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Chapter 22
The CATMOD Procedure

Overview

The CATMOD procedure performs categorical data modeling of data that can be
represented by a contingency table. PROC CATMOD fits linear models to functions
of response frequencies, and it can be used for linear modeling, log-linear modeling,
logistic regression, and repeated measurement analysis. PROC CATMOD uses

� maximum likelihood (ML) estimation of parameters for log-linear models and
the analysis of generalized logits

� weighted least-squares (WLS) estimation of parameters for a wide range of
general linear models

The CATMOD procedure provides a wide variety of categorical data analyses, many
of which are generalizations of continuous data analysis methods. For example, anal-
ysis of variance, in the traditional sense, refers to the analysis of means and the parti-
tioning of variation among the means into various sources. Here, the termanalysis of
varianceis used in a generalized sense to denote the analysis of response functions
and the partitioning of variation among those functions into various sources. The re-
sponse functions might be mean scores if the dependent variables are ordinally scaled.
But they can also be marginal probabilities, cumulative logits, or other functions that
incorporate the essential information from the dependent variables.

Types of Input Data

The data that PROC CATMOD analyzes are usually supplied in one of two ways.
First, you can supply raw data, where each observation is a subject. Second, you can
supply cell count data, where each observation is a cell in a contingency table. (A
third way, which uses direct input of the covariance matrix, is also available; details
are given in the “Inputting Response Functions and Covariances Directly” section on
page 743.)

Suppose detergent preference is related to three other categorical variables: water
softness, water temperature, and previous use of a brand of detergent. In the raw data
case, each observation in the input data set identifies a given respondent in the study
and contains information on all four variables. The data set contains the same number
of observations as the survey had respondents. In the cell count case, each observation
identifies a given cell in the four-way table of water softness, water temperature,
previous use of brand, and brand preference. A fifth variable contains the number of
respondents in the cell. In the analysis, this fifth variable is identified in a WEIGHT
statement. The data set contains the same number of observations as the number
of cross-classifications formed by the four categorical variables. For more on this
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particular example, see Example 22.1 on page 780. For additional details, see the
section “Input Data Sets” on page 742.

Most of the examples in this chapter use cell counts as input and use a WEIGHT
statement.

Types of Statistical Analyses

This section illustrates, by example, the wide variety of categorical data analyses that
PROC CATMOD provides. For each type of analysis, a brief description of the sta-
tistical problem and the SAS statements to provide the analysis are given. For each
analysis, assume that the input data set consists of a set of cell counts from a contin-
gency table. The variable specified in the WEIGHT statement contains these counts.
In all these analyses, both the dependent and independent variables are categorical.

Linear Model Analysis
Suppose you want to analyze the relationship between the dependent variables (r1,
r2) and the independent variables (a, b). Analyze the marginal probabilities of the
dependent variables, and use a main-effects model.

proc catmod;
weight wt;
response marginals;
model r1*r2=a b;

quit;

Log-Linear Model Analysis
Suppose you want to analyze the nominal dependent variables (r1, r2, r3) with a log-
linear model. Use maximum likelihood analysis, and include the main effects and the
r1* r2 interaction in the model. Obtain the predicted cell frequencies.

proc catmod;
weight wt;
model r1*r2*r3=_response_ / pred=freq;
loglin r1|r2 r3;

quit;

Logistic Regression
Suppose you want to analyze the relationship between the nominal dependent vari-
able (r) and the independent variables (x1, x2) with a logistic regression analysis.
Use maximum likelihood estimation.

proc catmod;
weight wt;
direct x1 x2;
model r=x1 x2;

quit;
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Types of Statistical Analyses � 699

If x1 and x2 are continuous so that each observation has a unique value of these
two variables, then it may be more appropriate to use the LOGISTIC, GENMOD, or
PROBIT procedure. See the “Logistic Regression” section on page 750.

Repeated Measures Analysis
Suppose the dependent variables (r1, r2, r3) represent the same type of measure-
ment taken at three different times. Analyze the relationship among the dependent
variables, the repeated measurement factor (time), and the independent variable (a).

proc catmod;
weight wt;
response marginals;
model r1*r2*r3=_response_|a;
repeated time 3 / _response_=time;

quit;

Analysis of Variance
Suppose you want to investigate the relationship between the dependent variable (r)
and the independent variables (a, b). Analyze the mean of the dependent variable,
and include all main effects and interactions in the model.

proc catmod;
weight wt;
response mean;
model r=a|b;

quit;

Linear Regression
PROC CATMOD can analyze the relationship between the dependent variables (r1,
r2) and the independent variables (x1, x2). Use a linear regression analysis to analyze
the marginal probabilities of the dependent variables.

proc catmod;
weight wt;
direct x1 x2;
response marginals;
model r1*r2=x1 x2;

quit;

Logistic Analysis of Ordinal Data
Suppose you want to analyze the relationship between the ordinally scaled depen-
dent variable (r) and the independent variable (a). Use cumulative logits to take into
account the ordinal nature of the dependent variable. Use weighted least-squares
estimation.

proc catmod;
weight wt;
response clogits;
model r=_response_ a;

quit;
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Sample Survey Analysis
Suppose the data set contains estimates of a vector of four functions and their covari-
ance matrix, estimated in such a way as to correspond to the sampling process that is
used. Analyze the functions with respect to the independent variables (a, b), and use
a main-effects model.

proc catmod;
response read b1-b10;
model _f_=_response_;
factors a 2 , b 5 / _response_=a b;

quit;

Background: The Underlying Model

The CATMOD procedure analyzes data that can be represented by a two-dimensional
contingency table. The rows of the table correspond to populations (or samples)
formed on the basis of one or more independent variables. The columns of the ta-
ble correspond to observed responses formed on the basis of one or more dependent
variables. The frequency in the(i; j)th cell is the number of subjects in theith popu-
lation that have thejth response. The frequencies in the table are assumed to follow
a product multinomial distribution, corresponding to a sampling design in which a
simple random sample is taken for each population. The contingency table can be
represented as shown in Table 22.1.

Table 22.1. Contingency Table Representation

Response

Sample 1 2 � � � r Total

1 n11 n12 � � � n1r n1

2 n21 n22 � � � n2r n2
...

...
...

. . .
...

...

s ns1 ns2 � � � nsr ns

For each samplei, the probability of thejth response (�ij) is estimated by the sample
proportion,pij = nij=ni. The vector (p) of all such proportions is then transformed
into a vector of functions, denoted byF = F(p). If � denotes the vector of true
probabilities for the entire table, then the functions of the true probabilities, denoted
byF(�), are assumed to follow a linear model

EA(F) = F(�) = X�

whereEA denotes asymptotic expectation,X is the design matrix containing fixed
constants, and� is a vector of parameters to be estimated.
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PROC CATMOD provides two estimation methods:

� The maximum likelihood method estimates the parameters of the linear model
so as to maximize the value of the joint multinomial likelihood function of the
responses. Maximum likelihood estimation is available only for the standard
response functions, logits and generalized logits, which are used for logistic
regression analysis and log-linear model analysis. For details of the theory,
refer to Bishop, Fienberg, and Holland (1975).

� The weighted least-squares method minimizes the weighted residual sum of
squares for the model. The weights are contained in the inverse covariance
matrix of the functionsF(p). According to central limit theory, if the sample
sizes within populations are sufficiently large, the elements ofF andb (the
estimate of�) are distributed approximately as multivariate normal. This al-
lows the computation of statistics for testing the goodness of fit of the model
and the significance of other sources of variation. For details of the theory,
refer to Grizzle, Starmer, and Koch (1969) or Koch et al. (1977, Appendix 1).
Weighted least-squares estimation is available for all types of response func-
tions.

Following parameter estimation, hypotheses about linear combinations of the param-
eters can be tested. For that purpose, PROC CATMOD computes generalized Wald
(1943) statistics, which are approximately distributed as chi-square if the sample sizes
are sufficiently large and the null hypotheses are true.

Linear Models Contrasted with Log-Linear Models

Linear model methods (as typified by the Grizzle, Starmer, Koch approach) make
a very clear distinction between independent and dependent variables. The empha-
sis of these methods is estimation and hypothesis testing of the model parameters.
Therefore, it is easy to test for differences among probabilities, perform repeated
measurement analysis, and test for marginal homogeneity, but it is awkward to test
independence and generalized independence. These methods are a natural extension
of the usual ANOVA approach for continuous data.

In contrast, log-linear model methods (as typified by the Bishop, Fienberg, Holland
approach) do not make an a priori distinction between independent and dependent
variables, although model specifications that allow for the distinction can be made.
The emphasis of these methods is on model building, goodness-of-fit tests, and esti-
mation of cell frequencies or probabilities for the underlying contingency table. With
these methods, it is easy to test independence and generalized independence, but it is
awkward to test for differences among probabilities, do repeated measurement anal-
ysis, and test for marginal homogeneity.
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Using PROC CATMOD Interactively

You can use the CATMOD procedure interactively. After specifying a model with a
MODEL statement and running PROC CATMOD with a RUN statement, you can ex-
ecute any statement without reinvoking PROC CATMOD. You can execute the state-
ments singly or in groups by following the single statement or group of statements
with a RUN statement. Note that you can use more than one MODEL statement; this
is an important difference from the GLM procedure.

If you use PROC CATMOD interactively, you can end the CATMOD procedure with
a DATA step, another PROC step, an ENDSAS statement, or a QUIT statement. The
syntax of the QUIT statement is

quit;

When you are using PROC CATMOD interactively, additional RUN statements do
not end the procedure but tell the procedure to execute additional statements.

When the CATMOD procedure detects a BY statement, it disables interactive pro-
cessing; that is, once the BY statement and the next RUN statement are encountered,
processing proceeds for each BY group in the data set, and no additional statements
are accepted by the procedure. For example, the following statements tell PROC
CATMOD to do three analyses: one for the entire data set, one for males, and one for
females.

proc catmod;
weight wt;
response marginals;
model r1*r2=a|b;

run;
by sex;

run;

Note that the BY statement may appear after the first RUN statement; this is an im-
portant difference from PROC GLM, which requires that the BY statement appear
before the first RUN statement.

SAS OnlineDoc: Version 8



Weighted-Least-Squares Analysis of Mean Response � 703

Getting Started

The CATMOD procedure is a general modeling procedure for categorical data analy-
sis, and it can be used for very sophisticated analyses that require matrix specification
of the response function and the design matrix. It can be used to perform very basic
analysis-of-variance-type analyses that require very few statements. The following is
a basic example.

Weighted-Least-Squares Analysis of Mean Response

Consider the data in the following table (Stokes, Davis, and Koch 1995).

Table 22.2. Colds in Children

Periods with Colds
Sex Residence 0 1 2 Total
Female Rural 45 64 71 180
Female Urban 80 104 116 300
Male Rural 84 124 82 290
Male Urban 106 117 87 310

For males and females in rural and urban counties, the number of periods (of two)
in which subjects report cold symptoms are recorded. Thus, 45 subjects who were
female and in rural counties report no cold symptoms, and 71 subjects who are female
and from rural counties report colds in both periods.

The question of interest is whether the mean number of periods with colds reported is
associated with gender or type of county. There is no reason to believe that the mean
number of periods with colds is normally distributed, so a weighted least-squares
analysis of these data is performed with PROC CATMOD instead of an analysis of
variance with PROC ANOVA or PROC GLM.

The input data for categorical data is often recorded in frequency form, with the
counts for each particular profile being the input values. Thus, for the colds data, the
input SAS data setcolds is created with the following statements. The variablecount
contains the frequency of observations that have the particular profile described by
the values of the other variables on that input line.

data colds;
input sex $ residence $ periods count @@;

datalines;
female rural 0 45 female rural 1 64 female rural 2 71
female urban 0 80 female urban 1 104 female urban 2 116
male rural 0 84 male rural 1 124 male rural 2 82
male urban 0 106 male urban 1 117 male urban 2 87
;
run;

In order to fit a model to the mean number of periods with colds, you have to specify
the response function in PROC CATMOD. The default response function is the logit
if the response variable has two values, and it is generalized logits if the response
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variable has more than two values. If you want a different response function, then
you request that function in the RESPONSE statement. To request the mean number
of periods with colds, you specify the MEANS option in the RESPONSE statement.

You can request a model consisting of the main effects and interaction of the variables
sex andresidence just as you would in the GLM procedure. Unlike the GLM proce-
dure, you don’t need to use a CLASS statement in PROC CATMOD to treat a variable
as a classification variable. All variables in the MODEL statement in the CATMOD
procedure are treated as classification variables unless you specify otherwise with a
DIRECT statement.

Thus, the PROC CATMOD statements required to model mean periods of colds with
a main effects and interaction model are

proc catmod data=colds;
weight count;
response means;
model periods = sex residence sex*residence;

run;

The results of this analysis are shown in Figure 22.1 through Figure 22.3.

The CATMOD Procedure

Response periods Response Levels 3
Weight Variable count Populations 4
Data Set COLDS Total Frequency 1080
Frequency Missing 0 Observations 12

Population Profiles

Sample sex residence Sample Size
--------------------------------------------

1 female rural 180
2 female urban 300
3 male rural 290
4 male urban 310

Response Profiles

Response periods
-------------------

1 0
2 1
3 2

Figure 22.1. Model Information and Profile Tables

The CATMOD procedure first displays a summary of the contingency table you are
analyzing. The “Population Profiles” table lists the values of the explanatory variables
that define each population, or row of the underlying contingency table, and labels
each group with a sample number. The number of observations in each population is
also displayed. The “Response Profiles” table lists the variable levels that define the
response, or columns of the underlying contingency table.
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The CATMOD Procedure

Response Design Matrix
Sample Function 1 2 3 4
--------------------------------------------------------

1 1.14444 1 1 1 1
2 1.12000 1 1 -1 -1
3 0.99310 1 -1 1 -1
4 0.93871 1 -1 -1 1

Figure 22.2. Observed Response Functions and Design Matrix

The “Design Matrix” table contains the observed response functions—in this case,
the mean number of periods with colds for each of the populations—and the design
matrix. The first column of the design matrix contains the coefficients for the inter-
cept parameter, the second column coefficients are for thesex parameter (note that
the sum-to-zero constraint of a full-rank parameterization implies that the coefficient
for males is the negative of that for females. The parameter is called thedifferential
effectfor females), the third column is similarly set up forresidence, and the last
column is for the interaction.

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-----------------------------------------------
Intercept 1 1841.13 <.0001
sex 1 11.57 0.0007
residence 1 0.65 0.4202
sex*residence 1 0.09 0.7594

Residual 0 . .

Figure 22.3. ANOVA Table for the Saturated Model

The model-fitting results are displayed in the “Analysis of Variance” table (Figure
22.3), which is similar to an ANOVA table. The effects from the right-hand side of
the MODEL statement are listed under the “Source” column.

The interaction effect is nonsignificant, so the data is reanalyzed using a main-effects
model. Since PROC CATMOD is an interactive procedure, you can analyze the main-
effects model by simply submitting the new MODEL statement as follows. The re-
sulting tables are displayed in Figure 22.4 through Figure 22.7.

model periods = sex residence;
run;

SAS OnlineDoc: Version 8
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The CATMOD Procedure

Response periods Response Levels 3
Weight Variable count Populations 4
Data Set COLDS Total Frequency 1080
Frequency Missing 0 Observations 12

Population Profiles

Sample sex residence Sample Size
--------------------------------------------

1 female rural 180
2 female urban 300
3 male rural 290
4 male urban 310

Response Profiles

Response periods
-------------------

1 0
2 1
3 2

Figure 22.4. Population and Response Profiles, Main-Effects Model

The CATMOD Procedure

Response Design Matrix
Sample Function 1 2 3
-----------------------------------------------

1 1.14444 1 1 1
2 1.12000 1 1 -1
3 0.99310 1 -1 1
4 0.93871 1 -1 -1

Figure 22.5. Design Matrix for the Main-Effects Model

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 1882.77 <.0001
sex 1 12.08 0.0005
residence 1 0.76 0.3839

Residual 1 0.09 0.7594

Figure 22.6. ANOVA Table for the Main-Effects Model

The goodness-of-fit chi-square statistic is 0.09 with one degree of freedom and ap-
value of 0.7594; hence, the model fits the data. Note that the chi-square tests in Figure
22.6 test whether all the parameters for a given effect are zero. In this model, each
effect has only one parameter, and therefore only one degree of freedom.
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The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 1.0501 0.0242 1882.77 <.0001
sex 2 0.0842 0.0242 12.08 0.0005
residence 3 0.0210 0.0241 0.76 0.3839

Figure 22.7. Parameter Estimates for the Main-Effects Model

The “Analysis of Weighted-Least-Squares Estimates” table lists the parameters and
their estimates for the model, as well as the standard errors, Wald statistics, andp-
values. These chi-square tests are single degree-of-freedom tests that the individual
parameter is equal to zero. They are equal to the tests shown in Figure 22.6 since
each effect is composed of exactly one parameter.

You can compute the mean number of periods of colds for the first population (Sample
1, females in rural residences) from Table 22.2 as follows.

mean colds= 0�
45

180
+ 1�

64

180
+ 2�

71

180
= 1:1444

This is the same value as reported for the Response Function for Sample 1 in Figure
22.5.

PROC CATMOD is fitting a model to the mean number of colds in each population
as follows:

2
664

Expected number of colds for rural females
urban females

rural males
urban males

3
775 =

2
664

1 1 1
1 1 �1
1 �1 1
1 �1 �1

3
775
2
4 �0

�1
�2

3
5

where the design matrix is the same one displayed in Figure 22.5,�0 is the mean
number of colds averaged over all the populations,�1 is the differential effect for
females, and�2 is the differential effect for rural residences. The parameter estimates
are shown in Figure 22.7; thus, the expected number of periods with colds for rural
females from this model is

1� 1:0501 + 1� 0:0842 + 1� 0:0210 = 1:1553

and the expected number for rural males from this model is

1� 1:0501 � 1� 0:0842 + 1� 0:0210 = 0:9869

Notice also, in Figure 22.7, that the differential effect for residence is nonsignificant
(p = 0:3839): If you continued the analysis by fitting a single effect model (sex), you
would need to include a POPULATION statement to maintain the same underlying
contingency table.
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population sex residence;
model periods = sex;

run;

Generalized Logits Model

Over the course of one school year, third graders from three different schools are
exposed to three different styles of mathematics instruction: a self-paced computer-
learning style, a team approach, and a traditional class approach. The students are
asked which style they prefer and their responses, classified by the type of program
they are in (a regular school day versus a regular day supplemented with an afternoon
school program) are displayed in Table 22.3. The data set is from Stokes, Davis, and
Koch (1995).

Table 22.3. School Program Data

Learning Style Preference
School Program Self Team Class

1 Regular 10 17 26
1 Afternoon 5 12 50
2 Regular 21 17 26
2 Afternoon 16 12 36
3 Regular 15 15 16
3 Afternoon 12 12 20

The levels of the response variable (self, team, and class) have no essential ordering,
hence a logistic regression is performed on the generalized logits. The model to be
fit is

log

�
�hij
�hir

�
= �j + x

0

hi�j

where�hij is the probability that a student in schoolh and programi prefers teaching
style j, j 6= r, and styler is the class style. There are separate sets of intercept
parameters�j and regression parameters�j for each logit, and the matrixxhi is the
set of explanatory variables for thehith population. Thus, two logits are modeled for
each school and program combination (population): the logit comparing self to class
and the logit comparing team to class.

The following statements create the data setschool and request the analysis. Gener-
alized logits are the default response functions, and maximum likelihood estimation
is the default method for analyzing generalized logits, so only the WEIGHT and
MODEL statements are required. The option ORDER=DATA means that the re-
sponse variable levels are ordered as they exist in the data set: self, team, and class;
thus the logits are formed by comparing self to class and by comparing team to class.
The results of this analysis are shown in Figure 22.8 and Figure 22.9.
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Generalized Logits Model � 709

data school;
length Program $ 9;
input School Program $ Style $ Count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 afternoon self 5 1 afternoon team 12 1 afternoon class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 afternoon self 16 2 afternoon team 12 2 afternoon class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 afternoon self 12 3 afternoon team 12 3 afternoon class 20
;
proc catmod order=data;

weight Count;
model Style=School Program School*Program;

run;

The CATMOD Procedure

Response Style Response Levels 3
Weight Variable Count Populations 6
Data Set SCHOOL Total Frequency 338
Frequency Missing 0 Observations 18

Population Profiles

Sample School Program Sample Size
--------------------------------------------

1 1 regular 53
2 1 afternoon 67
3 2 regular 64
4 2 afternoon 64
5 3 regular 46
6 3 afternoon 44

Response Profiles

Response Style
-----------------

1 self
2 team
3 class

Figure 22.8. Model Information and Profile Tables

A summary of the data set is displayed in Figure 22.8; the variable levels that form the
three responses and six populations are listed in the “Response Profiles” and “Pop-
ulation Profiles” table, respectively. A table containing the iteration history is also
produced, but it is not displayed here.
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The CATMOD Procedure

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 2 40.05 <.0001
School 4 14.55 0.0057
Program 2 10.48 0.0053
School*Program 4 1.74 0.7827

Likelihood Ratio 0 . .

Figure 22.9. ANOVA Table

The analysis of variance table is displayed in Figure 22.9. Since this is a saturated
model, there are no degrees of freedom remaining for a likelihood ratio test, and miss-
ing values are displayed in the table. The interaction effect is clearly nonsignificant,
so a main effects model is fit.

