logit, and the matrix \(\mathbf{x}_{hi}\) is the set of explanatory variables for the \(h\)th population. Thus, two logits are modeled for each school and program combination (population): the logit comparing self to class and the logit comparing team to class.

The following statements create the data set `school` and request the analysis. Generalized logits are the default response functions, and maximum likelihood estimation is the default method for analyzing generalized logits, so only the WEIGHT and MODEL statements are required. The option ORDER=DATA means that the response variable levels are ordered as they exist in the data set: self, team, and class; thus the logits are formed by comparing self to class and by comparing team to class. The results of this analysis are shown in Figure 22.8 and Figure 22.9.
data school;
 length Program $ 9;
 input School Program $ Style $ Count @@;
 datalines;
1 regular self 10 1 regular team 17 1 regular class 26
1 afternoon self 5 1 afternoon team 12 1 afternoon class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 afternoon self 16 2 afternoon team 12 2 afternoon class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 afternoon self 12 3 afternoon team 12 3 afternoon class 20
;
proc catmod order=data;
 weight Count;
 model Style=School Program School*Program;
run;

A summary of the data set is displayed in Figure 22.8; the variable levels that form the three responses and six populations are listed in the “Response Profiles” and “Population Profiles” table, respectively. A table containing the iteration history is also produced, but it is not displayed here.
Chapter 22. The CATMOD Procedure

The analysis of variance table is displayed in Figure 22.9. Since this is a saturated model, there are no degrees of freedom remaining for a likelihood ratio test, and missing values are displayed in the table. The interaction effect is clearly nonsignificant, so a main effects model is fit.

Since PROC CATMOD is an interactive procedure, you can analyze the main effects model by simply submitting the new MODEL statement as follows.

```
model Style=School Program;
run;
```

You can check the population and response profiles (not shown) to confirm that they are the same as those in Figure 22.8. The analysis of variance table is shown in Figure 22.10. The likelihood ratio chi-square statistic is 1.78 with a \(p \)-value of 0.7766, indicating a good fit; the Wald chi-square tests for the school and program effects are also significant. Since School has three levels, two parameters are estimated for each of the two logits they modeled, for a total of four degrees of freedom. Since Program has two levels, one parameter is estimated for each of the two logits, for a total of two degrees of freedom.
Syntax

The following statements are available in PROC CATMOD.

```
PROC CATMOD < options > ;
  DIRECT < variables > ;
  MODEL response-effect=design-effects < / options > ;
  CONTRAST 'label' row-description < , . . . , row-description > < / option > ;
  BY variables ;
  FACTORS factor-description < , . . . , factor-description > < / options > ;
  LOGLIN effects ;
  POPULATION variables ;
  REPEATED factor-description < , . . . , factor-description > < / options > ;
  RESPONSE function < , . . . , function > < / options > ;
  RESTRICT parameter=value < . . . parameter=value > ;
  WEIGHT variable ;
```
You can use all of the statements in PROC CATMOD interactively. The first RUN statement executes all of the previous statements. Any subsequent RUN statement executes only those statements that appear between the previous RUN statement and the current one. However, if you specify a BY statement, interactive processing is disabled. That is, all statements through the following RUN statement are processed for each BY group in the data set, but no additional statements are accepted by the procedure.

If more than one CONTRAST statement appears between two RUN statements, all the CONTRAST statements are processed. If more than one RESPONSE statement appears between two RUN statements, then analyses associated with each RESPONSE statement are produced. For all other statements, there can be only one occurrence of the statement between any two RUN statements. For example, if there are two LOGLIN statements between two RUN statements, the first LOGLIN statement is ignored.

The PROC CATMOD and MODEL statements are required. If specified, the DIRECT statement must precede the MODEL statement. As a result, if you use the DIRECT statement interactively, you need to specify a MODEL statement in the same RUN group. See the section “DIRECT Statement” on page 718 for an example.

The CONTRAST statements, if any, must follow the MODEL statement.

You can specify only one of the LOGLIN, REPEATED, and FACTORS statements between any two RUN statements, because they all specify the same information: how to partition the variation among the response functions within a population.

A QUIT statement executes any statements that have not been processed and then ends the CATMOD procedure.

The purpose of each statement, other than the PROC CATMOD statement, are summarized in the following list:

- **BY**: determines groups in which data are to be processed separately.
- **CONTRAST**: specifies a hypothesis to test.
- **DIRECT**: specifies independent variables that are to be treated quantitatively (like continuous variables) rather than qualitatively (like class or discrete variables). These variables also help to determine the rows of the contingency table and distinguish response functions in one population from those in other populations.
- **FACTORS**: specifies (1) the factors that distinguish response functions from others in the same population and (2) model effects, based on these factors, which help to determine the design matrix.
- **LOGLIN**: specifies log-linear model effects.
- **MODEL**: specifies (1) dependent variables, which determine the columns of the contingency table, (2) independent variables, which distinguish response functions in one population from those in other populations, and (3) model effects, which determine the design matrix.
and the way in which total variation among the response functions is partitioned.

POPULATION specifies variables which determine the rows of the contingency table and distinguish response functions in one population from those in other populations.

REPEATED specifies (1) the repeated measurement factors that distinguish response functions from others in the same population and (2) model effects, based on these factors, which help to determine the design matrix.

RESPONSE determines the response functions that are to be modeled.

RESTRICT restricts values of parameters to the values you specify.

WEIGHT specifies a variable containing frequency counts.

PROC CATMOD Statement

```sas
PROC CATMOD < options > ;
```

The PROC CATMOD statement invokes the procedure. You can specify the following options.

DATA=SAS-data-set

names the SAS data set containing the data to be analyzed. By default, the CATMOD procedure uses the most recently created SAS data set. For details, see the section “Input Data Sets” on page 742.

NAMELEN=n

specifies the length of effect names in tables and output data sets to be \(n \) characters long, where \(n \) is a value between 24 and 200 characters. The default length is 24 characters.

NOPRINT

suppresses the normal display of results. The NOPRINT option is useful when you only want to create output data sets with the OUT= or OUTEST= option in the RESPONSE statement. A NOPRINT option is also available in the MODEL statement. Note that this option temporarily disables the Output Delivery System (ODS); see Chapter 15, “Using the Output Delivery System,” for more information.

ORDER=DATA

orders variable levels according to the sequence in which they appear in the input stream. This affects the ordering of the populations, responses, and parameters, as well as the definitions of the parameters. By default, the variable levels are ordered according to their internal sorting sequence (for example, numeric order or alphabetical order). See the section “Ordering of Populations and Responses” on page 744 for more information and examples.
BY Statement

\[\text{BY variables ;} \]

You can specify a BY statement with PROC CATMOD to obtain separate analyses of groups determined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. The variables are one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data using the SORT procedure with a similar BY statement.
- Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for the CATMOD procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables using the DATASETS procedure (in base SAS software).

For more information on the BY statement, refer to the discussion in *SAS Language Reference: Concepts*. For more information on the DATASETS procedure, refer to the discussion in the *SAS Procedures Guide*.

When you specify a BY statement with PROC CATMOD, no further interactive processing is possible. In other words, once the BY statement appears, all statements up to the associated RUN statement are executed for each BY group in the data set. After the RUN statement, no further statements are accepted by the procedure.

CONTRAST Statement

\[\text{CONTRAST 'label' row-description <, \ldots, row-description >} [/\text{option}] ; \]

where a row-description is

\[< @n > \text{effect values} < \ldots < @n > \text{effect values}> \]

The CONTRAST statement constructs and tests linear functions of the parameters in the MODEL statement or effects listed in the LOGLIN statement. Each set of effects (separated by commas) specifies one row or set of rows of the matrix \(C \) that PROC CATMOD uses to test the hypothesis \(C\beta = 0 \).

CONTRAST statements must be preceded by the MODEL statement, and by the LOGLIN statement, if one is used. You can specify the following terms in the CONTRAST statement.
'label' specifies up to 256 characters of identifying information displayed with the test. The 'label' is required.

`effect` is one of the effects specified in the MODEL or LOGLIN statement, INTERCEPT (for the intercept parameter), or ALL_PARMS (for the complete set of parameters).

The ALL_PARMS option is regarded as an effect with the same number of parameters as the number of columns in the design matrix. This is particularly useful when the design matrix is input directly, as in the following example:

```sas
model y=(1 0 0 0, 1 0 1 0, 1 1 0 0, 1 1 1 1);
contrast 'Main Effect of B' all_parms 0 1 0 0;
contrast 'Main Effect of C' all_parms 0 0 1 0;
contrast 'B*C Interaction' all_parms 0 0 0 1;
```

`values` are numbers that form the coefficients of the parameters associated with the given effect. If there are fewer values than parameters for an effect, the remaining coefficients become zero. For example, if you specify two values and the effect actually has five parameters, the final three are set to zero.

`@n` points to the parameters in the nth set when the model has a separate set of parameters for each of the response functions. The @n notation is seldom needed. It enables you to test the variation among response functions in the same population. However, it is usually easier to model and test such variation by using the _RESPONSE_ effect in the MODEL statement or by using the ALL_PARMS designation. Usually, contrasts are performed with respect to all of the response functions, and this is what the CONTRAST statement does by default (in this case, do not use the @n notation).

For example, if there are three response functions per population, then

```sas
contrast 'Level 1 vs. Level 2' A 1 -1 0;
```

results in a three-degree-of-freedom test comparing the first two levels of A simultaneously on the three response functions.

If, however, you want to specify a contrast with respect to the parameters in the nth set only, then use a single @n in a row-description. For example, to test that the first parameter of A and the first parameter of B are zero in the third response function, specify

```sas
contrast 'A=0, B=0, Function 3' @3 A 1 B 1;
```

To specify a contrast with respect to parameters in two or more different sets of effects, use @n with each effect. For example,

```sas
contrast 'Average over Functions' @1 A 1 0 -1 @2 A 1 1 -2;
```
When the model does not have a separate set of parameters for each of the response functions, the $@n$ notation is invalid. This type of model is called AVERAGED. For details, see the description of the AVERAGED option on page 725 and the “Generation of the Design Matrix” section on page 757.

You can specify the following options in the CONTRAST statement after a slash.

ALPHA=value

specifies the significance level of the confidence interval for each contrast when the ESTIMATE= option is specified. The default is $\text{ALPHA}=0.05$, resulting in a 95% confidence interval for each contrast.

ESTIMATE=keyword

EST=keyword

requests that each individual contrast (that is, each row, $c_i\beta$, of $C\beta$) or exponentiated contrast ($\exp(c_i\beta)$) be estimated and tested. PROC CATMOD displays the point estimate, its standard error, a Wald confidence interval, and a Wald chi-square test for each contrast. The significance level of the confidence interval is controlled by the $\text{ALPHA}=\text{option}$.

You can estimate the contrast or the exponentiated contrast, or both, by specifying one of the following keywords:

- **PARM** specifies that the contrast itself be estimated.
- **EXP** specifies that the exponentiated contrast be estimated.
- **BOTH** specifies that both the contrast and the exponentiated contrast be estimated.

Specifying Contrasts

PROC CATMOD is parameterized differently than PROC GLM, so you must be careful not to use the same contrasts that you would with PROC GLM. Since PROC CATMOD uses a full-rank parameterization, all estimable parameters are directly estimable without involving other parameters.

For example, suppose a class variable A has four levels. Then there are four parameters ($\alpha_1, \alpha_2, \alpha_3, \alpha_4$), of which PROC CATMOD uses only the first three. The fourth parameter is related to the others by the equation

$$\alpha_4 = -\alpha_1 - \alpha_2 - \alpha_3$$

To test the first versus the fourth level of A, you would test $\alpha_1 = \alpha_4$, which is

$$\alpha_1 = -\alpha_1 - \alpha_2 - \alpha_3$$

or, equivalently,

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$
Therefore, you would use the following CONTRAST statement:

\[
\text{contrast '1 vs. 4' A 2 1 1;}
\]

To contrast the third level with the average of the first two levels, you would test

\[
\frac{\alpha_1 + \alpha_2}{2} = \alpha_3
\]

or, equivalently,

\[
\alpha_1 + \alpha_2 - 2\alpha_3 = 0
\]

Therefore, you would use the following CONTRAST statement:

\[
\text{contrast '1&2 vs. 3' A 1 1 -2;}
\]

Other CONTRAST statements are constructed similarly; for example,

\[
\begin{align*}
\text{contrast '1 vs. 2 ' A 1 -1 0;} \\
\text{contrast '1&2 vs. 4 ' A 3 3 2;} \\
\text{contrast '1&2 vs. 3&4' A 2 2 0;} \\
\text{contrast 'Main Effect' A 1 0 0,} \\
& \quad \text{A 0 1 0,} \\
& \quad \text{A 0 0 1;}
\end{align*}
\]

The actual form of the \(C \) matrix depends on the effects in the model. The following examples assume a single response function for each population.

\[
\begin{align*}
\text{proc catmod;} \\
& \quad \text{model y=a;} \\
& \quad \text{contrast '1 vs. 4' A 2 1 1;} \\
& \quad \text{run;}
\end{align*}
\]

The \(C \) matrix for the preceding statements is

\[
C = \begin{bmatrix} 0 & 2 & 1 & 1 \end{bmatrix}
\]

since the first parameter corresponds to the intercept.
But if there is a variable \(B \) with three levels and you use the following statements,

```sas
proc catmod;
  model y=b a;
  contrast '1 vs. 4' A 2 1 1;
run;
```

then the CONTRAST statement induces the \(C \) matrix

\[
C = \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \end{bmatrix}
\]

since the first parameter corresponds to the intercept and the next two correspond to the \(B \) main effect.

You can also use the CONTRAST statement to test the joint effect of two or more effects in the MODEL statement. For example, the joint effect of \(A \) and \(B \) in the previous model has five degrees of freedom and is obtained by specifying

```sas
contrast 'Joint Effect of A&B' A 1 0 0,
    A 0 1 0,
    A 0 0 1,
    B 1 0,
    B 0 1;
```

The ordering of variable levels is determined by the ORDER= option in the PROC CATMOD statement. Whenever you specify a contrast that depends on the order of the variable levels, you should verify the order from the “Population Profiles” table, the “Response Profiles” table, or the “One-Way Frequencies” table.

DIRECT Statement

```
DIRECT variables ;
```

The DIRECT statement lists numeric independent variables to be treated in a quantitative, rather than qualitative, way. The DIRECT statement is useful for logistic regression, which is described in the “Logistic Regression” section on page 750. For limitations of models involving continuous variables, see the “Continuous Variables” section on page 751.

If specified, the DIRECT statement must precede the MODEL statement. For example,

```sas
proc catmod;
  direct X;
  model Y=X;
run;
```
Suppose X has five levels. Then the main effect X induces only one column in the design matrix, rather than four. The values inserted into the design matrix are the actual values of X.

You can interactively change the variables declared as DIRECT variables by using the statement without listing any variables. The following statements are valid:

```sas
proc catmod;
   direct X;
   model Y=X;
   weight wt;
run;
   direct;
   model Y=X;
run;
```

The first MODEL statement uses the actual values of X, and the second MODEL statement uses the four variables created when PROC CATMOD generates the design matrix. Note that the preceding statements can be run without a WEIGHT statement if the input data are raw data rather than cell counts.

For more details, see the discussions of main and direct effects in the section “Generation of the Design Matrix” on page 757.

FACTORS Statement

FACTORS

```
FACTORS factor-description <,…, factor-description > / options ;
```

where a **factor-description** is

```
factor-name < $ > < levels >
```

and **factor-descriptions** are separated from each other by a comma. The $ is required for character-valued factors. The value of **levels** provides the number of levels of the factor identified by a given **factor-name**. For only one factor, **levels** is optional; for two or more factors, it is required.

The FACTORS statement identifies factors that distinguish response functions from others in the same population. It also specifies how those factors are incorporated into the model. You can use the FACTORS statement whenever there is more than one response function per population and the keyword **_RESPONSE_** is specified in the MODEL statement. You can specify the name, type, and number of levels of each factor and the identification of each level.

The FACTORS statement is most useful when the response functions and their covariance matrix are read directly from the input data set. In this case, PROC CATMOD reads the response functions as though they are from one population (this poses no problem in the multiple-population case because the appropriately constructed co-
variance matrix is also read directly). Thus, you can use the FACTORS statement to partition the variation among the response functions into appropriate sources, even when the functions actually represent separate populations.

The format of the FACTORS statement is identical to that of the REPEATED statement. In fact, repeated measurement factors are simply special cases of factors in which some of the response functions correspond to multiple dependent variables that are measurements on the same experimental (or sampling) units.

You cannot specify the FACTORS statement for an analysis that also contains the REPEATED or LOGLIN statement since all of them specify the same information: how to partition the variation among the response functions within a population.

In the FACTORS statement,

\[\text{factor-name}\] names a factor that corresponds to two or more response functions. This name must be a valid SAS variable name, and it should not be the same as the name of a variable that already exists in the data set being analyzed.

\[\$\] indicates that the factor is character-valued. If the $ is omitted, then PROC CATMOD assumes that the factor is numeric. The type of the factor is relevant only when you use the PROFILE= option or when the _RESPONSE_= option (described later in this section) specifies nested-by-value effects.

\[\text{levels}\] specifies the number of levels of the corresponding factor. If there is only one such factor, and the number is omitted, then PROC CATMOD assumes that the number of levels is equal to the number of response functions per population \(q\). Unless you specify the PROFILE= option, the number \(q\) must either be equal to or be a multiple of the product of the number of levels of all the factors.

You can specify the following options in the FACTORS statement after a slash.

\[\text{PROFILE=(matrix)}\]

specifies the values assumed by the factors for each response function. There should be one column for each factor, and the values in a given column (character or numeric) should match the type of the corresponding factor. Character values are restricted to 16 characters or less. If there are \(q\) response functions per population, then the matrix must have \(i\) rows, where \(q\) must either be equal to or be a multiple of \(i\). Adjacent rows of the matrix should be separated by a comma.

The values in the PROFILE matrix are useful for specifying models in those situations where the study design is not a full factorial with respect to the factors. They can also be used to specify nested-by-value effects in the _RESPONSE_= option. If you specify character values in both places (the PROFILE= option and the _RESPONSE_= option), then the values must match with respect to whether or not they are enclosed in quotes (that is, enclosed in quotes in both places or in neither place).

For an example of using the PROFILE= option, see Example 22.10 on page 821.
FACTORS Statement • 721

RESPONSE=effects
specifies design effects. The variables named in the effects must be factor-names that appear in the FACTORS statement. If the _RESPONSE_= option is omitted, then PROC CATMOD builds a full factorial _RESPONSE_ effect with respect to the factors.

TITLE='title'
displays the title at the top of certain pages of output that correspond to the current FACTORS statement.

For an example of how the FACTORS statement is useful, consider the case where the response functions and their covariance matrix are read directly from the input data set. The TYPE=EST data set might be created in the following manner:

```sas
data direct(type=est);
  input b1-b4 _type_ $ _name_ $8.;
datalines;
  0.590463 0.384720 0.273269 0.136458 parms .
  0.001690 0.000911 0.000474 0.000432 cov b1
  0.000911 0.001823 0.000031 0.000102 cov b2
  0.000474 0.000031 0.001056 0.000477 cov b3
  0.000432 0.000102 0.000477 0.000396 cov b4;
```

Suppose the response functions correspond to four populations that represent the cross-classification of age (two groups) by sex. You can use the FACTORS statement to identify these two factors and to name the effects in the model. The statements required to fit a main-effects model to these data are

```sas
proc catmod data=direct;
  response read b1-b4;
  model _f_=response;
  factors age 2, sex 2 / _response_=age sex;
run;
```

If you want to specify some nested-by-value effects, you can change the FACTORS statement to

```sas
factors age $ 2, sex $ 2 /
  _response_=age sex(age='under 30') sex(age='30 & over')
  profile=('under 30' male,
           'under 30' female,
           '30 & over' male,
           '30 & over' female);
```
If, by design or by chance, the study contains no male subjects under 30 years of age, then there are only three response functions, and you can specify a main-effects model as

```sas
proc catmod data=direct;
   response read b2-b4;
   model _f=_response_;
   factors age $ 2, sex $ 2 / _response_=age sex
     profile=('under 30' female,
       '30 & over' male,
       '30 & over' female);
run;
```

When you specify two or more factors and omit the PROFILE= option, PROC CATMOD presumes that the response functions are ordered so that the levels of the right-most factor change most rapidly. For the preceding example, the order implied by the FACTORS statement is as follows.

<table>
<thead>
<tr>
<th>Response Function</th>
<th>Dependent Variable</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>b2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>b3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>b4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

For additional examples of how to use the FACTORS statement, see the section “Repeated Measures Analysis” on page 754. All of the examples in that section are applicable, with the REPEATED statement replaced by the FACTORS statement.

LOGLIN Statement

The LOGLIN statement is used to define log-linear model effects. It can be used whenever the default response functions (generalized logits) are used.

In the LOGLIN statement, `effects` are design effects that contain dependent variables in the MODEL statement. You can use the bar (|) and at (@) operators as well. The following lists of effects are equivalent:

- `a b c a*b a*c b*c`

and

- `a|b|c @2`

When you use the LOGLIN statement, the keyword _RESPONSE_ should be specified in the MODEL statement. For further information on log-linear model analysis, see the “Log-Linear Model Analysis” section on page 751.
You cannot specify the LOGLIN statement for an analysis that also contains the REPEATED or FACTORS statement since all of them specify the same information: how to partition the variation among the response functions within a population.

You can specify the following option in the LOGLIN statement after a slash.

TITLE=’title’

displays the title at the top of certain pages of output that correspond to this LOGLIN statement.

The following statements give an example of how to use the LOGLIN statement.

```sas
proc catmod;
   model a*b*c=_response_;  
    loglin a|b|c @ 2;      
run;
```

These statements yield a log-linear model analysis that contains all main effects and two-variable interactions. For more examples of log-linear model analysis, see the “Log-Linear Model Analysis” section on page 751.

MODEL Statement

```sas
MODEL response-effect=< design-effects >< / options >;
```

PROC CATMOD requires a MODEL statement. You can specify the following in a MODEL statement:

- **response-effect** can be either a single variable, a crossed effect with two or more variables joined by asterisks, or _F_. The _F_ specification indicates that the response functions and their estimated covariance matrix are to be read directly into the procedure. The response-effect indicates the dependent variables that determine the response categories (the columns of the underlying contingency table).

- **design-effects** specify potential sources of variation (such as main effects and interactions) in the model. Thus, these effects determine the number of model parameters, as well as the interpretation of such parameters. In addition, if there is no POPULATION statement, PROC CATMOD uses these variables to determine the populations (the rows of the underlying contingency table). When fitting the model, PROC CATMOD adjusts the independent effects in the model for all other independent effects in the model.

Design-effects can be any of those described in the section “Specification of Effects” on page 745, or they can be defined by specifying the actual design matrix, enclosed in parentheses (see the “Specifying the Design Matrix Directly” section on page 727). In
addition, you can use the keyword _RESPONSE_ alone or as part of an effect. Effects cannot be nested within _RESPONSE_, so effects of the form A(_RESPONSE_) are invalid.

For more information, see the “Log-Linear Model Analysis” section on page 751 and the “Repeated Measures Analysis” section on page 754.

Some examples of MODEL statements are

```sas
model r=a b;               main effects only
model r=a b a*b;           main effects with interaction
model r=a b(a);            nested effect
model r=a\b;               complete factorial
model r=a b(a=1) b(a=2);   nested-by-value effects
model r*=s=_response_;     log-linear model
model r*s=a _response_(a); nested repeated measurement factor
model _f_==_response_;     direct input of the response functions
```

The relationship between these specifications and the structure of the design matrix \(X \) is described in the “Generation of the Design Matrix” section on page 757.

The following table summarizes the options available in the MODEL statement.
The following list describes these options in alphabetical order.

ADDCALL= *number*

adds *number* to the frequency count in each cell, where *number* is any positive number. This option has no effect on maximum likelihood analysis; it is used only for weighted least-squares analysis.

AVERAGED

specifies that dependent variable effects can be modeled and that independent variable main effects are averaged across the response functions in a population. For further information on the effect of using (or not using) the AVERAGED option, see the “Generation of the Design Matrix” section on page 757. Direct input of the design matrix or specification of the _RESPONSE_ keyword in the MODEL statement automatically induces an AVERAGED model type.