Since PROC CATMOD is an interactive procedure, you can analyze the main effects
model by simply submitting the new MODEL statement as follows.

model Style=School Program;
run;

The CATMOD Procedure

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 2 39.88 <.0001
School 4 14.84 0.0050
Program 2 10.92 0.0043

Likelihood Ratio 4 1.78 0.7766

Figure 22.10. ANOVA Table

You can check the population and response profiles (not shown) to confirm that they
are the same as those in Figure 22.8. The analysis of variance table is shown in
Figure 22.10. The likelihood ratio chi-square statistic is 1.78 with ap-value of 0.7766,
indicating a good fit; the Wald chi-square tests for the school and program effects are
also significant. SinceSchool has three levels, two parameters are estimated for each
of the two logits they modeled, for a total of four degrees of freedom. SinceProgram
has two levels, one parameter is estimated for each of the two logits, for a total of two
degrees of freedom.
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The CATMOD Procedure

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 -0.7979 0.1465 29.65 <.0001

2 -0.6589 0.1367 23.23 <.0001
School 3 -0.7992 0.2198 13.22 0.0003

4 -0.2786 0.1867 2.23 0.1356
5 0.2836 0.1899 2.23 0.1352
6 -0.0985 0.1892 0.27 0.6028

Program 7 0.3737 0.1410 7.03 0.0080
8 0.3713 0.1353 7.53 0.0061

Figure 22.11. Parameter Estimates

The parameter estimates and tests for individual parameters are displayed in Figure
22.11. The ordering of the parameters corresponds to the order of the population and
response variables as shown in the profile tables (see Figure 22.8), with the levels of
the response variables varying most rapidly. So, for the first response function, which
is the logit that compares self to class, Parameter 1 is the intercept, Parameter 3 is the
parameter for the differential effect forSchool=1, Parameter 5 is the parameter for
the differential effect forSchool=2, and Parameter 7 is the parameter for the differ-
ential effect forProgram=regular. The even parameters are interpreted similarly for
the second logit, which compares team to class.

TheProgram variable (Parameters 7 and 8) has nearly the same effect on both logits,
while School=1 (Parameters 3 and 4) has the largest effect of the schools.

Syntax

The following statements are available in PROC CATMOD.

PROC CATMOD < options > ;
DIRECT < variables > ;
MODEL response-effect=design-effects < / options > ;
CONTRAST ’label’ row-description <; : : : ; row-description >

< / option > ;
BY variables ;
FACTORS factor-description <; : : : ; factor-description >

< / options > ;
LOGLIN effects ;
POPULATION variables ;
REPEATED factor-description <; : : : ; factor-description >

< / options > ;
RESPONSE function <; : : : ; function >< / options > ;
RESTRICT parameter=value < : : : parameter=value > ;
WEIGHT variable ;
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You can use all of the statements in PROC CATMOD interactively. The first RUN
statement executes all of the previous statements. Any subsequent RUN statement
executes only those statements that appear between the previous RUN statement and
the current one. However, if you specify a BY statement, interactive processing is
disabled. That is, all statements through the following RUN statement are processed
for each BY group in the data set, but no additional statements are accepted by the
procedure.

If more than one CONTRAST statement appears between two RUN statements, all
the CONTRAST statements are processed. If more than one RESPONSE state-
ment appears between two RUN statements, then analyses associated with each RE-
SPONSE statement are produced. For all other statements, there can be only one
occurrence of the statement between any two RUN statements. For example, if there
are two LOGLIN statements between two RUN statements, the first LOGLIN state-
ment is ignored.

The PROC CATMOD and MODEL statements are required. If specified, the DI-
RECT statement must precede the MODEL statement. As a result, if you use the
DIRECT statement interactively, you need to specify a MODEL statement in the
same RUN group. See the section “DIRECT Statement” on page 718 for an example.

The CONTRAST statements, if any, must follow the MODEL statement.

You can specify only one of the LOGLIN, REPEATED, and FACTORS statements
between any two RUN statements, because they all specify the same information:
how to partition the variation among the response functions within a population.

A QUIT statement executes any statements that have not been processed and then
ends the CATMOD procedure.

The purpose of each statement, other than the PROC CATMOD statement, are sum-
marized in the following list:

BY determines groups in which data are to be processed separately.

CONTRAST specifies a hypothesis to test.

DIRECT specifies independent variables that are to be treated quantitatively
(like continuous variables) rather than qualitatively (like class or
discrete variables). These variables also help to determine the rows
of the contingency table and distinguish response functions in one
population from those in other populations.

FACTORS specifies (1) the factors that distinguish response functions from
others in the same population and (2) model effects, based on these
factors, which help to determine the design matrix.

LOGLIN specifies log-linear model effects.

MODEL specifies (1) dependent variables, which determine the columns of
the contingency table, (2) independent variables, which distinguish
response functions in one population from those in other popula-
tions, and (3) model effects, which determine the design matrix
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and the way in which total variation among the response functions
is partitioned.

POPULATION specifies variables which determine the rows of the contingency
table and distinguish response functions in one population from
those in other populations.

REPEATED specifies (1) the repeated measurement factors that distinguish re-
sponse functions from others in the same population and (2) model
effects, based on these factors, which help to determine the design
matrix.

RESPONSE determines the response functions that are to be modeled.

RESTRICT restricts values of parameters to the values you specify.

WEIGHT specifies a variable containing frequency counts.

PROC CATMOD Statement

PROC CATMOD < options > ;

The PROC CATMOD statement invokes the procedure. You can specify the follow-
ing options.

DATA=SAS-data-set
names the SAS data set containing the data to be analyzed. By default, the CATMOD
procedure uses the most recently created SAS data set. For details, see the section
“Input Data Sets” on page 742.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters
long, wheren is a value between 24 and 200 characters. The default length is 24
characters.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you
only want to create output data sets with the OUT= or OUTEST= option in the RE-
SPONSE statement. A NOPRINT option is also available in the MODEL statement.
Note that this option temporarily disables the Output Delivery System (ODS); see
Chapter 15, “Using the Output Delivery System,” for more information.

ORDER=DATA
orders variable levels according to the sequence in which they appear in the input
stream. This affects the ordering of the populations, responses, and parameters, as
well as the definitions of the parameters. By default, the variable levels are ordered
according to their internal sorting sequence (for example, numeric order or alphabet-
ical order). See the section “Ordering of Populations and Responses” on page 744
for more information and examples.
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BY Statement

BY variables ;

You can specify a BY statement with PROC CATMOD to obtain separate analyses of
groups determined by the BY variables. When a BY statement appears, the procedure
expects the input data set to be sorted in order of the BY variables. Thevariablesare
one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

� Sort the data using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the CATMOD procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

� Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

When you specify a BY statement with PROC CATMOD, no further interactive pro-
cessing is possible. In other words, once the BY statement appears, all statements
up to the associated RUN statement are executed for each BY group in the data set.
After the RUN statement, no further statements are accepted by the procedure.

CONTRAST Statement

CONTRAST ’label’ row-description <; : : : ; row-description ></ option >;

where arow-descriptionis

< @n > effect values < : : : < @n > effect values>

The CONTRAST statement constructs and tests linear functions of the parameters in
the MODEL statement or effects listed in the LOGLIN statement. Each set of effects
(separated by commas) specifies one row or set of rows of the matrixC that PROC
CATMOD uses to test the hypothesisC� = 0.

CONTRAST statements must be preceded by the MODEL statement, and by the
LOGLIN statement, if one is used. You can specify the following terms in the CON-
TRAST statement.
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’ label’ specifies up to 256 characters of identifying information displayed with
the test. The ’label’ is required.

effect is one of the effects specified in the MODEL or LOGLIN statement, IN-
TERCEPT (for the intercept parameter), or ALL–PARMS (for the com-
plete set of parameters).

The ALL–PARMS option is regarded as an effect with the same num-
ber of parameters as the number of columns in the design matrix. This
is particularly useful when the design matrix is input directly, as in the
following example:

model y=(1 0 0 0,
1 0 1 0,
1 1 0 0,
1 1 1 1);

contrast ’Main Effect of B’ all_parms 0 1 0 0;
contrast ’Main Effect of C’ all_parms 0 0 1 0;
contrast ’B*C Interaction ’ all_parms 0 0 0 1;

values are numbers that form the coefficients of the parameters associated with
the given effect. If there are fewer values than parameters for an effect,
the remaining coefficients become zero. For example, if you specify two
values and the effect actually has five parameters, the final three are set to
zero.

@n points to the parameters in thenth set when the model has a separate
set of parameters for each of the response functions. The@n notation
is seldom needed. It enables you to test the variation among response
functions in the same population. However, it is usually easier to model
and test such variation by using the–RESPONSE– effect in the MODEL
statement or by using the ALL–PARMS designation. Usually, contrasts
are performed with respect to all of the response functions, and this is
what the CONTRAST statement does by default (in this case, do not use
the@n notation).

For example, if there are three response functions per population, then

contrast ’Level 1 vs. Level 2’ A 1 -1 0;

results in a three-degree-of-freedom test comparing the first two levels of
A simultaneously on the three response functions.

If, however, you want to specify a contrast with respect to the parameters
in thenth set only, then use a single@n in a row-description. For exam-
ple, to test that the first parameter ofA and the first parameter ofB are
zero in the third response function, specify

contrast ’A=0, B=0, Function 3’ @3 A 1 B 1;

To specify a contrast with respect to parameters in two or more different
sets of effects, use@n with each effect. For example,

contrast ’Average over Functions’ @1 A 1 0 -1
@2 A 1 1 -2;
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When the model does not have a separate set of parameters for each of
the response functions, the@n notation is invalid. This type of model is
called AVERAGED. For details, see the description of the AVERAGED
option on page 725 and the “Generation of the Design Matrix” section
on page 757.

You can specify the following options in the CONTRAST statement after a slash.

ALPHA= value
specifies the significance level of the confidence interval for each contrast when the
ESTIMATE= option is specified. The default is ALPHA=0.05, resulting in a 95%
confidence interval for each contrast.

ESTIMATE=keyword
EST=keyword

requests that each individual contrast (that is, each row,ci�, ofC�) or exponentiated
contrast(exp(ci�)) be estimated and tested. PROC CATMOD displays the point
estimate, its standard error, a Wald confidence interval, and a Wald chi-square test for
each contrast. The significance level of the confidence interval is controlled by the
ALPHA= option.

You can estimate the contrast or the exponentiated contrast, or both, by specifying
one of the following keywords:

PARM specifies that the contrast itself be estimated.

EXP specifies that the exponentiated contrast be estimated.

BOTH specifies that both the contrast and the exponentiated contrast be
estimated.

Specifying Contrasts
PROC CATMOD is parameterized differently than PROC GLM, so you must be care-
ful not to use the same contrasts that you would with PROC GLM. Since PROC
CATMOD uses a full-rank parameterization, all estimable parameters are directly
estimable without involving other parameters.

For example, suppose a class variableA has four levels. Then there are four parame-
ters (�1; �2; �3; �4), of which PROC CATMOD uses only the first three. The fourth
parameter is related to the others by the equation

�4 = ��1 � �2 � �3

To test the first versus the fourth level ofA, you would test�1 = �4, which is

�1 = ��1 � �2 � �3

or, equivalently,

2�1 + �2 + �3 = 0
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Therefore, you would use the following CONTRAST statement:

contrast ’1 vs. 4’ A 2 1 1;

To contrast the third level with the average of the first two levels, you would test

�1 + �2
2

= �3

or, equivalently,

�1 + �2 � 2�3 = 0

Therefore, you would use the following CONTRAST statement:

contrast ’1&2 vs. 3’ A 1 1 -2;

Other CONTRAST statements are constructed similarly; for example,

contrast ’1 vs. 2 ’ A 1 -1 0;
contrast ’1&2 vs. 4 ’ A 3 3 2;
contrast ’1&2 vs. 3&4’ A 2 2 0;
contrast ’Main Effect’ A 1 0 0,

A 0 1 0,
A 0 0 1;

The actual form of theC matrix depends on the effects in the model. The following
examples assume a single response function for each population.

proc catmod;
model y=a;
contrast ’1 vs. 4’ A 2 1 1;

run;

TheCmatrix for the preceding statements is

C = [ 0 2 1 1 ]

since the first parameter corresponds to the intercept.
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But if there is a variableB with three levels and you use the following statements,

proc catmod;
model y=b a;
contrast ’1 vs. 4’ A 2 1 1;

run;

then the CONTRAST statement induces theCmatrix

C = [ 0 0 0 2 1 1 ]

since the first parameter corresponds to the intercept and the next two correspond to
theB main effect.

You can also use the CONTRAST statement to test the joint effect of two or more
effects in the MODEL statement. For example, the joint effect ofA and B in the
previous model has five degrees of freedom and is obtained by specifying

contrast ’Joint Effect of A&B’ A 1 0 0,
A 0 1 0,
A 0 0 1,
B 1 0,
B 0 1;

The ordering of variable levels is determined by the ORDER= option in the PROC
CATMOD statement. Whenever you specify a contrast that depends on the order of
the variable levels, you should verify the order from the “Population Profiles” table,
the “Response Profiles” table, or the “One-Way Frequencies” table.

DIRECT Statement

DIRECT variables ;

The DIRECT statement lists numeric independent variables to be treated in a quan-
titative, rather than qualitative, way. The DIRECT statement is useful for logistic
regression, which is described in the “Logistic Regression” section on page 750. For
limitations of models involving continuous variables, see the “Continuous Variables”
section on page 751.

If specified, the DIRECT statement must precede the MODEL statement. For exam-
ple,

proc catmod;
direct X;
model Y=X;

run;
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SupposeX has five levels. Then the main effectX induces only one column in the
design matrix, rather than four. The values inserted into the design matrix are the
actual values ofX.

You can interactively change the variables declared as DIRECT variables by using
the statement without listing any variables. The following statements are valid:

proc catmod;
direct X;
model Y=X;
weight wt;

run;
direct;
model Y=X;

run;

The first MODEL statement uses the actual values ofX, and the second MODEL
statement uses the four variables created when PROC CATMOD generates the design
matrix. Note that the preceding statements can be run without a WEIGHT statement
if the input data are raw data rather than cell counts.

For more details, see the discussions of main and direct effects in the section “Gen-
eration of the Design Matrix” on page 757.

FACTORS Statement

FACTORS factor-description <; : : : ; factor-description >< / options > ;

where afactor-descriptionis

factor-name < $ >< levels >

andfactor-descriptions are separated from each other by a comma. The $ is required
for character-valued factors. The value oflevelsprovides the number of levels of the
factor identified by a givenfactor-name. For only one factor,levelsis optional; for
two or more factors, it is required.

The FACTORS statement identifies factors that distinguish response functions from
others in the same population. It also specifies how those factors are incorporated
into the model. You can use the FACTORS statement whenever there is more than
one response function per population and the keyword–RESPONSE– is specified in
the MODEL statement. You can specify the name, type, and number of levels of each
factor and the identification of each level.

The FACTORS statement is most useful when the response functions and their covari-
ance matrix are read directly from the input data set. In this case, PROC CATMOD
reads the response functions as though they are from one population (this poses no
problem in the multiple-population case because the appropriately constructed co-
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variance matrix is also read directly). Thus, you can use the FACTORS statement to
partition the variation among the response functions into appropriate sources, even
when the functions actually represent separate populations.

The format of the FACTORS statement is identical to that of the REPEATED state-
ment. In fact, repeated measurement factors are simply special cases of factors in
which some of the response functions correspond to multiple dependent variables
that are measurements on the same experimental (or sampling) units.

You cannot specify the FACTORS statement for an analysis that also contains the
REPEATED or LOGLIN statement since all of them specify the same information:
how to partition the variation among the response functions within a population.

In the FACTORS statement,

factor-name names a factor that corresponds to two or more response functions.
This name must be a valid SAS variable name, and it should not be
the same as the name of a variable that already exists in the data set
being analyzed.

$ indicates that the factor is character-valued. If the $ is omitted, then
PROC CATMOD assumes that the factor is numeric. The type of the
factor is relevant only when you use the PROFILE= option or when
the –RESPONSE–= option (described later in this section) specifies
nested-by-value effects.

levels specifies the number of levels of the corresponding factor. If there is
only one such factor, and the number is omitted, then PROC CAT-
MOD assumes that the number of levels is equal to the number of
response functions per population (q). Unless you specify the PRO-
FILE= option, the numberq must either be equal to or be a multiple
of the product of the number of levels of all the factors.

You can specify the following options in the FACTORS statement after a slash.

PROFILE=(matrix)
specifies the values assumed by the factors for each response function. There should
be one column for each factor, and the values in a given column (character or numeric)
should match the type of the corresponding factor. Character values are restricted to
16 characters or less. If there areq response functions per population, then the matrix
must havei rows, whereq must either be equal to or be a multiple ofi. Adjacent
rows of the matrix should be separated by a comma.

The values in the PROFILE matrix are useful for specifying models in those situations
where the study design is not a full factorial with respect to the factors. They can also
be used to specify nested-by-value effects in the–RESPONSE–= option. If you spec-
ify character values in both places (the PROFILE= option and the–RESPONSE–=
option), then the values must match with respect to whether or not they are enclosed
in quotes (that is, enclosed in quotes in both places or in neither place).

For an example of using the PROFILE= option, see Example 22.10 on page 821.
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–RESPONSE–=effects
specifies design effects. The variables named in the effects must befactor-names
that appear in the FACTORS statement. If the–RESPONSE–= option is omitted,
then PROC CATMOD builds a full factorial–RESPONSE– effect with respect to the
factors.

TITLE=’title’
displays thetitle at the top of certain pages of output that correspond to the current
FACTORS statement.

For an example of how the FACTORS statement is useful, consider the case where
the response functions and their covariance matrix are read directly from the input
data set. The TYPE=EST data set might be created in the following manner:

data direct(type=est);
input b1-b4 _type_ $ _name_ $8.;
datalines;

0.590463 0.384720 0.273269 0.136458 parms .
0.001690 0.000911 0.000474 0.000432 cov b1
0.000911 0.001823 0.000031 0.000102 cov b2
0.000474 0.000031 0.001056 0.000477 cov b3
0.000432 0.000102 0.000477 0.000396 cov b4
;

Suppose the response functions correspond to four populations that represent the
cross-classification of age (two groups) by sex. You can use the FACTORS statement
to identify these two factors and to name the effects in the model. The statements
required to fit a main-effects model to these data are

proc catmod data=direct;
response read b1-b4;
model _f_=_response_;
factors age 2, sex 2 / _response_=age sex;

run;

If you want to specify some nested-by-value effects, you can change the FACTORS
statement to

factors age $ 2, sex $ 2 /
_response_=age sex(age=’under 30’) sex(age=’30 & over’)

profile=(’under 30’ male,
’under 30’ female,
’30 & over’ male,
’30 & over’ female);
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If, by design or by chance, the study contains no male subjects under 30 years of
age, then there are only three response functions, and you can specify a main-effects
model as

proc catmod data=direct;
response read b2-b4;
model _f_=_response_;
factors age $ 2, sex $ 2 / _response_=age sex

profile=(’under 30’ female,
’30 & over’ male,
’30 & over’ female);

run;

When you specify two or more factors and omit the PROFILE= option, PROC CAT-
MOD presumes that the response functions are ordered so that the levels of the right-
most factor change most rapidly. For the preceding example, the order implied by the
FACTORS statement is as follows.

Response Dependent
Function Variable Age Sex

1 b1 1 1
2 b2 1 2
3 b3 2 1
4 b4 2 2

For additional examples of how to use the FACTORS statement, see the section “Re-
peated Measures Analysis” on page 754. All of the examples in that section are
applicable, with the REPEATED statement replaced by the FACTORS statement.

LOGLIN Statement

LOGLIN effects < / option > ;

The LOGLIN statement is used to define log-linear model effects. It can be used
whenever the default response functions (generalized logits) are used.

In the LOGLIN statement,effectsare design effects that contain dependent variables
in the MODEL statement. You can use the bar (j) and at (@) operators as well. The
following lists of effects are equivalent:

a b c a*b a*c b*c

and

a|b|c @2

When you use the LOGLIN statement, the keyword–RESPONSE– should be speci-
fied in the MODEL statement. For further information on log-linear model analysis,
see the “Log-Linear Model Analysis” section on page 751.
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You cannot specify the LOGLIN statement for an analysis that also contains the RE-
PEATED or FACTORS statement since all of them specify the same information:
how to partition the variation among the response functions within a population.

You can specify the following option in the LOGLIN statement after a slash.

TITLE=’title’
displays thetitle at the top of certain pages of output that correspond to this LOGLIN
statement.

The following statements give an example of how to use the LOGLIN statement.

proc catmod;
model a*b*c=_response_;
loglin a|b|c @ 2;

run;

These statements yield a log-linear model analysis that contains all main effects and
two-variable interactions. For more examples of log-linear model analysis, see the
“Log-Linear Model Analysis” section on page 751.

MODEL Statement

MODEL response-effect=< design-effects >< / options > ;

PROC CATMOD requires a MODEL statement. You can specify the following in a
MODEL statement:

response-effect can be either a single variable, a crossed effect with two or more
variables joined by asterisks, or–F–. The –F– specification in-
dicates that the response functions and their estimated covariance
matrix are to be read directly into the procedure. Theresponse-
effectindicates the dependent variables that determine the response
categories (the columns of the underlying contingency table).

design-effects specify potential sources of variation (such as main effects and in-
teractions) in the model. Thus, these effects determine the number
of model parameters, as well as the interpretation of such param-
eters. In addition, if there is no POPULATION statement, PROC
CATMOD uses these variables to determine the populations (the
rows of the underlying contingency table). When fitting the model,
PROC CATMOD adjusts the independent effects in the model for
all other independent effects in the model.

Design-effectscan be any of those described in the section “Spec-
ification of Effects” on page 745, or they can be defined by spec-
ifying the actual design matrix, enclosed in parentheses (see the
“Specifying the Design Matrix Directly” section on page 727). In
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addition, you can use the keyword–RESPONSE– alone or as part
of an effect. Effects cannot be nested within–RESPONSE–, so
effects of the formA(–RESPONSE–) are invalid.

For more information, see the “Log-Linear Model Analysis” sec-
tion on page 751 and the “Repeated Measures Analysis” section on
page 754.

Some examples of MODEL statements are

model r=a b; main effects only

model r=a b a*b; main effects with interaction

model r=a b(a); nested effect

model r=a|b; complete factorial

model r=a b(a=1) b(a=2); nested-by-value effects

model r*s=_response_; log-linear model

model r*s=a _response_(a); nested repeated measurement factor

model _f_=_response_; direct input of the response functions

The relationship between these specifications and the structure of the design matrix
X is described in the “Generation of the Design Matrix” section on page 757.

The following table summarizes the options available in the MODEL statement.
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Task Options
Specify details of computation
Generates maximum likelihood estimates ML
Generates weighted least-squares estimates GLS

WLS
Omits intercept term from the model NOINT
Adds a number to each cell frequency ADDCELL=
Averages main effects across response functions AVERAGED
Specifies the convergence criterion for maximum likelihood EPSILON=
Specifies the number of iterations for maximum likelihood MAXITER=

Request additional computation and tables
Estimated correlation matrix of estimates CORRB
Covariance matrix of response functions COV
Estimated covariance matrix of estimates COVB
Two-way frequency tables FREQ
One-way frequency tables ONEWAY
Predicted values PRED=

PREDICT
Probability estimates PROB
Crossproducts matrix XPX
Title TITLE=

Suppress output
Design matrix NODESIGN
Iterations for maximum likelihood NOITER
Parameter estimates NOPARM
Population and response profiles NOPROFILE

–RESPONSE– matrix NORESPONSE

The following list describes these options in alphabetical order.

ADDCELL= number
addsnumberto the frequency count in each cell, wherenumberis any positive num-
ber. This option has no effect on maximum likelihood analysis; it is used only for
weighted least-squares analysis.

AVERAGED
specifies that dependent variable effects can be modeled and that independent vari-
able main effects are averaged across the response functions in a population. For
further information on the effect of using (or not using) the AVERAGED option, see
the “Generation of the Design Matrix” section on page 757. Direct input of the de-
sign matrix or specification of the–RESPONSE– keyword in the MODEL statement
automatically induces an AVERAGED model type.

CORRB
displays the estimated correlation matrix of the parameter estimates.

COV
displaysSi, which is the covariance matrix of the response functions for each popu-
lation.
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COVB
displays the estimated covariance matrix of the parameter estimates.

EPSILON=number
specifies the convergence criterion for the maximum likelihood estimation of the pa-
rameters. The iterative estimation process stops when the proportional change in the
log likelihood is less thannumber, or after the number of iterations specified by the
MAXITER= option, whichever comes first. By default, EPSILON=1E�8.

FREQ
produces the two-way frequency table for the cross-classification of populations by
responses.

MAXITER=number
specifies the maximum number of iterations used for the maximum likelihood esti-
mation of the parameters. By default, MAXITER=20.

ML
computes maximum likelihood estimates. This option is available when generalized
logits are used, or for the special case of a single two-level dependent variable where
cumulative logits or adjacent category logits are used. For generalized logits (the
default response functions), ML is the default estimation method.

NODESIGN
suppresses the display of the design matrixX.

NOINT
suppresses the intercept term in the model.

NOITER
suppresses the display of parameter estimates and other information at each iteration
of a maximum likelihood analysis.

NOPARM
suppresses the display of the estimated parameters and the statistics for testing that
each parameter is zero.

NOPREDVAR
suppresses the display of the variable levels in tables requested with the PRED= op-
tion.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you
only want to create output data sets with the OUT= or OUTEST= option in the RE-
SPONSE statement. A NOPRINT option is also available in the PROC CATMOD
statement. Note that this option temporarily disables the Output Delivery System
(ODS); see Chapter 15, “Using the Output Delivery System,” for more information.

NOPROFILE
suppresses the display of the population profiles and the response profiles.
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NORESPONSE
suppresses the display of the–RESPONSE– matrix for log-linear models. For further
information, see the “Log-Linear Model Design Matrices” section on page 764.

ONEWAY
produces a one-way table of frequencies for each variable used in the analysis. This
table is useful in determining the order of the observed levels for each variable.

PREDICT
PRED=FREQ | PROB

displays the observed and predicted values of the response functions for each popula-
tion, together with their standard errors and the residuals (observed� predicted). In
addition, if the response functions are the standard ones (generalized logits), then the
PRED=FREQ option specifies the computation and display of predicted cell frequen-
cies, while PRED=PROB (or just PREDICT) specifies the computation and display
of predicted cell probabilities.

The OUT= data set always contains the predicted probabilities. If the response func-
tions are the generalized logits, the predicted cell probabilities are output unless the
option PRED=FREQ is specified, in which case the predicted cell frequencies are
output.

PROB
produces the two-way table of probability estimates for the cross-classification of
populations by responses. These estimates sum to one across the response categories
for each population.

TITLE=’title’
displays thetitle at the top of certain pages of output that correspond to this MODEL
statement.

WLS
GLS

computes weighted least-squares estimates. This type of estimation is also called
generalized-least-squares estimation. For response functions other than the default
(of generalized logits), WLS is the default estimation method.

XPX
displaysX0S�1X, the crossproducts matrix for the normal equations.

Specifying the Design Matrix Directly
If you specify the design matrix directly, adjacent rows of the matrix must be sep-
arated by a comma, and the matrix must haveq � s rows, wheres is the number
of populations andq is the number of response functions per population. The first
q rows correspond to the response functions for the first population, the second set
of q rows corresponds to the functions for the second population, and so forth. The
following is an example using direct specification of the design matrix.
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proc catmod;
model R=(1 0,

1 1,
1 2,
1 3);

run;

These statements are appropriate for the case of one population and forR with five
levels (generating four response functions), so that4 � 1 = 4. These statements are
also appropriate for a situation with two populations and two response functions per
population; giving2 � 2 = 4 rows of the design matrix. (To induce more than one
population, the POPULATION statement is needed.)

When you input the design matrix directly, you also have the option of specifying
that any subsets of the parameters be tested for equality to zero. Indicate each subset
by specifying the appropriate column numbers of the design matrix, followed by an
equal sign and a label (24 characters or less, in quotes) that describes the subset.
Adjacent subsets are separated by a comma, and the entire specification is enclosed
in parentheses and placed after the design matrix. For example,

proc catmod;
population Group Time;
model R=(1 1 0 0,

1 1 0 1,
1 1 0 2,
1 0 1 0,
1 0 1 1,
1 0 1 2,
1 -1 -1 0,
1 -1 -1 1,
1 -1 -1 2) (1 =’Intercept’,

2 3=’Group main effect’,
4 =’Linear effect of Time’);

run;

The preceding statements are appropriate whenGroup andTime each have three lev-
els, andR is dichotomous. The POPULATION statement induces nine populations,
andq = 1 (sinceR is dichotomous), soq � s = 1� 9 = 9.

If you input the design matrix directly but do not specify any subsets of the parame-
ters to be tested, then PROC CATMOD tests the effect of MODELj MEAN, which
represents the significance of the model beyond what is explained by an overall mean.
For the previous example, the MODELj MEAN effect is the same as that obtained
by specifying

(2 3 4=’model|mean’);

at the end of the MODEL statement.
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POPULATION Statement

POPULATION variables ;

The POPULATION statement specifies that populations are to be formed on the basis
of cross-classifications of the specified variables. If you do not specify the POPULA-
TION statement, then populations are formed on the basis of cross-classifications of
the independent variables in the MODEL statement. The POPULATION statement
has two major uses:

� When you enter the design matrix directly, there are no independent variables
in the MODEL statement; therefore, the POPULATION statement is the only
way of inducing more than one population.

� When you fit a reduced model, the POPULATION statement may be necessary
if you want to induce the same number of populations as there are for the
saturated model.

To illustrate the first use, suppose that you specify the following statements:

data one;
input A $ B $ wt @@;
datalines;

yes yes 23 yes no 31 no yes 47 no no 50
;

proc catmod;
weight wt;
population B;
model A=(1 0,

1 1);
run;

Since the dependent variableA has two levels, there is one response function per
population. Since the variableB has two levels, there are two populations. Thus,
the MODEL statement is valid since the number of rows in the design matrix (2) is
the same as the total number of response functions. If the POPULATION statement
is omitted, there would be only one population and one response function, and the
MODEL statement would be invalid.
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To illustrate the second use, suppose that you specify

data two;
input A $ B $ Y wt @@;
datalines;

yes yes 1 23 yes yes 2 63
yes no 1 31 yes no 2 70
no yes 1 47 no yes 2 80
no no 1 50 no no 2 84
;

proc catmod;
weight wt;
model Y=A B A*B / wls;

run;

These statements induce four populations and produce the following design matrix
and analysis of variance table.

X =

2
664

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

3
775

Source DF Chi-Square Pr > ChiSq
Intercept 1 48.10 <.0001
A 1 3.47 0.0625
B 1 0.25 0.6186
A*B 1 0.19 0.6638
Residual 0

Since theB andA*B effects are nonsignificant (p > 0:10), you may want to fit the
reduced model that contains only theA effect. If your new statements are

proc catmod;
weight wt;
model Y=A / wls;

run;

then only two populations are induced, and the design matrix and the analysis of
variance table are as follows.

X =

�
1 1
1 �1

� Source DF Chi-Square Pr > ChiSq
Intercept 1 47.94 <.0001
A 1 3.33 0.0678
Residual 0
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However, if the new statements are

proc catmod;
weight wt;
population A B;
model Y=A / wls;

run;

then four populations are induced, and the design matrix and the analysis of variance
table are as follows.

X =

2
664

1 1
1 1
1 �1
1 �1

3
775

Source DF Chi-Square Pr > ChiSq
Intercept 1 47.76 <.0001
A 1 3.30 0.0694
Residual 2 0.35 0.8374

The advantage of the latter analysis is that it retains four populations for the reduced
model, thereby creating a built-in goodness-of-fit test: the residual chi-square. Such
a test is important because the cumulative (or joint) effect of deleting two or more
effects from the model may be significant, even if the individual effects are not.

The resulting differences between the two analyses are due to the fact that the latter
analysis uses pure weighted least-squares estimates with respect to the four popula-
tions that are actually sampled. The former analysis pools populations and therefore
uses parameter estimates that can be regarded as weighted least-squares estimates of
maximum likelihood predicted cell frequencies. In any case, the estimation methods
are asymptotically equivalent; therefore, the results are very similar. If you spec-
ify the ML option (instead of the WLS option) in the MODEL statements, then the
parameter estimates are identical for the two analyses.

REPEATED Statement

REPEATED factor-description < ,: : : , factor-description >< / options > ;

where afactor-descriptionis

factor-name < $ >< levels >

andfactor-descriptions are separated from each other by a comma. The $ is required
for character-valued factors. The value oflevelsprovides the number of levels of the
repeated measurement factor identified by a givenfactor-name. For only one repeated
measurement factor,levelsis optional; for two or more repeated measurement factors,
it is required.

The REPEATED statement incorporates repeated measurement factors into the
model. You can use this statement whenever there is more than one dependent vari-
able and the keyword–RESPONSE– is specified in the MODEL statement. If the
dependent variables correspond to one or more repeated measurement factors, you
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can use the REPEATED statement to define–RESPONSE– in terms of those factors.
You can specify the name, type, and number of levels of each factor, as well as the
identification of each level.

You cannot specify the REPEATED statement for an analysis that also contains
the FACTORS or LOGLIN statement since all of them specify the same informa-
tion: how to partition the variation among the response functions within a popula-
tion.

factor-name names a repeated measurement factor that corresponds to two or
more response functions. This name must be a valid SAS variable
name, and it should not be the same as the name of a variable that
already exists in the data set being analyzed.

$ indicates that the factor is character-valued. If the $ is omitted, then
PROC CATMOD assumes that the factor is numeric. The type of
the factor is relevant only when you use the PROFILE= option or
when the–RESPONSE–= option specifies nested-by-value effects.

levels specifies the number of levels of the corresponding repeated mea-
surement factor. If there is only one such factor and the number is
omitted, then PROC CATMOD assumes that the number of levels
is equal to the number of response functions per population(q).
Unless you specify the PROFILE= option, the numberq must ei-
ther be equal to or be a multiple of the product of the number of
levels of all the factors.

You can specify the following options in the REPEATED statement after a slash.

PROFILE=(matrix)
specifies the values assumed by the factors for each response function. There should
be one column for each factor, and the values in a given column should match the type
(character or numeric) of the corresponding factor. Character values are restricted to
16 characters or less. If there areq response functions per population, then the matrix
must havei rows, whereq must either be equal to or be a multiple ofi. Adjacent
rows of the matrix should be separated by a comma.

The values in the PROFILE matrix are useful for specifying models in those situations
where the study design is not a full factorial with respect to the factors. They can
also be used to specify nested-with-value effects in the–RESPONSE–= option. If
you specify character values in both the PROFILE= option and the–RESPONSE–=
option, then the values must match with respect to whether or not they are enclosed
in quotes (that is, enclosed in quotes in both places or in neither place).
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–RESPONSE–=effects
specifies design effects. The variables named in the effects must befactor-names
that appear in the REPEATED statement. If the–RESPONSE–= option is omitted,
then PROC CATMOD builds a full factorial–RESPONSE– effect with respect to
the repeated measurement factors. For example, the following two statements are
equivalent in that they produce the same parameter estimates.

repeated Time 2, Treatment 2;
repeated Time 2, Treatment 2 / _response_=Time|Treatment;

However, the second statement produces tests of theTime, Treatment, and
Time*Treatment effects in the “Analysis of Variance” table, whereas the first state-
ment produces a single test for the combined effects in–RESPONSE–.

TITLE=’title’
displays thetitle at the top of certain pages of output that correspond to this RE-
PEATED statement.

For further information and numerous examples of the REPEATED statement, see
the section “Repeated Measures Analysis” on page 754.

RESPONSE Statement

RESPONSE < function >< / options > ;

The RESPONSE statement specifies functions of the response probabilities. The
procedure models these response functions as linear combinations of the parameters.

By default, PROC CATMOD uses the standard response functions (generalized log-
its, which are explained in detail in the “Understanding the Standard Response
Functions” section on page 740). With these standard response functions, the de-
fault estimation method is maximum likelihood, but you can use the WLS option
in the MODEL statement to request weighted least-squares estimation. With other
response functions (specified in the RESPONSE statement), the default (and only)
estimation method is weighted least squares.

You can specify more than one RESPONSE statement, in which case each RE-
SPONSE statement produces a separate analysis. If the computed response func-
tions for any population are linearly dependent (yielding a singular covariance ma-
trix), then PROC CATMOD displays an error message and stops processing. See the
“Cautions” section on page 766 for methods of dealing with this.

The functionspecification can be any of the items in the following list. For an ex-
ample of response functions generated and formulas forq (the number of response
functions), see the “More on Response Functions” section on page 735.
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ALOGIT
ALOGITS

specifies response functions as adjacent-category logits of the
marginal probabilities for each of the dependent variables. For
each dependent variable, the response functions are a set of lin-
early independent adjacent-category logits, obtained by taking
the logarithms of the ratios of two probabilities. The denom-
inator of thekth ratio is the marginal probability correspond-
ing to thekth level of the variable, and the numerator is the
marginal probability corresponding to the (k + 1)th level. If a
dependent variable has two levels, then the adjacent-category
logit is the negative of the generalized logit.

CLOGIT
CLOGITS

specifies that the response functions are cumulative logits of
the marginal probabilities for each of the dependent variables.
For each dependent variable, the response functions are a set of
linearly independent cumulative logits, obtained by taking the
logarithms of the ratios of two probabilities. The denominator
of thekth ratio is the cumulative probability,ck, corresponding
to thekth level of the variable, and the numerator is1 � ck
(Agresti 1984, 113–114). If a dependent variable has two lev-
els, then PROC CATMOD computes its cumulative logit as the
negative of its generalized logit. You should use cumulative
logits only when the dependent variables are ordinally scaled.

JOINT specifies that the response functions are the joint response
probabilities. A linearly independent set is created by delet-
ing the last response probability. For the case of one depen-
dent variable, the JOINT and MARGINALS specifications are
equivalent.

LOGIT
LOGITS

specifies that the response functions are generalized logits of
the marginal probabilities for each of the dependent variables.
For each dependent variable, the response functions are a set of
linearly independent generalized logits, obtained by taking the
logarithms of the ratios of two probabilities. The denominator
of each ratio is the marginal probability corresponding to the
last observed level of the variable, and the numerators are the
marginal probabilities corresponding to each of the other lev-
els. If there is one dependent variable, then specifying LOGIT
is equivalent to using the standard response functions.

MARGINAL
MARGINALS

specifies that the response functions are marginal probabili-
ties for each of the dependent variables in the MODEL state-
ment. For each dependent variable, the response functions are
a set of linearly independent marginals, obtained by deleting
the marginal probability corresponding to the last level.

MEAN
MEANS

specifies that the response functions are the means of the de-
pendent variables in the MODEL statement. This specification
requires that all of the dependent variables be numeric.
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READ variables specifies that the response functions and their covariance ma-
trix are to be read directly from the input data set with one
response function for each variable named. See the section
“Inputting Response Functions and Covariances Directly” on
page 743 for more information.

transformation specifies response functions that can be expressed by using suc-
cessive applications of the four operations:LOG, EXP, �
matrix literal, or+ matrix literal. The operations are described
in detail in the “Using a Transformation to Specify Response
Functions” section on page 738.

You can specify the following options in the RESPONSE statement after a slash.

OUT=SAS-data-set
produces a SAS data set that contains, for each population, the observed and predicted
values of the response functions, their standard errors, and the residuals. Moreover, if
you use the standard response functions, the data set also includes observed and pre-
dicted values of the cell frequencies or the cell probabilities. For further information,
see the “Output Data Sets” section on page 747.

OUTEST=SAS-data-set
produces a SAS data set that contains the estimated parameter vector and its estimated
covariance matrix. For further information, see the “Output Data Sets” section on
page 747.

TITLE=’title’
displays thetitle at the top of certain pages of output that correspond to this RE-
SPONSE statement.

More on Response Functions
Suppose the dependent variableA has 3 levels and is the onlyresponse-effectin the
MODEL statement. The following table shows the proportions upon which the re-
sponse functions are defined.

Value of A: 1 2 3

proportions: p1 p2 p3

Note that
P

j pj = 1. The following table shows the response functions generated
for each population.
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Function Value
Specification of q Response Function

none� 2 ln
�
p1
p3

�
; ln

�
p2
p3

�

ALOGITS 2 ln
�
p2
p1

�
; ln

�
p3
p2

�

CLOGITS 2 ln
�
1�p1
p1

�
; ln

�
1�(p1+p2)

p1+p2

�

JOINT 2 p1; p2

LOGITS 2 ln
�
p1
p3

�
; ln

�
p2
p3

�

MARGINAL 2 p1; p2

MEAN 1 1p1 + 2p2 + 3p3
�Without a function specification, the default response functions are generalized logits.

Now, suppose the dependent variablesA andB each have 3 levels (valued 1, 2, and 3
each) and theresponse-effectin the MODEL statement isA*B. The following table
shows the proportions upon which the response functions are defined.

Value of A: 1 1 1 2 2 2 3 3 3

Value of B: 1 2 3 1 2 3 1 2 3

proportions: p1 p2 p3 p4 p5 p6 p7 p8 p9

The marginal totals for the preceding table are defined as follows,

p1� = p1 + p2 + p3 p�1 = p1 + p4 + p7

p2� = p4 + p5 + p6 p�2 = p2 + p5 + p8

p3� = p7 + p8 + p9 p�3 = p3 + p6 + p9

where
P

j pj = 1. The following table shows the response functions generated for
each population.

Function Value
Specification of q Response Function

none� 8 ln
�
p1
p9

�
; ln

�
p2
p9

�
; ln

�
p3
p9

�
; : : : ; ln

�
p8
p9

�

ALOGITS 4 ln
�
p2�
p1�

�
; ln

�
p3�
p2�

�
; ln

�
p�2
p�1

�
; ln

�
p�3
p�2

�

CLOGITS 4 ln
�
1�p1�
p1�

�
; ln

�
1�(p1�+p2�)

p1�+p2�

�
; ln

�
1�p�1
p�1

�
; ln

�
1�(p�1+p�2)

p�1+p�2

�

JOINT 8 p1; p2; p3; p4; p5; p6; p7; p8

LOGITS 4 ln
�
p1�
p3�

�
; ln

�
p2�
p3�

�
; ln

�
p�1
p�3

�
; ln

�
p�2
p�3

�

MARGINAL 4 p1�; p2�; p�1; p�2

MEAN 2 1p1� + 2p2� + 3p3�; 1p�1 + 2p�2 + 3p�3
� Without a function specification, the default response functions are generalized logits.
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The READ andtransformationfunction specifications are not shown in the preceding
table. For these two situations, there is not a general response function; the response
functions generated depend on what you specify.

Another important aspect of the function specification is the number of response func-
tions generated per population,q. Let mi represent the number of levels for theith
dependent variable in the MODEL statement, and letd represent the number of de-
pendent variables in the MODEL statement. Then, if the function specification is
ALOGITS, CLOGITS, LOGITS, or MARGINALS, the number of response func-
tions is

q =

dX
i=1

(mi � 1)

If the function specification is JOINT or the default (generalized logits), the number
of response functions per population is

q = r � 1

wherer is the number of response profiles. If every possible cross-classification of
the dependent variables is observed in the samples, then

r =

dY
i=1

mi

Otherwise,r is the number of cross-classifications actually observed.

If the function specification is MEANS, the number of response functions per popu-
lation isq = d.

Response Statement Examples
Some example response statements are shown in the following table.

Example Result
response marginals; marginals for each dependent variable

response means; the mean of each dependent variable

response logits; generalized logits of the marginal probabilities

response clogits; cumulative logits of the marginal probabilities

response alogits; adjacent-category logits of the marginal probabilities

response joint; the joint probabilities

response 1 -1 log; the logit

response; generalized logits

response 1 2 3; the mean score, with scores of 1, 2, and 3 correspond-
ing to the three response levels

response read b1-b4; four response functions and their covariance matrix,
read directly from the input data set

SAS OnlineDoc: Version 8



738 � Chapter 22. The CATMOD Procedure

Using a Transformation to Specify Response Functions
If you specify atransformation, it is applied to the vector that contains the sample
proportions in each population. Thetransformationcan be any combination of the
following four operations.

Operation Specification
linear combination � matrix literal

matrix literal

logarithm LOG

exponential EXP

adding constant + matrix literal

If more than one operation is specified, then PROC CATMOD applies the operations
consecutively from right to left.

A matrix literal is a matrix of numbers with each row of the matrix separated from
the next by a comma. If you specify a linear combination, in most cases the� is
not needed. The following statement defines the response functionp1 + 1. The� is
needed to separate the two matrix literals ’1’ and ’1 0’.

response + 1 * 1 0;

TheLOG of a vector transforms each element of the vector into its natural loga-
rithm; theEXP of a vector transforms each element into its exponential function
(antilogarithm).