CORRB

displays the estimated correlation matrix of the parameter estimates.

COV

displays S_i, which is the covariance matrix of the response functions for each population.
COVB

displays the estimated covariance matrix of the parameter estimates.

EPSILON=number

specifies the convergence criterion for the maximum likelihood estimation of the parameters. The iterative estimation process stops when the proportional change in the log likelihood is less than \(number \), or after the number of iterations specified by the MAXITER= option, whichever comes first. By default, EPSILON=1E−8.

FREQ

produces the two-way frequency table for the cross-classification of populations by responses.

MAXITER=number

specifies the maximum number of iterations used for the maximum likelihood estimation of the parameters. By default, MAXITER=20.

ML

computes maximum likelihood estimates. This option is available when generalized logits are used, or for the special case of a single two-level dependent variable where cumulative logits or adjacent category logits are used. For generalized logits (the default response functions), ML is the default estimation method.

NODESIGN

suppresses the display of the design matrix \(X \).

NOINT

suppresses the intercept term in the model.

NOITER

suppresses the display of parameter estimates and other information at each iteration of a maximum likelihood analysis.

NOPARM

suppresses the display of the estimated parameters and the statistics for testing that each parameter is zero.

NOPREDVAR

suppresses the display of the variable levels in tables requested with the PRED= option.

NOPRINT

suppresses the normal display of results. The NOPRINT option is useful when you only want to create output data sets with the OUT= or OUTEST= option in the RESPONSE statement. A NOPRINT option is also available in the PROC CATMOD statement. Note that this option temporarily disables the Output Delivery System (ODS); see Chapter 15, “Using the Output Delivery System,” for more information.

NOPROFILE

suppresses the display of the population profiles and the response profiles.
NORESPONSE
suppresses the display of the _RESPONSE_ matrix for log-linear models. For further information, see the “Log-Linear Model Design Matrices” section on page 764.

ONEWAY
produces a one-way table of frequencies for each variable used in the analysis. This table is useful in determining the order of the observed levels for each variable.

PREDICT
PRED=FREQ | PROB
displays the observed and predicted values of the response functions for each population, together with their standard errors and the residuals (observed – predicted). In addition, if the response functions are the standard ones (generalized logits), then the PRED=FREQ option specifies the computation and display of predicted cell frequencies, while PRED=PROB (or just PREDICT) specifies the computation and display of predicted cell probabilities.

The OUT= data set always contains the predicted probabilities. If the response functions are the generalized logits, the predicted cell probabilities are output unless the option PRED=FREQ is specified, in which case the predicted cell frequencies are output.

PROB
produces the two-way table of probability estimates for the cross-classification of populations by responses. These estimates sum to one across the response categories for each population.

TITLE=’title’
displaysthe title at the top of certain pages of output that correspond to this MODEL statement.

WLS
GLS
computes weighted least-squares estimates. This type of estimation is also called generalized-least-squares estimation. For response functions other than the default (of generalized logits), WLS is the default estimation method.

XPX
displays $X' S^{-1} X$, the crossproducts matrix for the normal equations.

Specifying the Design Matrix Directly
If you specify the design matrix directly, adjacent rows of the matrix must be separated by a comma, and the matrix must have $q \times s$ rows, where s is the number of populations and q is the number of response functions per population. The first q rows correspond to the response functions for the first population, the second set of q rows corresponds to the functions for the second population, and so forth. The following is an example using direct specification of the design matrix.
proc catmod;
 model R=(1 0,
 1 1,
 1 2,
 1 3);
run;

These statements are appropriate for the case of one population and for \(R \) with five levels (generating four response functions), so that \(4 \times 1 = 4 \). These statements are also appropriate for a situation with two populations and two response functions per population; giving \(2 \times 2 = 4 \) rows of the design matrix. (To induce more than one population, the POPULATION statement is needed.)

When you input the design matrix directly, you also have the option of specifying that any subsets of the parameters be tested for equality to zero. Indicate each subset by specifying the appropriate column numbers of the design matrix, followed by an equal sign and a label (24 characters or less, in quotes) that describes the subset. Adjacent subsets are separated by a comma, and the entire specification is enclosed in parentheses and placed after the design matrix. For example,

```
proc catmod;
  population Group Time;
  model R=(1 1 0 0,
          1 1 0 2,
          1 0 1 0,
          1 0 1 1,
          1 0 1 2,
          1 -1 -1 0,
          1 -1 -1 1,
          1 -1 -1 2) (1 ='Intercept',
                        2 3='Group main effect',
                        4 ='Linear effect of Time');
run;
```

The preceding statements are appropriate when \(Group \) and \(Time \) each have three levels, and \(R \) is dichotomous. The POPULATION statement induces nine populations, and \(q = 1 \) (since \(R \) is dichotomous), so \(q \times s = 1 \times 9 = 9 \).

If you input the design matrix directly but do not specify any subsets of the parameters to be tested, then PROC CATMOD tests the effect of MODEL | MEAN, which represents the significance of the model beyond what is explained by an overall mean. For the previous example, the MODEL | MEAN effect is the same as that obtained by specifying

```
(2 3 4='model|mean');
```

at the end of the MODEL statement.
The POPULATION statement specifies that populations are to be formed on the basis of cross-classifications of the specified variables. If you do not specify the POPULATION statement, then populations are formed on the basis of cross-classifications of the independent variables in the MODEL statement. The POPULATION statement has two major uses:

- When you enter the design matrix directly, there are no independent variables in the MODEL statement; therefore, the POPULATION statement is the only way of inducing more than one population.
- When you fit a reduced model, the POPULATION statement may be necessary if you want to induce the same number of populations as there are for the saturated model.

To illustrate the first use, suppose that you specify the following statements:

```sas
data one;
  input A $ B $ wt @@;
datalines;
yes yes 23 yes no 31 no yes 47 no no 50;
proc catmod;
  weight wt;
  population B;
  model A=(1 0,
           1 1);
run;
```

Since the dependent variable A has two levels, there is one response function per population. Since the variable B has two levels, there are two populations. Thus, the MODEL statement is valid since the number of rows in the design matrix (2) is the same as the total number of response functions. If the POPULATION statement is omitted, there would be only one population and one response function, and the MODEL statement would be invalid.
To illustrate the second use, suppose that you specify

```plaintext
data two;
  input A $ B $ Y wt @@;
datalines;
yes yes 1 23       yes yes 2 63
yes no 1 31       yes no 2 70
no yes 1 47       no yes 2 80
no no 1 50        no no 2 84;
```

```plaintext
proc catmod;
  weight wt;
  model Y=A B A*B / wls;
run;
```

These statements induce four populations and produce the following design matrix and analysis of variance table.

```plaintext
X = [ 1 1 1 1
     1 1 -1 -1
     1 -1 1 -1
     1 -1 -1 1 ]
```

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>48.10</td>
<td><.0001</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>3.47</td>
<td>0.0625</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0.25</td>
<td>0.6186</td>
</tr>
<tr>
<td>A*B</td>
<td>1</td>
<td>0.19</td>
<td>0.6638</td>
</tr>
<tr>
<td>Residual</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since the B and $A*B$ effects are nonsignificant ($p > 0.10$), you may want to fit the reduced model that contains only the A effect. If your new statements are

```plaintext
proc catmod;
  weight wt;
  model Y=A / wls;
run;
```

then only two populations are induced, and the design matrix and the analysis of variance table are as follows.

```plaintext
X = [ 1 1
     1 -1 ]
```

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>47.94</td>
<td><.0001</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>3.33</td>
<td>0.0678</td>
</tr>
<tr>
<td>Residual</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
However, if the new statements are

```
proc catmod;
  weight wt;
  population A B;
  model Y=A / wls;
run;
```

then four populations are induced, and the design matrix and the analysis of variance table are as follows.

```
X =
  [ 1  1 ]
  [ 1  1 ]
  [ 1 -1 ]
  [ 1 -1 ]
```

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>47.76</td>
<td><.0001</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>3.30</td>
<td>0.0694</td>
</tr>
<tr>
<td>Residual</td>
<td>2</td>
<td>0.35</td>
<td>0.8374</td>
</tr>
</tbody>
</table>

The advantage of the latter analysis is that it retains four populations for the reduced model, thereby creating a built-in goodness-of-fit test: the residual chi-square. Such a test is important because the cumulative (or joint) effect of deleting two or more effects from the model may be significant, even if the individual effects are not.

The resulting differences between the two analyses are due to the fact that the latter analysis uses pure weighted least-squares estimates with respect to the four populations that are actually sampled. The former analysis pools populations and therefore uses parameter estimates that can be regarded as weighted least-squares estimates of maximum likelihood predicted cell frequencies. In any case, the estimation methods are asymptotically equivalent; therefore, the results are very similar. If you specify the ML option (instead of the WLS option) in the MODEL statements, then the parameter estimates are identical for the two analyses.

REPEATED Statement

The `REPEATED` statement incorporates repeated measurement factors into the model. You can use this statement whenever there is more than one dependent variable and the keyword `_RESPONSE_` is specified in the `MODEL` statement. If the dependent variables correspond to one or more repeated measurement factors, you

```
REPEATED factor-description < , . . . , factor-description > < / options > ;
```

where a `factor-description` is

```
factor-name < $ > < levels >
```

and `factor-descriptions` are separated from each other by a comma. The $ is required for character-valued factors. The value of `levels` provides the number of levels of the repeated measurement factor identified by a given `factor-name`. For only one repeated measurement factor, `levels` is optional; for two or more repeated measurement factors, it is required.

The `REPEATED` statement incorporates repeated measurement factors into the model. You can use this statement whenever there is more than one dependent variable and the keyword `_RESPONSE_` is specified in the `MODEL` statement. If the dependent variables correspond to one or more repeated measurement factors, you
can use the REPEATED statement to define _RESPONSE_ in terms of those factors. You can specify the name, type, and number of levels of each factor, as well as the identification of each level.

You cannot specify the REPEATED statement for an analysis that also contains the FACTORS or LOGLIN statement since all of them specify the same information: how to partition the variation among the response functions within a population.

factor-name names a repeated measurement factor that corresponds to two or more response functions. This name must be a valid SAS variable name, and it should not be the same as the name of a variable that already exists in the data set being analyzed.

$ indicates that the factor is character-valued. If the $ is omitted, then PROC CATMOD assumes that the factor is numeric. The type of the factor is relevant only when you use the PROFILE= option or when the _RESPONSE_= option specifies nested-by-value effects.

levels specifies the number of levels of the corresponding repeated measurement factor. If there is only one such factor and the number is omitted, then PROC CATMOD assumes that the number of levels is equal to the number of response functions per population (q). Unless you specify the PROFILE= option, the number q must either be equal to or be a multiple of the product of the number of levels of all the factors.

You can specify the following options in the REPEATED statement after a slash.

PROFILE=(matrix)
specifies the values assumed by the factors for each response function. There should be one column for each factor, and the values in a given column should match the type (character or numeric) of the corresponding factor. Character values are restricted to 16 characters or less. If there are q response functions per population, then the matrix must have i rows, where q must either be equal to or be a multiple of i. Adjacent rows of the matrix should be separated by a comma.

The values in the PROFILE matrix are useful for specifying models in those situations where the study design is not a full factorial with respect to the factors. They can also be used to specify nested-with-value effects in the _RESPONSE_= option. If you specify character values in both the PROFILE= option and the _RESPONSE_= option, then the values must match with respect to whether or not they are enclosed in quotes (that is, enclosed in quotes in both places or in neither place).
RESPONSE Statement

The RESPONSE statement specifies functions of the response probabilities. The procedure models these response functions as linear combinations of the parameters.

By default, PROC CATMOD uses the standard response functions (generalized logits, which are explained in detail in the “Understanding the Standard Response Functions” section on page 740). With these standard response functions, the default estimation method is maximum likelihood, but you can use the WLS option in the MODEL statement to request weighted least-squares estimation. With other response functions (specified in the RESPONSE statement), the default (and only) estimation method is weighted least squares.

You can specify more than one RESPONSE statement, in which case each RESPONSE statement produces a separate analysis. If the computed response functions for any population are linearly dependent (yielding a singular covariance matrix), then PROC CATMOD displays an error message and stops processing. See the “Cautions” section on page 766 for methods of dealing with this.

The function specification can be any of the items in the following list. For an example of response functions generated and formulas for q (the number of response functions), see the “More on Response Functions” section on page 735.
ALOGIT
ALOGITS
specifies response functions as adjacent-category logits of the marginal probabilities for each of the dependent variables. For each dependent variable, the response functions are a set of linearly independent adjacent-category logits, obtained by taking the logarithms of the ratios of two probabilities. The denominator of the kth ratio is the marginal probability corresponding to the kth level of the variable, and the numerator is the marginal probability corresponding to the $(k + 1)$th level. If a dependent variable has two levels, then the adjacent-category logit is the negative of the generalized logit.

CLOGIT
CLOGITS
specifies that the response functions are cumulative logits of the marginal probabilities for each of the dependent variables. For each dependent variable, the response functions are a set of linearly independent cumulative logits, obtained by taking the logarithms of the ratios of two probabilities. The denominator of the kth ratio is the cumulative probability, c_k, corresponding to the kth level of the variable, and the numerator is $1 - c_k$ (Agresti 1984, 113–114). If a dependent variable has two levels, then PROC CATMOD computes its cumulative logit as the negative of its generalized logit. You should use cumulative logits only when the dependent variables are ordinally scaled.

JOINT
specifies that the response functions are the joint response probabilities. A linearly independent set is created by deleting the last response probability. For the case of one dependent variable, the JOINT and MARGINALS specifications are equivalent.

LOGIT
LOGITS
specifies that the response functions are generalized logits of the marginal probabilities for each of the dependent variables. For each dependent variable, the response functions are a set of linearly independent generalized logits, obtained by taking the logarithms of the ratios of two probabilities. The denominator of each ratio is the marginal probability corresponding to the last observed level of the variable, and the numerators are the marginal probabilities corresponding to each of the other levels. If there is one dependent variable, then specifying LOGIT is equivalent to using the standard response functions.

MARGINAL
MARGINALS
specifies that the response functions are marginal probabilities for each of the dependent variables in the MODEL statement. For each dependent variable, the response functions are a set of linearly independent marginals, obtained by deleting the marginal probability corresponding to the last level.

MEAN
MEANS
specifies that the response functions are the means of the dependent variables in the MODEL statement. This specification requires that all of the dependent variables be numeric.
READ variables specifies that the response functions and their covariance matrix are to be read directly from the input data set with one response function for each variable named. See the section “Inputting Response Functions and Covariances Directly” on page 743 for more information.

transformation specifies response functions that can be expressed by using successive applications of the four operations: LOG, EXP, * matrix literal, or + matrix literal. The operations are described in detail in the “Using a Transformation to Specify Response Functions” section on page 738.

You can specify the following options in the RESPONSE statement after a slash.

OUT=SAS-data-set produces a SAS data set that contains, for each population, the observed and predicted values of the response functions, their standard errors, and the residuals. Moreover, if you use the standard response functions, the data set also includes observed and predicted values of the cell frequencies or the cell probabilities. For further information, see the “Output Data Sets” section on page 747.

OUTEST=SAS-data-set produces a SAS data set that contains the estimated parameter vector and its estimated covariance matrix. For further information, see the “Output Data Sets” section on page 747.

TITLE=’title’ displays the title at the top of certain pages of output that correspond to this RESPONSE statement.

More on Response Functions

Suppose the dependent variable A has 3 levels and is the only response-effect in the MODEL statement. The following table shows the proportions upon which the response functions are defined.

<table>
<thead>
<tr>
<th>Value of A:</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>proportions:</td>
<td>p_1</td>
<td>p_2</td>
<td>p_3</td>
</tr>
</tbody>
</table>

Note that $\sum_j p_j = 1$. The following table shows the response functions generated for each population.
The marginal totals for the preceding table are defined as follows,

\[p_1 = p_1 + p_2 + p_3 \]
\[p_2 = p_4 + p_5 + p_6 \]
\[p_3 = p_7 + p_8 + p_9 \]

where \(\sum_j p_j = 1 \). The following table shows the response functions generated for each population.

<table>
<thead>
<tr>
<th>Function Specification</th>
<th>Value of (q)</th>
<th>Response Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>none*</td>
<td>8</td>
<td>(\ln \left(\frac{p_1}{p_0} \right), \ln \left(\frac{p_2}{p_0} \right), \ldots, \ln \left(\frac{p_8}{p_0} \right))</td>
</tr>
<tr>
<td>ALOGITS</td>
<td>4</td>
<td>(\ln \left(\frac{p_1}{p_1^} \right), \ln \left(\frac{p_2}{p_2^} \right), \ln \left(\frac{p_3}{p_3^} \right), \ln \left(\frac{p_4}{p_4^} \right))</td>
</tr>
<tr>
<td>CLOGITS</td>
<td>4</td>
<td>(\ln \left(\frac{1-p_1}{p_1^} \right), \ln \left(\frac{1-(p_1+p_2)}{p_1+p_2^} \right), \ln \left(\frac{1-p_3}{p_3^} \right), \ln \left(\frac{1-(p_3+p_4)}{p_3+p_4^} \right))</td>
</tr>
<tr>
<td>JOINT</td>
<td>8</td>
<td>(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8)</td>
</tr>
<tr>
<td>LOGITS</td>
<td>4</td>
<td>(\ln \left(\frac{p_1}{p_3} \right), \ln \left(\frac{p_2}{p_5} \right), \ln \left(\frac{p_1}{p_3} \right), \ln \left(\frac{p_2}{p_5} \right))</td>
</tr>
<tr>
<td>MARGINAL</td>
<td>4</td>
<td>(p_1, p_2, p_1, p_2)</td>
</tr>
<tr>
<td>MEAN</td>
<td>2</td>
<td>(1p_1 + 2p_2 + 3p_3, 1p_1 + 2p_2 + 3p_3)</td>
</tr>
</tbody>
</table>

* Without a function specification, the default response functions are generalized logits.
The READ and transformation function specifications are not shown in the preceding table. For these two situations, there is not a general response function; the response functions generated depend on what you specify.

Another important aspect of the function specification is the number of response functions generated per population, q. Let \(m_i \) represent the number of levels for the \(i \)th dependent variable in the MODEL statement, and let \(d \) represent the number of dependent variables in the MODEL statement. Then, if the function specification is ALOGITS, CLOGITS, LOGITS, or MARGINALS, the number of response functions is

\[
q = \sum_{i=1}^{d} (m_i - 1)
\]

If the function specification is JOINT or the default (generalized logits), the number of response functions per population is

\[
q = r - 1
\]

where \(r \) is the number of response profiles. If every possible cross-classification of the dependent variables is observed in the samples, then

\[
r = \prod_{i=1}^{d} m_i
\]

Otherwise, \(r \) is the number of cross-classifications actually observed.

If the function specification is MEANS, the number of response functions per population is \(q = d \).

Response Statement Examples

Some example response statements are shown in the following table.

<table>
<thead>
<tr>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>response marginals;</td>
<td>marginals for each dependent variable</td>
</tr>
<tr>
<td>response means;</td>
<td>the mean of each dependent variable</td>
</tr>
<tr>
<td>response logits;</td>
<td>generalized logits of the marginal probabilities</td>
</tr>
<tr>
<td>response clogits;</td>
<td>cumulative logits of the marginal probabilities</td>
</tr>
<tr>
<td>response alogits;</td>
<td>adjacent-category logits of the marginal probabilities</td>
</tr>
<tr>
<td>response joint;</td>
<td>the joint probabilities</td>
</tr>
<tr>
<td>response 1 -1 log;</td>
<td>the logit</td>
</tr>
<tr>
<td>response;</td>
<td>generalized logits</td>
</tr>
<tr>
<td>response 1 2 3;</td>
<td>the mean score, with scores of 1, 2, and 3 corresponding to the three response levels</td>
</tr>
<tr>
<td>response read b1-b4;</td>
<td>four response functions and their covariance matrix, read directly from the input data set</td>
</tr>
</tbody>
</table>
Using a Transformation to Specify Response Functions

If you specify a transformation, it is applied to the vector that contains the sample proportions in each population. The transformation can be any combination of the following four operations.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear combination</td>
<td>* matrix literal</td>
</tr>
<tr>
<td></td>
<td>matrix literal</td>
</tr>
<tr>
<td>logarithm</td>
<td>LOG</td>
</tr>
<tr>
<td>exponential</td>
<td>EXP</td>
</tr>
<tr>
<td>adding constant</td>
<td>+ matrix literal</td>
</tr>
</tbody>
</table>

If more than one operation is specified, then PROC CATMOD applies the operations consecutively from right to left.

A matrix literal is a matrix of numbers with each row of the matrix separated from the next by a comma. If you specify a linear combination, in most cases the * is not needed. The following statement defines the response function $p_1 + 1$. The * is needed to separate the two matrix literals '1' and '1 0'.

```
response + 1 * 1 0;
```

The LOG of a vector transforms each element of the vector into its natural logarithm; the EXP of a vector transforms each element into its exponential function (antilogarithm).

In order to specify a linear response function for data that have $r = 3$ response categories, you could specify either of the following RESPONSE statements:

```
response * 1 0 0 , 0 1 0;
response 1 0 0 , 0 1 0;
```

The matrix literal in the preceding statements specifies a 2×3 matrix, which is applied to each population as follows:

\[
\begin{bmatrix}
F_1 \\
F_2
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} * \begin{bmatrix}
p_1 \\
p_2 \\
p_3
\end{bmatrix}
\]

where p_1, p_2, and p_3 are sample proportions for the three response categories in a population, and F_1 and F_2 are the two response functions computed for that population. This response function, therefore, sets $F_1 = p_1$ and $F_2 = p_2$ in each population.
As another example of the linear response function, suppose you have two dependent variables corresponding to two observers who evaluate the same subjects. If the observers grade on the same three-point scale and if all nine possible responses are observed, then the following RESPONSE statement would compute the probability that the observers agree on their assessments:

```
   response 1 0 0 0 1 0 0 0 1;
```

This response function is then computed as

\[
F = p_{11} + p_{22} + p_{33} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{11} \\
p_{12} \\
p_{13} \\
p_{21} \\
p_{22} \\
p_{23} \\
p_{31} \\
p_{32} \\
p_{33} \end{bmatrix}
\]

where \(p_{ij} \) denotes the probability that a subject gets a grade of \(i \) from the first observer and \(j \) from the second observer.

If the function is a compound function, requiring more than one operation to specify it, then the operations should be listed so that the first operation to be applied is on the right and the last operation to be applied is on the left. For example, if there are two response levels, the response function

```
   response 1 -1 log;
```

is equivalent to the matrix expression:

\[
F = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} \log(p_1) \\
\log(p_2) \end{bmatrix} = \log(p_1) - \log(p_2) = \log\left(\frac{p_1}{p_2}\right)
\]

which is the logit response function since \(p_2 = 1 - p_1 \) when there are only two response levels.

Another example of a compound response function is

```
   response exp 1 -1 * 1 0 0 1, 0 1 1 0 log;
```

which is equivalent to the matrix expression

\[
F = \text{EXP}(A * B * \text{LOG}(P))
\]

where \(P \) is the vector of sample proportions for some population,

\[
A = \begin{bmatrix} 1 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \end{bmatrix}
\]
If the four responses are based on two dependent variables, each with two levels, then the function can also be written as

\[
F = \frac{p_{11}p_{22}}{p_{12}p_{21}}
\]

which is the odds (crossproduct) ratio for a 2×2 table.

Understanding the Standard Response Functions

If no RESPONSE statement is specified, PROC CATMOD computes the standard response functions, which contrast the log of each response probability with the log of the probability for the last response category. If there are r response categories, then there are $r - 1$ standard response functions. For example, if there are four response categories, using no RESPONSE statement is equivalent to specifying

```
response  1 0 0 -1,
           0 1 0 -1,
           0 0 1 -1 log;
```

This results in three response functions:

\[
F = \begin{bmatrix}
 F_1 \\
 F_2 \\
 F_3
\end{bmatrix} = \begin{bmatrix}
 \log(p_{11}/p_4) \\
 \log(p_{22}/p_4) \\
 \log(p_{33}/p_4)
\end{bmatrix}
\]

If there are only two response levels, the resulting response function would be a logit. Thus, the standard response functions are called generalized logits. They are useful in dealing with the log-linear model:

\[
\pi = \exp(X\beta)
\]

If C denotes the matrix in the preceding RESPONSE statement, then because of the restriction that the probabilities sum to 1, it follows that an equivalent model is

\[
C \star \log(\pi) = (CX)\beta
\]

But $C \star \log(\pi)$ is simply the vector of standard response functions. Thus, fitting a log-linear model on the cell probabilities is equivalent to fitting a linear model on the generalized logits.
RESTRICT Statement

RESTRICT statement=value < ... parameter=value > ;

where parameter is the letter B followed by a number; for example, B3 specifies the third parameter in the model. The value is the value to which the parameter is restricted. The RESTRICT statement restricts values of parameters to the values you specify, so that the estimation of the remaining parameters is subject to these restrictions. Consider the following statement:

restrict b1=1 b4=0 b6=0;

This restricts the values of three parameters. The first parameter is set to 1, and the fourth and sixth parameters are set to zero.

The RESTRICT statement is interactive. A new RESTRICT statement replaces any previous ones. In addition, if you submit two or more MODEL, LOGLIN, FACTORS, or REPEATED statements, then the subsequent occurrences of these statements also delete the previous RESTRICT statement.

WEIGHT Statement

WEIGHT variable ;

You can use a WEIGHT statement to refer to a variable containing the cell frequencies, which need not be integers. The WEIGHT statement lets you use summary data sets containing a count variable. See the “Input Data Sets” section on page 742 for further information concerning the WEIGHT statement.
Details

Missing Values

Observations with missing values for any variable listed in the MODEL, POPULATION, or WEIGHT statement are omitted from the analysis.

Input Data Sets

Data to be analyzed by PROC CATMOD must be in a SAS data set containing one of the following:

- raw data values (variable values for every subject)
- frequency counts and the corresponding variable values
- response function values and their covariance matrix

If you specify a WEIGHT statement, then PROC CATMOD uses the values of the WEIGHT variable as the frequency counts. If the READ function is specified in the RESPONSE statement, then the procedure expects the input data set to contain the values of response functions and their covariance matrix. Otherwise, PROC CATMOD assumes that the SAS data set contains raw data values.

Raw Data Values

If you use raw data, PROC CATMOD first counts the number of observations having each combination of values for all variables specified in the MODEL or POPULATION statements. For example, suppose the variables A and B each take on the values 1 and 2, and their frequencies can be represented as follows.

<table>
<thead>
<tr>
<th>B</th>
<th>A=1</th>
<th>A=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B=1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>B=2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

The SAS data set Raw containing the raw data might be as follows.

<table>
<thead>
<tr>
<th>Observation</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
And the statements for PROC CATMOD would be

```sas
proc catmod data=Raw;
   model A=B;
run;
```

For discussions of how to handle structural and random zeros with raw data as input data, see the “Zero Frequencies” section on page 767 and Example 22.5 on page 796.

Frequency Counts

If your data set contains frequency counts, then use the WEIGHT statement in PROC CATMOD to specify the variable containing the frequencies. For example, you could create the **Summary** data set as follows.

```sas
data Summary;
   input A B Count;
   datalines;
   1 1 2
   1 2 3
   2 1 1
   2 2 1
;
```

In this case, the corresponding statements would be

```sas
proc catmod data=Summary;
   weight Count;
   model A=B;
run;
```

The data set **Summary** can also be created from data set **Raw** by using the FREQ procedure:

```sas
proc freq data=Raw;
   tables A*B / out=Summary;
run;
```

Inputting Response Functions and Covariances Directly

If you want to read in the response functions and their covariance matrix, rather than have PROC CATMOD compute them, create a TYPE=EST data set. In addition to having one variable name for each function, the data set should have two additional variables: _TYPE_ and _NAME_, both character variables of length 8. The variable _TYPE_ should have the value ‘PARMS’ when the observation contains the response functions; it should have the value ‘COV’ when the observation contains elements of the covariance matrix of the response functions. The variable _NAME_ is used only when _TYPE_=COV, in which case it should contain the name of the variable that has its covariance elements stored in that observation. In the following data set, for example, the covariance between the second and fourth response functions is 0.000102.
data direct(type=est);
 input b1-b4 _type_ $ _name_ $8.;
 datalines;
 0.590463 0.384720 0.273269 0.136458 PARMS .
 0.001690 0.000911 0.000474 0.000432 COV B1
 0.000911 0.001823 0.000031 0.000102 COV B2
 0.000474 0.000031 0.001056 0.000477 COV B3
 0.000432 0.000102 0.000477 0.000396 COV B4

In order to tell PROC CATMOD that the input data set contains the values of response functions and their covariance matrix,

- specify the READ function in the RESPONSE statement
- specify _F_ as the dependent variable in the MODEL statement

For example, suppose the response functions correspond to four populations that represent the cross-classification of two age groups by two race groups. You can use the FACTORS statement to identify these two factors and to name the effects in the model. The statements required to fit a main-effects model to these data are

```
proc catmod data=direct;
  response read b1-b4;
  model _f_=_response_;
  factors age 2, race 2 / _response_=age race;
run;
```

Ordering of Populations and Responses

By default, populations and responses are sorted in standard SAS order as follows:

- alphabetic order for character variables
- increasing numeric order for numeric variables

Suppose you specify the following statements:

```
data one;
  length A B $ 6;
  input A $ B $ wt @@;
  datalines;
  low low 23 low medium 31 low high 38
  medium low 40 medium medium 42 medium high 50
  high low 52 high medium 54 high high 61
;
proc catmod;
  weight wt;
  model A=B / oneway;
run;
```
The ordering of populations and responses corresponds to the alphabetical order of the levels of the character variables. You can specify the ONEWAY option to display the ordering of the variables, while the “Population Profiles” and “Response Profiles” tables display the ordering of the populations and the responses, respectively.

However, in this example, you may want to have the levels ordered in the natural order of ‘low,’ ‘medium,’ ‘high.’ If you specify the ORDER=DATA option

```sas
proc catmod order=data;
  weight wt;
  model a=b / oneway;
run;
```

then the ordering of populations and responses is as follows.

<table>
<thead>
<tr>
<th>Population Profiles</th>
<th>Response Profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>high</td>
</tr>
<tr>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>3</td>
<td>medium</td>
</tr>
</tbody>
</table>

Thus, you can use the ORDER=DATA option to ensure that populations and responses are ordered in a specific way. But since this also affects the definitions and the ordering of the parameters, you must exercise caution when using the _RESPONSE_ effect, the CONTRAST statement, or direct input of the design matrix.

An alternative method of ensuring that populations and responses are ordered in a specific way is to replace any character variables with numeric variables and to assign formatted values such as ‘yes’ and ‘no’ to the numeric levels. PROC CATMOD orders the populations and responses according to the numeric values but displays the formatted values.

Specification of Effects

By default, the CATMOD procedure treats all variables as classification variables. As a result, there is no CLASS statement in PROC CATMOD. The values of a classification variable can be numeric or character. PROC CATMOD builds a set of effects-coded variables to represent the levels of the classification variable and then uses these to fit the model (for details, see the “Generation of the Design Matrix” section on page 757). You can modify the default by using the DIRECT statement to
Chapter 22. The CATMOD Procedure

treat numeric independent continuous variables as continuous variables. The classification variables, combinations of classification variables, and continuous variables are then used in fitting linear models to data.

The parameters of a linear model are generally divided into subsets that correspond to meaningful sources of variation in the response functions. These sources, called effects, can be specified in the MODEL, LOGLIN, FACTORS, REPEATED, and CONTRAST statements. Effects can be specified in any of the following ways:

- A main effect is a single class variable (that is, it induces classification levels): \(A\ B\ C\).
- A crossed effect (or interaction) is two or more class variables joined by asterisks, for example: \(A*B\ A*B*C\).
- A nested effect is a main effect or an interaction, followed by a parenthetical field containing a main effect or an interaction. Multiple variables within the parentheses are assumed to form a crossed effect even when the asterisk is absent. Thus, the last two effects are identical: \(B(A)\ C(A*B)\ A*B(C*D)\ A*B(C*D)\).
- A nested-by-value effect is the same as a nested effect except that any variable in the parentheses can be followed by an equal sign and a value: \(B(A=1)\ C(A*B=1)\ A*C='low')\).
- A direct effect is a variable specified in a DIRECT statement: \(X\ Y\).
- Direct effects can be crossed with other effects: \(X*Y\ X*X\ X*A*B(C\ D=1)\).

The variables for crossed and nested effects remain in the order in which they are first encountered. For example, in the model

```sas
model R=B A A*B C(A B);
```

the effect \(A*B\) is reported as \(B*A\) since \(B\) appeared before \(A\) in the statement. Also, \(C(A\ B)\) is interpreted as \(C(A*B)\) and is therefore reported as \(C(B*A)\).

Bar Notation

You can shorten the specification of multiple effects by using bar notation. For example, two methods of writing a full three-way factorial model are

```sas
proc catmod;
   model y=a b c a*b a*c b*c a*b*c;
run;
```

and

```sas
proc catmod;
   model y=a|b|c;
run;
```
When you use the bar (|) notation, the right- and left-hand sides become effects, and the interaction between them becomes an effect. Multiple bars are permitted. The expressions are expanded from left to right, using rules 1 through 4 given in Searle (1971, p. 390):

- Multiple bars are evaluated left to right. For example, \(A|B|C\) is evaluated as follows:

\[
\begin{align*}
A \mid B \mid C & \rightarrow A \mid B \mid C \\
& \rightarrow \{A \mid B\} \mid C \\
& \rightarrow A \mid B \mid A*B \mid C \mid A*C \mid B*C \mid A*B*C
\end{align*}
\]

- Crossed and nested groups of variables are combined. For example, \(A(B) \mid C(D)\) generates \(A*C(B \mid D)\), among other terms.

- Duplicate variables are removed. For example, \(A(C) \mid B(C)\) generates \(A*B(C \mid C)\), among other terms, and the extra \(C\) is removed.

- Effects are discarded if a variable occurs on both the crossed and nested sides of an effect. For instance, \(A(B) \mid B(D \mid E)\) generates \(A*B(B \mid D \mid E)\), but this effect is deleted.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation by specifying that maximum number, preceded by an @ sign, at the end of the bar effect. For example, the specification \(A \mid B \mid C \mid @ 2\) would result in only those effects that contain 2 or fewer variables; in this case, the effects \(A, B, A*B, C, A*C,\) and \(B*C\) are generated.

Other examples of the bar notation are

- \(A \mid C(B)\) is equivalent to \(A \mid C(B) \ mi A*C(B)\)
- \(A(B) \mid C(B)\) is equivalent to \(A(B) \ mi C(B) \ mi A*C(B)\)
- \(A(B) \mid B(D \mid E)\) is equivalent to \(A(B) \ mi B(D \mid E)\)
- \(A \mid B(A) \mid C\) is equivalent to \(A \mid B(A) \ mi C \ mi A*C \ mi B*C(A)\)
- \(A \mid B(A) \mid C \mid @ 2\) is equivalent to \(A \mid B(A) \ mi C \ mi A*C\)
- \(A \mid B \mid C \mid D \mid @ 2\) is equivalent to \(A \mid B \ mi A*B \ mi C \ mi A*C \ mi B*C \ mi D \ mi A*D \ mi B*D \ mi C*D\)

For details on how the effects specified lead to a design matrix, see the “Generation of the Design Matrix” section on page 757.

Output Data Sets

OUT= Data Set

For each population, the OUT= data set contains the observed and predicted values of the response functions, their standard errors, the residuals, and variables that describe the population and response profiles. In addition, if you use the standard response functions, the data set includes observed and predicted values for the cell frequencies or the cell probabilities, together with their standard errors and residuals. See Example 22.11 on page 826 for an example of creating an OUT= data set.
Number of Observations

For the standard response functions, there are \(s \times (2q - 1) \) observations in the data set for each BY group, where \(s \) is the number of populations, and \(q \) is the number of response functions per population. Otherwise, there are \(s \times q \) observations in the data set for each BY group.

Variables in the OUT= Data Set

The data set contains the following variables:

- **BY variables**
 - If you use a BY statement, the BY variables are included in the OUT= data set.

- **dependent variables**
 - If the response functions are the default ones (generalized logits), then the dependent variables, which describe the response profiles, are included in the OUT= data set.
 - When `_TYPE_`=FUNCTION, the values of these variables are missing.

- **independent variables**
 - The independent variables, which describe the population profiles, are included in the OUT= data set.

- **_NUMBER_**
 - the sequence number of the response function or the cell probability or the cell frequency

- **_OBS_**
 - the observed value

- **_PRED_**
 - the predicted value

- **_RESID_**
 - the residual (observed – predicted)

- **_SAMPLE_**
 - the population number. This matches the sample number in the Population Profile section of the output.

- **_SEOBS_**
 - the standard error of the observed value

- **_SEPRED_**
 - the standard error of the predicted value

- **_TYPE_**
 - specifies a character variable with three possible values. When `_TYPE_`=FUNCTION, the observed and predicted values are values of the response functions. When `_TYPE_`=PROB, they are values of the cell probabilities. When `_TYPE_`=FREQ, they are values of the cell frequencies. Cell probabilities or frequencies are provided only when the default response functions are modeled. In this case, cell probabilities are provided by default, and cell frequencies are provided if you specify the option PRED=FREQ.

OUTEST= Data Set

This TYPE=EST output data set contains the estimated parameter vector and its estimated covariance matrix. If you specify both the ML and WLS options in the MODEL statement, the OUTEST= data set contains both sets of estimates. For each BY group, there are \(p + 1 \) observations in the data set for each estimation method, where \(p \) is the number of estimated parameters. The data set contains the following variables.
B1, B2, and so on variables for the estimated parameters. The OUTTEST= data set contains one variable for each estimated parameter.

BY variables If you use a BY statement, the BY variables are included in the OUT= data set.

METHOD the method used to obtain parameter estimates. For weighted least-squares estimation, _METHOD_=WLS, and for maximum likelihood estimation, _METHOD_=ML.

NAME identifies parameter names. When _TYPE_=PARMS, _NAME_ is blank, but when _TYPE_=COV, _NAME_ has one of the values B1, B2, and so on, corresponding to the parameter names.

STATUS indicates whether the estimates have converged

TYPE identifies the statistics contained in the variables for parameter estimates (B1, B2, and so on). When _TYPE_=PARMS, the variables contain parameter estimates; when _TYPE_=COV, they contain covariance estimates.

The variables _METHOD_, _NAME_, and _TYPE_ are character variables; the BY variables can be either character or numeric; and the variables for estimated parameters are numeric.

See Appendix A, “Special SAS Data Sets,” for more information on special SAS data sets.

Logistic Analysis

In a logistic analysis, the response functions are the logits of the dependent variable.

PROC CATMOD can compute three different types of logits with the use of keywords in the RESPONSE statement. Other types of response functions can be generated by specifying appropriate transformations in the RESPONSE statement.

- Generalized logits are used primarily for nominally scaled dependent variables, but they can also be used for ordinal data modeling. Maximum likelihood estimation is available for the analysis of these logits.

- Cumulative logits are used for ordinally scaled dependent variables. Except for dependent variables with two response levels, only weighted least-squares estimation is available for the analysis of these logits.

- Adjacent-category logits are equivalent to generalized logits, but they have some advantages for ordinal data analysis because they automatically incorporate integer scores for the levels of the dependent variable. Except for dependent variables with two response levels, only weighted least-squares estimation is available for the analysis of these logits.
If the dependent variable has only two responses, then the cumulative logit and the adjacent-category logit are the negative of the generalized logit, as computed by PROC CATMOD. Consequently, parameter estimates obtained using these logits are the negative of those obtained using generalized logits. A simple logistic analysis of variance uses statements like the following:

```sas
proc catmod;
  model r=a|b;
run;
```

Logistic Regression

If the independent variables are treated quantitatively (like continuous variables), then a logistic analysis is known as a *logistic regression*. If you want PROC CATMOD to treat the independent variables as quantitative variables, specify them in both the DIRECT and MODEL statements, as follows.

```sas
proc catmod;
  direct x1 x2 x3;
  model r=x1 x2 x3;
run;
```

Since the preceding statements do not include a RESPONSE statement, generalized logits are computed. See Example 22.3 for another example.

When the dependent variable has two responses, the parameter estimates from the CATMOD procedure are the same as those from a logistic regression program such as PROC LOGISTIC (see Chapter 39, “The LOGISTIC Procedure”). The chi-square statistics and the predicted values are also identical. In the two-response case, PROC CATMOD can be made to model the probability of the maximum value by either (1) organizing the input data so that the maximum value occurs first and specifying ORDER=DATA in the PROC CATMOD statement or (2) specifying cumulative logits (CLOGITS) in the RESPONSE statement.

Caution: Computational difficulties may occur if you use a continuous variable with a large number of unique values in a DIRECT statement. See the “Continuous Variables” section on page 751 for more details.

Cumulative Logits

If your dependent variable is ordinally scaled, you can specify the analysis of cumulative logits that take into account the ordinal nature of the dependent variable:

```sas
proc catmod;
  response clogits;
  direct x;
  model r=a x;
run;
```

The preceding statements correspond to a simple analysis that addresses the question of existence of an association between the independent variables and the ordinal dependent variable. However, there are some commonly used models for the analysis.
Log-Linear Model Analysis

of ordinal data (Agresti 1984) that address the structure of association (in terms of odds ratios), as well as its existence.

If the independent variables are class variables, a typical analysis for such a model uses the following statements:

```sas
proc catmod;
  weight wt;
  response clogits;
  model r=_response_ a b;
run;
```

On the other hand, if the independent variables are ordinally scaled, you might specify numeric scores in variables \(x_1\) and \(x_2\), and use the following statements:

```sas
proc catmod;
  weight wt;
  direct x1 x2;
  response clogits;
  model r=_response_ x1 x2;
run;
```

Refer to Agresti (1984) for additional details of estimation, testing, and interpretation.

Continuous Variables

Computational difficulties may occur if you have a continuous variable with a large number of unique values and you use this variable in a DIRECT statement, since an observation often represents a separate population of size one. At this extreme of sparseness, the weighted least-squares method is inappropriate since there are too many zero frequencies. Therefore, you should use the maximum likelihood method. PROC CATMOD is not designed optimally for continuous variables and therefore may be less efficient and may be unable to allocate sufficient memory to handle this problem, as compared with a procedure designed specifically to handle continuous data. In these situations, consider using the LOGISTIC, GENMOD, or PROBIT procedure to analyze your data.

Log-Linear Model Analysis

When the response functions are the default generalized logits, then inclusion of the keyword `_RESPONSE_` in every effect in the right-hand side of the MODEL statement induces a log-linear model. The keyword `_RESPONSE_` tells PROC CATMOD that you want to model the variation among the dependent variables. You then specify the actual model in the LOGLIN statement.

One word of caution about log-linear model analyses: sampling zeros in the input data set should be replaced by some positive number close to zero (such as 1E-20) to ensure that these sampling zeros are not treated as structural zeros. This can be performed in a DATA step that changes cell counts for sampling zeros to a very small number. Data containing sampling zeros should be analyzed with maximum likelihood estimation. See the “Cautions” section on page 766 and Example 22.5 on
When you perform log-linear model analysis, you can request weighted least-squares estimates, maximum likelihood estimates, or both. By default, PROC CATMOD calculates maximum likelihood estimates when the default response functions are used. The following table provides appropriate MODEL statements for the combinations of types of estimates.

<table>
<thead>
<tr>
<th>Estimation Desired</th>
<th>MODEL Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum likelihood</td>
<td>model a*b=response;</td>
</tr>
<tr>
<td>Weighted least squares</td>
<td>model a*b=response / wls;</td>
</tr>
<tr>
<td>Maximum likelihood and weighted</td>
<td>model a*b=response / wls ml;</td>
</tr>
<tr>
<td>least squares</td>
<td></td>
</tr>
</tbody>
</table>

One Population

The usual log-linear model analysis has one population, which means that all of the variables are dependent variables. For example, the statements

```plaintext
proc catmod;
  weight wt;
  model r1*r2=_response_;  
  loglin r1|r2; 
run;
```

yield a maximum likelihood analysis of a saturated log-linear model for the dependent variables `r1` and `r2`.

If you want to fit a reduced model with respect to the dependent variables (for example, a model of independence or conditional independence), specify the reduced model in the LOGLIN statement. For example, the statements

```plaintext
proc catmod;
  weight wt;
  model r1*r2=_response_ / pred;
  loglin r1 r2; 
run;
```

yield a main-effects log-linear model analysis of the factors `r1` and `r2`. The output includes Wald statistics for the individual effects `r1` and `r2`, as well as predicted cell probabilities. Moreover, the goodness-of-fit statistic is the likelihood ratio test for the hypothesis of independence between `r1` and `r2` or, equivalently, a test of `r1*r2`.

Multiple Populations

You can do log-linear model analysis with multiple populations by using a POPULATION statement or by including effects on the right-hand side of the MODEL statement that contain independent variables. Each effect must include the `_RESPONSE_` keyword.
For example, suppose the dependent variables \(r1 \) and \(r2 \) are dichotomous, and the independent variable \(\text{group} \) has three levels. Then

```
proc catmod;
  weight wt;
  model r1*r2=_response_ group*_response_;
  loglin r1|r2;
run;
```

specifies a saturated model (three degrees of freedom for \(_\text{RESPONSE}_ \) and six degrees of freedom for the interaction between \(_\text{RESPONSE}_ \) and \(\text{group} \)). From another point of view, \(_\text{RESPONSE}_ \)*\(\text{group} \) can be regarded as a main effect for \(\text{group} \) with respect to the three response functions, while \(_\text{RESPONSE}_ \) can be regarded as an intercept effect with respect to the functions. In other words, these statements give essentially the same results as the logistic analysis:

```
proc catmod;
  weight wt;
  model r1*r2=group;
run;
```

The ability to model the interaction between the independent and the dependent variables becomes particularly useful when a reduced model is specified for the dependent variables. For example,

```
proc catmod;
  weight wt;
  model r1*r2=_response_ group*_response_;
  loglin r1 r2;
run;
```

specifies a model with two degrees of freedom for \(_\text{RESPONSE}_ \) (one for \(r1 \) and one for \(r2 \)) and four degrees of freedom for the interaction of \(_\text{RESPONSE}_ \)*\(\text{group} \). The likelihood ratio goodness-of-fit statistic (three degrees of freedom) tests the hypothesis that \(r1 \) and \(r2 \) are independent in each of the three groups.
Repeated Measures Analysis

If there are multiple dependent variables and the variables represent repeated measurements of the same observational unit, then the variation among the dependent variables can be attributed to one or more repeated measurement factors. The factors can be included in the model by specifying _RESPONSE_ on the right-hand side of the MODEL statement and using a REPEATED statement to identify the factors.

To perform a repeated measures analysis, you also need to specify a RESPONSE statement, since the standard response functions (generalized logits) cannot be used. Typically, the MEANS or MARGINALS response functions are specified in a repeated measures analysis, but other response functions may also be reasonable.

One Population

Consider an experiment in which each subject is measured at three times, and the response functions are marginal probabilities for each of the dependent variables. If the dependent variables each has \(k \) levels, then PROC CATMOD computes \(k - 1 \) response functions for each time. Differences among the response functions with respect to these times could be attributed to the repeated measurement factor Time. To incorporate the Time variation into the model, specify

 proc catmod;
 response marginals;
 model t1*t2*t3=_response_;
 repeated Time 3 / _response_=Time;
 run;

These statements induce a Time effect that has \(2(k - 1) \) degrees of freedom since there are \(k - 1 \) response functions at each time point. Thus, for a dichotomous variable, the Time effect has two degrees of freedom.