In order to specify a linear response function for data that haver = 3 response
categories, you could specify either of the following RESPONSE statements:

response * 1 0 0 , 0 1 0;
response 1 0 0 , 0 1 0;

The matrix literal in the preceding statements specifies a2�3matrix, which is applied
to each population as follows:

�
F1
F2

�
=

�
1 0 0
0 1 0

�
�

2
4 p1

p2
p3

3
5

wherep1, p2, andp3 are sample proportions for the three response categories in a pop-
ulation, andF1 andF2 are the two response functions computed for that population.
This response function, therefore, setsF1 = p1 andF2 = p2 in each population.
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As another example of the linear response function, suppose you have two depen-
dent variables corresponding to two observers who evaluate the same subjects. If the
observers grade on the same three-point scale and if all nine possible responses are
observed, then the following RESPONSE statement would compute the probability
that the observers agree on their assessments:

response 1 0 0 0 1 0 0 0 1;

This response function is then computed as

F = p11 + p22 + p33 =
�
1 0 0 0 1 0 0 0 1

�
�

2
6666666666664

p11
p12
p13
p21
p22
p23
p31
p32
p33

3
7777777777775

wherepij denotes the probability that a subject gets a grade ofi from the first observer
andj from the second observer.

If the function is a compound function, requiring more than one operation to specify
it, then the operations should be listed so that the first operation to be applied is on
the right and the last operation to be applied is on the left. For example, if there are
two response levels, the response function

response 1 -1 log;

is equivalent to the matrix expression:

F =
�
1 �1

�
�

�
log(p1)
log(p2)

�
= log(p1)� log(p2) = log

�
p1
p2

�

which is the logit response function sincep2 = 1 � p1 when there are only two
response levels.

Another example of a compound response function is

response exp 1 -1 * 1 0 0 1, 0 1 1 0 log;

which is equivalent to the matrix expression

F = EXP(A �B � LOG(P))

whereP is the vector of sample proportions for some population,

A =
�
1 �1

�
andB =

�
1 0 0 1
0 1 1 0

�
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If the four responses are based on two dependent variables, each with two levels, then
the function can also be written as

F =
p11p22
p12p21

which is the odds (crossproduct) ratio for a2� 2 table.

Understanding the Standard Response Functions
If no RESPONSE statement is specified, PROC CATMOD computes the standard
response functions, which contrast the log of each response probability with the log
of the probability for the last response category. If there arer response categories,
then there arer � 1 standard response functions. For example, if there are four
response categories, using no RESPONSE statement is equivalent to specifying

response 1 0 0 -1,
0 1 0 -1,
0 0 1 -1 log;

This results in three response functions:

F =

2
4 F1

F2
F3

3
5 =

2
4 log(p1=p4)

log(p2=p4)
log(p3=p4)

3
5

If there are only two response levels, the resulting response function would be a logit.
Thus, the standard response functions are called generalized logits. They are useful
in dealing with the log-linear model:

� = EXP(X�)

If C denotes the matrix in the preceding RESPONSE statement, then because of the
restriction that the probabilities sum to 1, it follows that an equivalent model is

C � LOG(�) = (CX)�

ButC�LOG (P) is simply the vector of standard response functions. Thus, fitting a
log-linear model on the cell probabilities is equivalent to fitting a linear model on the
generalized logits.
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RESTRICT Statement

RESTRICT parameter=value < : : : parameter=value > ;

whereparameteris the letter B followed by a number; for example, B3 specifies
the third parameter in the model. Thevalue is the value to which the parameter
is restricted. The RESTRICT statement restricts values of parameters to the values
you specify, so that the estimation of the remaining parameters is subject to these
restrictions. Consider the following statement:

restrict b1=1 b4=0 b6=0;

This restricts the values of three parameters. The first parameter is set to 1, and the
fourth and sixth parameters are set to zero.

The RESTRICT statement is interactive. A new RESTRICT statement replaces any
previous ones. In addition, if you submit two or more MODEL, LOGLIN, FAC-
TORS, or REPEATED statements, then the subsequent occurrences of these state-
ments also delete the previous RESTRICT statement.

WEIGHT Statement

WEIGHT variable ;

You can use a WEIGHT statement to refer to a variable containing the cell frequen-
cies, which need not be integers. The WEIGHT statement lets you use summary data
sets containing a count variable. See the “Input Data Sets” section on page 742 for
further information concerning the WEIGHT statement.
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Details

Missing Values

Observations with missing values for any variable listed in the MODEL, POPULA-
TION, or WEIGHT statement are omitted from the analysis.

Input Data Sets

Data to be analyzed by PROC CATMOD must be in a SAS data set containing one
of the following:

� raw data values (variable values for every subject)

� frequency counts and the corresponding variable values

� response function values and their covariance matrix

If you specify a WEIGHT statement, then PROC CATMOD uses the values of the
WEIGHT variable as the frequency counts. If the READ function is specified in the
RESPONSE statement, then the procedure expects the input data set to contain the
values of response functions and their covariance matrix. Otherwise, PROC CAT-
MOD assumes that the SAS data set contains raw data values.

Raw Data Values
If you use raw data, PROC CATMOD first counts the number of observations having
each combination of values for all variables specified in the MODEL or POPULA-
TION statements. For example, suppose the variablesA andB each take on the values
1 and 2, and their frequencies can be represented as follows.

A=1 A=2
B=1 2 1
B=2 3 1

The SAS data setRaw containing the raw data might be as follows.

Observation A B
1 1 1
2 1 1
3 1 2
4 1 2
5 1 2
6 2 1
7 2 2
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And the statements for PROC CATMOD would be

proc catmod data=Raw;
model A=B;

run;

For discussions of how to handle structural and random zeros with raw data as input
data, see the “Zero Frequencies” section on page 767 and Example 22.5 on page 796.

Frequency Counts
If your data set contains frequency counts, then use the WEIGHT statement in PROC
CATMOD to specify the variable containing the frequencies. For example, you could
create theSummary data set as follows.

data Summary;
input A B Count;
datalines;

1 1 2
1 2 3
2 1 1
2 2 1
;

In this case, the corresponding statements would be

proc catmod data=Summary;
weight Count;
model A=B;

run;

The data setSummary can also be created from data setRaw by using the FREQ
procedure:

proc freq data=Raw;
tables A*B / out=Summary;

run;

Inputting Response Functions and Covariances Directly
If you want to read in the response functions and their covariance matrix, rather than
have PROC CATMOD compute them, create a TYPE=EST data set. In addition to
having one variable name for each function, the data set should have two additional
variables:–TYPE– and–NAME– , both character variables of length 8. The vari-
able–TYPE– should have the value ’PARMS’ when the observation contains the
response functions; it should have the value ’COV’ when the observation contains el-
ements of the covariance matrix of the response functions. The variable–NAME– is
used only when–TYPE–=COV, in which case it should contain the name of the vari-
able that has its covariance elements stored in that observation. In the following data
set, for example, the covariance between the second and fourth response functions is
0.000102.
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data direct(type=est);
input b1-b4 _type_ $ _name_ $8.;
datalines;

0.590463 0.384720 0.273269 0.136458 PARMS .
0.001690 0.000911 0.000474 0.000432 COV B1
0.000911 0.001823 0.000031 0.000102 COV B2
0.000474 0.000031 0.001056 0.000477 COV B3
0.000432 0.000102 0.000477 0.000396 COV B4
;

In order to tell PROC CATMOD that the input data set contains the values of response
functions and their covariance matrix,

� specify the READ function in the RESPONSE statement

� specify–F– as the dependent variable in the MODEL statement

For example, suppose the response functions correspond to four populations that rep-
resent the cross-classification of two age groups by two race groups. You can use
the FACTORS statement to identify these two factors and to name the effects in the
model. The statements required to fit a main-effects model to these data are

proc catmod data=direct;
response read b1-b4;
model _f_=_response_;
factors age 2, race 2 / _response_=age race;

run;

Ordering of Populations and Responses

By default, populations and responses are sorted in standard SAS order as follows:

� alphabetic order for character variables

� increasing numeric order for numeric variables

Suppose you specify the following statements:

data one;
length A B $ 6;
input A $ B $ wt @@;
datalines;

low low 23 low medium 31 low high 38
medium low 40 medium medium 42 medium high 50
high low 52 high medium 54 high high 61
;

proc catmod;
weight wt;
model A=B / oneway;

run;
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The ordering of populations and responses corresponds to the alphabetical order of
the levels of the character variables. You can specify the ONEWAY option to display
the ordering of the variables, while the “Population Profiles” and “Response Profiles”
tables display the ordering of the populations and the responses, respectively.

Population Profiles Response Profiles
Sample B Response A

1 high 1 high
2 low 2 low
3 medium 3 medium

However, in this example, you may want to have the levels ordered in the natural
order of ‘low,’ ‘medium,’ ‘high.’ If you specify the ORDER=DATA option

proc catmod order=data;
weight wt;
model a=b / oneway;

run;

then the ordering of populations and responses is as follows.

Population Profiles Response Profiles
Sample B Response A

1 low 1 low
2 medium 2 medium
3 high 3 high

Thus, you can use the ORDER=DATA option to ensure that populations and re-
sponses are ordered in a specific way. But since this also affects the definitions and the
ordering of the parameters, you must exercise caution when using the–RESPONSE–
effect, the CONTRAST statement, or direct input of the design matrix.

An alternative method of ensuring that populations and responses are ordered in a
specific way is to replace any character variables with numeric variables and to assign
formatted values such as ‘yes’ and ‘no’ to the numeric levels. PROC CATMOD
orders the populations and responses according to the numeric values but displays
the formatted values.

Specification of Effects

By default, the CATMOD procedure treats all variables as classification variables.
As a result, there is no CLASS statement in PROC CATMOD. The values of a clas-
sification variable can be numeric or character. PROC CATMOD builds a set of
effects-coded variables to represent the levels of the classification variable and then
uses these to fit the model (for details, see the “Generation of the Design Matrix”
section on page 757). You can modify the default by using the DIRECT statement to
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treat numeric independent continuous variables as continuous variables. The classi-
fication variables, combinations of classification variables, and continuous variables
are then used in fitting linear models to data.

The parameters of a linear model are generally divided into subsets that correspond to
meaningful sources of variation in the response functions. These sources, calledef-
fects, can be specified in the MODEL, LOGLIN, FACTORS, REPEATED, and CON-
TRAST statements. Effects can be specified in any of the following ways:

� A main effect is a single class variable (that is, it induces classification levels):
A B C.

� A crossed effect (or interaction) is two or more class variables joined by aster-
isks, for example: A*B A*B*C.

� A nested effect is a main effect or an interaction, followed by a parenthetical
field containing a main effect or an interaction. Multiple variables within the
parentheses are assumed to form a crossed effect even when the asterisk is
absent. Thus, the last two effects are identical:B(A) C(A*B) A*B(C*D)
A*B(C D).

� A nested-by-value effect is the same as a nested effect except that any variable
in the parentheses can be followed by an equal sign and a value:B(A=1)
C(A B=1) C*D(A=1 B=1) A(C=’low’).

� A direct effect is a variable specified in a DIRECT statement:X Y.

� Direct effects can be crossed with other effects:X*Y X*X*X
X*A*B(C D=1).

The variables for crossed and nested effects remain in the order in which they are first
encountered. For example, in the model

model R=B A A*B C(A B);

the effectA*B is reported asB*A sinceB appeared beforeA in the statement. Also,
C(A B) is interpreted asC(A*B) and is therefore reported asC(B*A).

Bar Notation
You can shorten the specification of multiple effects by using bar notation. For ex-
ample, two methods of writing a full three-way factorial model are

proc catmod;
model y=a b c a*b a*c b*c a*b*c;

run;

and

proc catmod;
model y=a|b|c;

run;
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When you use the bar (j) notation, the right- and left-hand sides become effects, and
the interaction between them becomes an effect. Multiple bars are permitted. The
expressions are expanded from left to right, using rules 1 through 4 given in Searle
(1971, p. 390):

� Multiple bars are evaluated left to right. For example,AjBjC is evaluated as
follows:

A | B | C ! { A | B} | C
! { A B A*B} | C
! A B A*B C A*C B*C A*B*C

� Crossed and nested groups of variables are combined. For example,
A(B) j C(D) generatesA*C(B D), among other terms.

� Duplicate variables are removed. For example,A(C) j B(C) generates
A*B(C C), among other terms, and the extraC is removed.

� Effects are discarded if a variable occurs on both the crossed and nested sides
of an effect. For instance,A(B) j B(D E) generatesA*B(B D E), but this effect
is deleted.

You can also specify the maximum number of variables involved in any effect that
results from bar evaluation by specifying that maximum number, preceded by an @
sign, at the end of the bar effect. For example, the specificationA j B j C @ 2 would
result in only those effects that contain 2 or fewer variables; in this case, the effects
A, B, A*B, C, A*C, andB*C are generated.

Other examples of the bar notation are

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

For details on how the effects specified lead to a design matrix, see the “Generation
of the Design Matrix” section on page 757.

Output Data Sets

OUT= Data Set
For each population, the OUT= data set contains the observed and predicted values of
the response functions, their standard errors, the residuals, and variables that describe
the population and response profiles. In addition, if you use the standard response
functions, the data set includes observed and predicted values for the cell frequen-
cies or the cell probabilities, together with their standard errors and residuals. See
Example 22.11 on page 826 for an example of creating an OUT= data set.
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Number of Observations
For the standard response functions, there ares � (2q � 1) observations in the data
set for each BY group, wheres is the number of populations, andq is the number of
response functions per population. Otherwise, there ares�q observations in the data
set for each BY group.

Variables in the OUT= Data Set
The data set contains the following variables:

BY variables If you use a BY statement, the BY variables are included
in the OUT= data set.

dependent variables If the response functions are the default ones (general-
ized logits), then the dependent variables, which describe
the response profiles, are included in the OUT= data set.
When –TYPE–=FUNCTION, the values of these vari-
ables are missing.

independent variables The independent variables, which describe the population
profiles, are included in the OUT= data set.

–NUMBER– the sequence number of the response function or the cell
probability or the cell frequency

–OBS– the observed value

–PRED– the predicted value

–RESID– the residual (observed� predicted)

–SAMPLE– the population number. This matches the sample number
in the Population Profile section of the output.

–SEOBS– the standard error of the observed value

–SEPRED– the standard error of the predicted value

–TYPE– specifies a character variable with three possible val-
ues. When–TYPE–=FUNCTION, the observed and pre-
dicted values are values of the response functions. When

–TYPE–=PROB, they are values of the cell probabilities.
When –TYPE–=FREQ, they are values of the cell fre-
quencies. Cell probabilities or frequencies are provided
only when the default response functions are modeled. In
this case, cell probabilities are provided by default, and
cell frequencies are provided if you specify the option
PRED=FREQ.

OUTEST= Data Set
This TYPE=EST output data set contains the estimated parameter vector and its
estimated covariance matrix. If you specify both the ML and WLS options in the
MODEL statement, the OUTEST= data set contains both sets of estimates. For each
BY group, there arep + 1 observations in the data set for each estimation method,
wherep is the number of estimated parameters. The data set contains the following
variables.
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B1, B2, and so on variables for the estimated parameters. The OUTEST=
data set contains one variable for each estimated param-
eter.

BY variables If you use a BY statement, the BY variables are included
in the OUT= data set.

–METHOD– the method used to obtain parameter estimates. For
weighted least-squares estimation,–METHOD–=WLS,
and for maximum likelihood estimation,–METHOD–=ML.

–NAME– identifies parameter names. When–TYPE–=PARMS,

–NAME– is blank, but when–TYPE–=COV, –NAME–
has one of the values B1, B2, and so on, corresponding to
the parameter names.

–STATUS– indicates whether the estimates have converged

–TYPE– identifies the statistics contained in the variables for
parameter estimates (B1, B2, and so on). When

–TYPE–=PARMS, the variables contain parameter es-
timates; when–TYPE–=COV, they contain covariance
estimates.

The variables–METHOD– , –NAME– , and–TYPE– are character variables; the
BY variables can be either character or numeric; and the variables for estimated pa-
rameters are numeric.

See Appendix A, “Special SAS Data Sets,” for more information on special SAS data
sets.

Logistic Analysis

In a logistic analysis, the response functions are the logits of the dependent variable.

PROC CATMOD can compute three different types of logits with the use of keywords
in the RESPONSE statement. Other types of response functions can be generated by
specifying appropriate transformations in the RESPONSE statement.

� Generalized logits are used primarily for nominally scaled dependent variables,
but they can also be used for ordinal data modeling. Maximum likelihood
estimation is available for the analysis of these logits.

� Cumulative logits are used for ordinally scaled dependent variables. Except
for dependent variables with two response levels, only weighted least-squares
estimation is available for the analysis of these logits.

� Adjacent-category logits are equivalent to generalized logits, but they have
some advantages for ordinal data analysis because they automatically incorpo-
rate integer scores for the levels of the dependent variable. Except for depen-
dent variables with two response levels, only weighted least-squares estimation
is available for the analysis of these logits.
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If the dependent variable has only two responses, then the cumulative logit and the
adjacent-category logit are the negative of the generalized logit, as computed by
PROC CATMOD. Consequently, parameter estimates obtained using these logits are
the negative of those obtained using generalized logits. A simple logistic analysis of
variance uses statements like the following:

proc catmod;
model r=a|b;

run;

Logistic Regression
If the independent variables are treated quantitatively (like continuous variables), then
a logistic analysis is known as alogistic regression. If you want PROC CATMOD
to treat the independent variables as quantitative variables, specify them in both the
DIRECT and MODEL statements, as follows.

proc catmod;
direct x1 x2 x3;
model r=x1 x2 x3;

run;

Since the preceding statements do not include a RESPONSE statement, generalized
logits are computed. See Example 22.3 for another example.

When the dependent variable has two responses, the parameter estimates from the
CATMOD procedure are the same as those from a logistic regression program such
as PROC LOGISTIC (see Chapter 39, “The LOGISTIC Procedure”). The chi-square
statistics and the predicted values are also identical. In the two-response case, PROC
CATMOD can be made to model the probability of the maximum value by either
(1) organizing the input data so that the maximum value occurs first and specifying
ORDER=DATA in the PROC CATMOD statement or (2) specifying cumulative logits
(CLOGITS) in the RESPONSE statement.

Caution: Computational difficulties may occur if you use a continuous variable
with a large number of unique values in a DIRECT statement. See the “Continu-
ous Variables” section on page 751 for more details.

Cumulative Logits
If your dependent variable is ordinally scaled, you can specify the analysis of cumu-
lative logits that take into account the ordinal nature of the dependent variable:

proc catmod;
response clogits;
direct x;
model r=a x;

run;

The preceding statements correspond to a simple analysis that addresses the question
of existence of an association between the independent variables and the ordinal de-
pendent variable. However, there are some commonly used models for the analysis
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of ordinal data (Agresti 1984) that address the structure of association (in terms of
odds ratios), as well as its existence.

If the independent variables are class variables, a typical analysis for such a model
uses the following statements:

proc catmod;
weight wt;
response clogits;
model r=_response_ a b;

run;

On the other hand, if the independent variables are ordinally scaled, you might specify
numeric scores in variablesx1 andx2, and use the following statements:

proc catmod;
weight wt;
direct x1 x2;
response clogits;
model r=_response_ x1 x2;

run;

Refer to Agresti (1984) for additional details of estimation, testing, and interpretation.

Continuous Variables
Computational difficulties may occur if you have a continuous variable with a large
number of unique values and you use this variable in a DIRECT statement, since
an observation often represents a separate population of size one. At this extreme
of sparseness, the weighted least-squares method is inappropriate since there are too
many zero frequencies. Therefore, you should use the maximum likelihood method.
PROC CATMOD is not designed optimally for continuous variables and therefore
may be less efficient and may be unable to allocate sufficient memory to handle this
problem, as compared with a procedure designed specifically to handle continuous
data. In these situations, consider using the LOGISTIC, GENMOD, or PROBIT
procedure to analyze your data.

Log-Linear Model Analysis

When the response functions are the default generalized logits, then inclusion of the
keyword–RESPONSE– in every effect in the right-hand side of the MODEL state-
ment induces a log-linear model. The keyword–RESPONSE– tells PROC CATMOD
that you want to model the variation among the dependent variables. You then specify
the actual model in the LOGLIN statement.

One word of caution about log-linear model analyses: sampling zeros in the input
data set should be replaced by some positive number close to zero (such as 1E-20)
to ensure that these sampling zeros are not treated as structural zeros. This can be
performed in a DATA step that changes cell counts for sampling zeros to a very
small number. Data containing sampling zeros should be analyzed with maximum
likelihood estimation. See the “Cautions” section on page 766 and Example 22.5 on
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page 796 for further information and an illustration for both cell count data and raw
data.

When you perform log-linear model analysis, you can request weighted least-squares
estimates, maximum likelihood estimates, or both. By default, PROC CATMOD cal-
culates maximum likelihood estimates when the default response functions are used.
The following table provides appropriate MODEL statements for the combinations
of types of estimates.

Estimation Desired MODEL Statement
Maximum likelihood model a*b=_response_;

Weighted least squares model a*b=_response_ / wls;

Maximum likelihood and
weighted least squares

model a*b=_response_ / wls ml;

One Population
The usual log-linear model analysis has one population, which means that all of the
variables are dependent variables. For example, the statements

proc catmod;
weight wt;
model r1*r2=_response_;
loglin r1|r2;

run;

yield a maximum likelihood analysis of a saturated log-linear model for the dependent
variablesr1 andr2.

If you want to fit a reduced model with respect to the dependent variables (for ex-
ample, a model of independence or conditional independence), specify the reduced
model in the LOGLIN statement. For example, the statements

proc catmod;
weight wt;
model r1*r2=_response_ / pred;
loglin r1 r2;

run;

yield a main-effects log-linear model analysis of the factorsr1 and r2. The output
includes Wald statistics for the individual effectsr1 andr2, as well as predicted cell
probabilities. Moreover, the goodness-of-fit statistic is the likelihood ratio test for the
hypothesis of independence betweenr1 andr2 or, equivalently, a test ofr1* r2.