Now suppose that at each time point, each subject has X-rays taken, and the X-rays are read by two different radiologists. This creates six dependent variables that represent the \(3 \times 2 \) cross-classification of the repeated measurement factors Time and Reader. A saturated model with respect to these factors can be obtained by specifying

 proc catmod;
 response marginals;
 model r11*r12*r21*r22*r31*r32=_response_;
 repeated Time 3, Reader 2 / _response_=Time Reader Time*Reader;
 run;
If you want to fit a main-effects model with respect to Time and Reader, then change the REPEATED statement to

```plaintext
repeated Time 3, Reader 2 / _response_=Time Reader;
```

If you want to fit a main-effects model for Time but for only one of the readers, the REPEATED statement might look like

```plaintext
repeated Time $ 3, Reader $ 2 /
=response_=Time(Reader=Smith)
profile =('1' Smith, '1' Jones, '2' Smith, '2' Jones, '3' Smith, '3' Jones);
```

If Jones had been unavailable for a reading at time 3, then there would be only 5\(k-1\) response functions, even though PROC CATMOD would be expecting some multiple of 6 (\(= 3 \times 2\)). In that case, the PROFILE= option would be necessary to indicate which repeated measurement profiles were actually represented:

```plaintext
repeated Time $ 3, Reader $ 2 /
=response_=Time(Reader=Smith)
profile =('1' Smith, '1' Jones, '2' Smith, '2' Jones, '3' Smith);
```

When two or more repeated measurement factors are specified, PROC CATMOD presumes that the response functions are ordered so that the levels of the rightmost factor change most rapidly. This means that the dependent variables should be specified in the same order. For this example, the order implied by the REPEATED statement is as follows, where the variable \(r_{ij}\) corresponds to Time \(i\) and Reader \(j\).

<table>
<thead>
<tr>
<th>Response Function</th>
<th>Dependent Variable</th>
<th>Time</th>
<th>Reader</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(r_{11})</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(r_{12})</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>(r_{21})</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(r_{22})</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>(r_{31})</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>(r_{32})</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Thus, the order of dependent variables in the MODEL statement must agree with the order implied by the REPEATED statement.

Multiple Populations

When there are variables specified in the POPULATION statement or in the right-hand side of the MODEL statement, these variables induce multiple populations. PROC CATMOD can then model these independent variables, the repeated measurement factors, and the interactions between the two.

For example, suppose that there are five groups of subjects, that each subject in the study is measured at three different times, and that the dichotomous dependent variables are labeled \(t_1 \), \(t_2 \), and \(t_3 \). The following statements induce the computation of three response functions for each population:

```sas
proc catmod;
  weight wt;
  population Group;
  response marginals;
  model t1*t2*t3=_response_;  
  repeated Time / _response_=Time;
run;
```

PROC CATMOD then regards \(_\text{RESPONSE}_\) as a variable with three levels corresponding to the three response functions in each population and forms an effect with two degrees of freedom. The MODEL and REPEATED statements tell PROC CATMOD to fit the main effect of \(\text{Time} \).

In general, the MODEL statement tells PROC CATMOD how to integrate the independent variables and the repeated measurement factors into the model. For example, again suppose that there are five groups of subjects, that each subject is measured at three times, and that the dichotomous independent variables are labeled \(t_1 \), \(t_2 \), and \(t_3 \). If you use the same WEIGHT, POPULATION, RESPONSE, and REPEATED statements as in the preceding program, the following MODEL statements result in the indicated analyses:

```sas
model t1*t2*t3=Group / averaged;  \(\text{specifies the Group main effect (with four degrees of freedom).}\)
model t1*t2*t3=_response_;       \(\text{specifies the Time main effect (with two degrees of freedom).}\)
model t1*t2*t3=_response_*Group;  \(\text{specifies the interaction between Time and Group (with eight degrees of freedom).}\)
model t1*t2*t3=_response_|Group;  \(\text{specifies both main effects, and the interaction between Time and Group (with a total of fourteen degrees of freedom).}\)
model t1*t2*t3=_response_(Group); \(\text{specifies a Time main effect within each Group (with ten degrees of freedom).}\)
```
Generation of the Design Matrix

Each row of the design matrix (corresponding to a population) is generated by a unique combination of independent variable values. Each column of the design matrix corresponds to a model parameter. The columns are produced from the effect specifications in the MODEL, LOGLIN, FACTORS, and REPEATED statements. For details on effect specifications, see the “Specification of Effects” section on page 745. This section is divided into three parts:

- one response function per population
- two or more response functions per population (excluding log-linear models), beginning on page 760
- log-linear models, beginning on page 764

One Response Function Per Population

Intercept

When there is one response function per population, all design matrices start with a column of 1s for the intercept unless the NOINT option is specified or the design matrix is input directly.

Main Effects

If a class variable A has k levels, then its main effect has k - 1 degrees of freedom, and the design matrix has k - 1 columns that correspond to the first k - 1 levels of A. The ith column contains a 1 in the ith row, a -1 in the last row, and 0s everywhere else. If \(\alpha_i \) denotes the parameter that corresponds to the ith level of variable A, then the \(k - 1 \) columns yield estimates of the independent parameters, \(\alpha_1, \alpha_2, \ldots, \alpha_{k-1} \). The last parameter is not needed because PROC CATMOD constrains the k parameters to sum to zero. In other words, PROC CATMOD uses a full-rank center-point parameterization to build design matrices. Here are two examples:

<table>
<thead>
<tr>
<th>Data Levels</th>
<th>Design Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
</tr>
</tbody>
</table>

For an effect with three levels, such as A, PROC CATMOD produces two parameter estimates for each response function. By default, the first (corresponding to the first
row in the “Design Columns”) estimates the effect of level 1 of A. The second (corresponding to the second row in the “Design Columns”) estimates the effect of level 2 of A. The sum-to-zero constraint requires the effect of level 3 of A to be the negative of the sum of the level 1 and 2 effects (as shown by the third row in the “Design Columns”).

Crossed Effects (Interactions)

Crossed effects (such as A*B) are formed by the horizontal direct products of main effects, as illustrated in the following table.

<table>
<thead>
<tr>
<th>Data Levels</th>
<th>Design Matrix Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A B</td>
</tr>
<tr>
<td>1 1</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>1 2</td>
<td>1 0 -1 -1</td>
</tr>
<tr>
<td>2 1</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>2 2</td>
<td>0 1 -1 0</td>
</tr>
<tr>
<td>3 1</td>
<td>-1 -1 1 -1</td>
</tr>
<tr>
<td>3 2</td>
<td>-1 -1 -1 1</td>
</tr>
</tbody>
</table>

The number of degrees of freedom for a crossed effect (that is, the number of design matrix columns) is equal to the product of the numbers of degrees of freedom for the separate effects.

Nested Effects

The effect A(B) is read “A within B” and is the same as specifying an A main effect for every value of B. If n_a and n_b are the number of levels in A and B, respectively, then the number of columns for A(B) is $(n_a - 1)n_b$ when every combination of levels exists in the data. The following table gives an example.

<table>
<thead>
<tr>
<th>Data Levels</th>
<th>Design Matrix Columns A(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A B</td>
</tr>
<tr>
<td>1 1</td>
<td>1 0 0 0 0</td>
</tr>
<tr>
<td>1 2</td>
<td>0 1 0 0 0</td>
</tr>
<tr>
<td>1 3</td>
<td>-1 -1 0 0 0</td>
</tr>
<tr>
<td>2 1</td>
<td>0 0 1 0 0</td>
</tr>
<tr>
<td>2 2</td>
<td>0 0 0 1 1</td>
</tr>
<tr>
<td>2 3</td>
<td>0 0 -1 -1 -1</td>
</tr>
</tbody>
</table>

PROC CATMOD actually allocates a column for all possible combinations of values even though some combinations may not be present in the data.

Nested-by-value Effects

Instead of nesting an effect within all values of the main effect, you can nest an effect within specified values of the nested variable (A(B=1), for example). The four degrees of freedom for the A(B) effect shown in the preceding section can also be obtained by specifying the two separate nested effects with values.
Generation of the Design Matrix

Each effect has $n_a - 1$ degrees of freedom, assuming a complete combination. Thus, for the example, each effect has two degrees of freedom.

The procedure compares nested values to data values on the basis of formatted values. If a format is not specified for the variable, the procedure formats internal data values to BEST16, left-justified. The nested values specified in nested-by-value effects are also converted to a BEST16 formatted value, left-justified.

For example, if the numeric variable B has internal data values 1 and 2, then $A(B=1)$, $A(B=1.0)$, and $A(B=1E0)$ are all valid nested-by-value effects. However, if the data value 1 is formatted as ‘one’, then $A(B='one')$ is a valid effect, but $A(B=1)$ is not since the formatted nested value (1) does not match the formatted data value (one).

To ensure correct nested-by-value effects, look at the tables of population and response profiles. These are displayed by default, and they contain the formatted data values. In addition, the population and response profiles are displayed when you specify the ONEWAY option in the MODEL statement.

Direct Effects

To request that the actual values of a variable be inserted into the design matrix, declare the variable in a DIRECT statement, and specify the effect by the variable name. For example, specifying the effects $X1$ and $X2$ in both the MODEL and DIRECT statements results in the following.
Two or More Response Functions Per Population

When there is more than one response function per population, the structure of the design matrix depends on whether or not the model type is AVERAGED (see the AVERAGED option on page 725). The model type is AVERAGED if independent variable effects are averaged over the multiple responses within a population, rather than being nested in them.

The following subsections illustrate the effect of specifying (or not specifying) an AVERAGED model type. This section does not apply to log-linear models; for these models, see the “Log-Linear Model Design Matrices” section on page 764.

Model Type Not AVERAGED

Suppose the variable \(A \) has two levels, and you specify

```sas
proc catmod;
  model Y=A;
run;
```

If the variable \(Y \) has two levels, then there is only one response function per population, and the design matrix is as follows.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intercept A</td>
</tr>
<tr>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>2</td>
<td>1 -1</td>
</tr>
</tbody>
</table>

But if the variable \(Y \) has three levels, then there are two response functions per population, and the preceding design matrix is assumed to hold for each of the two response functions. The response functions are always ordered so that the multiple response functions within a population are grouped together. For this example, the design matrix would be as follows.

<table>
<thead>
<tr>
<th>Response Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Number</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Since the same submatrix applies to each of the multiple response functions, PROC CATMOD displays only the submatrix (that is, the one it would create if there were only one response function per population) rather than the entire design matrix. PROC CATMOD displays

\[
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}
\]
Ordering of Parameters

This grouping of multiple response functions within populations also has an effect in the table of parameter estimates displayed by PROC CATMOD. The following table shows some parameter estimates, where the four rows of the table correspond to the four columns in the preceding design matrix.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>1.4979</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.8404</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>0.1116</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.3296</td>
</tr>
</tbody>
</table>

Notice that the intercept and the A effect each have two parameter estimates associated with them. The first estimate in each pair is associated with the first response function, and the second in each pair is associated with the second response function. Consequently, 0.1116 is the effect of the first level of A on the first response function. In any table of parameter estimates displayed by PROC CATMOD, as you read down the column of estimates, the response function level changes before levels of the variables making up the effect.

Model Type AVERAGED

When the model type is AVERAGED (for example, when the AVERAGED option is specified in the MODEL statement, when _RESPONSE_ is used in the MODEL statement, or when the design matrix is input directly in the MODEL statement), PROC CATMOD does not assume that the same submatrix applies to each of the q response functions per population. Rather, it averages any independent variable effects across the functions, and it enables you to study variation among the q functions. The first column of the design matrix is always a column of 1s corresponding to the intercept, unless the NOINT option is specified in the MODEL statement or the design matrix is input directly. Also, since the design matrix does not have any special submatrix structure, PROC CATMOD displays the entire matrix.

For example, suppose the dependent variable Y has three levels, the independent variable A has two levels, and you specify

```sas
proc catmod;
   response marginals;
   model y=a / averaged;
run;
```

Then there are two response functions per population, and the response functions are always ordered so that the multiple response functions within a population are grouped together. For this example, the design matrix would be as follows.
Note that the model now has only two degrees of freedom. The remaining two degrees of freedom in the residual correspond to variation among the three levels of the dependent variable. Generally, that variation tends to be statistically significant and therefore should not be left out of the model. You can include it in the model by including the two effects, _RESPONSE_ and _RESPONSE_ * A, but if the study is not a repeated measurement study, those sources of variation tend to be uninteresting. Thus, the usual solution for this type of study (one dependent variable) is to exclude the AVERAGED option from the MODEL statement.

An AVERAGED model type is automatically induced whenever you use the _RESPONSE_ keyword in the MODEL statement. The _RESPONSE_ effect models variation among the q response functions per population. If there is no REPEATED, FACTORS, or LOGLIN statement, then PROC CATMOD builds a main effect with \(q - 1 \) degrees of freedom. For example, three response functions would induce the following design columns.

<table>
<thead>
<tr>
<th>Response Function Number</th>
<th>Design Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Response</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
</tr>
</tbody>
</table>

If there is more than one population, then the _RESPONSE_ effect is averaged over the populations. Also, the _RESPONSE_ effect can be crossed with any other effect, or it can be nested within an effect.

If there is a REPEATED statement that contains only one repeated measurement factor, then PROC CATMOD builds the design columns for _RESPONSE_ in the same way, except that the output labels the main effect with the factor name rather than with the word _RESPONSE_. For example, suppose an independent variable A has two levels, and the input statements are

```sas
proc catmod;
  response marginals;
  model Time1*Time2=A _response_ A*_response_;
  repeated Time 2 / _response_=Time;
run;
```
If Time1 and Time2 each have two levels (so that they each have one independent marginal probability), then the RESPONSE statement causes PROC CATMOD to compute two response functions per population. Thus, the design matrix is as follows.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Response Function Number</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intercept</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

However, if Time1 and Time2 each have three levels (so that they each have two independent marginal probabilities), then the RESPONSE statement causes PROC CATMOD to compute four response functions per population. In that case, since Time has two levels, PROC CATMOD groups the functions into sets of 2 (= 4/2) and constructs the preceding submatrix for each function in the set. This results in the following design matrix, which is obtained from the previous one by multiplying each element by an identity matrix of order two.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Response Function Number</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intercept</td>
</tr>
<tr>
<td>1</td>
<td>P(Time1=1)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>P(Time1=2)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>P(Time2=1)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>P(Time2=2)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P(Time1=1)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>P(Time1=2)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P(Time2=1)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>P(Time2=2)</td>
<td>0</td>
</tr>
</tbody>
</table>

If there is a REPEATED statement that contains two or more repeated measurement factors, then PROC CATMOD builds the design columns for _RESPONSE_ according to the definition of _RESPONSE_ in the REPEATED statement. For example, suppose you specify

```sas
proc catmod;
  response marginals;
  model R11*R12*R21*R22=_response_;
  repeated Time 2, Place 2 / _response_=Time Place;
run;
```

If each of the dependent variables has two levels, then PROC CATMOD builds four response functions. The _RESPONSE_ effect generates a main effects model with respect to Time and Place.
Log-Linear Model Design Matrices

When the response functions are the standard ones (generalized logits), then inclusion of the keyword `_RESPONSE_` in every design effect induces a log-linear model. The design matrix for a log-linear model looks different from a standard design matrix because the standard one is transformed by the same linear transformation that converts the \(r \) response probabilities to \(r-1 \) generalized logits. For example, suppose the dependent variables \(X \) and \(Y \) each have two levels, and you specify a saturated log-linear model analysis:

```
proc catmod;
  model X*Y=_response_;
  loglin X Y X*Y;
run;
```

Then the cross-classification of \(X \) and \(Y \) yields four response probabilities, \(p_{11}, p_{12}, p_{21}, \) and \(p_{22}, \) which are then reduced to three generalized logit response functions, \(F_1 = \log(p_{11}/p_{22}), F_2 = \log(p_{12}/p_{22}), \) and \(F_3 = \log(p_{21}/p_{22}). \)

Since the saturated log-linear model implies that

\[
\begin{bmatrix}
\log(p_{11}) \\
\log(p_{12}) \\
\log(p_{21}) \\
\log(p_{22})
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{bmatrix} \gamma - \lambda \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 1 & 1 \\
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{bmatrix} \beta - \delta \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}
\]

where \(\gamma \) and \(\beta \) are parameter vectors, and \(\lambda \) and \(\delta \) are normalizing constants required by the restriction that the probabilities sum to 1, it follows that the MODEL statement yields

\[
\begin{bmatrix}
F_1 \\
F_2 \\
F_3
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{bmatrix} \times \begin{bmatrix}
\log(p_{11}) \\
\log(p_{12}) \\
\log(p_{21}) \\
\log(p_{22})
\end{bmatrix}
\]
Generation of the Design Matrix

\[
\begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 1 & 1 \\
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{bmatrix}
\beta
\]

\[
\begin{bmatrix}
2 & 2 & 0 \\
2 & 0 & -2 \\
0 & 2 & -2
\end{bmatrix}
\beta
\]

Thus, the design matrix is as follows.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Response Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(X)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(Y)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>(X^*Y)</td>
</tr>
</tbody>
</table>

Design matrices for reduced models are constructed similarly. For example, suppose you request a main-effects log-linear model analysis of the factors \(X\) and \(Y\):

```sas
proc catmod;
   model X*Y=_response_;
   loglin X Y;
run;
```

Since the main-effects log-linear model implies that

\[
\begin{bmatrix}
\log(p_{11}) \\
\log(p_{12}) \\
\log(p_{21}) \\
\log(p_{22})
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1 \\
1 & -1 & -1
\end{bmatrix} \gamma - \lambda \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 1 \\
1 & -1 \\
-1 & 1 \\
-1 & -1
\end{bmatrix} \beta - \delta \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}
\]

it follows that the MODEL statement yields

\[
\begin{bmatrix}
F_1 \\
F_2 \\
F_3
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{bmatrix}
\times
\begin{bmatrix}
\log(p_{11}) \\
\log(p_{12}) \\
\log(p_{21}) \\
\log(p_{22})
\end{bmatrix}
\]
Therefore, the corresponding design matrix is as follows.

\[
= \begin{bmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
-1 & 1 \\
-1 & -1 \\
\end{bmatrix}
\beta
= \begin{bmatrix}
2 & 2 \\
2 & 0 \\
0 & 2 \\
\end{bmatrix}
\beta
\]

Since it is difficult to tell from the final design matrix whether PROC CATMOD used the parameterization that you intended, the procedure displays the untransformed _RESPONSE_ matrix for log-linear models. For example, the main-effects model in the preceding example induces the display of the following matrix.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Number</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

You can suppress the display of this matrix by specifying the NORESPONSE option in the MODEL statement.

Cautions

Effective Sample Size

Since the method depends on asymptotic approximations, you need to be careful that the sample sizes are sufficiently large to support the asymptotic normal distributions of the response functions. A general guideline is that you would like to have an effective sample size of at least 25 to 30 for each response function that is being analyzed. For example, if you have one dependent variable and \(r = 4 \) response levels, and you use the standard response functions to compute three generalized logits for each population, then you would like the sample size of each population to be at least 75. Moreover, the subjects should be dispersed throughout the table so that less than 20 percent of the response functions have an effective sample size less
than 5. For example, if each population had less than 5 subjects in the first response category, then it would be wiser to pool this category with another category rather than to assume the asymptotic normality of the first response function. Or, if the dependent variable is ordinally scaled, an alternative is to request the mean score response function rather than three generalized logits.

If there is more than one dependent variable, and you specify RESPONSE MEANS, then the effective sample size for each response function is the same as the actual sample size. Thus, a sample size of 30 could be sufficient to support four response functions, provided that the functions are the means of four dependent variables.

A Singular Covariance Matrix

If there is a singular (noninvertible) covariance matrix for the response functions in any population, then PROC CATMOD writes an error message and stops processing. You have several options available to correct this situation:

- You can reduce the number of response functions according to how many can be supported by the populations with the smallest sample sizes.
- If there are three or more levels for any independent variable, you can pool the levels into a fewer number of categories, thereby reducing the number of populations. However, your interpretation of results must be done more cautiously since such pooling implies a different sampling scheme and masks any differences that existed among the pooled categories.
- If there are two or more independent variables, you can delete at least one of them from the model. However, this is just another form of pooling, and the same cautions that apply to the previous option also apply here.
- If there is one independent variable, then, in some situations, you might simply eliminate the populations that are causing the covariance matrices to be singular.
- You can use the ADDCELL option in the MODEL statement to add a small amount (for example, 0.5) to every cell frequency, but this can seriously bias the results if the cell frequencies are small.

Zero Frequencies

If you use the standard response functions and there are zero frequencies, you should use maximum likelihood estimation (the default) rather than weighted least-squares to analyze the data. For weighted least-squares analysis, the CATMOD procedure always computes the observed response functions. If PROC CATMOD needs to take the logarithm of a zero proportion, it issues a warning and then proceeds to take the log of a small value (0.5/ni for the probability) in order to continue. This can produce invalid results if the cells contain too few observations. The ML analysis, on the other hand, does not require computation of the observed response functions and therefore yields valid results for the parameter estimates and all of the predicted values.

For any log-linear model analysis, it is important to remember that PROC CATMOD creates response profiles only for those profiles that are actually observed. Thus, for any log-linear model analysis with one population (the usual case), there are no zeros in the contingency table, which means that the CATMOD procedure treats all zero
frequencies as structural zeros. If there is more than one population, then a zero can appear in the body of the contingency table, in which case the zero is treated as a sampling zero (as long as some population has a nonzero count for that profile). If you want zero frequencies that PROC CATMOD would normally treat as structural zeros to be interpreted as sampling zeros, simply insert a one-line statement into the data step that changes each zero to a very small number (such as 1E-20). Refer to Bishop, Fienberg, and Holland (1975) for a discussion of the issues and Example 22.5 on page 796 for an illustration of a log-linear model analysis of data that contain both structural and sampling zeros.

If you perform a weighted least-squares analysis on a contingency table that contains zero cell frequencies, then avoid using the LOG transformation as the first transformation on the observed proportions. In general, it may be better to change the response functions or to pool some of the response categories than to settle for the 0.5 correction or to use the ADDCELL option.

Testing the Wrong Hypothesis

If you use the keyword _RESPONSE_ in the MODEL statement, and you specify MARGINALS, LOGITS, ALOGITS, or CLOGITS in your RESPONSE statement, you may receive the following warning message:

```
Warning: The _RESPONSE_ effect may be testing the wrong hypothesis since the marginal levels of the dependent variables do not coincide. Consult the response profiles and the CATMOD documentation.
```

The following examples illustrate situations in which the _RESPONSE_ effect tests the wrong hypothesis.

Zeros in the Marginal Frequencies

Suppose you specify the following statements:

```sas
data A1;
  input Time1 Time2 @@;
datalines;
1 2 2 3 1 3;
;
proc catmod;
  response marginals;
  model Time1*Time2=_response_;
  repeated Time 2 / _response_=Time;
run;
```

One marginal probability is computed for each dependent variable, resulting in two response functions. The model is a saturated one: one degree of freedom for the intercept and one for the main effect of Time. Except for the warning message, PROC CATMOD produces an analysis with no apparent errors, but the “Response Profiles” table displayed by PROC CATMOD is as follows.
Since RESPONSE MARGINALS yields marginal probabilities for every level but the last, the two response functions being analyzed are \(\text{Prob}(\text{Time1}=1)\) and \(\text{Prob}(\text{Time2}=2)\). Thus, the Time effect is testing the hypothesis that \(\text{Prob}(\text{Time1}=1) = \text{Prob}(\text{Time2}=2)\). What it should be testing is the hypothesis that

\[
\begin{align*}
\text{Prob}(\text{Time1}=1) &= \text{Prob}(\text{Time2}=1) \\
\text{Prob}(\text{Time1}=2) &= \text{Prob}(\text{Time2}=2) \\
\text{Prob}(\text{Time1}=3) &= \text{Prob}(\text{Time2}=3)
\end{align*}
\]

but there are not enough data to support the test (assuming that none of the probabilities are structural zeros by the design of the study).

The ORDER=DATA Option

Suppose you specify

```sas
data a1;
  input Time1 Time2 @@;
datalines;
2 1 2 2 1 1 1 2 2 1;

proc catmod order=data;
  response marginals;
  model Time1*Time2=_response_;  
  repeated Time 2 / _response_=Time;
run;
```

As in the preceding example, one marginal probability is computed for each dependent variable, resulting in two response functions. The model is also the same: one degree of freedom for the intercept and one for the main effect of Time. PROC CATMOD issues the warning message and displays the following “Response Profiles” table.
Although the marginal levels are the same for the two dependent variables, they are not in the same order because the ORDER=DATA option specified that they be ordered according to their appearance in the input stream. Since RESPONSE MARGINALS yields marginal probabilities for every level except the last, the two response functions being analyzed are \(\text{Prob(Time1}=2) \) and \(\text{Prob(Time2}=1) \). Thus, the Time effect is testing the hypothesis that \(\text{Prob(Time1}=2) = \text{Prob(Time2}=1) \). What it should be testing is the hypothesis that

\[
\begin{align*}
\text{Prob(Time1}=1) &= \text{Prob(Time2}=1) \\
\text{Prob(Time1}=2) &= \text{Prob(Time2}=2)
\end{align*}
\]

Whenever the warning message appears, look at the “Response Profiles” table or the “One-Way Frequencies” table to determine what hypothesis is actually being tested. For the latter example, a correct analysis can be obtained by deleting the ORDER=DATA option or by reordering the data so that the (1,1) observation is first.

Computational Method

The notation used in PROC CATMOD differs slightly from that used in other literature. The following table provides a summary of the basic dimensions and the notation for a contingency table. See the “Computational Formulas” section, which follows, for a complete description.

Summary of Basic Dimensions

\[
\begin{align*}
s &= \text{number of populations or samples (= number of rows in the underlying contingency table)} \\
r &= \text{number of response categories (= number of columns in the underlying contingency table)} \\
q &= \text{number of response functions computed for each population} \\
d &= \text{number of parameters}
\end{align*}
\]

Notation

\[
\begin{align*}
\mathbf{j} & \quad \text{denotes a column vector of 1s.} \\
\mathbf{J} & \quad \text{denotes a square matrix of 1s.} \\
\sum_k & \quad \text{is the sum over all the possible values of } k. \\
\sum_i n_i & \quad \text{denotes the row sum } \sum_j n_{ij}. \\
\text{DIAG}_n(p) & \quad \text{is the diagonal matrix formed from the first } n \text{ elements of the vector } p. \\
\text{DIAG}^{-1}_n(p) & \quad \text{is the inverse of } \text{DIAG}_n(p). \\
\text{DIAG}(A_1, A_2, \ldots, A_k) & \quad \text{denotes a block diagonal matrix with the } A \text{ matrices on the main diagonal.}
\end{align*}
\]

Input data can be represented by a contingency table, as shown in Table 22.4.
Table 22.4. Input Data Represented by a Contingency Table

<table>
<thead>
<tr>
<th>Population</th>
<th>Response</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>r</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>n_{11}</td>
<td>n_{12}</td>
<td>...</td>
<td>n_{1r}</td>
<td>n_1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>n_{21}</td>
<td>n_{22}</td>
<td>...</td>
<td>n_{2r}</td>
<td>n_2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>s</td>
<td></td>
<td>n_{s1}</td>
<td>n_{s2}</td>
<td>...</td>
<td>n_{sr}</td>
<td>n_s</td>
</tr>
</tbody>
</table>

Computational Formulas

The following calculations are shown for each population and then for all populations combined.

<table>
<thead>
<tr>
<th>Source</th>
<th>Formula</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability Estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jth response</td>
<td>$p_{ij} = \frac{n_{ij}}{n_i}$</td>
<td>1×1</td>
</tr>
<tr>
<td>ith population</td>
<td>$p_i = \begin{bmatrix} p_{i1} \ p_{i2} \ \vdots \ p_{ir} \end{bmatrix}$</td>
<td>$r \times 1$</td>
</tr>
<tr>
<td>all populations</td>
<td>$p = \begin{bmatrix} p_1 \ p_2 \ \vdots \ p_s \end{bmatrix}$</td>
<td>$sr \times 1$</td>
</tr>
<tr>
<td>Variance of Probability Estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ith population</td>
<td>$V_i = \frac{1}{n_i} \text{DIAG}(p_i) - p_i p_i'$</td>
<td>$r \times r$</td>
</tr>
<tr>
<td>all populations</td>
<td>$V = \text{DIAG}(V_1, V_2, \ldots, V_s)$</td>
<td>$sr \times sr$</td>
</tr>
<tr>
<td>Response Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ith population</td>
<td>$F_i = F(p_i)$</td>
<td>$q \times 1$</td>
</tr>
<tr>
<td>all populations</td>
<td>$F = \begin{bmatrix} F_1 \ F_2 \ \vdots \ F_s \end{bmatrix}$</td>
<td>$sq \times 1$</td>
</tr>
<tr>
<td>Source</td>
<td>Formula</td>
<td>Dimension</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Derivative of Function with Respect to Probability Estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)th population</td>
<td>(H_i = \frac{\partial F(p_i)}{\partial p_i})</td>
<td>(q \times r)</td>
</tr>
<tr>
<td>all populations</td>
<td>(H = \text{DIAG}(H_1, H_2, \ldots, H_s))</td>
<td>(sq \times sr)</td>
</tr>
<tr>
<td>Variance of Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)th population</td>
<td>(S_i = H_i V_i H_i^\prime)</td>
<td>(q \times q)</td>
</tr>
<tr>
<td>all populations</td>
<td>(S = \text{DIAG}(S_1, S_2, \ldots, S_s))</td>
<td>(sq \times sq)</td>
</tr>
<tr>
<td>Inverse Variance of Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)th population</td>
<td>(S^i = (S_i)^{-1})</td>
<td>(q \times q)</td>
</tr>
<tr>
<td>all populations</td>
<td>(S^{-1} = \text{DIAG}(S^1, S^2, \ldots, S^s))</td>
<td>(sq \times sq)</td>
</tr>
</tbody>
</table>

Derivative Table for Compound Functions: \(Y = F(G(p))\)

In the following table, let \(G(p)\) be a vector of functions of \(p\), and let \(D\) denote \(\frac{\partial G}{\partial p}\), which is the first derivative matrix of \(G\) with respect to \(p\).

<table>
<thead>
<tr>
<th>Function</th>
<th>(Y = F(G))</th>
<th>Derivative ((\partial Y / \partial p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply matrix</td>
<td>(Y = A * G)</td>
<td>(A * D)</td>
</tr>
<tr>
<td>Logarithm</td>
<td>(Y = \text{LOG}(G))</td>
<td>(\text{DIAG}^{-1}(G) * D)</td>
</tr>
<tr>
<td>Exponential</td>
<td>(Y = \text{EXP}(G))</td>
<td>(\text{DIAG}(Y) * D)</td>
</tr>
<tr>
<td>Add constant</td>
<td>(Y = G + A)</td>
<td>(D)</td>
</tr>
</tbody>
</table>

Default Response Functions: Generalized Logits

In the following table, subscripts \(i\) for the population are suppressed. Also denote \(f_j = \log \left(\frac{p_j}{p_r} \right)\) for \(j = 1, \ldots, r - 1\) for each population \(i = 1, \ldots, s\).

Inverse of Response Functions for a Population		

\(p_j = \frac{\exp(f_j)}{1 + \sum_k \exp(f_k)}\) for \(j = 1, \ldots, r - 1\)		
\(p_r = \frac{1}{1 + \sum_k \exp(f_k)}\)		
Form of \(F\) and Derivative for a Population		
\(F = \text{KLOG}(p) = (I_{r-1}, -j) \text{LOG}(p)\)		
\(H = \frac{\partial F}{\partial p} = \left(\text{DIAG}^{-1}_{r-1}(p), -\frac{1}{p_r} j \right)\)		
Covariance Results for a Population

\[S = HVH' \]
\[= \frac{1}{n} \left(\text{DIAG}^{-1}_{r-1}(p) + \frac{1}{pr}J^{-1} \right) \]

where \(V, H, \) and \(J \) are as previously defined.

\[S^{-1} = n(\text{DIAG}^{-1}_{r-1}(p) - qq') \]
\[\text{where } q = \text{DIAG}^{-1}_{r-1}(p), j \]

\[S^{-1}F = n\text{DIAG}^{-1}_{r-1}(p)F - (n \sum_j p_j f_j)q \]

\[F'S^{-1}F = n \sum_j p_j f_j^2 - n(\sum_j p_j f_j)^2 \]

The following calculations are shown for each population and then for all populations combined.

<table>
<thead>
<tr>
<th>Source</th>
<th>Formula</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)th population</td>
<td>(X_i)</td>
<td>(q \times d)</td>
</tr>
<tr>
<td>all populations</td>
<td>(X = \begin{bmatrix} X_1 \ X_2 \ \vdots \ X_s \end{bmatrix})</td>
<td>(sq \times d)</td>
</tr>
<tr>
<td>Crossproduct of Design Matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)th population</td>
<td>(C_i = X_i/S_iX_i)</td>
<td>(d \times d)</td>
</tr>
<tr>
<td>all populations</td>
<td>(C = X'S^{-1}X = \sum_i C_i)</td>
<td>(d \times d)</td>
</tr>
<tr>
<td>Crossproduct of Design Matrix with Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(R = X'S^{-1}F = \sum_i X_i/S_iF_i)</td>
<td>(d \times 1)</td>
</tr>
<tr>
<td>Weighted Least-Squares Estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b = C^{-1}R = (X'S^{-1}X)^{-1}(X'S^{-1}F))</td>
<td>(d \times 1)</td>
</tr>
<tr>
<td>Covariance of Weighted Least-Squares Estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{COV}(b) = C^{-1})</td>
<td>(d \times d)</td>
</tr>
<tr>
<td>Predicted Response Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\hat{F} = Xb)</td>
<td>(sq \times 1)</td>
</tr>
</tbody>
</table>
Chapter 22. The CATMOD Procedure

Maximum Likelihood Method

Let C be the Hessian matrix and G be the gradient of the log-likelihood function (both functions of π and the parameters β). Let p_i^* denote the vector containing the first $r - 1$ sample proportions from population i, and let π_i^* denote the corresponding vector of probability estimates from the current iteration. Starting with the least-squares estimates b_0 of β (if you use the ML and WLS options; with the ML option alone, the procedure starts with 0), the probabilities $\pi(b)$ are computed, and b is calculated iteratively by the Newton-Raphson method until it converges (see the EPSILON= option on page 726). The factor λ is a step-halving factor that equals one at the start of each iteration. For any iteration in which the likelihood decreases, PROC CATMOD uses a series of subiterations in which λ is iteratively divided by two. The subiterations continue until the likelihood is greater than that of the previous iteration. If the likelihood has not reached that point after ten subiterations, then convergence is assumed, and a warning message is displayed.

Sometimes, infinite parameters may be present in the model, either because of the presence of one or more zero frequencies or because of a poorly specified model with collinearity among the estimates. If an estimate is tending toward infinity, then PROC CATMOD flags the parameter as infinite and holds the estimate fixed in subsequent iterations. PROC CATMOD regards a parameter to be infinite when two conditions apply:

- The absolute value of its estimate exceeds five divided by the range of the corresponding variable.
- The standard error of its estimate is at least three times greater than the estimate itself.

The estimator of the asymptotic covariance matrix of the maximum likelihood predicted probabilities is given by Imrey, Koch, and Stokes (1981, eq. 2.18).

<table>
<thead>
<tr>
<th>Source</th>
<th>Formula</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance of Predicted Response Functions</td>
<td>$V_{F} = XC^{-1}X'$</td>
<td>$sq \times sq$</td>
</tr>
<tr>
<td>Residual Chi-Square</td>
<td>$RSS = F'^{-1}F - \hat{F}'S^{-1}\hat{F}$</td>
<td>1×1</td>
</tr>
<tr>
<td>Chi-Square for $H_0: L/\beta = 0$</td>
<td>$Q = (Lb)'(LC^{-1}L')^{-1}(Lb)$</td>
<td>1×1</td>
</tr>
</tbody>
</table>
The following equations summarize the method:

\[b_{k+1} = b_k - \lambda C^{-1}G \]

where

\[C = X'X \]
\[N = \begin{bmatrix} n_1(p_1^* - \pi_1^*) \\ \vdots \\ n_s(p_s^* - \pi_s^*) \end{bmatrix} \]
\[G = X'N \]

Memory and Time Requirements

The memory and time required by PROC CATMOD are proportional to the number of parameters in the model.

Displayed Output

PROC CATMOD displays the following information in the “Data Summary” table:

- the Response effect
- the Weight Variable, if one is specified
- the Data Set name
- the number of Response Levels
- the number of samples or Populations
- the Total Frequency, which is the total sample size
- the number of Observations from the data set (the number of data records)
- the frequency of missing observations, labeled as “Frequency Missing”

Except for the analysis of variance table, all of the following items can be displayed or suppressed, depending on your specification of statements and options.

- The ONEWAY option produces the “One-Way Frequencies” table, which displays the frequencies of each variable value used in the analysis.
- The populations (or samples) are defined in a table labeled “Population Profiles.” The Sample Size and the values of the defining variables are displayed for each Sample. This table is suppressed if the NOPROFILE option is specified.
- The observed responses are defined in a table labeled “Response Profiles.” The values of the defining variables are displayed for each Response. This table is suppressed if the NOPROFILE option is specified.
Chapter 22. The CATMOD Procedure

- If the FREQ option is specified, then the “Response Frequencies” table is displayed, which shows the frequency of each response for each population.
- If the PROB option is specified, then the “Response Probabilities” table is produced. This table displays the probability of each response for each population.
- If the COV option is specified, the “Response Functions, Covariance Matrix” table, which shows the covariance matrix of the response functions for each Sample, is displayed.
- The Response Functions are displayed in the “Response Functions, Design Matrix” table, unless the COV option is specified, in which case they are displayed in the “Response Functions, Covariance Matrix” table.
- The design matrix is displayed in the “Response Functions, Design Matrix” table for weighted least-squares analyses, unless the NODESIGN option is specified. If the model type is AVERAGED, then the design matrix is displayed with \(q \times s \) rows, assuming \(q \) response functions for each of \(s \) populations. Otherwise, the design matrix is displayed with only \(s \) rows since the model is the same for each of the \(q \) response functions.
- The “\(X' \text{Inv}(S)X \)” matrix is displayed for weighted least-squares analyses if the XPX option is specified.
- The “Analysis of Variance” table for the weighted least-squares analysis reports the results of significance tests for each of the design-effects in the right-hand side of the MODEL statement. If \(_{\text{RESPONSE}} \) is a design-effect and is defined explicitly in the LOGLIN, FACTORS, or REPEATED statement, then the table contains test statistics for the individual effects constituting the \(_{\text{RESPONSE}} \) effect. If the design matrix is input directly, then the content of the displayed output depends on whether you specify any subsets of the parameters to be tested. If you specify one or more subsets, then the table contains one test for each subset. Otherwise, the table contains one test for the effect MODEL | MEAN. In every case, the table also contains the Residual goodness-of-fit test. Produced for each test of significance are the Source of variation, the number of degrees of freedom (DF), the Chi-Square value (which is a Wald statistic), and the significance probability (Pr > ChiSq).
- The “Analysis of Weighted Least-Squares Estimates” table lists the Effect in the model for which parameters are formed, the Parameter number, the least-squares Estimate, the estimated Standard Error of the parameter estimate, the Chi-Square value (a Wald statistic) for testing that the parameter is zero, and the significance probability (Pr > ChiSq). The statistic is calculated as \(((\text{parameter estimate})/(\text{standard error}))^2\).
- The “Covariance Matrix of the Parameter Estimates” table for the weighted least-squares analysis displays the estimated covariance matrix of the least-squares estimates of the parameters, provided the COVB option is specified.
- The “Correlation Matrix of the Parameter Estimates” table for the weighted least-squares analysis displays the estimated correlation matrix of the least-squares estimates of the parameters, provided that the CORRB option is specified.
The “Maximum Likelihood Analysis” table is produced when the ML option is specified for the standard response functions (generalized logits). It displays the Iteration number, the number of step-halving Sub-Iterations, $-2 \log$ Likelihood for that iteration, the Convergence Criterion, and the Parameter Estimates for each iteration.

The “Maximum Likelihood Analysis of Variance” table, displayed when the ML option is specified for the standard response functions, is similar to the table produced for the least-squares analysis. The Chi-Square test for each effect is a Wald test based on the information matrix from the likelihood calculations. The Likelihood Ratio statistic compares the specified model with the unrestricted (saturated) model and is an appropriate goodness-of-fit test for the model.

The “Analysis of Maximum Likelihood Estimates” table, displayed when the ML option is specified for the standard response functions, is similar to the one produced for the least-squares analysis. The table includes the maximum likelihood estimates, the estimated Standard Errors based on the information matrix, and the Wald Statistics (Chi-Square) based on the estimated standard errors.

The “Covariance Matrix of the Maximum Likelihood Estimates” table displays the estimated covariance matrix of the maximum likelihood estimates of the parameters, provided that the COVB and ML options are specified for the standard response functions.

The “Correlation Matrix of the Maximum Likelihood Estimates” table displays the estimated correlation matrix of the maximum likelihood estimates of the parameters, provided that the CORRB and ML options are specified for the standard response functions.

For each source of variation specified in a CONTRAST statement, the “Contrasts” table lists the label for the source (Contrast), the number of degrees of freedom (DF), the Chi-Square value (which is a Wald statistic), and the significance probability (Pr > ChiSq). If the ESTIMATE= option is specified, the “Analysis of Contrasts” table displays, for each row of the contrast, the label (Contrast), the Type (PARM or EXP), the Row of the contrast, the Estimate and its Standard Error, a Wald confidence interval, the Wald Chi-Square, and the p-value (Pr > ChiSq) for 1 degree of freedom.
• Specification of the PREDICT option in the MODEL statement has the following effect. Produced for each response function within each population are the Observed and Predicted Function values, their Standard Errors, and the Residual (Observed — Predicted). The displayed output also includes the values of the variables that define the populations unless the NOPREDVAR option is specified in the MODEL statement. If the response functions are the default ones (generalized logits), additional information displayed for each response within each population includes the Observed and Predicted cell probabilities, their Standard Errors, and the Residual. The first cell probability is labeled P1, the second P2, and so forth. However, specifying PRED=FREQ in the MODEL statement results in the display of the predicted cell frequencies, rather than the predicted cell probabilities. The first cell frequency is labeled F1, the second F2, and so forth.

• When there are multiple RESPONSE statements, the output for each statement starts on a new page. For each RESPONSE statement, the corresponding title, if specified, is displayed at the top of each page.

• If the ADDCELL= option is specified in the MODEL statement, and if there is a weighted least-squares analysis specified, the adjusted sample size for each population (with number added to each cell) is labeled Adjusted Sample Size in the “Population Profiles” table. Similarly, the adjusted response frequencies and probabilities are displayed in the “Adjusted Response Frequencies” and “Adjusted Response Probabilities” tables, respectively.

• If _RESPONSE_ is defined explicitly in the LOGLIN, FACTORS, or REPEATED statement, then the definition is displayed as a NOTE whenever _RESPONSE_ appears in the output.
PROC CATMOD assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table. For more information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 22.5. ODS Tables Produced in PROC CATMOD

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
<td>MODEL</td>
<td>default</td>
</tr>
<tr>
<td>Contrasts</td>
<td>Contrasts</td>
<td>CONTRAST</td>
<td>default</td>
</tr>
<tr>
<td>ContrastEstimates</td>
<td>Analysis of Contrasts</td>
<td>CONTRAST</td>
<td>ESTIMATE=</td>
</tr>
<tr>
<td>ConvergenceStatus</td>
<td>Convergence status</td>
<td>MODEL</td>
<td>ML</td>
</tr>
<tr>
<td>CorrB</td>
<td>Correlation matrix of the estimates</td>
<td>MODEL</td>
<td>CORRB</td>
</tr>
<tr>
<td>CovB</td>
<td>Covariance matrix of the estimates</td>
<td>MODEL</td>
<td>COVB</td>
</tr>
<tr>
<td>DataSummary</td>
<td>Data summary</td>
<td>PROC</td>
<td>default</td>
</tr>
<tr>
<td>Estimates</td>
<td>Analysis of estimates</td>
<td>MODEL</td>
<td>default, unless NOPARM</td>
</tr>
<tr>
<td>MaxLikelihood</td>
<td>Maximum likelihood analysis</td>
<td>MODEL</td>
<td>ML</td>
</tr>
<tr>
<td>OneWayFreqs</td>
<td>One-way frequencies</td>
<td>MODEL</td>
<td>ONEWAY</td>
</tr>
<tr>
<td>PopProfiles</td>
<td>Population profiles</td>
<td>MODEL</td>
<td>default, unless NOPROFILE</td>
</tr>
<tr>
<td>PredictedFreqs</td>
<td>Predicted frequencies</td>
<td>MODEL</td>
<td>PRED=FREQ</td>
</tr>
<tr>
<td>PredictedProbs</td>
<td>Predicted probabilities</td>
<td>MODEL</td>
<td>PREDICT or PRED=PROB</td>
</tr>
<tr>
<td>PredictedValues</td>
<td>Predicted values</td>
<td>MODEL</td>
<td>PREDICT or PRED=</td>
</tr>
<tr>
<td>ResponseCov</td>
<td>Response functions, covariance matrix</td>
<td>MODEL</td>
<td>COV</td>
</tr>
<tr>
<td>ResponseDesign</td>
<td>Response functions, design matrix</td>
<td>MODEL</td>
<td>WLS*, unless NODESIGN</td>
</tr>
<tr>
<td>ResponseFreqs</td>
<td>Response frequencies</td>
<td>MODEL</td>
<td>FREQ</td>
</tr>
<tr>
<td>ResponseMatrix</td>
<td>RESPONSE matrix</td>
<td>MODEL &</td>
<td>unless NORESPONSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOGLIN</td>
<td></td>
</tr>
<tr>
<td>ResponseProbs</td>
<td>Response probabilities</td>
<td>MODEL</td>
<td>PROB</td>
</tr>
<tr>
<td>ResponseProfiles</td>
<td>Response profiles</td>
<td>MODEL</td>
<td>default, unless NOPROFILE</td>
</tr>
<tr>
<td>XPX</td>
<td>$X^*\text{Inv}(S)^*X$ matrix</td>
<td>MODEL</td>
<td>XPX, for WLS*</td>
</tr>
</tbody>
</table>

* WLS estimation is the default for response functions other than the default (generalized logits).
Examples

Example 22.1. Linear Response Function, r=2 Responses

In an example from Ries and Smith (1963), the choice of detergent brand (Brand=M or X) is related to three other categorical variables: the softness of the laundry water (Softness=soft, medium, or hard), the temperature of the water (Temperature=high or low), and whether the subject was a previous user of brand M (Previous=yes or no). The linear response function, which could also be specified as RESPONSE MARGINALS, yields one probability, Pr(brand preference=M), as the response function to be analyzed. Two models are fit in this example: the first model is a saturated one, containing all of the main effects and interactions, while the second is a reduced model containing only the main effects. The following statements produce Output 22.1.1 through Output 22.1.4:

```sas
proc catmod data=detergent;
   response 1 0;
   weight Count;
   model Brand=Softness|Previous|Temperature / freq prob nodelay;
   title2 'Saturated Model';
run;
```

Output 22.1.1. Detergent Preference Study: Linear Model Analysis

```
Detergent Preference Study
Saturated Model
The CATMOD Procedure

Response Levels 2
Brand Count Populations 12
Response
Weight Variable Count Total Frequency 1008
Data Set DETERGENT Observations 24
Frequency Missing 0
```

SAS OnlineDoc™: Version 8
The “Data Summary” table (Output 22.1.1) indicates that you have two response levels and twelve populations.