Multiple Populations
You can do log-linear model analysis with multiple populations by using a POPULA-
TION statement or by including effects on the right-hand side of the MODEL state-
ment that contain independent variables. Each effect must include the–RESPONSE–
keyword.
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For example, suppose the dependent variablesr1 and r2 are dichotomous, and the
independent variablegroup has three levels. Then

proc catmod;
weight wt;
model r1*r2=_response_ group*_response_;
loglin r1|r2;

run;

specifies a saturated model (three degrees of freedom for–RESPONSE– and six
degrees of freedom for the interaction between–RESPONSE– andgroup). From
another point of view,–RESPONSE–*group can be regarded as a main effect for
group with respect to the three response functions, while–RESPONSE– can be re-
garded as an intercept effect with respect to the functions. In other words, these
statements give essentially the same results as the logistic analysis:

proc catmod;
weight wt;
model r1*r2=group;

run;

The ability to model the interaction between the independent and the dependent vari-
ables becomes particularly useful when a reduced model is specified for the depen-
dent variables. For example,

proc catmod;
weight wt;
model r1*r2=_response_ group*_response_;
loglin r1 r2;

run;

specifies a model with two degrees of freedom for–RESPONSE– (one for r1 and
one forr2) and four degrees of freedom for the interaction of–RESPONSE–*group.
The likelihood ratio goodness-of-fit statistic (three degrees of freedom) tests the hy-
pothesis thatr1 andr2 are independent in each of the three groups.
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Repeated Measures Analysis

If there are multiple dependent variables and the variables represent repeated mea-
surements of the same observational unit, then the variation among the dependent
variables can be attributed to one or more repeated measurement factors. The factors
can be included in the model by specifying–RESPONSE– on the right-hand side of
the MODEL statement and using a REPEATED statement to identify the factors.

To perform a repeated measures analysis, you also need to specify a RESPONSE
statement, since the standard response functions (generalized logits) cannot be used.
Typically, the MEANS or MARGINALS response functions are specified in a re-
peated measures analysis, but other response functions may also be reasonable.

One Population
Consider an experiment in which each subject is measured at three times, and the
response functions are marginal probabilities for each of the dependent variables.
If the dependent variables each hask levels, then PROC CATMOD computesk�1
response functions for each time. Differences among the response functions with
respect to these times could be attributed to the repeated measurement factorTime.
To incorporate theTime variation into the model, specify

proc catmod;
response marginals;
model t1*t2*t3=_response_;
repeated Time 3 / _response_=Time;

run;

These statements induce aTime effect that has2(k � 1) degrees of freedom since
there arek � 1 response functions at each time point. Thus, for a dichotomous vari-
able, theTime effect has two degrees of freedom.

Now suppose that at each time point, each subject has X-rays taken, and the X-rays
are read by two different radiologists. This creates six dependent variables that rep-
resent the3 � 2 cross-classification of the repeated measurement factorsTime and
Reader. A saturated model with respect to these factors can be obtained by specify-
ing

proc catmod;
response marginals;
model r11*r12*r21*r22*r31*r32=_response_;
repeated Time 3, Reader 2

/ _response_=Time Reader Time*Reader;
run;
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If you want to fit a main-effects model with respect toTime andReader, then change
the REPEATED statement to

repeated Time 3, Reader 2 / _response_=Time Reader;

If you want to fit a main-effects model forTime but for only one of the readers, the
REPEATED statement might look like

repeated Time $ 3, Reader $ 2
/_response_=Time(Reader=Smith)

profile =(’1’ Smith,
’1’ Jones,
’2’ Smith,
’2’ Jones,
’3’ Smith,
’3’ Jones);

If Jones had been unavailable for a reading at time 3, then there would be only5(k�1)
response functions, even though PROC CATMOD would be expecting some multiple
of 6 (= 3 � 2). In that case, the PROFILE= option would be necessary to indicate
which repeated measurement profiles were actually represented:

repeated Time $ 3, Reader $ 2
/_response_=Time(Reader=Smith)

profile =(’1’ Smith,
’1’ Jones,
’2’ Smith,
’2’ Jones,
’3’ Smith);

When two or more repeated measurement factors are specified, PROC CATMOD pre-
sumes that the response functions are ordered so that the levels of the rightmost factor
change most rapidly. This means that the dependent variables should be specified in
the same order. For this example, the order implied by the REPEATED statement is
as follows, where the variablerij corresponds toTime i andReader j.

Response Dependent
Function Variable Time Reader

1 r11 1 1
2 r12 1 2
3 r21 2 1
4 r22 2 2
5 r31 3 1
6 r32 3 2
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Thus, the order of dependent variables in the MODEL statement must agree with the
order implied by the REPEATED statement.

Multiple Populations
When there are variables specified in the POPULATION statement or in the right-
hand side of the MODEL statement, these variables induce multiple populations.
PROC CATMOD can then model these independent variables, the repeated measure-
ment factors, and the interactions between the two.

For example, suppose that there are five groups of subjects, that each subject in the
study is measured at three different times, and that the dichotomous dependent vari-
ables are labeledt1, t2, andt3. The following statements induce the computation of
three response functions for each population:

proc catmod;
weight wt;
population Group;
response marginals;
model t1*t2*t3=_response_;
repeated Time / _response_=Time;

run;

PROC CATMOD then regards–RESPONSE– as a variable with three levels cor-
responding to the three response functions in each population and forms an effect
with two degrees of freedom. The MODEL and REPEATED statements tell PROC
CATMOD to fit the main effect ofTime.

In general, the MODEL statement tells PROC CATMOD how to integrate the inde-
pendent variables and the repeated measurement factors into the model. For example,
again suppose that there are five groups of subjects, that each subject is measured at
three times, and that the dichotomous independent variables are labeledt1, t2, and
t3. If you use the same WEIGHT, POPULATION, RESPONSE, and REPEATED
statements as in the preceding program, the following MODEL statements result in
the indicated analyses:

model t1*t2*t3=Group / averaged; specifies theGroup main effect
(with four degrees of freedom).

model t1*t2*t3=_response_; specifies theTime main effect
(with two degrees of freedom).

model t1*t2*t3=_response_*Group; specifies the interaction between
Time and Group (with eight de-
grees of freedom).

model t1*t2*t3=_response_|Group; specifies both main effects, and
the interaction betweenTime and
Group (with a total of fourteen
degrees of freedom).

model t1*t2*t3=_response_(Group); specifies a Time main effect
within eachGroup (with ten de-
grees of freedom).
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However, the following MODEL statement is invalid since effects cannot be nested
within –RESPONSE–:

model t1*t2*t3=Group(_response_);

Generation of the Design Matrix

Each row of the design matrix (corresponding to a population) is generated by a
unique combination of independent variable values. Each column of the design ma-
trix corresponds to a model parameter. The columns are produced from the effect
specifications in the MODEL, LOGLIN, FACTORS, and REPEATED statements.
For details on effect specifications, see the “Specification of Effects” section on
page 745. This section is divided into three parts:

� one response function per population

� two or more response functions per population (excluding log-linear models),
beginning on page 760

� log-linear models, beginning on page 764

One Response Function Per Population
Intercept

When there is one response function per population, all design matrices start with
a column of 1s for the intercept unless the NOINT option is specified or the design
matrix is input directly.

Main Effects
If a class variableA hask levels, then its main effect hask � 1 degrees of freedom,
and the design matrix hask�1 columns that correspond to the firstk�1 levels ofA.
The ith column contains a 1 in theith row, a�1 in the last row, and 0s everywhere
else. If�i denotes the parameter that corresponds to theith level of variableA, then
thek � 1 columns yield estimates of the independent parameters,�1; �i; : : : ; �k�1.
The last parameter is not needed because PROC CATMOD constrains thek param-
eters to sum to zero. In other words, PROC CATMOD uses a full-rank center-point
parameterization to build design matrices. Here are two examples.

Data Levels Design Columns
A A
1 1 0
2 0 1
3 �1 �1

B B
1 1
2 �1

For an effect with three levels, such asA, PROC CATMOD produces two parameter
estimates for each response function. By default, the first (corresponding to the first
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row in the “Design Columns”) estimates the effect of level 1 ofA. The second (corre-
sponding to the second row in the “Design Columns”) estimates the effect of level 2
of A. The sum-to-zero constraint requires the effect of level 3 ofA to be the negative
of the sum of the level 1 and 2 effects (as shown by the third row in the “Design
Columns”).

Crossed Effects (Interactions)
Crossed effects (such asA*B) are formed by the horizontal direct products of main
effects, as illustrated in the following table.

Data Levels Design Matrix Columns
A B A B A*B
1 1 1 0 1 1 0
1 2 1 0 �1 �1 0
2 1 0 1 1 0 1
2 2 0 1 �1 0 �1
3 1 �1 �1 1 �1 �1
3 2 �1 �1 �1 1 1

The number of degrees of freedom for a crossed effect (that is, the number of design
matrix columns) is equal to the product of the numbers of degrees of freedom for the
separate effects.

Nested Effects
The effectA(B) is read “A within B” and is the same as specifying anA main effect
for every value ofB. If na andnb are the number of levels inA andB, respectively,
then the number of columns forA(B) is (na�1)nb when every combination of levels
exists in the data. The following table gives an example.

Data Levels Design Matrix Columns
B A A(B)
1 1 1 0 0 0
1 2 0 1 0 0
1 3 �1 �1 0 0
2 1 0 0 1 0
2 2 0 0 0 1
2 3 0 0 �1 �1

PROC CATMOD actually allocates a column for all possible combinations of values
even though some combinations may not be present in the data.

Nested-by-value Effects
Instead of nesting an effect within all values of the main effect, you can nest an
effect within specified values of the nested variable (A(B=1), for example). The four
degrees of freedom for theA(B) effect shown in the preceding section can also be
obtained by specifying the two separate nested effects with values.
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Data Levels Design Matrix Columns
B A A(B=1) A(B=2)
1 1 1 0 0 0
1 2 0 1 0 0
1 3 �1 �1 0 0
2 1 0 0 1 0
2 2 0 0 0 1
2 3 0 0 �1 �1

Each effect hasna� 1 degrees of freedom, assuming a complete combination. Thus,
for the example, each effect has two degrees of freedom.

The procedure compares nested values to data values on the basis of formatted values.
If a format is not specified for the variable, the procedure formats internal data values
to BEST16, left-justified. The nested values specified in nested-by-value effects are
also converted to a BEST16 formatted value, left-justified.

For example, if the numeric variableB has internal data values 1 and 2, thenA(B=1),
A(B=1.0), andA(B=1E0) are all valid nested-by-value effects. However, if the data
value 1 is formatted as ‘one’, thenA(B=’one’) is a valid effect, butA(B=1) is not
since the formatted nested value (1) does not match the formatted data value (one).

To ensure correct nested-by-value effects, look at the tables of population and re-
sponse profiles. These are displayed by default, and they contain the formatted data
values. In addition, the population and response profiles are displayed when you
specify the ONEWAY option in the MODEL statement.

Direct Effects
To request that the actual values of a variable be inserted into the design matrix, de-
clare the variable in a DIRECT statement, and specify the effect by the variable name.
For example, specifying the effectsX1 andX2 in both the MODEL and DIRECT
statements results in the following.

Data Levels Design Columns
X1 X2 X1 X2
1 1 1 1
2 4 2 4
3 9 3 9

Unless there is a POPULATION statement that excludes the direct variables, the di-
rect variables help to define the sample populations. In general, the variables should
not be continuous in the sense that every subject has a different value because this
would induce a separate population for each subject (note, however, that such a strat-
egy is used purposely for logistic regression).

If there is a POPULATION statement that omits mention of the direct variables, then
the values of the direct variables must be identical for all subjects in a given popula-
tion since there can only be one independent variable profile for each population.
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Two or More Response Functions Per Population
When there is more than one response function per population, the structure of the
design matrix depends on whether or not the model type is AVERAGED (see the
AVERAGED option on page 725). The model type is AVERAGED if independent
variable effects are averaged over the multiple responses within a population, rather
than being nested in them.

The following subsections illustrate the effect of specifying (or not specifying) an
AVERAGED model type. This section does not apply to log-linear models; for these
models, see the “Log-Linear Model Design Matrices” section on page 764.

Model Type Not AVERAGED
Suppose the variableA has two levels, and you specify

proc catmod;
model Y=A;

run;

If the variableY has two levels, then there is only one response function per popula-
tion, and the design matrix is as follows.

Design Matrix
Sample Intercept A

1 1 1
2 1 �1

But if the variableY has three levels, then there are two response functions per pop-
ulation, and the preceding design matrix is assumed to hold for each of the two re-
sponse functions. The response functions are always ordered so that the multiple
response functions within a population are grouped together. For this example, the
design matrix would be as follows.

Response
Function Design Matrix

Sample Number Intercept A
1 1 1 0 1 0
1 2 0 1 0 1
2 1 1 0 �1 0
2 2 0 1 0 �1

Since the same submatrix applies to each of the multiple response functions, PROC
CATMOD displays only the submatrix (that is, the one it would create if there were
only one response function per population) rather than the entire design matrix.
PROC CATMOD displays

�
1 1
1 �1

�
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Ordering of Parameters
This grouping of multiple response functions within populations also has an effect in
the table of parameter estimates displayed by PROC CATMOD. The following table
shows some parameter estimates, where the four rows of the table correspond to the
four columns in the preceding design matrix.

Effect Parameter Estimate
Intercept 1 1.4979

2 0.8404

A 3 0.1116
4 �0.3296

Notice that the intercept and theA effect each have two parameter estimates associ-
ated with them. The first estimate in each pair is associated with the first response
function, and the second in each pair is associated with the second response function.
Consequently, 0.1116 is the effect of the first level ofA on the first response func-
tion. In any table of parameter estimates displayed by PROC CATMOD, as you read
down the column of estimates, the response function level changes before levels of
the variables making up the effect.

Model Type AVERAGED
When the model type is AVERAGED (for example, when the AVERAGED option
is specified in the MODEL statement, when–RESPONSE– is used in the MODEL
statement, or when the design matrix is input directly in the MODEL statement),
PROC CATMOD does not assume that the same submatrix applies to each of the
q response functions per population. Rather, it averages any independent variable
effects across the functions, and it enables you to study variation among theq func-
tions. The first column of the design matrix is always a column of 1s corresponding
to the intercept, unless the NOINT option is specified in the MODEL statement or
the design matrix is input directly. Also, since the design matrix does not have any
special submatrix structure, PROC CATMOD displays the entire matrix.

For example, suppose the dependent variableY has three levels, the independent
variableA has two levels, and you specify

proc catmod;
response marginals;
model y=a / averaged;

run;

Then there are two response functions per population, and the response functions
are always ordered so that the multiple response functions within a population are
grouped together. For this example, the design matrix would be as follows.
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Response
Function Design Matrix

Sample Number Intercept A
1 1 1 1
1 2 1 1
2 1 1 �1
2 2 1 �1

Note that the model now has only two degrees of freedom. The remaining two de-
grees of freedom in the residual correspond to variation among the three levels of the
dependent variable. Generally, that variation tends to be statistically significant and
therefore should not be left out of the model. You can include it in the model by
including the two effects,–RESPONSE– and–RESPONSE–*A, but if the study is
not a repeated measurement study, those sources of variation tend to be uninteresting.
Thus, the usual solution for this type of study (one dependent variable) is to exclude
the AVERAGED option from the MODEL statement.

An AVERAGED model type is automatically induced whenever you use the

–RESPONSE– keyword in the MODEL statement. The–RESPONSE– effect mod-
els variation among theq response functions per population. If there is no RE-
PEATED, FACTORS, or LOGLIN statement, then PROC CATMOD builds a main
effect withq � 1 degrees of freedom. For example, three response functions would
induce the following design columns.

Response
Function Design Columns
Number –Response–

1 1 0
2 0 1
3 �1 �1

If there is more than one population, then the–RESPONSE– effect is averaged over
the populations. Also, the–RESPONSE– effect can be crossed with any other effect,
or it can be nested within an effect.

If there is a REPEATED statement that contains only one repeated measurement fac-
tor, then PROC CATMOD builds the design columns for–RESPONSE– in the same
way, except that the output labels the main effect with the factor name rather than
with the word–RESPONSE–. For example, suppose an independent variableA has
two levels, and the input statements are

proc catmod;
response marginals;
model Time1*Time2=A _response_ A*_response_;
repeated Time 2 / _response_=Time;

run;
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If Time1 andTime2 each have two levels (so that they each have one independent
marginal probability), then the RESPONSE statement causes PROC CATMOD to
compute two response functions per population. Thus, the design matrix is as follows.

Response
Function Design Matrix

Sample Number Intercept A Time A*Time
1 1 1 1 1 1
1 2 1 1 �1 �1
2 1 1 �1 1 �1
2 2 1 �1 �1 1

However, if Time1 andTime2 each have three levels (so that they each have two
independent marginal probabilities), then the RESPONSE statement causes PROC
CATMOD to compute four response functions per population. In that case, since
Time has two levels, PROC CATMOD groups the functions into sets of 2(= 4=2)
and constructs the preceding submatrix for each function in the set. This results in
the following design matrix, which is obtained from the previous one by multiplying
each element by an identity matrix of order two.

Response Design Matrix
Sample Function Intercept A Time A*Time

1 P(Time1=1) 1 0 1 0 1 0 1 0
1 P(Time1=2) 0 1 0 1 0 1 0 1

1 P(Time2=1) 1 0 1 0 �1 0 �1 0
1 P(Time2=2) 0 1 0 1 0 �1 0 �1

2 P(Time1=1) 1 0 �1 0 1 0 �1 0
2 P(Time1=2) 0 1 0 �1 0 1 0 �1

2 P(Time2=1) 1 0 �1 0 �1 0 1 0
2 P(Time2=2) 0 1 0 �1 0 �1 0 1

If there is a REPEATED statement that contains two or more repeated measurement
factors, then PROC CATMOD builds the design columns for–RESPONSE– accord-
ing to the definition of–RESPONSE– in the REPEATED statement. For example,
suppose you specify

proc catmod;
response marginals;
model R11*R12*R21*R22=_response_;
repeated Time 2, Place 2 / _response_=Time Place;

run;

If each of the dependent variables has two levels, then PROC CATMOD builds four
response functions. The–RESPONSE– effect generates a main effects model with
respect toTime andPlace.
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Response
Function Design Matrix
Number Variable Time Place Intercept –Response–

1 R11 1 1 1 1 1
2 R12 1 2 1 1 �1
3 R21 2 1 1 �1 1
4 R22 2 2 1 �1 �1

Log-Linear Model Design Matrices
When the response functions are the standard ones (generalized logits), then inclu-
sion of the keyword–RESPONSE– in every design effect induces a log-linear model.
The design matrix for a log-linear model looks different from a standard design ma-
trix because the standard one is transformed by the same linear transformation that
converts ther response probabilities tor�1 generalized logits. For example, suppose
the dependent variablesX andY each have two levels, and you specify a saturated
log-linear model analysis:

proc catmod;
model X*Y=_response_;
loglin X Y X*Y;

run;

Then the cross-classification ofX andY yields four response probabilities,p11, p12,
p21, andp22, which are then reduced to three generalized logit response functions,
F1 = log(p11=p22), F2 = log(p12=p22), andF3 = log(p21=p22).

Since the saturated log-linear model implies that

2
664

log(p11)
log(p12)
log(p21)
log(p22)

3
775 =

2
664

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

3
775 
 � �

2
664

1
1
1
1

3
775

=

2
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1 1 1
1 �1 �1

�1 1 �1
�1 �1 1

3
775� � �

2
664

1
1
1
1

3
775

where
 and� are parameter vectors, and� and� are normalizing constants required
by the restriction that the probabilities sum to 1, it follows that the MODEL statement
yields

2
4 F1

F2
F3

3
5 =

2
4 1 0 0 �1

0 1 0 �1
0 0 1 �1

3
5�

2
664
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log(p21)
log(p22)

3
775
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=

2
4 1 0 0 �1

0 1 0 �1
0 0 1 �1

3
5�

2
664
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1 �1 �1

�1 1 �1
�1 �1 1

3
775�

=

2
4 2 2 0

2 0 �2
0 2 �2

3
5�

Thus, the design matrix is as follows.

Response
Function Design Matrix

Sample Number X Y X*Y
1 1 2 2 0
1 2 2 0 �2
1 3 0 2 �2

Design matrices for reduced models are constructed similarly. For example, suppose
you request a main-effects log-linear model analysis of the factorsX andY:

proc catmod;
model X*Y=_response_;
loglin X Y;

run;

Since the main-effects log-linear model implies that

2
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it follows that the MODEL statement yields

2
4 F1
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3
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=

2
4 1 0 0 �1

0 1 0 �1
0 0 1 �1

3
5�

2
664

1 1
1 �1

�1 1
�1 �1

3
775�

=

2
4 2 2

2 0
0 2

3
5�

Therefore, the corresponding design matrix is as follows.

Response
Function Design Matrix

Sample Number X Y
1 1 2 2
1 2 2 0
1 3 0 2

Since it is difficult to tell from the final design matrix whether PROC CATMOD used
the parameterization that you intended, the procedure displays the untransformed

–RESPONSE– matrix for log-linear models. For example, the main-effects model in
the preceding example induces the display of the following matrix.

Response
Function –Response– Matrix
Number 1 2

1 1 1
2 1 �1
3 �1 1
4 �1 �1

You can suppress the display of this matrix by specifying the NORESPONSE option
in the MODEL statement.

Cautions

Effective Sample Size
Since the method depends on asymptotic approximations, you need to be careful that
the sample sizes are sufficiently large to support the asymptotic normal distributions
of the response functions. A general guideline is that you would like to have an
effective sample size of at least 25 to 30 for each response function that is being
analyzed. For example, if you have one dependent variable andr = 4 response
levels, and you use the standard response functions to compute three generalized
logits for each population, then you would like the sample size of each population
to be at least 75. Moreover, the subjects should be dispersed throughout the table so
that less than 20 percent of the response functions have an effective sample size less
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than 5. For example, if each population had less than 5 subjects in the first response
category, then it would be wiser to pool this category with another category rather
than to assume the asymptotic normality of the first response function. Or, if the
dependent variable is ordinally scaled, an alternative is to request the mean score
response function rather than three generalized logits.

If there is more than one dependent variable, and you specify RESPONSE MEANS,
then the effective sample size for each response function is the same as the actual
sample size. Thus, a sample size of 30 could be sufficient to support four response
functions, provided that the functions are the means of four dependent variables.

A Singular Covariance Matrix
If there is a singular (noninvertible) covariance matrix for the response functions in
any population, then PROC CATMOD writes an error message and stops processing.
You have several options available to correct this situation:

� You can reduce the number of response functions according to how many can
be supported by the populations with the smallest sample sizes.

� If there are three or more levels for any independent variable, you can pool
the levels into a fewer number of categories, thereby reducing the number of
populations. However, your interpretation of results must be done more cau-
tiously since such pooling implies a different sampling scheme and masks any
differences that existed among the pooled categories.