Output 22.1.2. Population Profiles

```
Detergent Preference Study
Saturated Model
The CATMOD Procedure
Population Profiles

<table>
<thead>
<tr>
<th>Sample</th>
<th>Softness</th>
<th>Previous</th>
<th>Temperature</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hard</td>
<td>no</td>
<td>high</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>hard</td>
<td>no</td>
<td>low</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>hard</td>
<td>yes</td>
<td>high</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>hard</td>
<td>yes</td>
<td>low</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>med</td>
<td>no</td>
<td>high</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>med</td>
<td>no</td>
<td>low</td>
<td>116</td>
</tr>
<tr>
<td>7</td>
<td>med</td>
<td>yes</td>
<td>high</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>med</td>
<td>yes</td>
<td>low</td>
<td>102</td>
</tr>
<tr>
<td>9</td>
<td>soft</td>
<td>no</td>
<td>high</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>soft</td>
<td>no</td>
<td>low</td>
<td>116</td>
</tr>
<tr>
<td>11</td>
<td>soft</td>
<td>yes</td>
<td>high</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>soft</td>
<td>yes</td>
<td>low</td>
<td>106</td>
</tr>
</tbody>
</table>
```

The “Population Profiles” table in Output 22.1.2 displays the ordering of independent variable levels as used in the table of parameter estimates.
Output 22.1.3. Response Profiles, Frequencies, and Probabilities

Since Brand M is the first level in the “Response Profiles” table (Output 22.1.3), the RESPONSE statement causes $\text{Pr}(\text{Brand}=M)$ to be the single response function modeled.
Output 22.1.4. Analysis of Variance and WLS Estimates

The "Analysis of Variance" table in Output 22.1.4 shows that all of the interactions are nonsignificant. Therefore, a main-effects model is fit with the following statements:

```sas
model Brand=Softness Previous Temperature / noprofile;
title2 'Main-Effects Model';
run;
quit;
```

The PROC CATMOD statement is not required due to the interactive capability of the CATMOD procedure. The NOPROFILE option suppresses the redisplay of the "Response Profiles" table. Output 22.1.5 through Output 22.1.7 are produced.
Output 22.1.5. Main-Effects Design Matrix

The design matrix in Output 22.1.5 displays the results of the factor effects modeling used in PROC CATMOD.

Output 22.1.6. ANOVA Table for the Main-Effects Model

The analysis of variance table in Output 22.1.6 shows that previous use of Brand M, together with the temperature of the laundry water, are significant factors in preferring Brand M laundry detergent. The table also shows that the additive model fits since the goodness-of-fit statistic (the Residual Chi-Square) is nonsignificant.
Example 22.2. Mean Score Response Function, $r=3$ Responses

Four surgical operations for duodenal ulcers are compared in a clinical trial at four hospitals. The operations performed are: Treatment=a, drainage and vagotomy; Treatment=b, 25% resection and vagotomy; Treatment=c, 50% resection and vagotomy; and Treatment=d, 75% resection. The response is severity of an undesirable complication called “dumping syndrome.” The data are from Grizzle, Starmer, and Koch (1969, pp. 489–504).

```sas
title 'Dumping Syndrome Data';
data operate;
   input Hospital Treatment $ Severity $ wt @@;
datalines;
1 a none 23 1 a slight 7 1 a moderate 2
1 b none 23 1 b slight 10 1 b moderate 5
1 c none 20 1 c slight 13 1 c moderate 5
1 d none 24 1 d slight 10 1 d moderate 6
2 a none 18 2 a slight 6 2 a moderate 1
2 b none 18 2 b slight 6 2 b moderate 2
2 c none 13 2 c slight 13 2 c moderate 2
2 d none 9 2 d slight 15 2 d moderate 2
3 a none 8 3 a slight 6 3 a moderate 3
```

The negative coefficient for Previous (-0.0711) in Output 22.1.7 indicates that the first level of Previous (which, from the table of population profiles, is ‘no’) is associated with a smaller probability of preferring Brand M than the second level of Previous (with coefficient constrained to be 0.0711 since the parameter estimates for a given effect must sum to zero). In other words, previous users of Brand M are much more likely to prefer it than those who have never used it before.

Similarly, the positive coefficient for Temperature indicates that the first level of Temperature (which, from the “Population Profiles” table, is ‘high’) has a larger probability of preferring Brand M than the second level of Temperature. In other words, those who do their laundry in hot water are more likely to prefer Brand M than those who do their laundry in cold water.
The response variable (Severity) is ordinally scaled with three levels, so assignment of scores is appropriate (0=none, 0.5=slight, 1=moderate). For these scores, the response function yields the mean score. The following statements produce Output 22.2.1 through Output 22.2.6.

```
proc catmod data=operate order=data ;
  weight wt;
  response 0 0.5 1;
  model Severity=Treatment Hospital / freq oneway;
  title2 'Main-Effects Model';
quit;
```

The ORDER= option is specified so that the levels of the response variable remain in the correct order. A main effects model is fit. The FREQ option displays the frequency of each response within each sample (Output 22.2.3), and the ONЕWAY option produces a table of the number of subjects within each variable level (Output 22.2.1).

Output 22.2.1. Surgical Data: Analysis of Mean Scores

```
  Dumping Syndrome Data
  Main-Effects Model
  The CATMOD Procedure

  Response Severity Response Levels 3
  Weight Variable wt Populations 16
  Data Set OPERATE Total Frequency 417
  Frequency Missing 0 Observations 48

  One-Way Frequencies

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>none</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>slight</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>moderate</td>
<td>48</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>107</td>
</tr>
<tr>
<td>Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>90</td>
</tr>
</tbody>
</table>
```
Example 22.2. Mean Score Response Function, r=3 Responses

Output 22.2. Population Sizes

Dumping Syndrome Data
Main-Effects Model
The CATMOD Procedure
Population Profiles

<table>
<thead>
<tr>
<th>Sample</th>
<th>Treatment</th>
<th>Hospital</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>a</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>2a</td>
<td>a</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3a</td>
<td>a</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>4a</td>
<td>a</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>5b</td>
<td>b</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>6b</td>
<td>b</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>7b</td>
<td>b</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>8b</td>
<td>b</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>9c</td>
<td>c</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>10c</td>
<td>c</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>11c</td>
<td>c</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>12c</td>
<td>c</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>13d</td>
<td>d</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>14d</td>
<td>d</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>15d</td>
<td>d</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>16d</td>
<td>d</td>
<td>4</td>
<td>23</td>
</tr>
</tbody>
</table>

Output 22.2.3. Response Frequencies

Dumping Syndrome Data
Main-Effects Model
The CATMOD Procedure
Response Profiles
Response Severity

<table>
<thead>
<tr>
<th>Response Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 none</td>
</tr>
<tr>
<td>2 slight</td>
</tr>
<tr>
<td>3 moderate</td>
</tr>
</tbody>
</table>

Response Frequencies

<table>
<thead>
<tr>
<th>Sample</th>
<th>Response Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>13</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>15</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>13</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
You can use the oneway frequencies (Output 22.2.1) and the response profiles (Output 22.2.3) to verify that the response levels are in the desired order (none, slight, moderate) so that the response scores (0, 0.5, 1.0) are applied appropriately. If the ORDER=DATA option had not been used, the levels would have been in a different order.

Output 22.2.4. Design Matrix

<table>
<thead>
<tr>
<th>Sample</th>
<th>Response Function</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.17188</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.16000</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.35294</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0.25000</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.26316</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.19231</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0.30000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0.17500</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.30263</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.30357</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.26316</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.28000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0.27500</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0.36538</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0.41667</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0.30435</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Output 22.2.5. ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>248.77</td>
<td><.0001</td>
</tr>
<tr>
<td>Treatment</td>
<td>3</td>
<td>8.90</td>
<td>0.0307</td>
</tr>
<tr>
<td>Hospital</td>
<td>3</td>
<td>2.33</td>
<td>0.5065</td>
</tr>
<tr>
<td>Residual</td>
<td>9</td>
<td>6.33</td>
<td>0.7069</td>
</tr>
</tbody>
</table>

The analysis of variance table (Output 22.2.5) shows that the additive model fits (since the Residual Chi-Square is not significant), that the Treatment effect is significant, and that the Hospital effect is not significant.
Output 22.2.6. Parameter Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>0.2724</td>
<td>0.0173</td>
<td>248.77</td>
<td><.0001</td>
</tr>
<tr>
<td>Treatment</td>
<td>2</td>
<td>-0.0552</td>
<td>0.0270</td>
<td>4.17</td>
<td>0.0411</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.0365</td>
<td>0.0289</td>
<td>1.59</td>
<td>0.2073</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0248</td>
<td>0.0280</td>
<td>0.78</td>
<td>0.3757</td>
</tr>
<tr>
<td>Hospital</td>
<td>5</td>
<td>0.0204</td>
<td>0.0264</td>
<td>0.60</td>
<td>0.4388</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-0.0178</td>
<td>0.0268</td>
<td>0.44</td>
<td>0.5055</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0531</td>
<td>0.0352</td>
<td>2.28</td>
<td>0.1312</td>
</tr>
</tbody>
</table>

The coefficients of Treatment in Output 22.2.6 show that the first two treatments (with negative coefficients) have lower mean scores than the last two treatments (the fourth coefficient, not shown, must be positive since the four coefficients must sum to zero). In other words, the less severe treatments (the first two) cause significantly less severe dumping syndrome complications.

Example 22.3. Logistic Regression, Standard Response Function

In this data set, from Cox and Snell (1989), ingots are prepared with different heating and soaking times and tested for their readiness to be rolled. The response variable Y has value 1 for ingots that are not ready and value 0 otherwise. The explanatory variables are Heat and Soak.

```sas
title 'Maximum Likelihood Logistic Regression';
data ingots;
  input Heat Soak nready ntotal @@;
  Count=nready;
  Y=1;
  output;
  Count=ntotal-nready;
  Y=0;
  output;
  drop nready ntotal;
datalines;
7 1.0 0 10 14 1.0 0 31 27 1.0 1 56 51 1.0 3 13
7 1.7 0 17 14 1.7 0 43 27 1.7 4 44 51 1.7 0 1
7 2.2 0 7 14 2.2 2 33 27 2.2 0 21 51 2.2 0 1
7 2.8 0 12 14 2.8 0 31 27 2.8 1 22 51 4.0 0 1
7 4.0 0 9 14 4.0 0 19 27 4.0 1 16
;```
Logistic regression analysis is often used to investigate the relationship between discrete response variables and continuous explanatory variables. For logistic regression, the continuous design-effects are declared in a DIRECT statement. The following statements produce Output 22.3.1 through Output 22.3.7.

```sas
proc catmod data=ingots;
 weight Count;
 direct Heat Soak;
 model Y=Heat Soak / freq covb corrb;
quit;
```

**Output 22.3.1.** Maximum Likelihood Logistic Regression

You can verify that the populations are defined as you intended by looking at the “Population Profiles” table in Output 22.3.1.
Output 22.3.2.  Response Summaries

```
Maximum Likelihood Logistic Regression
The CATMOD Procedure
Response Profiles
 Response Y
 1 0
 2 1
Response Frequencies

<table>
<thead>
<tr>
<th>Response Number</th>
<th>Sample 1</th>
<th>Sample 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Since the “Response Profiles” table shows the response level ordering as 0, 1, the default response function, the logit, is defined as \( \log \left( \frac{p_Y = 0}{p_Y = 1} \right) \).

Output 22.3.3.  Iteration History

```
Maximum Likelihood Logistic Regression
The CATMOD Procedure

Maximum Likelihood Analysis

<table>
<thead>
<tr>
<th>Sub</th>
<th>Iteration</th>
<th>-2 Log Likelihood</th>
<th>Iteration Likelihood Criterion</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>536.49592</td>
<td>1.0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>152.58961</td>
<td>0.7156</td>
<td>2.1594</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>106.76066</td>
<td>0.3003</td>
<td>3.5334</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>96.692171</td>
<td>0.0943</td>
<td>4.7489</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>95.383825</td>
<td>0.0135</td>
<td>5.4138</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>95.345659</td>
<td>0.000400</td>
<td>5.5539</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>95.345613</td>
<td>4.8289E-7</td>
<td>5.5592</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>95.345613</td>
<td>7.73E-13</td>
<td>5.5592</td>
</tr>
</tbody>
</table>

Maximum likelihood computations converged.
```
Seven Newton-Raphson iterations are required to find the maximum likelihood estimates.

**Output 22.3.4. Analysis of Variance Table**

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>24.65</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Heat</td>
<td>1</td>
<td>11.95</td>
<td>0.0005</td>
</tr>
<tr>
<td>Soak</td>
<td>1</td>
<td>0.03</td>
<td>0.8639</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>16</td>
<td>13.75</td>
<td>0.6171</td>
</tr>
</tbody>
</table>

The analysis of variance table (Output 22.3.4) shows that the model fits since the likelihood ratio goodness-of-fit test is nonsignificant. It also shows that the length of heating time is a significant factor with respect to readiness but that length of soaking time is not.

**Output 22.3.5. Maximum Likelihood Estimates**

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>5.5592</td>
<td>1.1197</td>
<td>24.65</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Heat</td>
<td>2</td>
<td>-0.0820</td>
<td>0.0237</td>
<td>11.95</td>
<td>0.0005</td>
</tr>
<tr>
<td>Soak</td>
<td>3</td>
<td>-0.0568</td>
<td>0.3312</td>
<td>0.03</td>
<td>0.8639</td>
</tr>
</tbody>
</table>

**Output 22.3.6. Covariance Matrix**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2537133</td>
<td>-0.0215664</td>
<td>-0.2817648</td>
</tr>
<tr>
<td>2</td>
<td>-0.0215664</td>
<td>0.0005633</td>
<td>0.0026243</td>
</tr>
<tr>
<td>3</td>
<td>-0.2817648</td>
<td>0.0026243</td>
<td>0.1097020</td>
</tr>
</tbody>
</table>
From the table of maximum likelihood estimates (Output 22.3.5), the fitted model is

\[ E(\text{logit}(p)) = 5.559 - 0.082(\text{Heat}) - 0.057(\text{Soak}) \]

For example, for Sample 1 with Heat = 7 and Soak = 1, the estimate is

\[ E(\text{logit}(p)) = 5.559 - 0.082(7) - 0.057(1) = 4.9284 \]

Predicted values of the logits, as well as the probabilities of readiness, could be obtained by specifying PRED=PROB in the MODEL statement. For the example of Sample 1 with Heat = 7 and Soak = 1, PRED=PROB would give an estimate of the probability of readiness equal to 0.9928 since

\[ 4.9284 = \log \left( \frac{\hat{p}}{1 - \hat{p}} \right) \]

implies that

\[ \hat{p} = \frac{e^{4.9284}}{1 + e^{4.9284}} = 0.9928 \]

As another consideration, since soaking time is nonsignificant, you could fit another model that deleted the variable Soak.

Example 22.4. Log-Linear Model, Three Dependent Variables

This analysis reproduces the predicted cell frequencies for Bartlett’s data using a log-linear model of no three-variable interaction (Bishop, Fienberg, and Holland 1975, p. 89). Cuttings of two different lengths (Length=short or long) are planted at one of two time points (Time=now or spring), and their survival status (Status=dead or alive) is recorded.
As in the text, the variable levels are simply labeled 1 and 2. The following statements produce Output 22.4.1 through Output 22.4.5:

```
title "Bartlett’s Data";
data bartlett;
 input Length Time Status wt @@;
datalines;
 1 1 1 156 1 1 2 84 1 2 1 84 1 2 2 156
 2 1 1 107 2 1 2 133 2 2 1 31 2 2 2 209
;
proc catmod data=bartlett;
 weight wt;
 model Length*Time*Status=_response_
 / noparm noresponse pred=freq;
 loglin Length|Time|Status @ 2;
 title2 'Model with No 3-Variable Interaction';
quit;
```

Output 22.4.1. Analysis of Bartlett’s Data: Log-Linear Model

```
Output 22.4.2. Response Profiles
```

SAS OnlineDoc™: Version 8
Output 22.4.3.  Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Iteration</th>
<th>-2 Log Likelihood</th>
<th>Convergence Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3992.5278</td>
<td>1.0000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3812.5059</td>
<td>0.0451</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3800.2168</td>
<td>0.003223</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3800.12</td>
<td>0.0000255</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3800.12</td>
<td>3.6909E-9</td>
</tr>
</tbody>
</table>

Maximum Likelihood Analysis

Parameter Estimates

<table>
<thead>
<tr>
<th>Iteration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2.96E-17</td>
<td>-2.96E-17</td>
<td>-0.2125</td>
<td>0.2125</td>
<td>0.3083</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0494</td>
<td>0.0752</td>
<td>-0.0752</td>
<td>-0.2486</td>
<td>0.2486</td>
<td>0.3502</td>
</tr>
<tr>
<td>3</td>
<td>0.0555</td>
<td>0.0809</td>
<td>-0.0809</td>
<td>-0.2543</td>
<td>0.2543</td>
<td>0.3568</td>
</tr>
<tr>
<td>4</td>
<td>0.0556</td>
<td>0.0810</td>
<td>-0.0810</td>
<td>-0.2544</td>
<td>0.2544</td>
<td>0.3569</td>
</tr>
</tbody>
</table>

Maximum likelihood computations converged.

Output 22.4.4.  Analysis of Variance Table

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1</td>
<td>2.64</td>
<td>0.1041</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>5.25</td>
<td>0.0220</td>
</tr>
<tr>
<td>Length*Time</td>
<td>1</td>
<td>5.25</td>
<td>0.0220</td>
</tr>
<tr>
<td>Status</td>
<td>1</td>
<td>48.94</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Length*Status</td>
<td>1</td>
<td>48.94</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Time*Status</td>
<td>1</td>
<td>95.01</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1</td>
<td>2.29</td>
<td>0.1299</td>
</tr>
</tbody>
</table>

The analysis of variance table shows that the model fits since the likelihood ratio test for the three-variable interaction is nonsignificant. All of the two-variable interactions, however, are significant; this shows that there is mutual dependence among all three variables.
Output 22.4.5. Response Function Predicted Values

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Maximum Likelihood Predicted Values for Response Functions

<table>
<thead>
<tr>
<th>Sample</th>
<th>Function</th>
<th>Standard Error</th>
<th>Standard Error</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-0.2924782</td>
<td>0.105806</td>
<td>-0.056831</td>
</tr>
<tr>
<td>2</td>
<td>-0.9115175</td>
<td>0.129188</td>
<td>0.129948</td>
<td>0.03790099</td>
</tr>
<tr>
<td>3</td>
<td>-0.9115175</td>
<td>0.129188</td>
<td>0.129948</td>
<td>0.03790099</td>
</tr>
<tr>
<td>4</td>
<td>-0.2924782</td>
<td>0.105806</td>
<td>0.098486</td>
<td>-0.056831</td>
</tr>
<tr>
<td>5</td>
<td>-0.6695054</td>
<td>0.118872</td>
<td>0.120172</td>
<td>0.02411336</td>
</tr>
<tr>
<td>6</td>
<td>-0.4519851</td>
<td>0.110921</td>
<td>0.102267</td>
<td>-0.0622866</td>
</tr>
<tr>
<td>7</td>
<td>-1.908347</td>
<td>0.192465</td>
<td>0.142969</td>
<td>-0.1768845</td>
</tr>
</tbody>
</table>

The predicted values table displays observed and predicted values for the generalized logits.

Output 22.4.6. Predicted Frequencies

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Maximum Likelihood Predicted Values for Frequencies

<table>
<thead>
<tr>
<th>Sample</th>
<th>Length</th>
<th>Time</th>
<th>Status</th>
<th>Function</th>
<th>Frequency</th>
<th>Standard Error</th>
<th>Standard Error</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>F1</td>
<td>156</td>
<td>11.43022</td>
<td>161.096138</td>
<td>-5.0961381</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>F2</td>
<td>84</td>
<td>8.754999</td>
<td>78.9038609</td>
<td>5.09613909</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>F3</td>
<td>84</td>
<td>8.754999</td>
<td>78.9038609</td>
<td>5.09613909</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>F4</td>
<td>156</td>
<td>11.43022</td>
<td>161.096138</td>
<td>-5.0961381</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>F5</td>
<td>107</td>
<td>9.750588</td>
<td>101.903861</td>
<td>8.924304 5.09613941</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>F6</td>
<td>133</td>
<td>10.70392</td>
<td>138.906139</td>
<td>10.334346.5.0961386</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>F7</td>
<td>31</td>
<td>5.47713</td>
<td>36.0961431</td>
<td>4.826315 5.0961431</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>F8</td>
<td>209</td>
<td>12.78667</td>
<td>203.90386</td>
<td>12.21285 5.09614031</td>
</tr>
</tbody>
</table>

The predicted frequencies table displays observed and predicted cell frequencies, their standard errors, and residuals.

Example 22.5. Log-Linear Model, Structural and Sampling Zeros

This example illustrates a log-linear model of independence, using data that contain structural zero frequencies as well as sampling (random) zero frequencies.

In a population of six squirrel monkeys, the joint distribution of genital display with respect to active or passive role was observed. The data are from Fienberg (1980, Table 8-2). Since a monkey cannot have both the active and passive roles in the same interaction, the diagonal cells of the table are structural zeros. See Agresti (1990) for more information on the quasi-independence model.

Since there is only one population, the structural zeros are automatically deleted by PROC CATMOD. The sampling zeros are replaced in the DATA step by some positive number close to zero (1E−20). Also, the row for Monkey ‘t’ is deleted since it contains all zeros; therefore, the cell frequencies predicted by a model of indepen-
In addition, the CONTRAST statement compares the behavior of the two monkeys labeled ‘u’ and ‘v’. The following statements produce Output 22.5.1 through Output 22.5.8:

title 'Behavior of Squirrel Monkeys';
data Display;
  input Active $ Passive $ wt @@;
  if Active ne 't';
  if Active ne Passive then
    if wt=0 then wt=1e-20;
datalines;
r r 0 r s 1 r t 5 r u 8 r v 9 r w 0
s r 29 s s 0 s t 14 s v 46 s w 0
t r 0 t s 0 t u 0 t v 0 t w 0
u r 2 u s 3 u t 1 u u 0 u v 38 u w 2
v r 0 v s 0 v t 0 v u 0 v v 0 v w 1
w r 9 w s 25 w t 4 w u 6 w v 13 w w 0;
proc catmod data=Display;
  weight wt;
  model Active*Passive=_response_
    / freq pred=freq noparm noresponse oneway;
  loglin Active Passive;
  contrast 'Passive, U vs. V' Passive 0 0 0 1 -1;
  contrast 'Active, U vs. V' Active 0 0 1 -1;
  title2 'Test Quasi-Independence for the Incomplete Table';
quit;

Output 22.5.1. Log-Linear Model Analysis with Zero Frequencies

The results of the ONEWAY option are shown in Output 22.5.2. Monkey ‘t’ does not show up as a value for the Active variable since that row was removed.
Output 22.5.2.  Output from the ONEWAY option

```
Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

One-Way Frequencies

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>r</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>u</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>57</td>
</tr>
<tr>
<td>Passive</td>
<td>r</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>t</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>u</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Output 22.5.3.  Profiles

```
Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Sample Sample Size

 1 220

Response Profiles

<table>
<thead>
<tr>
<th>Response</th>
<th>Active</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>2</td>
<td>r</td>
<td>t</td>
</tr>
<tr>
<td>3</td>
<td>r</td>
<td>u</td>
</tr>
<tr>
<td>4</td>
<td>r</td>
<td>v</td>
</tr>
<tr>
<td>5</td>
<td>r</td>
<td>w</td>
</tr>
<tr>
<td>6</td>
<td>s</td>
<td>r</td>
</tr>
<tr>
<td>7</td>
<td>s</td>
<td>t</td>
</tr>
<tr>
<td>8</td>
<td>s</td>
<td>u</td>
</tr>
<tr>
<td>9</td>
<td>s</td>
<td>v</td>
</tr>
<tr>
<td>10</td>
<td>s</td>
<td>w</td>
</tr>
<tr>
<td>11</td>
<td>u</td>
<td>r</td>
</tr>
<tr>
<td>12</td>
<td>u</td>
<td>s</td>
</tr>
<tr>
<td>13</td>
<td>u</td>
<td>t</td>
</tr>
<tr>
<td>14</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>15</td>
<td>u</td>
<td>w</td>
</tr>
<tr>
<td>16</td>
<td>v</td>
<td>r</td>
</tr>
<tr>
<td>17</td>
<td>v</td>
<td>s</td>
</tr>
<tr>
<td>18</td>
<td>v</td>
<td>t</td>
</tr>
<tr>
<td>19</td>
<td>v</td>
<td>u</td>
</tr>
<tr>
<td>20</td>
<td>v</td>
<td>w</td>
</tr>
<tr>
<td>21</td>
<td>w</td>
<td>r</td>
</tr>
<tr>
<td>22</td>
<td>w</td>
<td>s</td>
</tr>
<tr>
<td>23</td>
<td>w</td>
<td>t</td>
</tr>
<tr>
<td>24</td>
<td>w</td>
<td>u</td>
</tr>
<tr>
<td>25</td>
<td>w</td>
<td>v</td>
</tr>
</tbody>
</table>
```
Sampling zeros are displayed as 1E−20 in Output 22.5.4. The Response Number corresponds to the value displayed in Output 22.5.2.

**Output 22.5.4. Frequency of Response by Response Number**

```
<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>1E-20</td>
<td>29</td>
<td>14</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1E-20</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>38</td>
<td>2</td>
<td>1E-20</td>
</tr>
<tr>
<td>17</td>
<td>1E-20</td>
<td>1E-20</td>
<td>1E-20</td>
<td>1</td>
<td>9</td>
<td>25</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
```

**Response Frequencies**

```
<table>
<thead>
<tr>
<th>Sample</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>
```

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Response Frequencies

Sample	1	2	3	4	5	6	7	8
1       |   |   |   |   |   | 1E-20 | 29 | 14 | 46
Sample  | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16
--------|---|----|----|----|----|----|----|----
1       | 4 | 1E-20 | 2 | 3 | 1   | 38 | 2 | 1E-20
Sample  | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24
--------|----|----|----|----|----|----|----|----
1       | 1E-20 | 1E-20 | 1E-20 | 1 | 9 | 25 | 4 | 6
```
Output 22.5.5. Iteration History

<table>
<thead>
<tr>
<th>Iteration</th>
<th>-2 Log Likelihood</th>
<th>Convergence Criterion</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1416.3054</td>
<td>1.0000</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>1238.2417</td>
<td>0.1257</td>
<td>-0.4976 1.1112 0.1722 -0.8804</td>
</tr>
<tr>
<td>2</td>
<td>1205.1264</td>
<td>0.0267</td>
<td>-0.3420 1.2687 0.7058 -2.3992</td>
</tr>
<tr>
<td>3</td>
<td>1199.5068</td>
<td>0.004663</td>
<td>-0.0466 1.3791 0.8170 -2.8422</td>
</tr>
<tr>
<td>4</td>
<td>1198.6271</td>
<td>0.000733</td>
<td>-0.002748 1.4230 0.8609 -3.0176</td>
</tr>
<tr>
<td>5</td>
<td>1198.5611</td>
<td>0.0000551</td>
<td>-0.002748 1.4230 0.8609 -3.0176</td>
</tr>
<tr>
<td>6</td>
<td>1198.5603</td>
<td>6.535E-7</td>
<td>0.002760 1.4285 0.8664 -3.0396</td>
</tr>
<tr>
<td>7</td>
<td>1198.5603</td>
<td>1.217E-10</td>
<td>0.002837 1.4285 0.8665 -3.0399</td>
</tr>
</tbody>
</table>

Maximum likelihood computations converged.