� If there are two or more independent variables, you can delete at least one of
them from the model. However, this is just another form of pooling, and the
same cautions that apply to the previous option also apply here.

� If there is one independent variable, then, in some situations, you might sim-
ply eliminate the populations that are causing the covariance matrices to be
singular.

� You can use the ADDCELL option in the MODEL statement to add a small
amount (for example, 0.5) to every cell frequency, but this can seriously bias
the results if the cell frequencies are small.

Zero Frequencies
If you use the standard response functions and there are zero frequencies, you should
use maximum likelihood estimation (the default) rather than weighted least-squares
to analyze the data. For weighted least-squares analysis, the CATMOD procedure
always computes the observed response functions. If PROC CATMOD needs to take
the logarithm of a zero proportion, it issues a warning and then proceeds to take the
log of a small value (0:5=ni for the probability) in order to continue. This can produce
invalid results if the cells contain too few observations. The ML analysis, on the other
hand, does not require computation of the observed response functions and therefore
yields valid results for the parameter estimates and all of the predicted values.

For any log-linear model analysis, it is important to remember that PROC CATMOD
creates response profiles only for those profiles that are actually observed. Thus, for
any log-linear model analysis with one population (the usual case), there are no zeros
in the contingency table, which means that the CATMOD procedure treats all zero
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frequencies as structural zeros. If there is more than one population, then a zero can
appear in the body of the contingency table, in which case the zero is treated as a
sampling zero (as long as some population has a nonzero count for that profile). If
you want zero frequencies that PROC CATMOD would normally treat as structural
zeros to be interpreted as sampling zeros, simply insert a one-line statement into the
data step that changes each zero to a very small number (such as 1E�20). Refer to
Bishop, Fienberg, and Holland (1975) for a discussion of the issues and Example 22.5
on page 796 for an illustration of a log-linear model analysis of data that contain both
structural and sampling zeros.

If you perform a weighted least-squares analysis on a contingency table that contains
zero cell frequencies, then avoid using the LOG transformation as the first trans-
formation on the observed proportions. In general, it may be better to change the
response functions or to pool some of the response categories than to settle for the
0.5 correction or to use the ADDCELL option.

Testing the Wrong Hypothesis
If you use the keyword–RESPONSE– in the MODEL statement, and you specify
MARGINALS, LOGITS, ALOGITS, or CLOGITS in your RESPONSE statement,
you may receive the following warning message:

Warning: The _RESPONSE_ effect may be testing the wrong
hypothesis since the marginal levels of the
dependent variables do not coincide. Consult the
response profiles and the CATMOD documentation.

The following examples illustrate situations in which the–RESPONSE– effect tests
the wrong hypothesis.

Zeros in the Marginal Frequencies
Suppose you specify the following statements:

data A1;
input Time1 Time2 @@;
datalines;

1 2 2 3 1 3
;

proc catmod;
response marginals;
model Time1*Time2=_response_;
repeated Time 2 / _response_=Time;

run;

One marginal probability is computed for each dependent variable, resulting in two
response functions. The model is a saturated one: one degree of freedom for the
intercept and one for the main effect ofTime. Except for the warning message,
PROC CATMOD produces an analysis with no apparent errors, but the “Response
Profiles” table displayed by PROC CATMOD is as follows.
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Response Profiles
Response Time1 Time2

1 1 2
2 1 3
3 2 3

Since RESPONSE MARGINALS yields marginal probabilities for every level
but the last, the two response functions being analyzed are Prob(Time1=1)
and Prob(Time2=2). Thus, theTime effect is testing the hypothesis that
Prob(Time1=1)=Prob(Time2=2). What itshouldbe testing is the hypothesis that

Prob(Time1=1) = Prob(Time2=1)
Prob(Time1=2) = Prob(Time2=2)
Prob(Time1=3) = Prob(Time2=3)

but there are not enough data to support the test (assuming that none of the probabil-
ities are structural zeros by the design of the study).

The ORDER=DATA Option
Suppose you specify

data a1;
input Time1 Time2 @@;
datalines;

2 1 2 2 1 1 1 2 2 1
;

proc catmod order=data;
response marginals;
model Time1*Time2=_response_;
repeated Time 2 / _response_=Time;

run;

As in the preceding example, one marginal probability is computed for each depen-
dent variable, resulting in two response functions. The model is also the same: one
degree of freedom for the intercept and one for the main effect ofTime. PROC CAT-
MOD issues the warning message and displays the following “Response Profiles”
table.

Response Profiles
Response Time1 Time2

1 2 1
2 2 2
3 1 1
4 1 2
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Although the marginal levels are the same for the two dependent variables, they
are not in the same order because the ORDER=DATA option specified that they
be ordered according to their appearance in the input stream. Since RESPONSE
MARGINALS yields marginal probabilities for every level except the last, the two
response functions being analyzed are Prob(Time1=2) and Prob(Time2=1). Thus, the
Time effect is testing the hypothesis that Prob(Time1=2)=Prob(Time2=1). What it
shouldbe testing is the hypothesis that

Prob(Time1=1) = Prob(Time2=1)
Prob(Time1=2) = Prob(Time2=2)

Whenever the warning message appears, look at the “Response Profiles” table or
the “One-Way Frequencies” table to determine what hypothesis is actually being
tested. For the latter example, a correct analysis can be obtained by deleting the
ORDER=DATA option or by reordering the data so that the (1,1) observation is first.

Computational Method

The notation used in PROC CATMOD differs slightly from that used in other lit-
erature. The following table provides a summary of the basic dimensions and the
notation for a contingency table. See the “Computational Formulas” section, which
follows, for a complete description.

Summary of Basic Dimensions

s = number of populations or samples ( = number of rows in the underlying
contingency table)

r = number of response categories (= number of columns in the underlying
contingency table)

q = number of response functions computed for each population

d = number of parameters

Notation
j denotes a column vector of 1s.
J denotes a square matrix of 1s.P
k is the sum over all the possible values ofk.
ni denotes the row sum

P
j nij.

DIAG n(p) is the diagonal matrix formed from the firstn elements
of the vectorp.

DIAG �1
n (p) is the inverse ofDIAG n(p).

DIAG (A1;A2; : : : ;Ak) denotes a block diagonal matrix with theA matrices
on the main diagonal.

Input data can be represented by a contingency table, as shown in Table 22.4.
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Table 22.4. Input Data Represented by a Contingency Table

Response

Population 1 2 � � � r Total

1 n11 n12 � � � n1r n1

2 n21 n22 � � � n2r n2
...

...
...

. . .
...

...

s ns1 ns2 � � � nsr ns

Computational Formulas

The following calculations are shown for each population and then for all populations
combined.

Source Formula Dimension
Probability Estimates

jth response pij =
nij

ni

1� 1

ith population pi =

2
6664

pi1
pi2
...
pir

3
7775 r � 1

all populations p =

2
6664
p1
p2
...
ps

3
7775 sr � 1

Variance of Probability Estimates

ith population Vi =
1

ni

(DIAG(pi)� pipi
0) r � r

all populations V = DIAG(V1;V2; : : : ;Vs) sr � sr

Response Functions

ith population Fi = F(pi) q � 1

all populations F =

2
6664
F1

F2
...
Fs

3
7775 sq � 1
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Source Formula Dimension

Derivative of Function with Respect to Probability Estimates

ith population Hi =
@F(pi)

@pi
q � r

all populations H = DIAG(H1;H2; : : : ;Hs) sq � sr

Variance of Functions

ith population Si = HiViHi
0 q � q

all populations S = DIAG(S1;S2; : : : ;Ss) sq � sq

Inverse Variance of Functions

ith population Si = (Si)
�1 q � q

all populations S�1 = DIAG(S1;S2; : : : ;Ss) sq � sq

Derivative Table for Compound Functions: Y=F(G(p))
In the following table, letG(p) be a vector of functions ofp, and letD denote
@G=@p, which is the first derivative matrix ofG with respect top.

Function Y = F(G) Derivative (@Y=@p)

Multiply matrix Y = A �G A �D

Logarithm Y = LOG(G) DIAG�1(G) �D

Exponential Y = EXP(G) DIAG(Y) �D

Add constant Y = G+A D

Default Response Functions: Generalized Logits
In the following table, subscriptsi for the population are suppressed. Also denote

fj = log

�
pj
pr

�
for j = 1; : : : ; r � 1 for each populationi = 1; : : : ; s.

Inverse of Response Functions for a Population

pj =
exp(fj)

1 +
P

k exp(fk)
for j = 1; : : : ; r � 1

pr =
1

1 +
P

k exp(fk)

Form of F and Derivative for a Population

F = KLOG(p) = (Ir�1;�j) LOG(p)

H =
@F

@p
=

�
DIAG�1

r�1(p);
�1

pr
j

�

SAS OnlineDoc: Version 8



Computational Formulas � 773

Covariance Results for a Population

S = HVH0

=
1

n

�
DIAG�1

r�1(p) +
1

pr
Jr�1

�

whereV;H; andJ are as previously defined.

S�1 = n(DIAGr�1(p)� qq
0) whereq = DIAGr�1(p) j

S�1F = nDIAGr�1(p)F� (n
X
j

pjfj) q

F0S�1F = n
X
j

pjf
2
j � n(

X
j

pjfj)
2

The following calculations are shown for each population and then for all populations
combined.

Source Formula Dimension
Design Matrix

ith population Xi q � d

all populations X =

2
6664
X1

X2
...
Xs

3
7775 sq � d

Crossproduct of Design Matrix

ith population Ci = Xi
0SiXi d� d

all populations C = X0S�1X =
P

iCi d� d

Crossproduct of Design Matrix with Function

R = X0S�1F =
P

iXi
0SiFi d� 1

Weighted Least-Squares Estimates

b = C�1R = (X0S�1X)�1(X0S�1F) d� 1

Covariance of Weighted Least-Squares Estimates

COV(b) = C�1 d� d

Predicted Response Functions

F̂ = Xb sq � 1
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Source Formula Dimension
Covariance of Predicted Response Functions

V
F̂
= XC�1X0 sq � sq

Residual Chi-Square

RSS= F0S�1F� F̂0S�1F̂ 1� 1

Chi-Square for H0:L� = 0

Q = (Lb)0(LC�1L0)�1(Lb) 1� 1

Maximum Likelihood Method
Let C be the Hessian matrix andG be the gradient of the log-likelihood function
(both functions of� and the parameters�). Let p�

i denote the vector containing
the firstr � 1 sample proportions from populationi, and let��

i denote the corre-
sponding vector of probability estimates from the current iteration. Starting with the
least-squares estimatesb0 of � (if you use the ML and WLS options; with the ML
option alone, the procedure starts with0), the probabilities�(b) are computed, and
b is calculated iteratively by the Newton-Raphson method until it converges (see the
EPSILON= option on page 726). The factor� is a step-halving factor that equals
one at the start of each iteration. For any iteration in which the likelihood decreases,
PROC CATMOD uses a series of subiterations in which� is iteratively divided by
two. The subiterations continue until the likelihood is greater than that of the previ-
ous iteration. If the likelihood has not reached that point after ten subiterations, then
convergence is assumed, and a warning message is displayed.

Sometimes, infinite parameters may be present in the model, either because of the
presence of one or more zero frequencies or because of a poorly specified model with
collinearity among the estimates. If an estimate is tending toward infinity, then PROC
CATMOD flags the parameter as infinite and holds the estimate fixed in subsequent
iterations. PROC CATMOD regards a parameter to be infinite when two conditions
apply:

� The absolute value of its estimate exceeds five divided by the range of the
corresponding variable.

� The standard error of its estimate is at least three times greater than the estimate
itself.

The estimator of the asymptotic covariance matrix of the maximum likelihood pre-
dicted probabilities is given by Imrey, Koch, and Stokes (1981, eq. 2.18).
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The following equations summarize the method:

bk+1 = bk � �C�1G

where

C = X0S�1(�)X

N =

2
64

n1(p
�

1 � ��

1)
...

ns(p
�

s � ��

s)

3
75

G = X0N

Memory and Time Requirements

The memory and time required by PROC CATMOD are proportional to the number
of parameters in the model.

Displayed Output

PROC CATMOD displays the following information in the “Data Summary” table:

� the Response effect

� the Weight Variable, if one is specified

� the Data Set name

� the number of Response Levels

� the number of samples or Populations

� the Total Frequency, which is the total sample size

� the number of Observations from the data set (the number of data records)

� the frequency of missing observations, labeled as “Frequency Missing”

Except for the analysis of variance table, all of the following items can be displayed
or suppressed, depending on your specification of statements and options.

� The ONEWAY option produces the “One-Way Frequencies” table, which dis-
plays the frequencies of each variable value used in the analysis.

� The populations (or samples) are defined in a table labeled “Population Pro-
files.” The Sample Size and the values of the defining variables are displayed
for each Sample. This table is suppressed if the NOPROFILE option is speci-
fied.

� The observed responses are defined in a table labeled “Response Profiles.” The
values of the defining variables are displayed for each Response. This table is
suppressed if the NOPROFILE option is specified.
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� If the FREQ option is specified, then the “Response Frequencies” table is dis-
played, which shows the frequency of each response for each population.

� If the PROB option is specified, then the “Response Probabilities” table is pro-
duced. This table displays the probability of each response for each population.

� If the COV option is specified, the “Response Functions, Covariance Matrix”
table, which shows the covariance matrix of the response functions for each
Sample, is displayed.

� The Response Functions are displayed in the “Response Functions, Design Ma-
trix” table, unless the COV option is specified, in which case they are displayed
in the “Response Functions, Covariance Matrix” table.

� The design matrix is displayed in the “Response Functions, Design Matrix” ta-
ble for weighted least-squares analyses, unless the NODESIGN option is spec-
ified. If the model type is AVERAGED, then the design matrix is displayed
with q � s rows, assumingq response functions for each ofs populations. Oth-
erwise, the design matrix is displayed with onlys rows since the model is the
same for each of theq response functions.

� The “X0*Inv(S)*X” matrix is displayed for weighted least-squares analyses if
the XPX option is specified.

� The “Analysis of Variance” table for the weighted least-squares analysis re-
ports the results of significance tests for each of thedesign-effectsin the right-
hand side of the MODEL statement. If–RESPONSE– is adesign-effectand
is defined explicitly in the LOGLIN, FACTORS, or REPEATED statement,
then the table contains test statistics for the individual effects constituting the

–RESPONSE– effect. If the design matrix is input directly, then the content of
the displayed output depends on whether you specify any subsets of the param-
eters to be tested. If you specify one or more subsets, then the table contains
one test for each subset. Otherwise, the table contains one test for the effect
MODEL | MEAN. In every case, the table also contains the Residual goodness-
of-fit test. Produced for each test of significance are the Source of variation,
the number of degrees of freedom (DF), the Chi-Square value (which is a Wald
statistic), and the significance probability (Pr > ChiSq).

� The “Analysis of Weighted Least-Squares Estimates” table lists the Effect in
the model for which parameters are formed, the Parameter number, the least-
squares Estimate, the estimated Standard Error of the parameter estimate, the
Chi-Square value (a Wald statistic) for testing that the parameter is zero, and
the significance probability (Pr > ChiSq) of the test. The statistic is calculated
as ((parameter estimate)/(standard error))2.

� The “Covariance Matrix of the Parameter Estimates” table for the weighted
least-squares analysis displays the estimated covariance matrix of the least-
squares estimates of the parameters, provided the COVB option is specified.

� The “Correlation Matrix of the Parameter Estimates” table for the weighted
least-squares analysis displays the estimated correlation matrix of the least-
squares estimates of the parameters, provided that the CORRB option is speci-
fied.
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� The “Maximum Likelihood Analysis” table is produced when the ML option
is specified for the standard response functions (generalized logits). It dis-
plays the Iteration number, the number of step-halving Sub-Iterations,�2 Log
Likelihood for that iteration, the Convergence Criterion, and the Parameter Es-
timates for each iteration.

� The “Maximum Likelihood Analysis of Variance” table, displayed when the
ML option is specified for the standard response functions, is similar to the
table produced for the least-squares analysis. The Chi-Square test for each
effect is a Wald test based on the information matrix from the likelihood calcu-
lations. The Likelihood Ratio statistic compares the specified model with the
unrestricted (saturated) model and is an appropriate goodness-of-fit test for the
model.

� The “Analysis of Maximum Likelihood Estimates” table, displayed when the
ML option is specified for the standard response functions, is similar to the
one produced for the least-squares analysis. The table includes the maximum
likelihood estimates, the estimated Standard Errors based on the information
matrix, and the Wald Statistics (Chi-Square) based on the estimated standard
errors.

� The “Covariance Matrix of the Maximum Likelihood Estimates” table displays
the estimated covariance matrix of the maximum likelihood estimates of the
parameters, provided that the COVB and ML options are specified for the stan-
dard response functions.

� The “Correlation Matrix of the Maximum Likelihood Estimates” table displays
the estimated correlation matrix of the maximum likelihood estimates of the
parameters, provided that the CORRB and ML options are specified for the
standard response functions.

� For each source of variation specified in a CONTRAST statement, the “Con-
trasts” table lists the label for the source (Contrast), the number of degrees of
freedom (DF), the Chi-Square value (which is a Wald statistic), and the signif-
icance probability (Pr > ChiSq). If the ESTIMATE= option is specified, the
“Analysis of Contrasts” table displays, for each row of the contrast, the label
(Contrast), the Type (PARM or EXP), the Row of the contrast, the Estimate
and its Standard Error, a Wald confidence interval, the Wald Chi-Square, and
thep-value (Pr > ChiSq) for 1 degree of freedom.
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� Specification of the PREDICT option in the MODEL statement has the follow-
ing effect. Produced for each response function within each population are the
Observed and Predicted Function values, their Standard Errors, and the Resid-
ual (Observed� Predicted). The displayed output also includes the values of
the variables that define the populations unless the NOPREDVAR option is
specified in the MODEL statement. If the response functions are the default
ones (generalized logits), additional information displayed for each response
within each population includes the Observed and Predicted cell probabilities,
their Standard Errors, and the Residual. The first cell probability is labeled P1,
the second P2, and so forth. However, specifying PRED=FREQ in the MODEL
statement results in the display of the predicted cell frequencies, rather than the
predicted cell probabilities. The first cell frequency is labeled F1, the second
F2, and so forth.

� When there are multiple RESPONSE statements, the output for each statement
starts on a new page. For each RESPONSE statement, the corresponding title,
if specified, is displayed at the top of each page.

� If the ADDCELL= option is specified in the MODEL statement, and if there is
a weighted least-squares analysis specified, the adjusted sample size for each
population (with number added to each cell) is labeled Adjusted Sample Size
in the “Population Profiles” table. Similarly, the adjusted response frequencies
and probabilities are displayed in the “Adjusted Response Frequencies” and
“Adjusted Response Probabilities” tables, respectively.

� If –RESPONSE– is defined explicitly in the LOGLIN, FACTORS, or
REPEATED statement, then the definition is displayed as a NOTE when-
ever–RESPONSE– appears in the output.
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ODS Table Names

PROC CATMOD assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 22.5. ODS Tables Produced in PROC CATMOD

ODS Table Name Description Statement Option
ANOVA Analysis of variance MODEL default
Contrasts Contrasts CONTRAST default
ContrastEstimates Analysis of Contrasts CONTRAST ESTIMATE=
ConvergenceStatus Convergence status MODEL ML
CorrB Correlation matrix of the

estimates
MODEL CORRB

CovB Covariance matrix of the
estimates

MODEL COVB

DataSummary Data summary PROC default
Estimates Analysis of estimates MODEL default, unless NOPARM
MaxLikelihood Maximum likelihood

analysis
MODEL ML

OneWayFreqs One-way frequencies MODEL ONEWAY
PopProfiles Population profiles MODEL default, unless NOPROFILE
PredictedFreqs Predicted frequencies MODEL PRED=FREQ
PredictedProbs Predicted probabilities MODEL PREDICT or PRED=PROB
PredictedValues Predicted values MODEL PREDICT or PRED=
ResponseCov Response functions,

covariance matrix
MODEL COV

ResponseDesign Response functions,
design matrix

MODEL WLS�, unless NODESIGN

ResponseFreqs Response frequencies MODEL FREQ
ResponseMatrix –RESPONSE– matrix MODEL &

LOGLIN
unless NORESPONSE

ResponseProbs Response probabilities MODEL PROB
ResponseProfiles Response profiles MODEL default, unless NOPROFILE
XPX X’*Inv( S)*X matrix MODEL XPX, for WLS�
� WLS estimation is the default for response functions other than the default (generalized logits).

SAS OnlineDoc: Version 8



780 � Chapter 22. The CATMOD Procedure

Examples

Example 22.1. Linear Response Function, r=2 Responses

In an example from Ries and Smith (1963), the choice of detergent brand (Brand=
M or X) is related to three other categorical variables: the softness of the laundry wa-
ter (Softness= soft, medium, or hard), the temperature of the water (Temperature=
high or low), and whether the subject was a previous user of brand M (Previous= yes
or no). The linear response function, which could also be specified as RESPONSE
MARGINALS, yields one probability, Pr(brand preference=M), as the response func-
tion to be analyzed. Two models are fit in this example: the first model is a saturated
one, containing all of the main effects and interactions, while the second is a re-
duced model containing only the main effects. The following statements produce
Output 22.1.1 through Output 22.1.4:

title ’Detergent Preference Study’;
data detergent;

input Softness $ Brand $ Previous $ Temperature $ Count @@;
datalines;

soft X yes high 19 soft X yes low 57
soft X no high 29 soft X no low 63
soft M yes high 29 soft M yes low 49
soft M no high 27 soft M no low 53
med X yes high 23 med X yes low 47
med X no high 33 med X no low 66
med M yes high 47 med M yes low 55
med M no high 23 med M no low 50
hard X yes high 24 hard X yes low 37
hard X no high 42 hard X no low 68
hard M yes high 43 hard M yes low 52
hard M no high 30 hard M no low 42
;

proc catmod data=detergent;
response 1 0;
weight Count;
model Brand=Softness|Previous|Temperature

/ freq prob nodesign;
title2 ’Saturated Model’;

run;

Output 22.1.1. Detergent Preference Study: Linear Model Analysis

Detergent Preference Study
Saturated Model

The CATMOD Procedure

Response Brand Response Levels 2
Weight Variable Count Populations 12
Data Set DETERGENT Total Frequency 1008
Frequency Missing 0 Observations 24
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The “Data Summary” table (Output 22.1.1) indicates that you have two response
levels and twelve populations.

Output 22.1.2. Population Profiles

Detergent Preference Study
Saturated Model

The CATMOD Procedure

Population Profiles

Sample Softness Previous Temperature Sample Size
------------------------------------------------------------

1 hard no high 72
2 hard no low 110
3 hard yes high 67
4 hard yes low 89
5 med no high 56
6 med no low 116
7 med yes high 70
8 med yes low 102
9 soft no high 56

10 soft no low 116
11 soft yes high 48
12 soft yes low 106

The “Population Profiles” table in Output 22.1.2 displays the ordering of independent
variable levels as used in the table of parameter estimates.
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Output 22.1.3. Response Profiles, Frequencies, and Probabilities

Detergent Preference Study
Saturated Model

The CATMOD Procedure

Response Profiles

Response Brand
-----------------

1 M
2 X

Response Frequencies

Response Number
Sample 1 2
------------------------

1 30 42
2 42 68
3 43 24
4 52 37
5 23 33
6 50 66
7 47 23
8 55 47
9 27 29

10 53 63
11 29 19
12 49 57

Response Probabilities

Response Number
Sample 1 2
----------------------------

1 0.41667 0.58333
2 0.38182 0.61818
3 0.64179 0.35821
4 0.58427 0.41573
5 0.41071 0.58929
6 0.43103 0.56897
7 0.67143 0.32857
8 0.53922 0.46078
9 0.48214 0.51786

10 0.45690 0.54310
11 0.60417 0.39583
12 0.46226 0.53774

SinceBrand M is the first level in the “Response Profiles” table (Output 22.1.3),
the RESPONSE statement causes Pr(Brand=M) to be the single response function
modeled.
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Output 22.1.4. Analysis of Variance and WLS Estimates

Detergent Preference Study
Saturated Model

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
Intercept 1 983.13 <.0001
Softness 2 0.09 0.9575
Previous 1 22.68 <.0001
Softness*Previous 2 3.85 0.1457
Temperature 1 3.67 0.0555
Softness*Temperature 2 0.23 0.8914
Previous*Temperature 1 2.26 0.1324
Softnes*Previou*Temperat 2 0.76 0.6850

Residual 0 . .

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------------
Intercept 1 0.5069 0.0162 983.13 <.0001
Softness 2 -0.00073 0.0225 0.00 0.9740

3 0.00623 0.0226 0.08 0.7830
Previous 4 -0.0770 0.0162 22.68 <.0001
Softness*Previous 5 -0.0299 0.0225 1.77 0.1831

6 -0.0152 0.0226 0.45 0.5007
Temperature 7 0.0310 0.0162 3.67 0.0555
Softness*Temperature 8 -0.00786 0.0225 0.12 0.7265

9 -0.00298 0.0226 0.02 0.8953
Previous*Temperature 10 -0.0243 0.0162 2.26 0.1324
Softnes*Previou*Temperat 11 0.0187 0.0225 0.69 0.4064

12 -0.0138 0.0226 0.37 0.5415

The “Analysis of Variance” table in Output 22.1.4 shows that all of the interactions are
nonsignificant. Therefore, a main-effects model is fit with the following statements:

model Brand=Softness Previous Temperature / noprofile;
title2 ’Main-Effects Model’;

run;
quit;

The PROC CATMOD statement is not required due to the interactive capability of
the CATMOD procedure. The NOPROFILE option suppresses the redisplay of the
“Response Profiles” table. Output 22.1.5 through Output 22.1.7 are produced.
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Output 22.1.5. Main-Effects Design Matrix

Detergent Preference Study
Main-Effects Model

The CATMOD Procedure

Response Brand Response Levels 2
Weight Variable Count Populations 12
Data Set DETERGENT Total Frequency 1008
Frequency Missing 0 Observations 24

Response Design Matrix
Sample Function 1 2 3 4 5
-----------------------------------------------------------------

1 0.41667 1 1 0 1 1
2 0.38182 1 1 0 1 -1
3 0.64179 1 1 0 -1 1
4 0.58427 1 1 0 -1 -1
5 0.41071 1 0 1 1 1
6 0.43103 1 0 1 1 -1
7 0.67143 1 0 1 -1 1
8 0.53922 1 0 1 -1 -1
9 0.48214 1 -1 -1 1 1

10 0.45690 1 -1 -1 1 -1
11 0.60417 1 -1 -1 -1 1
12 0.46226 1 -1 -1 -1 -1

The design matrix in Output 22.1.5 displays the results of the factor effects modeling
used in PROC CATMOD.

Output 22.1.6. ANOVA Table for the Main-Effects Model

Detergent Preference Study
Main-Effects Model

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
---------------------------------------------
Intercept 1 1004.93 <.0001
Softness 2 0.24 0.8859
Previous 1 20.96 <.0001
Temperature 1 3.95 0.0468

Residual 7 8.26 0.3100

The analysis of variance table in Output 22.1.6 shows that previous use of Brand M,
together with the temperature of the laundry water, are significant factors in preferring
Brand M laundry detergent. The table also shows that the additive model fits since
the goodness-of-fit statistic (the Residual Chi-Square) is nonsignificant.

SAS OnlineDoc: Version 8



Example 22.2. Mean Score Response Function, r=3 Responses � 785

Output 22.1.7. WLS Estimates for the Main-Effects Model

Detergent Preference Study
Main-Effects Model

The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-------------------------------------------------------------------------
Intercept 1 0.5080 0.0160 1004.93 <.0001
Softness 2 -0.00256 0.0218 0.01 0.9066

3 0.0104 0.0218 0.23 0.6342
Previous 4 -0.0711 0.0155 20.96 <.0001
Temperature 5 0.0319 0.0161 3.95 0.0468

The negative coefficient forPrevious (�0:0711) in Output 22.1.7 indicates that the
first level of Previous (which, from the table of population profiles, is ‘no’) is as-
sociated with a smaller probability of preferring Brand M than the second level of
Previous (with coefficient constrained to be 0.0711 since the parameter estimates
for a given effect must sum to zero). In other words, previous users of Brand M are
much more likely to prefer it than those who have never used it before.

Similarly, the positive coefficient forTemperature indicates that the first level of
Temperature (which, from the “Population Profiles” table, is ‘high’) has a larger
probability of preferring Brand M than the second level ofTemperature. In other
words, those who do their laundry in hot water are more likely to prefer Brand M
than those who do their laundry in cold water.

Example 22.2. Mean Score Response Function, r=3
Responses

Four surgical operations for duodenal ulcers are compared in a clinical trial at four
hospitals. The operations performed are:Treatment=a, drainage and vagotomy;
Treatment=b, 25%resection and vagotomy;Treatment=c, 50%resection and vago-
tomy; andTreatment=d, 75%resection. The response is severity of an undesirable
complication called “dumping syndrome.” The data are from Grizzle, Starmer, and
Koch (1969, pp. 489–504).

title ’Dumping Syndrome Data’;
data operate;

input Hospital Treatment $ Severity $ wt @@;
datalines;

1 a none 23 1 a slight 7 1 a moderate 2
1 b none 23 1 b slight 10 1 b moderate 5
1 c none 20 1 c slight 13 1 c moderate 5
1 d none 24 1 d slight 10 1 d moderate 6
2 a none 18 2 a slight 6 2 a moderate 1
2 b none 18 2 b slight 6 2 b moderate 2
2 c none 13 2 c slight 13 2 c moderate 2
2 d none 9 2 d slight 15 2 d moderate 2
3 a none 8 3 a slight 6 3 a moderate 3
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3 b none 12 3 b slight 4 3 b moderate 4
3 c none 11 3 c slight 6 3 c moderate 2
3 d none 7 3 d slight 7 3 d moderate 4
4 a none 12 4 a slight 9 4 a moderate 1
4 b none 15 4 b slight 3 4 b moderate 2
4 c none 14 4 c slight 8 4 c moderate 3
4 d none 13 4 d slight 6 4 d moderate 4
;

The response variable (Severity) is ordinally scaled with three levels, so assignment
of scores is appropriate (0=none, 0.5=slight, 1=moderate). For these scores, the
response function yields the mean score. The following statements produce Out-
put 22.2.1 through Output 22.2.6.

proc catmod data=operate order=data ;
weight wt;
response 0 0.5 1;
model Severity=Treatment Hospital / freq oneway;
title2 ’Main-Effects Model’;

quit;

The ORDER= option is specified so that the levels of the response variable remain
in the correct order. A main effects model is fit. The FREQ option displays the
frequency of each response within each sample (Output 22.2.3), and the ONEWAY
option produces a table of the number of subjects within each variable level (Out-
put 22.2.1).

Output 22.2.1. Surgical Data: Analysis of Mean Scores

Dumping Syndrome Data
Main-Effects Model

The CATMOD Procedure

Response Severity Response Levels 3
Weight Variable wt Populations 16
Data Set OPERATE Total Frequency 417
Frequency Missing 0 Observations 48

One-Way Frequencies

Variable Value Frequency
---------------------------------
Severity none 240

slight 129
moderate 48

Treatment a 96
b 104
c 110
d 107

Hospital 1 148
2 105
3 74
4 90
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Output 22.2.2. Population Sizes

Dumping Syndrome Data
Main-Effects Model

The CATMOD Procedure

Population Profiles

Sample Treatment Hospital Sample Size
----------------------------------------------

1 a 1 32
2 a 2 25
3 a 3 17
4 a 4 22
5 b 1 38
6 b 2 26
7 b 3 20
8 b 4 20
9 c 1 38

10 c 2 28
11 c 3 19
12 c 4 25
13 d 1 40
14 d 2 26
15 d 3 18
16 d 4 23

Output 22.2.3. Response Frequencies

Dumping Syndrome Data
Main-Effects Model

The CATMOD Procedure

Response Profiles

Response Severity
--------------------

1 none
2 slight
3 moderate

Response Frequencies

Response Number
Sample 1 2 3
---------------------------------

1 23 7 2
2 18 6 1
3 8 6 3
4 12 9 1
5 23 10 5
6 18 6 2
7 12 4 4
8 15 3 2
9 20 13 5

10 13 13 2
11 11 6 2
12 14 8 3
13 24 10 6
14 9 15 2
15 7 7 4
16 13 6 4
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You can use the oneway frequencies (Output 22.2.1) and the response profiles (Out-
put 22.2.3) to verify that the response levels are in the desired order (none, slight,
moderate) so that the response scores (0, 0.5, 1.0) are applied appropriately. If the
ORDER=DATA option had not been used, the levels would have been in a different
order.

Output 22.2.4. Design Matrix

Dumping Syndrome Data
Main-Effects Model

The CATMOD Procedure

Response Design Matrix
Sample Function 1 2 3 4 5 6 7
---------------------------------------------------------------------------

1 0.17188 1 1 0 0 1 0 0
2 0.16000 1 1 0 0 0 1 0
3 0.35294 1 1 0 0 0 0 1
4 0.25000 1 1 0 0 -1 -1 -1
5 0.26316 1 0 1 0 1 0 0
6 0.19231 1 0 1 0 0 1 0
7 0.30000 1 0 1 0 0 0 1
8 0.17500 1 0 1 0 -1 -1 -1
9 0.30263 1 0 0 1 1 0 0

10 0.30357 1 0 0 1 0 1 0
11 0.26316 1 0 0 1 0 0 1
12 0.28000 1 0 0 1 -1 -1 -1
13 0.27500 1 -1 -1 -1 1 0 0
14 0.36538 1 -1 -1 -1 0 1 0
15 0.41667 1 -1 -1 -1 0 0 1
16 0.30435 1 -1 -1 -1 -1 -1 -1

Output 22.2.5. ANOVA Table

Dumping Syndrome Data
Main-Effects Model

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 248.77 <.0001
Treatment 3 8.90 0.0307
Hospital 3 2.33 0.5065

Residual 9 6.33 0.7069

The analysis of variance table (Output 22.2.5) shows that the additive model fits (since
the Residual Chi-Square is not significant), that theTreatment effect is significant,
and that theHospital effect is not significant.
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Output 22.2.6. Parameter Estimates

Dumping Syndrome Data
Main-Effects Model

The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 0.2724 0.0173 248.77 <.0001
Treatment 2 -0.0552 0.0270 4.17 0.0411

3 -0.0365 0.0289 1.59 0.2073
4 0.0248 0.0280 0.78 0.3757

Hospital 5 -0.0204 0.0264 0.60 0.4388
6 -0.0178 0.0268 0.44 0.5055
7 0.0531 0.0352 2.28 0.1312

The coefficients ofTreatment in Output 22.2.6 show that the first two treatments
(with negative coefficients) have lower mean scores than the last two treatments (the
fourth coefficient, not shown, must be positive since the four coefficients must sum
to zero). In other words, the less severe treatments (the first two) cause significantly
less severe dumping syndrome complications.

Example 22.3. Logistic Regression, Standard Response
Function

In this data set, from Cox and Snell (1989), ingots are prepared with different heating
and soaking times and tested for their readiness to be rolled. The response variable
Y has value 1 for ingots that are not ready and value 0 otherwise. The explanatory
variables areHeat andSoak.

title ’Maximum Likelihood Logistic Regression’;
data ingots;

input Heat Soak nready ntotal @@;
Count=nready;
Y=1;
output;
Count=ntotal-nready;
Y=0;
output;
drop nready ntotal;
datalines;

7 1.0 0 10 14 1.0 0 31 27 1.0 1 56 51 1.0 3 13
7 1.7 0 17 14 1.7 0 43 27 1.7 4 44 51 1.7 0 1
7 2.2 0 7 14 2.2 2 33 27 2.2 0 21 51 2.2 0 1
7 2.8 0 12 14 2.8 0 31 27 2.8 1 22 51 4.0 0 1
7 4.0 0 9 14 4.0 0 19 27 4.0 1 16
;
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Logistic regression analysis is often used to investigate the relationship between dis-
crete response variables and continuous explanatory variables. For logistic regres-
sion, the continuousdesign-effectsare declared in a DIRECT statement. The follow-
ing statements produce Output 22.3.1 through Output 22.3.7.

proc catmod data=ingots;
weight Count;
direct Heat Soak;
model Y=Heat Soak / freq covb corrb;

quit;

Output 22.3.1. Maximum Likelihood Logistic Regression

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Response Y Response Levels 2
Weight Variable Count Populations 19
Data Set INGOTS Total Frequency 387
Frequency Missing 0 Observations 25

Population Profiles

Sample Heat Soak Sample Size
-------------------------------------

1 7 1 10
2 7 1.7 17
3 7 2.2 7
4 7 2.8 12
5 7 4 9
6 14 1 31
7 14 1.7 43
8 14 2.2 33
9 14 2.8 31

10 14 4 19
11 27 1 56
12 27 1.7 44
13 27 2.2 21
14 27 2.8 22
15 27 4 16
16 51 1 13
17 51 1.7 1
18 51 2.2 1
19 51 4 1

You can verify that the populations are defined as you intended by looking at the
“Population Profiles” table in Output 22.3.1.
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Output 22.3.2. Response Summaries

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Response Profiles

Response Y
-------------

1 0
2 1

Response Frequencies

Response Number
Sample 1 2
------------------------

1 10 0
2 17 0
3 7 0
4 12 0
5 9 0
6 31 0
7 43 0
8 31 2
9 31 0

10 19 0
11 55 1
12 40 4
13 21 0
14 21 1
15 15 1
16 10 3
17 1 0
18 1 0
19 1 0

Since the “Response Profiles” table shows the response level ordering as 0, 1, the

default response function, the logit, is defined aslog

�
pY=0

pY=1

�
.

Output 22.3.3. Iteration History

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Maximum Likelihood Analysis

Sub -2 Log Convergence Parameter Estimates
Iteration Iteration Likelihood Criterion 1 2 3
------------------------------------------------------------------------------

0 0 536.49592 1.0000 0 0 0
1 0 152.58961 0.7156 2.1594 -0.0139 -0.003733
2 0 106.76066 0.3003 3.5334 -0.0363 -0.0120
3 0 96.692171 0.0943 4.7489 -0.0640 -0.0299
4 0 95.383825 0.0135 5.4138 -0.0790 -0.0498
5 0 95.345659 0.000400 5.5539 -0.0819 -0.0564
6 0 95.345613 4.8289E-7 5.5592 -0.0820 -0.0568
7 0 95.345613 7.73E-13 5.5592 -0.0820 -0.0568

Maximum likelihood computations converged.
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Seven Newton-Raphson iterations are required to find the maximum likelihood esti-
mates.

Output 22.3.4. Analysis of Variance Table

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 1 24.65 <.0001
Heat 1 11.95 0.0005
Soak 1 0.03 0.8639

Likelihood Ratio 16 13.75 0.6171

The analysis of variance table (Output 22.3.4) shows that the model fits since the
likelihood ratio goodness-of-fit test is nonsignificant. It also shows that the length of
heating time is a significant factor with respect to readiness but that length of soaking
time is not.

Output 22.3.5. Maximum Likelihood Estimates

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 5.5592 1.1197 24.65 <.0001
Heat 2 -0.0820 0.0237 11.95 0.0005
Soak 3 -0.0568 0.3312 0.03 0.8639

Output 22.3.6. Covariance Matrix

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Covariance Matrix of the Maximum Likelihood Estimates

1 2 3
---------------------------------------------------

1 1.2537133 -0.0215664 -0.2817648
2 -0.0215664 0.0005633 0.0026243
3 -0.2817648 0.0026243 0.1097020
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Output 22.3.7. Correlation Matrix

Maximum Likelihood Logistic Regression

The CATMOD Procedure

Correlation Matrix of the Maximum Likelihood Estimates

1 2 3
---------------------------------------------------

1 1.00000 -0.81152 -0.75977
2 -0.81152 1.00000 0.33383
3 -0.75977 0.33383 1.00000

From the table of maximum likelihood estimates (Output 22.3.5), the fitted model is

E(logit(p)) = 5:559 � 0:082(Heat)� 0:057(Soak)

For example, for Sample 1 withHeat = 7 andSoak = 1, the estimate is

E(logit(p)) = 5:559 � 0:082(7) � 0:057(1) = 4:9284

Predicted values of the logits, as well as the probabilities of readiness, could be ob-
tained by specifying PRED=PROB in the MODEL statement. For the example of
Sample 1 withHeat = 7 andSoak = 1, PRED=PROB would give an estimate of the
probability of readiness equal to 0.9928 since

4:9284 = log

�
p̂

1� p̂

�

implies that

p̂ =
e4:9284

1 + e4:9284
= 0:9928

As another consideration, since soaking time is nonsignificant, you could fit another
model that deleted the variableSoak.

Example 22.4. Log-Linear Model, Three Dependent Variables

This analysis reproduces the predicted cell frequencies for Bartlett’s data using a log-
linear model of no three-variable interaction (Bishop, Fienberg, and Holland 1975,
p. 89). Cuttings of two different lengths (Length=short or long) are planted at one
of two time points (Time=now or spring), and their survival status (Status=dead or
alive) is recorded.
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As in the text, the variable levels are simply labeled 1 and 2. The following statements
produce Output 22.4.1 through Output 22.4.5:

title "Bartlett’s Data";
data bartlett;

input Length Time Status wt @@;
datalines;

1 1 1 156 1 1 2 84 1 2 1 84 1 2 2 156
2 1 1 107 2 1 2 133 2 2 1 31 2 2 2 209
;

proc catmod data=bartlett;
weight wt;
model Length*Time*Status=_response_

/ noparm noresponse pred=freq;
loglin Length|Time|Status @ 2;
title2 ’Model with No 3-Variable Interaction’;

quit;

Output 22.4.1. Analysis of Bartlett’s Data: Log-Linear Model

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Response Length*Time*Status Response Levels 8
Weight Variable wt Populations 1
Data Set BARTLETT Total Frequency 960
Frequency Missing 0 Observations 8

Sample Sample Size
---------------------

1 960

Output 22.4.2. Response Profiles

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Response Profiles

Response Length Time Status
------------------------------------

1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1
8 2 2 2
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Output 22.4.3. Iteration History

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Maximum Likelihood Analysis

Sub -2 Log Convergence
Iteration Iteration Likelihood Criterion
-------------------------------------------------

0 0 3992.5278 1.0000
1 0 3812.5059 0.0451
2 0 3800.2168 0.003223
3 0 3800.12 0.0000255
4 0 3800.12 3.6909E-9

Maximum Likelihood Analysis

Parameter Estimates
Iteration 1 2 3 4 5 6
---------------------------------------------------------------------------

0 0 0 0 0 0 0
1 0 2.961E-17 -2.96E-17 -0.2125 0.2125 0.3083
2 0.0494 0.0752 -0.0752 -0.2486 0.2486 0.3502
3 0.0555 0.0809 -0.0809 -0.2543 0.2543 0.3568
4 0.0556 0.0810 -0.0810 -0.2544 0.2544 0.3569

Maximum likelihood computations converged.

Output 22.4.4. Analysis of Variance Table

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Length 1 2.64 0.1041
Time 1 5.25 0.0220
Length*Time 1 5.25 0.0220
Status 1 48.94 <.0001
Length*Status 1 48.94 <.0001
Time*Status 1 95.01 <.0001

Likelihood Ratio 1 2.29 0.1299

The analysis of variance table shows that the model fits since the likelihood ratio test
for the three-variable interaction is nonsignificant. All of the two-variable interac-
tions, however, are significant; this shows that there is mutual dependence among all
three variables.
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Output 22.4.5. Response Function Predicted Values

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Maximum Likelihood Predicted Values for Response Functions

-------Observed------- -------Predicted------
Function Standard Standard

Sample Number Function Error Function Error Residual
------------------------------------------------------------------------------------

1 1 -0.2924782 0.105806 -0.2356473 0.098486 -0.056831
2 -0.9115175 0.129188 -0.9494184 0.129948 0.03790099
3 -0.9115175 0.129188 -0.9494184 0.129948 0.03790099
4 -0.2924782 0.105806 -0.2356473 0.098486 -0.056831
5 -0.6695054 0.118872 -0.6936188 0.120172 0.02411336
6 -0.4519851 0.110921 -0.3896985 0.102267 -0.0622866
7 -1.908347 0.192465 -1.7314626 0.142969 -0.1768845

The predicted values table displays observed and predicted values for the generalized
logits.