Output 22.5.6. Analysis of Variance Table

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>4</td>
<td>56.58</td>
<td><.0001</td>
</tr>
<tr>
<td>Passive</td>
<td>5</td>
<td>47.94</td>
<td><.0001</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>15</td>
<td>135.17</td>
<td><.0001</td>
</tr>
</tbody>
</table>

The analysis of variance table (Output 22.5.6) shows that the model of independence does not fit since the likelihood ratio test for the interaction is significant. In other words, active and passive behaviors of the squirrel monkeys are dependent behavior roles.
Output 22.5.7. Contrasts between Monkeys ‘u’ and ‘v’

<table>
<thead>
<tr>
<th>Contrast</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive, U vs. V</td>
<td>1</td>
<td>1.31</td>
<td>0.2524</td>
</tr>
<tr>
<td>Active, U vs. V</td>
<td>1</td>
<td>14.87</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

If the model fit these data, then the contrasts in Output 22.5.7 show that monkeys ‘u’ and ‘v’ appear to have similar passive behavior patterns but very different active behavior patterns.

Output 22.5.8. Response Function Predicted Values

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Function</th>
<th>Standard Error</th>
<th>Function</th>
<th>Standard Error</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.5649494</td>
<td>1.037749</td>
<td>-0.973554</td>
<td>0.339019</td>
<td>-1.5913953</td>
</tr>
<tr>
<td>2</td>
<td>-0.9551114</td>
<td>0.526235</td>
<td>-1.7250404</td>
<td>0.345348</td>
<td>0.76952896</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Output 22.5.9. Predicted Frequencies

<table>
<thead>
<tr>
<th>Sample Active Passive</th>
<th>Function</th>
<th>Number</th>
<th>Frequency</th>
<th>Standard Error</th>
<th>Standard Frequency</th>
<th>Error</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>s r</td>
<td>F1</td>
<td>1</td>
<td>0.997725</td>
<td>5.25950838</td>
<td>1.36156</td>
<td>-4.2595084</td>
<td></td>
</tr>
<tr>
<td>r t</td>
<td>F2</td>
<td>5</td>
<td>2.210512</td>
<td>2.48072585</td>
<td>0.691066</td>
<td>2.5192745</td>
<td></td>
</tr>
<tr>
<td>r u</td>
<td>F3</td>
<td>8</td>
<td>2.775625</td>
<td>8.21594841</td>
<td>1.855146</td>
<td>-0.2159484</td>
<td></td>
</tr>
<tr>
<td>r v</td>
<td>F4</td>
<td>9</td>
<td>2.937996</td>
<td>6.64804868</td>
<td>1.50932</td>
<td>2.35195132</td>
<td></td>
</tr>
<tr>
<td>r w</td>
<td>F5</td>
<td>1E-20</td>
<td>1E-10</td>
<td>0.39576868</td>
<td>0.240268</td>
<td>-0.3957687</td>
<td></td>
</tr>
<tr>
<td>s s</td>
<td>F6</td>
<td>29</td>
<td>7.017696</td>
<td>19.1859928</td>
<td>3.174915</td>
<td>8.1400723</td>
<td></td>
</tr>
<tr>
<td>s t</td>
<td>F7</td>
<td>14</td>
<td>3.620648</td>
<td>13.2217167</td>
<td>2.169599</td>
<td>3.67828404</td>
<td></td>
</tr>
<tr>
<td>s u</td>
<td>F8</td>
<td>46</td>
<td>6.031734</td>
<td>34.1846262</td>
<td>4.428706</td>
<td>11.8153738</td>
<td></td>
</tr>
<tr>
<td>s v</td>
<td>F9</td>
<td>29</td>
<td>1.981735</td>
<td>27.6609647</td>
<td>3.722788</td>
<td>-23.660965</td>
<td></td>
</tr>
<tr>
<td>s w</td>
<td>F10</td>
<td>1E-20</td>
<td>1E-10</td>
<td>1.64670026</td>
<td>0.952712</td>
<td>-1.6467003</td>
<td></td>
</tr>
<tr>
<td>s r</td>
<td>F11</td>
<td>2</td>
<td>1.407771</td>
<td>10.936396</td>
<td>2.123322</td>
<td>-8.936396</td>
<td></td>
</tr>
<tr>
<td>s t</td>
<td>F12</td>
<td>3</td>
<td>1.720201</td>
<td>12.4740717</td>
<td>2.554336</td>
<td>-9.4740717</td>
<td></td>
</tr>
<tr>
<td>u r</td>
<td>F13</td>
<td>1</td>
<td>0.997725</td>
<td>5.8835826</td>
<td>3.180655</td>
<td>-6.8835826</td>
<td></td>
</tr>
<tr>
<td>u t</td>
<td>F14</td>
<td>1</td>
<td>5.606814</td>
<td>15.7672979</td>
<td>2.686692</td>
<td>22.2327021</td>
<td></td>
</tr>
<tr>
<td>u w</td>
<td>F15</td>
<td>2</td>
<td>1.407771</td>
<td>0.93865177</td>
<td>0.551645</td>
<td>1.0634823</td>
<td></td>
</tr>
<tr>
<td>v r</td>
<td>F16</td>
<td>1E-20</td>
<td>1E-10</td>
<td>0.21996583</td>
<td>0.221779</td>
<td>-0.2199658</td>
<td></td>
</tr>
<tr>
<td>v t</td>
<td>F17</td>
<td>1E-20</td>
<td>1E-10</td>
<td>0.2508934</td>
<td>0.237065</td>
<td>-0.2508934</td>
<td></td>
</tr>
<tr>
<td>v u</td>
<td>F18</td>
<td>1E-20</td>
<td>1E-10</td>
<td>0.1183376</td>
<td>0.120314</td>
<td>-0.1183376</td>
<td></td>
</tr>
<tr>
<td>v w</td>
<td>F19</td>
<td>1E-20</td>
<td>1E-10</td>
<td>0.39192393</td>
<td>0.393255</td>
<td>-0.3919239</td>
<td></td>
</tr>
<tr>
<td>w r</td>
<td>F20</td>
<td>1</td>
<td>0.997725</td>
<td>0.01887929</td>
<td>0.021728</td>
<td>0.98112072</td>
<td></td>
</tr>
<tr>
<td>w s</td>
<td>F21</td>
<td>9</td>
<td>2.937996</td>
<td>9.6576454</td>
<td>1.808656</td>
<td>-0.6576454</td>
<td></td>
</tr>
<tr>
<td>w t</td>
<td>F22</td>
<td>25</td>
<td>4.707344</td>
<td>11.0155266</td>
<td>2.725019</td>
<td>13.9844734</td>
<td></td>
</tr>
<tr>
<td>w u</td>
<td>F23</td>
<td>4</td>
<td>1.981735</td>
<td>5.19563797</td>
<td>1.184452</td>
<td>-1.195638</td>
<td></td>
</tr>
<tr>
<td>w v</td>
<td>F24</td>
<td>6</td>
<td>2.415857</td>
<td>17.2075014</td>
<td>2.772098</td>
<td>-11.207501</td>
<td></td>
</tr>
<tr>
<td>w w</td>
<td>F25</td>
<td>13</td>
<td>3.497402</td>
<td>13.9236886</td>
<td>2.24158</td>
<td>-0.9236886</td>
<td></td>
</tr>
</tbody>
</table>

Output 22.5.8 displays the predicted response functions and Output 22.5.9 displays predicted cell frequencies (from the PRED=FREQ option), but since the model does not fit, these should be ignored.

Structural and Sampling Zeros with Raw Data

The preceding PROC CATMOD step uses cell count data as input. Prior to invoking the CATMOD procedure, structural and sampling zeros are easily identified and manipulated in a single DATA step. For the situation where structural or sampling zeros (or both) may exist and the input data set is raw data, use the following steps:

1. Run PROC FREQ on the raw data. In the TABLES statement, list all dependent and independent variables separated by asterisks and use the SPARSE option and the OUT= option. This creates an output data set that contains all possible zero frequencies.

2. Use a DATA step to change the zero frequencies associated with sampling zeros to a small value, such as 1E—20.

3. Use the resulting data set as input to PROC CATMOD, and specify the statement WEIGHT COUNT to use adjusted frequencies.
For example, suppose the data set RawDisplay contains the raw data for the squirrel monkey data. The following statements show how to obtain the same analysis as shown previously:

```sas
proc freq data=RawDisplay;
   tables Active*Passive / sparse out=Combos noprint;
run;

data Combos2;
   set Combos;
   if Active ne 't';
   if Active ne Passive then
      if count=0 then count=1e-20;
run;

proc catmod data=Combos2;
   weight count;
   model Active*Passive=_response_
      / freq pred=freq noparm noresponse;
   loglin Active Passive;
quit;
```

The first IF statement in the DATA step is needed only for this particular example; since observations for Monkey ‘t’ were deleted from the Display data set, they also need to be deleted from Combos2.

Example 22.6. Repeated Measures, 2 Response Levels, 3 Populations

In this multi-population repeated measures example, from Guthrie (1981), subjects from three groups have their responses (0 or 1) recorded in each of four trials. The analysis of the marginal probabilities is directed at assessing the main effects of the repeated measurement factor (Trial) and the independent variable (Group), as well as their interaction. Although the contingency table is incomplete (only thirteen of the sixteen possible responses are observed), this poses no problem in the computation of the marginal probabilities. The following statements produce Output 22.6.1 through Output 22.6.5:

```sas
title 'Multi-Population Repeated Measures';
data group;
   input a b c d Group wt @@;
datalines;
1 1 1 1 2 2 0 0 0 0 2 2 0 0 1 0 1 2 0 0 1 0 2 2
0 0 0 1 1 4 0 0 0 1 2 1 0 0 0 1 3 3 1 0 0 1 2 1
0 0 1 1 1 1 0 0 1 1 2 2 0 0 1 1 3 5 0 1 0 0 1 4
0 1 0 0 2 1 0 1 0 1 2 1 0 1 0 1 3 2 0 1 1 0 3 1
1 0 0 0 1 3 1 0 0 0 2 1 0 1 1 2 1 0 1 1 3 2
1 0 1 0 1 1 1 0 1 1 2 1 1 0 1 1 3 2
```

SAS OnlineDoc™: Version 8
proc catmod data=group;
 weight wt;
 response marginals;
 model a*b*c*d=Group _response_ Group*_response_
 / freq nodesign;
 repeated Trial 4;
 title2 'Saturated Model';
run;

Output 22.6.1. Analysis of Multiple-Population Repeated Measures

Multi-Population Repeated Measures
Saturated Model

<table>
<thead>
<tr>
<th>Response</th>
<th>abc*d</th>
<th>Response Levels</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Variable</td>
<td>wt</td>
<td>Populations</td>
<td>3</td>
</tr>
<tr>
<td>Data Set</td>
<td>GROUP</td>
<td>Total Frequency</td>
<td>45</td>
</tr>
<tr>
<td>Frequency Missing</td>
<td>0</td>
<td>Observations</td>
<td>23</td>
</tr>
</tbody>
</table>

Population Profiles

<table>
<thead>
<tr>
<th>Sample</th>
<th>Group</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

Output 22.6.2. Response Profiles

Multi-Population Repeated Measures
Saturated Model

<table>
<thead>
<tr>
<th>Response Profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>
Output 22.6.3. Response Frequencies

```
Multi-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Response Frequencies

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```

Output 22.6.4. Analysis of Variance Table

```
Multi-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>354.88</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Group</td>
<td>2</td>
<td>24.79</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Trial</td>
<td>3</td>
<td>21.45</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Group*Trial</td>
<td>6</td>
<td>18.71</td>
<td>0.0047</td>
</tr>
<tr>
<td>Residual</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
```
Output 22.6.5. Parameter Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>0.5833</td>
<td>0.0310</td>
<td>354.88</td>
<td><.0001</td>
</tr>
<tr>
<td>Group</td>
<td>2</td>
<td>0.1333</td>
<td>0.0335</td>
<td>15.88</td>
<td><.0001</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.0333</td>
<td>0.0551</td>
<td>0.37</td>
<td>0.5450</td>
</tr>
<tr>
<td>Trial</td>
<td>4</td>
<td>0.1722</td>
<td>0.0557</td>
<td>9.57</td>
<td>0.0020</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.1056</td>
<td>0.0647</td>
<td>2.66</td>
<td>0.1028</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-0.0722</td>
<td>0.0577</td>
<td>1.57</td>
<td>0.2107</td>
</tr>
<tr>
<td>Group*Trial</td>
<td>7</td>
<td>-0.1556</td>
<td>0.0852</td>
<td>3.33</td>
<td>0.0679</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-0.0556</td>
<td>0.0800</td>
<td>0.48</td>
<td>0.4877</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-0.0889</td>
<td>0.0953</td>
<td>0.87</td>
<td>0.3511</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0111</td>
<td>0.0866</td>
<td>0.02</td>
<td>0.8979</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.0889</td>
<td>0.0822</td>
<td>1.17</td>
<td>0.2793</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-0.0111</td>
<td>0.0824</td>
<td>0.02</td>
<td>0.8927</td>
</tr>
</tbody>
</table>

The analysis of variance table in Output 22.6.4 shows that there is a significant interaction between the independent variable `Group` and the repeated measurement factor `Trial`. Thus, an intermediate model (not shown) is fit in which the effects `Trial` and `Group*Trial` are replaced by `Trial(\text{Group}=1)`, `Trial(\text{Group}=2)`, and `Trial(\text{Group}=3)`. Of these three effects, only the last is significant, so it is retained in the final model. The following statements produce Output 22.6.6 and Output 22.6.7:

```sas
model a*b*c*d=Group _response_(Group=3) / noprofile noparm;
title2 'Trial Nested within Group 3';
quit;
```
Output 22.6.6. Final Model: Design Matrix

<table>
<thead>
<tr>
<th>Sample</th>
<th>Function Number</th>
<th>Response Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.73333</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.73333</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.73333</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.66667</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.66667</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.66667</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.46667</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.40000</td>
<td>1</td>
</tr>
</tbody>
</table>

Output 22.6.6 displays the design matrix resulting from retaining the nested effect.

Output 22.6.7. ANOVA Table

The residual goodness-of-fit statistic tests the joint effect of Trial(Group=1) and Trial(Group=2). The analysis of variance table in Output 22.6.7 shows that the final model fits, that there is a significant Group effect, and that there is a significant Trial effect in Group 3.
Example 22.7. Repeated Measures, 4 Response Levels, 1 Population

This example illustrates a repeated measurement analysis in which there are more than two levels of response. In this study, from Grizzle, Starmer, and Koch (1969, p. 493), 7477 women aged 30–39 are tested for vision in both right and left eyes. Since there are four response levels for each dependent variable, the RESPONSE statement computes three marginal probabilities for each dependent variable, resulting in six response functions for analysis. Since the model contains a repeated measurement factor (Side) with two levels (Right, Left), PROC CATMOD groups the functions into sets of three (=6/2). Therefore, the Side effect has three degrees of freedom (one for each marginal probability), and it is the appropriate test of marginal homogeneity. The following statements produce Output 22.7.1 through Output 22.7.5:

```
title 'Vision Symmetry';
data vision;
    input Right Left count @@;
datalines;
1 1 1520 1 2 266 1 3 124 1 4 66
2 1 234 2 2 1512 2 3 432 2 4 78
3 1 117 3 2 362 3 3 1772 3 4 205
4 1 36 4 2 82 4 3 179 4 4 492
;
proc catmod data=vision;
    weight count;
    response marginals;
    model Right*Left=_response_/ freq;
    repeated Side 2;
    title2 'Test of Marginal Homogeneity';
quit;
```

Output 22.7.1. Vision Study: Analysis of Marginal Homogeneity
Output 22.7.2. Response Profiles

- **Vision Symmetry Test of Marginal Homogeneity**
- **The CATMOD Procedure**
- **Response Profiles**

<table>
<thead>
<tr>
<th>Response</th>
<th>Right</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Response Frequencies

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1520</td>
<td>266</td>
<td>124</td>
<td>66</td>
<td>234</td>
<td>1512</td>
<td>432</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>117</td>
<td>362</td>
<td>1772</td>
<td>205</td>
<td>36</td>
<td>82</td>
<td>179</td>
<td>492</td>
</tr>
</tbody>
</table>

Output 22.7.3. Design Matrix

- **Vision Symmetry Test of Marginal Homogeneity**
- **The CATMOD Procedure**

<table>
<thead>
<tr>
<th>Sample</th>
<th>Function Number</th>
<th>Response Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.26428</td>
<td>1 0 0 1 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0.30173</td>
<td>0 1 0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.32847</td>
<td>0 0 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.25505</td>
<td>1 0 0 -1 0 0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.29718</td>
<td>0 1 0 0 -1 0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.33529</td>
<td>0 0 1 0 0 -1</td>
<td></td>
</tr>
</tbody>
</table>
Output 22.7.4. ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3</td>
<td>78744.17</td>
<td><.0001</td>
</tr>
<tr>
<td>Side</td>
<td>3</td>
<td>11.98</td>
<td>0.0075</td>
</tr>
<tr>
<td>Residual</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Output 22.7.5. Parameter Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept 1</td>
<td>0.2597</td>
<td>0.00468</td>
<td>3073.03</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2995</td>
<td>0.00464</td>
<td>4160.17</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3319</td>
<td>0.00483</td>
<td>4725.25</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Side 4</td>
<td>0.00461</td>
<td>0.00194</td>
<td>5.65</td>
<td>0.0174</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00227</td>
<td>0.00255</td>
<td>0.80</td>
<td>0.3726</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.00341</td>
<td>0.00252</td>
<td>1.83</td>
<td>0.1757</td>
<td></td>
</tr>
</tbody>
</table>

The analysis of variance table in Output 22.7.4 shows that the Side effect is significant, so there is not marginal homogeneity between left-eye vision and right-eye vision. In other words, the distribution of the quality of right-eye vision differs significantly from the quality of left-eye vision in the same subjects. The test of the Side effect is equivalent to Bhapkar's test (Agresti 1990).

Example 22.8. Repeated Measures, Logistic Analysis of Growth Curve

The data, from a longitudinal study reported in Koch et al. (1977), are from patients in four populations (2 diagnostic groups x 2 treatments) who are measured at three times to assess their response (n=normal or a=abnormal) to treatment.
The analysis is directed at assessing the effect of the repeated measurement factor, Time, as well as the independent variables, Diagnosis (mild or severe) and Treatment (std or new). The RESPONSE statement is used to compute the logits of the marginal probabilities. The times used in the design matrix (0, 1, 2) correspond to the logarithms (base 2) of the actual times (1, 2, 4). The following statements produce Output 22.8.1 through Output 22.8.7:

```sas
proc catmod order=data data=growth2;
  title2 'Reduced Logistic Model';
  weight count;
  population Diagnosis Treatment;
  response logit;
  model week1*week2*week4=(1 0 0 0, /* mild, std */
     1 0 1 0,
     1 0 2 0,
     1 0 0 0, /* mild, new */
     1 0 0 1,
     1 0 0 2,
     0 1 0 0, /* severe, std */
     0 1 1 0,
     0 1 2 0,
     0 1 0 0, /* severe, new */
     0 1 0 1,
     0 1 0 2)
   (1='Mild diagnosis, week 1',
   2='Severe diagnosis, week 1',
   3='Time effect for std trt',
   4='Time effect for new trt')
   / freq;
  contrast 'Diagnosis effect, week 1' all_parms 1 -1 0 0;
  contrast 'Equal time effects' all_parms 0 0 1 -1;
quit;
```
Chapter 22. The CATMOD Procedure

Output 22.8.1. Logistic Analysis of Growth Curve

<table>
<thead>
<tr>
<th>Response</th>
<th>week1week2week4</th>
<th>Response Levels</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Variable</td>
<td>count</td>
<td>Populations</td>
<td>4</td>
</tr>
<tr>
<td>Data Set</td>
<td>GROWTH2</td>
<td>Total Frequency</td>
<td>340</td>
</tr>
<tr>
<td>Frequency Missing</td>
<td>0</td>
<td>Observations</td>
<td>29</td>
</tr>
</tbody>
</table>

Output 22.8.2. Population Profiles

<table>
<thead>
<tr>
<th>Sample</th>
<th>Diagnosis</th>
<th>Treatment</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mild</td>
<td>std</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>mild</td>
<td>new</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>severe</td>
<td>std</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>severe</td>
<td>new</td>
<td>90</td>
</tr>
</tbody>
</table>

Response Profiles

<table>
<thead>
<tr>
<th>Response</th>
<th>week1</th>
<th>week2</th>
<th>week4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>2</td>
<td>n</td>
<td>n</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>n</td>
<td>a</td>
<td>n</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>n</td>
<td>a</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>a</td>
<td>n</td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

The samples and the response numbers are defined in Output 22.8.2.

Output 22.8.3. Response Frequencies

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>13</td>
<td>9</td>
<td>3</td>
<td>14</td>
<td>4</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>22</td>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>31</td>
<td>5</td>
<td>32</td>
<td>6</td>
</tr>
</tbody>
</table>
Output 22.8.4. Design Matrix

<table>
<thead>
<tr>
<th>Sample</th>
<th>Function Number</th>
<th>Response Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.05001</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.11441</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.73089</td>
<td>1 0 2 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.29928</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3.52636</td>
<td>1 0 0 2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1.32493</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-0.94446</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-0.16034</td>
<td>0 1 2 0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-1.53148</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.00000</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.60944</td>
<td>0 1 0 2</td>
</tr>
</tbody>
</table>

Output 22.8.5. Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild diagnosis, week 1</td>
<td>1</td>
<td>0.28</td>
<td>0.5955</td>
</tr>
<tr>
<td>Severe diagnosis, week 1</td>
<td>1</td>
<td>100.48</td>
<td><.0001</td>
</tr>
<tr>
<td>Time effect for std trt</td>
<td>1</td>
<td>26.35</td>
<td><.0001</td>
</tr>
<tr>
<td>Time effect for new trt</td>
<td>1</td>
<td>125.09</td>
<td><.0001</td>
</tr>
<tr>
<td>Residual</td>
<td>8</td>
<td>4.20</td>
<td>0.8387</td>
</tr>
</tbody>
</table>

The analysis of variance table (Output 22.8.5) shows that the data can be adequately modeled by two parameters that represent diagnosis effects at week 1 and two log-linear time effects (one for each treatment). Both of the time effects are significant.
Output 22.8.6. Parameter Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>-0.0716</td>
<td>0.1348</td>
<td>0.28</td>
<td>0.5955</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.3529</td>
<td>0.1350</td>
<td>100.48</td>
<td><.0001</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.4944</td>
<td>0.0963</td>
<td>26.35</td>
<td><.0001</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.4552</td>
<td>0.1301</td>
<td>125.09</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Output 22.8.7. Contrasts

<table>
<thead>
<tr>
<th>Contrast</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis effect, week 1</td>
<td>1</td>
<td>77.02</td>
<td><.0001</td>
</tr>
<tr>
<td>Equal time effects</td>
<td>1</td>
<td>59.12</td>
<td><.0001</td>
</tr>
</tbody>
</table>

The analysis of contrasts (Output 22.8.7) shows that the diagnosis effect at week 1 is highly significant. In Output 22.8.6, since the estimate of the logit for the severe diagnosis effect (parameter 2) is more negative than it is for the mild diagnosis effect (parameter 1), there is a smaller predicted probability of the first response (normal) for the severe diagnosis group. In other words, those subjects with a severe diagnosis have a significantly higher probability of abnormal response at week 1 than those subjects with a mild diagnosis.

The analysis of contrasts also shows that the time effect for the standard treatment is significantly different than the one for the new treatment. The table of parameter estimates (Output 22.8.6) shows that the time effect for the new treatment (parameter 4) is stronger than it is for the standard treatment (parameter 3).

Example 22.9. Repeated Measures, Two Repeated Measurement Factors

This example, from MacMillan et al. (1981), illustrates a repeated measurement analysis in which there are two repeated measurement factors. Two diagnostic procedures (standard and test) are performed on each subject, and the results of both are evaluated at each of two times as being positive or negative.

title 'Diagnostic Procedure Comparison';
data a;
 input std1 $ test1 $ std2 $ test2 $ wt @@;
datalines;
neg neg neg neg 509 neg neg neg pos 4 neg neg pos neg 17
neg neg pos pos 3 neg neg neg neg 13 neg pos neg pos 8
neg pos pos pos 8 pos neg neg neg 14 pos neg neg pos 1
pos neg pos neg 17 pos neg pos pos 9 pos pos neg neg 7
pos pos neg pos 4 pos pos pos neg 13 pos neg neg pos 1
pos neg pos neg 17 pos neg pos pos 9 pos pos pos pos 170;

For the initial model, the response functions are marginal probabilities, and the repeated measurement factors are Time and Treatment. The model is a saturated one, containing effects for Time, Treatment, and Time*Treatment. The following statements produce Output 22.9.1 through Output 22.9.5:

```
proc catmod data=a;
  title2 'Marginal Symmetry, Saturated Model';
  weight wt;
  response marginals;
  model std1*test1*std2*test2=_response_ / freq noparm;
  repeated Time 2, Treatment 2 / _response_=Time Treatment
              Time*Treatment;
run;
```

Output 22.9.1. Diagnosis Data: Two Repeated Measurement Factors

```
<table>
<thead>
<tr>
<th>Diagnostic Procedure Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Symmetry, Saturated Model</td>
</tr>
<tr>
<td>The CATMOD Procedure</td>
</tr>
<tr>
<td>---------------------------------------------------------</td>
</tr>
<tr>
<td>Response std1<em>test1</em>std2*test2 Response Levels 15</td>
</tr>
<tr>
<td>Weight Variable wt Population 1</td>
</tr>
<tr>
<td>Data Set A Total Frequency 793</td>
</tr>
<tr>
<td>Frequency Missing Observations 15</td>
</tr>
</tbody>
</table>

Sample Size

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>793</td>
</tr>
</tbody>
</table>
```
Output 22.9.2. Response Profiles

<table>
<thead>
<tr>
<th>Response</th>
<th>std1</th>
<th>test1</th>
<th>std2</th>
<th>test2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>2</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>3</td>
<td>neg</td>
<td>neg</td>
<td>pos</td>
<td>neg</td>
</tr>
<tr>
<td>4</td>
<td>neg</td>
<td>neg</td>
<td>pos</td>
<td>pos</td>
</tr>
<tr>
<td>5</td>
<td>neg</td>
<td>pos</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>6</td>
<td>neg</td>
<td>pos</td>
<td>pos</td>
<td>pos</td>
</tr>
<tr>
<td>7</td>
<td>neg</td>
<td>pos</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>8</td>
<td>pos</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>9</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
<td>neg</td>
</tr>
<tr>
<td>10</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
<td>pos</td>
</tr>
<tr>
<td>11</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
<td>pos</td>
</tr>
<tr>
<td>12</td>
<td>pos</td>
<td>pos</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>13</td>
<td>pos</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>14</td>
<td>pos</td>
<td>pos</td>
<td>pos</td>
<td>neg</td>
</tr>
<tr>
<td>15</td>
<td>pos</td>
<td>pos</td>
<td>pos</td>
<td>pos</td>
</tr>
</tbody>
</table>

Output 22.9.3. Response Frequencies

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>509</td>
<td>4</td>
<td>17</td>
<td>3</td>
<td>13</td>
<td>8</td>
<td>8</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>17</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>170</td>
</tr>
</tbody>
</table>

Output 22.9.4. Design Matrix

<table>
<thead>
<tr>
<th>Sample</th>
<th>Function</th>
<th>Response Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.70870</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>2</td>
<td>0.72383</td>
<td>1</td>
<td>1 1 -1 -1</td>
</tr>
<tr>
<td>3</td>
<td>0.70618</td>
<td>1</td>
<td>-1 1 -1 -1</td>
</tr>
<tr>
<td>4</td>
<td>0.73897</td>
<td>1</td>
<td>-1 -1 1 1</td>
</tr>
</tbody>
</table>
Output 22.9.5. ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>2385.34</td>
<td><.0001</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>0.85</td>
<td>0.3570</td>
</tr>
<tr>
<td>Treatment</td>
<td>1</td>
<td>8.20</td>
<td>0.0042</td>
</tr>
<tr>
<td>Time*Treatment</td>
<td>1</td>
<td>2.40</td>
<td>0.1215</td>
</tr>
<tr>
<td>Residual</td>
<td>0</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

The analysis of variance table in Output 22.9.5 shows that there is no significant effect of Time, either by itself or in its interaction with Treatment. Thus, the second model includes only the Treatment effect. Again, the response functions are marginal probabilities, and the repeated measurement factors are Time and Treatment. A main effect model with respect to Treatment is fit. The following statements produce Output 22.9.6 through Output 22.9.9:

```sas
title2 'Marginal Symmetry, Reduced Model';
model std1*test1*std2*test2=_response_/noprofile corrb;
repeated Time 2, Treatment 2 / _response_=Treatment;
run;
```

Output 22.9.6. Diagnosis Data: Reduced Model

Output 22.9.7. Design Matrix
The analysis of variance table for the reduced model (Output 22.9.8) shows that the model fits (since the Residual is nonsignificant) and that the treatment effect is significant. The negative parameter estimate for Treatment in Output 22.9.9 shows that the first level of treatment (std) has a smaller probability of the first response level (neg) than the second level of treatment (test). In other words, the standard diagnostic procedure gives a significantly higher probability of a positive response than the test diagnostic procedure.

The next example illustrates a RESPONSE statement that, at each time, computes the sensitivity and specificity of the test diagnostic procedure with respect to the standard procedure. Since these are measures of the relative accuracy of the two diagnostic procedures, the repeated measurement factors in this case are labeled Time and Accuracy. Only fifteen of the sixteen possible responses are observed, so addi-
tional care must be taken in formulating the RESPONSE statement for computation of sensitivity and specificity.

The following statements produce Output 22.9.11 through Output 22.9.15:

```
title2 'Sensitivity and Specificity Analysis, ' 'Main-Effects Model';
model std1*test1*std2*test2=_response_ / covb noprofile;
repeated Time 2, Accuracy 2 / _response_=Time Accuracy;
response exp 1 -1 0 0 0 0 0 0, 0 0 1 -1 0 0 0 0, 0 0 0 0 1 -1 0 0, 0 0 0 0 0 0 1 -1
log 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1,
  0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1,
  1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
  1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0,
  0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1,
  0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1,
  1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0,
  1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0;
quit;
```

Output 22.9.11. Diagnosis Data: Sensitivity and Specificity Analysis

```
   Diagnostic Procedure Comparison
    Sensitivity and Specificity Analysis, Main-Effects Model
        The CATMOD Procedure
      Response std1*test1*std2*test2 Response Levels 15
    Weight Variable wt Populations 1
      Data Set A Total Frequency 793
    Frequency Missing 0 Observations 15
```

Output 22.9.12. Design Matrix

```
   Diagnostic Procedure Comparison
    Sensitivity and Specificity Analysis, Main-Effects Model
        The CATMOD Procedure
    Sample Number Response Function Design Matrix
      Function Response 1 2 3
            1 0.82251 1 1 1
            2 0.94840 1 1 -1
            3 0.81545 1 -1 1
            4 0.96964 1 -1 -1
```
For the sensitivity and specificity analysis, the four response functions displayed next to the design matrix (Output 22.9.12) represent the following:

1. sensitivity, time 1
2. specificity, time 1
3. sensitivity, time 2
4. specificity, time 2

The sensitivities and specificities are for the test diagnostic procedure relative to the standard procedure.

Output 22.9.13. ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>6448.79</td>
<td><.0001</td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>4.10</td>
<td>0.0428</td>
</tr>
<tr>
<td>Accuracy</td>
<td>1</td>
<td>38.81</td>
<td><.0001</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
<td>1.00</td>
<td>0.3178</td>
</tr>
</tbody>
</table>

The ANOVA table shows that an additive model fits, that there is a significant effect of time, and that the sensitivity is significantly different from the specificity.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>0.8892</td>
<td>0.0111</td>
<td>6448.79</td>
<td><.0001</td>
</tr>
<tr>
<td>Time</td>
<td>2</td>
<td>-0.00932</td>
<td>0.00460</td>
<td>4.10</td>
<td>0.0428</td>
</tr>
<tr>
<td>Accuracy</td>
<td>3</td>
<td>-0.0702</td>
<td>0.0113</td>
<td>38.81</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Example 22.10. Direct Input of Response Functions and Covariance Matrix

This example illustrates the ability of PROC CATMOD to operate on an existing vector of functions and the corresponding covariance matrix. The estimates under investigation are composite indices summarizing the responses to eighteen psychological questions pertaining to general well-being. These estimates are computed for domains corresponding to an age by sex cross-classification, and the covariance matrix is calculated via the method of balanced repeated replications. The analysis is directed at obtaining a description of the variation among these domain estimates. The data are from Koch and Stokes (1979).

```sas
data fbeing(type=est);
    input b1-b5 _type_ $ _name_ $ b6-b10 #2;
    datalines;
    7.24978 7.18991 7.35960 7.31937 7.55184
    0.00739 0.00019 0.00146 -0.00082 0.00076 cov b1
    0.00189 0.00118 0.00140 -0.00140 0.00039
    0.00019 0.01172 0.00029 0.000029 0.00083 cov b2
    -0.00123 -0.00629 -0.00088 -0.00232 0.00034
    0.00146 0.00183 0.01050 -0.00173 0.00011 cov b3
    0.00434 -0.00059 -0.00055 0.00023 -0.00013
    -0.00082 0.00029 -0.00173 0.01335 0.00014 cov b4
    0.00158 0.00212 0.00211 0.00066 0.00240
    0.00076 0.00083 0.00011 0.00140 0.01430 cov b5
    -0.00050 -0.00098 0.00239 -0.00010 0.00213
    0.00189 -0.00123 0.00434 0.00158 -0.00050 cov b6
    0.01110 0.00101 0.00177 -0.00018 -0.00082
    -0.00018 0.00369 0.00036 0.00212 -0.00098 cov b7
    0.00101 0.02342 0.00144 0.00369 0.25300
    0.00140 -0.00088 -0.00055 0.00211 0.00239 cov b8
    0.00177 0.00144 0.01060 0.00157 0.00226
    -0.00140 -0.00232 0.00023 0.00066 -0.00010 cov b9
    -0.00018 0.00369 0.00157 0.02298 0.00918
```

Output 22.9.14 shows that the predicted sensitivities and specificities are lower for time 1 (since parameter 2 is negative). It also shows that the sensitivity is significantly less than the specificity.
The following statements produce Output 22.10.1 through Output 22.10.3:

```sas
proc catmod data=fbeing;
  title 'Complex Sample Survey Analysis';
  response read b1-b10;
  factors sex $ 2, age $ 5 / _response_=sex age
    profile=(male '25-34',
            male '35-44',
            male '45-54',
            male '55-64',
            male '65-74',
            female '25-34',
            female '35-44',
            female '45-54',
            female '55-64',
            female '65-74');
  model _f=_response_
    / title='Main Effects for Sex and Age';
run;
```

Output 22.10.1. Health Survey Data: Using Direct Input

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Function</th>
<th>Response Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.93726</td>
<td>1 1 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.92509</td>
<td>1 1 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.82815</td>
<td>1 1 0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.73696</td>
<td>1 1 0 0 0 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8.16791</td>
<td>1 1 -1 -1 -1 -1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7.24978</td>
<td>1 -1 1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.18991</td>
<td>1 -1 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7.35960</td>
<td>1 -1 0 0 1 0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7.31937</td>
<td>1 -1 0 0 0 1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7.55184</td>
<td>1 -1 -1 -1 -1 -1</td>
<td></td>
</tr>
</tbody>
</table>
Output 22.10.2. ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>28089.07</td>
<td><.0001</td>
</tr>
<tr>
<td>sex</td>
<td>1</td>
<td>65.84</td>
<td><.0001</td>
</tr>
<tr>
<td>age</td>
<td>4</td>
<td>9.21</td>
<td>0.0561</td>
</tr>
<tr>
<td>Residual</td>
<td>4</td>
<td>2.92</td>
<td>0.5713</td>
</tr>
</tbody>
</table>

Output 22.10.3. Parameter Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>7.6319</td>
<td>0.0455</td>
<td>28089.07</td>
<td><.0001</td>
</tr>
<tr>
<td>sex</td>
<td>2</td>
<td>0.2900</td>
<td>0.0357</td>
<td>65.84</td>
<td><.0001</td>
</tr>
<tr>
<td>age</td>
<td>3</td>
<td>-0.00780</td>
<td>0.0645</td>
<td>0.01</td>
<td>0.9037</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-0.0465</td>
<td>0.0636</td>
<td>0.54</td>
<td>0.4642</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-0.0343</td>
<td>0.0557</td>
<td>0.38</td>
<td>0.5387</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-0.1098</td>
<td>0.0764</td>
<td>2.07</td>
<td>0.1506</td>
</tr>
</tbody>
</table>

The analysis of variance table (Output 22.10.2) shows that the additive model fits and that there is a significant effect of both sex and age. The following statements produce Output 22.10.4:

```sas
contrast 'No Age Effect for Age<65' allParms 0 0 1 0 0 -1,
      allParms 0 0 0 1 0 -1,
      allParms 0 0 0 0 1 -1;
run;
```
Output 22.10.4. Age<65 Contrast

<table>
<thead>
<tr>
<th>Contrast</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Age Effect for Age<65</td>
<td>3</td>
<td>0.72</td>
<td>0.8678</td>
</tr>
</tbody>
</table>

The analysis of the contrast shows that there is no significant difference among the four age groups that are under age 65. Thus, the next model contains a binary age effect (less than 65 versus 65 and over). The following statements produce Output 22.10.5 through Output 22.10.7:

```sas
model _f_=(1 1 1,
        1 1 1,
        1 1 1,
        1 1 -1,
        1 -1 1,
        1 -1 1,
        1 -1 1,
        1 -1 -1)
    (1='Intercept' ,
     2='Sex' ,
     3='Age (25-64 vs. 65-74)')
/title='Binary Age Effect (25-64 vs. 65-74)' ;
quit;
```
Output 22.10.5. Design Matrix

```
<table>
<thead>
<tr>
<th>Sample</th>
<th>Function Number</th>
<th>Response Function</th>
<th>Design Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.93726</td>
<td>1 1 1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.92509</td>
<td>1 1 1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7.82815</td>
<td>1 1 1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>7.73696</td>
<td>1 1 1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8.16791</td>
<td>1 1 -1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>7.24978</td>
<td>1 -1 1</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7.18991</td>
<td>1 -1 1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>7.35960</td>
<td>1 -1 1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>7.31937</td>
<td>1 -1 1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>7.55184</td>
<td>1 -1 -1</td>
</tr>
</tbody>
</table>
```

Output 22.10.6. ANOVA Table

```
<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>19087.16</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>72.64</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Age (25-64 vs. 65-74)</td>
<td>1</td>
<td>8.49</td>
<td>0.0036</td>
</tr>
<tr>
<td>Residual</td>
<td>7</td>
<td>3.64</td>
<td>0.8198</td>
</tr>
</tbody>
</table>
```
Output 22.10.7. Parameter Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>7.7183</td>
<td>0.0559</td>
<td>19087.16</td>
<td><.0001</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.2800</td>
<td>0.0329</td>
<td>72.64</td>
<td><.0001</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.1304</td>
<td>0.0448</td>
<td>8.49</td>
<td>0.0036</td>
</tr>
</tbody>
</table>

The analysis of variance table in Output 22.10.6 shows that the model fits (note that the goodness-of-fit statistic is the sum of the previous one (Output 22.10.2) plus the chi-square for the contrast matrix in Output 22.10.4). The age and sex effects are significant. Since the second parameter in the table of estimates is positive, males (the first level for the sex variable) have a higher predicted index of well-being than females. Since the third parameter estimate is negative, those younger than age 65 (the first level of age) have a lower predicted index of well-being than those 65 and older.

Example 22.11. Predicted Probabilities

Suppose you have collected marketing research data to examine the relationship between a prospect’s likelihood of buying your product and their education and income. Specifically, the variables are as follows.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Levels</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>high, low</td>
<td>prospect’s education level</td>
</tr>
<tr>
<td>Income</td>
<td>high, low</td>
<td>prospect’s income level</td>
</tr>
<tr>
<td>Purchase</td>
<td>yes, no</td>
<td>Did prospect purchase product?</td>
</tr>
</tbody>
</table>

The following statements first create a data set, loan, that contains the marketing research data, then they use the CATMOD procedure to fit a model, obtain the parameter estimates, and obtain the predicted probabilities of interest. These statements produce Output 22.11.1 through Output 22.11.5.
data loan;
 input Education $ Income $ Purchase $ wt;
 datalines;
 high high yes 54
 high high no 23
 high low yes 41
 high low no 12
 low high yes 35
 low high no 42
 low low yes 19
 low low no 8
;

ods output PredictedValues=Predicted
 (keep=Education Income PredFunction);

proc catmod data=loan order=data;
 weight wt;
 response marginals;
 model Purchase=Education Income / pred;
run;

proc sort data=Predicted;
 by descending PredFunction;
run;

proc print data=Predicted;
run;

Notice that the preceding statements use the Output Delivery system (ODS) to output the parameter estimates instead of the OUT= option, though either can be used.

Output 22.11.1. Marketing Research Data: Obtaining Predicted Probabilities

<table>
<thead>
<tr>
<th>The CATMOD Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
</tr>
<tr>
<td>Weight Variable</td>
</tr>
<tr>
<td>Data Set</td>
</tr>
<tr>
<td>Frequency Missing</td>
</tr>
</tbody>
</table>
Output 22.11.2. Profiles and Design Matrix

The CATMOD Procedure

Population Profiles

<table>
<thead>
<tr>
<th>Sample</th>
<th>Education</th>
<th>Income</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>high</td>
<td>high</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>high</td>
<td>low</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>low</td>
<td>high</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>low</td>
<td>low</td>
<td>27</td>
</tr>
</tbody>
</table>

Response Profiles

<table>
<thead>
<tr>
<th>Response</th>
<th>Purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
</tr>
</tbody>
</table>

Response Design Matrix

<table>
<thead>
<tr>
<th>Sample</th>
<th>Response Function 1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.70130</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.77358</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.45455</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0.70370</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Output 22.11.3. ANOVA Table and Parameter Estimates

The CATMOD Procedure

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>418.36</td>
<td><.0001</td>
</tr>
<tr>
<td>Education</td>
<td>1</td>
<td>8.85</td>
<td>0.0029</td>
</tr>
<tr>
<td>Income</td>
<td>1</td>
<td>4.70</td>
<td>0.0302</td>
</tr>
<tr>
<td>Residual</td>
<td>1</td>
<td>1.84</td>
<td>0.1745</td>
</tr>
</tbody>
</table>

Analysis of Weighted Least Squares Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>0.6481</td>
<td>0.0317</td>
<td>418.36</td>
<td><.0001</td>
</tr>
<tr>
<td>Education</td>
<td>2</td>
<td>0.0924</td>
<td>0.0311</td>
<td>8.85</td>
<td>0.0029</td>
</tr>
<tr>
<td>Income</td>
<td>3</td>
<td>-0.0675</td>
<td>0.0312</td>
<td>4.70</td>
<td>0.0302</td>
</tr>
</tbody>
</table>
Output 22.11.4. Predicted Values and Residuals

<table>
<thead>
<tr>
<th>Sample</th>
<th>Education</th>
<th>Income</th>
<th>Function</th>
<th>Standard Error</th>
<th>Observed Function</th>
<th>Predicted Function</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>high</td>
<td>high</td>
<td>1</td>
<td>0.7012987</td>
<td>0.052158</td>
<td>0.67293982</td>
<td>0.02835888</td>
</tr>
<tr>
<td>2</td>
<td>high</td>
<td>low</td>
<td>1</td>
<td>0.77358491</td>
<td>0.057487</td>
<td>0.80803395</td>
<td>-0.034449</td>
</tr>
<tr>
<td>3</td>
<td>low</td>
<td>high</td>
<td>1</td>
<td>0.45454545</td>
<td>0.056744</td>
<td>0.48811031</td>
<td>-0.033565</td>
</tr>
<tr>
<td>4</td>
<td>low</td>
<td>low</td>
<td>1</td>
<td>0.7037037</td>
<td>0.087877</td>
<td>0.62320444</td>
<td>0.08049927</td>
</tr>
</tbody>
</table>

Output 22.11.5. Predicted Probabilities Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>Education</th>
<th>Income</th>
<th>Pred Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>high</td>
<td>low</td>
<td>0.80803395</td>
</tr>
<tr>
<td>2</td>
<td>high</td>
<td>high</td>
<td>0.67293982</td>
</tr>
<tr>
<td>3</td>
<td>low</td>
<td>low</td>
<td>0.62320444</td>
</tr>
<tr>
<td>4</td>
<td>low</td>
<td>high</td>
<td>0.48811031</td>
</tr>
</tbody>
</table>

You can use the predicted values (values of PredFunction in Output 22.11.5) as scores representing the likelihood that a randomly chosen subject from one of these populations will purchase the product. Notice that the Response Profiles in Output 22.11.2 show you that the first sorted level of Purchase is “yes,” indicating that the predicted probabilities are for Pr(Purchase='yes'). For example, someone with high education and low income has an estimated probability of purchase of 0.808. As with any response function estimate given by PROC CATMOD, this estimate can be obtained by cross-multiplying the row from the design matrix corresponding to the sample (sample number 2 in this case) with the vector of parameter estimates \((1 \times 0.6481) + (1 \times 0.0924) + (1 \times (-0.0675))\).

This ranking of scores can help in decision making (for example, with respect to allocation of advertising dollars, choice of advertising media, choice of print media, and so on).

References

don: Chapman and Hall.