Output 22.4.6. Predicted Frequencies

Bartlett’s Data
Model with No 3-Variable Interaction

The CATMOD Procedure

Maximum Likelihood Predicted Values for Frequencies

-------Observed------ ------Predicted------
Function Standard Standard

Sample Length Time Status Number Frequency Error Frequency Error Residual
-------------------------------------------------------------------------------------------------------

1 1 1 1 F1 156 11.43022 161.096138 11.07379 -5.0961381
1 1 2 F2 84 8.754999 78.9038609 7.808613 5.09613909
1 2 1 F3 84 8.754999 78.9038609 7.808613 5.09613909
1 2 2 F4 156 11.43022 161.096138 11.07379 -5.0961381
2 1 1 F5 107 9.750588 101.903861 8.924304 5.09613941
2 1 2 F6 133 10.70392 138.096139 10.33434 -5.0961386
2 2 1 F7 31 5.47713 36.0961431 4.826315 -5.0961431
2 2 2 F8 209 12.78667 203.90386 12.21285 5.09614031

The predicted frequencies table displays observed and predicted cell frequencies,
their standard errors, and residuals.

Example 22.5. Log-Linear Model, Structural and Sampling
Zeros

This example illustrates a log-linear model of independence, using data that contain
structural zero frequencies as well as sampling (random) zero frequencies.

In a population of six squirrel monkeys, the joint distribution of genital display with
respect to active or passive role was observed. The data are from Fienberg (1980,
Table 8-2). Since a monkey cannot have both the active and passive roles in the same
interaction, the diagonal cells of the table are structural zeros. See Agresti (1990) for
more information on the quasi-independence model.

Since there is only one population, the structural zeros are automatically deleted by
PROC CATMOD. The sampling zeros are replaced in the DATA step by some pos-
itive number close to zero (1E�20). Also, the row for Monkey ‘t’ is deleted since
it contains all zeros; therefore, the cell frequencies predicted by a model of indepen-
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dence are also zero. In addition, the CONTRAST statement compares the behavior of
the two monkeys labeled ‘u’ and ‘v’. The following statements produce Output 22.5.1
through Output 22.5.8:

title ’Behavior of Squirrel Monkeys’;
data Display;

input Active $ Passive $ wt @@;
if Active ne ’t’;
if Active ne Passive then

if wt=0 then wt=1e-20;
datalines;

r r 0 r s 1 r t 5 r u 8 r v 9 r w 0
s r 29 s s 0 s t 14 s u 46 s v 4 s w 0
t r 0 t s 0 t t 0 t u 0 t v 0 t w 0
u r 2 u s 3 u t 1 u u 0 u v 38 u w 2
v r 0 v s 0 v t 0 v u 0 v v 0 v w 1
w r 9 w s 25 w t 4 w u 6 w v 13 w w 0
;

proc catmod data=Display;
weight wt;
model Active*Passive=_response_

/ freq pred=freq noparm noresponse oneway;
loglin Active Passive;
contrast ’Passive, U vs. V’ Passive 0 0 0 1 -1;
contrast ’Active, U vs. V’ Active 0 0 1 -1;
title2 ’Test Quasi-Independence for the Incomplete Table’;

quit;

Output 22.5.1. Log-Linear Model Analysis with Zero Frequencies

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Response Active*Passive Response Levels 25
Weight Variable wt Populations 1
Data Set DISPLAY Total Frequency 220
Frequency Missing 0 Observations 25

The results of the ONEWAY option are shown in Output 22.5.2. Monkey ‘t’ does not
show up as a value for theActive variable since that row was removed.
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Output 22.5.2. Output from the ONEWAY option

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

One-Way Frequencies

Variable Value Frequency
-----------------------------
Active r 23

s 93
u 46
v 1
w 57

Passive r 40
s 29
t 24
u 60
v 64
w 3

Output 22.5.3. Profiles

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Sample Sample Size
---------------------

1 220

Response Profiles

Response Active Passive
-----------------------------

1 r s
2 r t
3 r u
4 r v
5 r w
6 s r
7 s t
8 s u
9 s v

10 s w
11 u r
12 u s
13 u t
14 u v
15 u w
16 v r
17 v s
18 v t
19 v u
20 v w
21 w r
22 w s
23 w t
24 w u
25 w v
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Sampling zeros are displayed as 1E�20 in Output 22.5.4. The Response Number
corresponds to the value displayed in Output 22.5.2.

Output 22.5.4. Frequency of Response by Response Number

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 1 5 8 9 1E-20 29 14 46

Response Frequencies

Response Number
Sample 9 10 11 12 13 14 15 16
------------------------------------------------------------------------------

1 4 1E-20 2 3 1 38 2 1E-20

Response Frequencies

Response Number
Sample 17 18 19 20 21 22 23 24
------------------------------------------------------------------------------

1 1E-20 1E-20 1E-20 1 9 25 4 6

Response Frequencies

Response
Number

Sample 25
---------------

1 13
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Output 22.5.5. Iteration History

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Maximum Likelihood Analysis

Sub -2 Log Convergence Parameter Estimates
Iteration Iteration Likelihood Criterion 1 2 3 4
------------------------------------------------------------------------------------------------

0 0 1416.3054 1.0000 0 0 0 0
1 0 1238.2417 0.1257 -0.4976 1.1112 0.1722 -0.8804
2 0 1205.1264 0.0267 -0.3420 1.0962 0.5612 -1.7549
3 0 1199.5068 0.004663 -0.1570 1.2687 0.7058 -2.3992
4 0 1198.6271 0.000733 -0.0466 1.3791 0.8170 -2.8422
5 0 1198.5611 0.0000551 -0.002748 1.4230 0.8609 -3.0176
6 0 1198.5603 6.5351E-7 0.002760 1.4285 0.8664 -3.0396
7 0 1198.5603 1.217E-10 0.002837 1.4285 0.8665 -3.0399

Maximum Likelihood Analysis

Parameter Estimates
Iteration 5 6 7 8 9
-------------------------------------------------------------------------

0 0 0 0 0 0
1 -0.006978 0.0827 -0.4735 0.7287 0.5791
2 0.2233 0.3899 -0.4086 0.7875 0.5728
3 0.3034 0.4360 -0.3162 0.8812 0.6703
4 0.3309 0.4625 -0.2890 0.9085 0.6968
5 0.3334 0.4649 -0.2866 0.9110 0.6992
6 0.3334 0.4649 -0.2865 0.9110 0.6992
7 0.3334 0.4649 -0.2865 0.9110 0.6992

Maximum likelihood computations converged.

Output 22.5.6. Analysis of Variance Table

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Active 4 56.58 <.0001
Passive 5 47.94 <.0001

Likelihood Ratio 15 135.17 <.0001

The analysis of variance table (Output 22.5.6) shows that the model of independence
does not fit since the likelihood ratio test for the interaction is significant. In other
words, active and passive behaviors of the squirrel monkeys are dependent behavior
roles.
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Output 22.5.7. Contrasts between Monkeys ‘u’ and ‘v’

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Contrasts of Maximum Likelihood Estimates

Contrast DF Chi-Square Pr > ChiSq
-------------------------------------------------
Passive, U vs. V 1 1.31 0.2524
Active, U vs. V 1 14.87 0.0001

If the model fit these data, then the contrasts in Output 22.5.7 show that monkeys
‘u’ and ‘v’ appear to have similar passive behavior patterns but very different active
behavior patterns.

Output 22.5.8. Response Function Predicted Values

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Maximum Likelihood Predicted Values for Response Functions

-------Observed------- -------Predicted------
Function Standard Standard

Sample Number Function Error Function Error Residual
------------------------------------------------------------------------------------

1 1 -2.5649494 1.037749 -0.973554 0.339019 -1.5913953
2 -0.9555114 0.526235 -1.7250404 0.345438 0.76952896
3 -0.4855078 0.449359 -0.5275144 0.309254 0.0420066
4 -0.3677248 0.433629 -0.7392682 0.249006 0.37154345
5 -48.616651 1E10 -3.560517 0.634104 -45.056134
6 0.80234647 0.333775 0.32058886 0.26629 0.48175761
7 0.07410797 0.385164 -0.2993416 0.295634 0.37344956
8 1.26369204 0.314105 0.89818441 0.250857 0.36550763
9 -1.178655 0.571772 0.6864306 0.173396 -1.8650856

10 -48.616651 1E10 -2.1348182 0.608071 -46.481833
11 -1.8718022 0.759555 -0.2414953 0.287218 -1.6303069
12 -1.4663371 0.640513 -0.1099394 0.303568 -1.3563977
13 -2.5649494 1.037749 -0.8614257 0.314794 -1.7035236
14 1.0726368 0.321308 0.12434644 0.204345 0.94829036
15 -1.8718022 0.759555 -2.6969023 0.617433 0.82510014
16 -48.616651 1E10 -4.1478747 1.024508 -44.468777
17 -48.616651 1E10 -4.0163187 1.030062 -44.600332
18 -48.616651 1E10 -4.7678051 1.032457 -43.848846
19 -48.616651 1E10 -3.5702791 1.020794 -45.046372
20 -2.5649494 1.037749 -6.6032817 1.161289 4.03833233
21 -0.3677248 0.433629 -0.3658417 0.202959 -0.001883
22 0.65392647 0.34194 -0.2342858 0.232794 0.88821229
23 -1.178655 0.571772 -0.9857722 0.239408 -0.1928828
24 -0.7731899 0.493548 0.21175381 0.185007 -0.9849437
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Output 22.5.9. Predicted Frequencies

Behavior of Squirrel Monkeys
Test Quasi-Independence for the Incomplete Table

The CATMOD Procedure

Maximum Likelihood Predicted Values for Frequencies

------Observed------ ------Predicted-----
Function Standard Standard

Sample Active Passive Number Frequency Error Frequency Error Residual
-----------------------------------------------------------------------------------------

1 r s F1 1 0.997725 5.25950838 1.36156 -4.2595084
r t F2 5 2.210512 2.48072585 0.691066 2.51927415
r u F3 8 2.776525 8.21594841 1.855146 -0.2159484
r v F4 9 2.937996 6.64804868 1.50932 2.35195132
r w F5 1E-20 1E-10 0.39576868 0.240268 -0.3957687
s r F6 29 5.017696 19.1859928 3.147915 9.81400723
s t F7 14 3.620648 10.321716 2.169599 3.67828404
s u F8 46 6.031734 34.1846262 4.428706 11.8153738
s v F9 4 1.981735 27.6609647 3.722788 -23.660965
s w F10 1E-20 1E-10 1.64670026 0.952712 -1.6467003
u r F11 2 1.407771 10.936396 2.12322 -8.936396
u s F12 3 1.720201 12.4740717 2.554336 -9.4740717
u t F13 1 0.997725 5.8835826 1.380655 -4.8835826
u v F14 38 5.606814 15.7672979 2.684692 22.2327021
u w F15 2 1.407771 0.93865177 0.551645 1.06134823
v r F16 1E-20 1E-10 0.21996583 0.221779 -0.2199658
v s F17 1E-20 1E-10 0.2508934 0.253706 -0.2508934
v t F18 1E-20 1E-10 0.11833763 0.120314 -0.1183376
v u F19 1E-20 1E-10 0.39192393 0.393255 -0.3919239
v w F20 1 0.997725 0.01887928 0.021728 0.98112072
w r F21 9 2.937996 9.6576454 1.808656 -0.6576454
w s F22 25 4.707344 11.0155266 2.275019 13.9844734
w t F23 4 1.981735 5.19563797 1.184452 -1.195638
w u F24 6 2.415857 17.2075014 2.772098 -11.207501
w v F25 13 3.497402 13.9236886 2.24158 -0.9236886

Output 22.5.8 displays the predicted response functions and Output 22.5.9 displays
predicted cell frequencies (from the PRED=FREQ option), but since the model does
not fit, these should be ignored.

Structural and Sampling Zeros with Raw Data
The preceding PROC CATMOD step uses cell count data as input. Prior to invoking
the CATMOD procedure, structural and sampling zeros are easily identified and ma-
nipulated in a single DATA step. For the situation where structural or sampling zeros
(or both) may exist and the input data set is raw data, use the following steps:

1. Run PROC FREQ on the raw data. In the TABLES statement, list all dependent
and independent variables separated by asterisks and use the SPARSE option
and the OUT= option. This creates an output data set that contains all possible
zero frequencies.

2. Use a DATA step to change the zero frequencies associated with sampling zeros
to a small value, such as 1E�20.

3. Use the resulting data set as input to PROC CATMOD, and specify the state-
ment WEIGHT COUNT to use adjusted frequencies.
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For example, suppose the data setRawDisplay contains the raw data for the squirrel
monkey data. The following statements show how to obtain the same analysis as
shown previously:

proc freq data=RawDisplay;
tables Active*Passive / sparse out=Combos noprint;

run;

data Combos2;
set Combos;
if Active ne ’t’;
if Active ne Passive then

if count=0 then count=1e-20;
run;

proc catmod data=Combos2;
weight count;
model Active*Passive=_response_

/ freq pred=freq noparm noresponse;
loglin Active Passive;

quit;

The first IF statement in the DATA step is needed only for this particular example;
since observations for Monkey ‘t’ were deleted from theDisplay data set, they also
need to be deleted fromCombos2.

Example 22.6. Repeated Measures, 2 Response Levels,
3 Populations

In this multi-population repeated measures example, from Guthrie (1981), subjects
from three groups have their responses (0 or 1) recorded in each of four trials. The
analysis of the marginal probabilities is directed at assessing the main effects of the
repeated measurement factor (Trial) and the independent variable (Group), as well as
their interaction. Although the contingency table is incomplete (only thirteen of the
sixteen possible responses are observed), this poses no problem in the computation of
the marginal probabilities. The following statements produce Output 22.6.1 through
Output 22.6.5:

title ’Multi-Population Repeated Measures’;
data group;

input a b c d Group wt @@;
datalines;

1 1 1 1 2 2 0 0 0 0 2 2 0 0 1 0 1 2 0 0 1 0 2 2
0 0 0 1 1 4 0 0 0 1 2 1 0 0 0 1 3 3 1 0 0 1 2 1
0 0 1 1 1 1 0 0 1 1 2 2 0 0 1 1 3 5 0 1 0 0 1 4
0 1 0 0 2 1 0 1 0 1 2 1 0 1 0 1 3 2 0 1 1 0 3 1
1 0 0 0 1 3 1 0 0 0 2 1 0 1 1 1 2 1 0 1 1 1 3 2
1 0 1 0 1 1 1 0 1 1 2 1 1 0 1 1 3 2
;
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proc catmod data=group;
weight wt;
response marginals;
model a*b*c*d=Group _response_ Group*_response_

/ freq nodesign;
repeated Trial 4;
title2 ’Saturated Model’;

run;

Output 22.6.1. Analysis of Multiple-Population Repeated Measures

Multi-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Response a*b*c*d Response Levels 13
Weight Variable wt Populations 3
Data Set GROUP Total Frequency 45
Frequency Missing 0 Observations 23

Population Profiles

Sample Group Sample Size
------------------------------

1 1 15
2 2 15
3 3 15

Output 22.6.2. Response Profiles

Multi-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Response Profiles

Response a b c d
----------------------------

1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
5 0 1 0 0
6 0 1 0 1
7 0 1 1 0
8 0 1 1 1
9 1 0 0 0

10 1 0 0 1
11 1 0 1 0
12 1 0 1 1
13 1 1 1 1
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Output 22.6.3. Response Frequencies

Multi-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 0 4 2 1 4 0 0 0
2 2 1 2 2 1 1 0 1
3 0 3 0 5 0 2 1 2

Response Frequencies

Response Number
Sample 9 10 11 12 13
---------------------------------------------------

1 3 0 1 0 0
2 1 1 0 1 2
3 0 0 0 2 0

Output 22.6.4. Analysis of Variance Table

Multi-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 1 354.88 <.0001
Group 2 24.79 <.0001
Trial 3 21.45 <.0001
Group*Trial 6 18.71 0.0047

Residual 0 . .
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Output 22.6.5. Parameter Estimates

Multi-Population Repeated Measures
Saturated Model

The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------------
Intercept 1 0.5833 0.0310 354.88 <.0001
Group 2 0.1333 0.0335 15.88 <.0001

3 -0.0333 0.0551 0.37 0.5450
Trial 4 0.1722 0.0557 9.57 0.0020

5 0.1056 0.0647 2.66 0.1028
6 -0.0722 0.0577 1.57 0.2107

Group*Trial 7 -0.1556 0.0852 3.33 0.0679
8 -0.0556 0.0800 0.48 0.4877
9 -0.0889 0.0953 0.87 0.3511

10 0.0111 0.0866 0.02 0.8979
11 0.0889 0.0822 1.17 0.2793
12 -0.0111 0.0824 0.02 0.8927

The analysis of variance table in Output 22.6.4 shows that there is a significant inter-
action between the independent variableGroup and the repeated measurement factor
Trial. Thus, an intermediate model (not shown) is fit in which the effectsTrial and
Group* Trial are replaced byTrial(Group=1), Trial(Group=2), andTrial(Group=3).
Of these three effects, only the last is significant, so it is retained in the final model.
The following statements produce Output 22.6.6 and Output 22.6.7:

model a*b*c*d=Group _response_(Group=3)
/ noprofile noparm;

title2 ’Trial Nested within Group 3’;
quit;
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Output 22.6.6. Final Model: Design Matrix

Multi-Population Repeated Measures
Trial Nested within Group 3

The CATMOD Procedure

Response a*b*c*d Response Levels 13
Weight Variable wt Populations 3
Data Set GROUP Total Frequency 45
Frequency Missing 0 Observations 23

Function Response Design Matrix
Sample Number Function 1 2 3 4 5 6
------------------------------------------------------------------------------

1 1 0.73333 1 1 0 0 0 0
2 0.73333 1 1 0 0 0 0
3 0.73333 1 1 0 0 0 0
4 0.66667 1 1 0 0 0 0

2 1 0.66667 1 0 1 0 0 0
2 0.66667 1 0 1 0 0 0
3 0.46667 1 0 1 0 0 0
4 0.40000 1 0 1 0 0 0

3 1 0.86667 1 -1 - 1 1 0 0
2 0.66667 1 -1 - 1 0 1 0
3 0.33333 1 -1 - 1 0 0 1
4 0.06667 1 -1 -1 -1 -1 -1

Output 22.6.6 displays the design matrix resulting from retaining the nested effect.

Output 22.6.7. ANOVA Table

Multi-Population Repeated Measures
Trial Nested within Group 3

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-----------------------------------------------------
Intercept 1 386.94 <.0001
Group 2 25.42 <.0001
Trial(Group=3) 3 75.07 <.0001

Residual 6 5.09 0.5319

The residual goodness-of-fit statistic tests the joint effect ofTrial(Group=1) and
Trial(Group=2). The analysis of variance table in Output 22.6.7 shows that the fi-
nal model fits, that there is a significantGroup effect, and that there is a significant
Trial effect inGroup 3.
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Example 22.7. Repeated Measures, 4 Response Levels,
1 Population

This example illustrates a repeated measurement analysis in which there are more
than two levels of response. In this study, from Grizzle, Starmer, and Koch (1969, p.
493), 7477 women aged 30–39 are tested for vision in both right and left eyes. Since
there are four response levels for each dependent variable, the RESPONSE statement
computes three marginal probabilities for each dependent variable, resulting in six
response functions for analysis. Since the model contains a repeated measurement
factor (Side) with two levels (Right, Left), PROC CATMOD groups the functions
into sets of three (=6/2). Therefore, theSide effect has three degrees of freedom (one
for each marginal probability), and it is the appropriate test of marginal homogeneity.
The following statements produce Output 22.7.1 through Output 22.7.5:

title ’Vision Symmetry’;
data vision;

input Right Left count @@;
datalines;

1 1 1520 1 2 266 1 3 124 1 4 66
2 1 234 2 2 1512 2 3 432 2 4 78
3 1 117 3 2 362 3 3 1772 3 4 205
4 1 36 4 2 82 4 3 179 4 4 492
;

proc catmod data=vision;
weight count;
response marginals;
model Right*Left=_response_ / freq;
repeated Side 2;
title2 ’Test of Marginal Homogeneity’;

quit;

Output 22.7.1. Vision Study: Analysis of Marginal Homogeneity

Vision Symmetry
Test of Marginal Homogeneity

The CATMOD Procedure

Response Right*Left Response Levels 16
Weight Variable count Populations 1
Data Set VISION Total Frequency 7477
Frequency Missing 0 Observations 16

Sample Sample Size
---------------------

1 7477
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Output 22.7.2. Response Profiles

Vision Symmetry
Test of Marginal Homogeneity

The CATMOD Procedure

Response Profiles

Response Right Left
-------------------------

1 1 1
2 1 2
3 1 3
4 1 4
5 2 1
6 2 2
7 2 3
8 2 4
9 3 1

10 3 2
11 3 3
12 3 4
13 4 1
14 4 2
15 4 3
16 4 4

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 1520 266 124 66 234 1512 432 78

Response Frequencies

Response Number
Sample 9 10 11 12 13 14 15 16
------------------------------------------------------------------------------

1 117 362 1772 205 36 82 179 492

Output 22.7.3. Design Matrix

Vision Symmetry
Test of Marginal Homogeneity

The CATMOD Procedure

Function Response Design Matrix
Sample Number Function 1 2 3 4 5 6
------------------------------------------------------------------------------

1 1 0.26428 1 0 0 1 0 0
2 0.30173 0 1 0 0 1 0
3 0.32847 0 0 1 0 0 1
4 0.25505 1 0 0 -1 0 0
5 0.29718 0 1 0 0 -1 0
6 0.33529 0 0 1 0 0 -1
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Output 22.7.4. ANOVA Table

Vision Symmetry
Test of Marginal Homogeneity

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 3 78744.17 <.0001
Side 3 11.98 0.0075

Residual 0 . .

Output 22.7.5. Parameter Estimates

Vision Symmetry
Test of Marginal Homogeneity

The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 0.2597 0.00468 3073.03 <.0001

2 0.2995 0.00464 4160.17 <.0001
3 0.3319 0.00483 4725.25 <.0001

Side 4 0.00461 0.00194 5.65 0.0174
5 0.00227 0.00255 0.80 0.3726
6 -0.00341 0.00252 1.83 0.1757

The analysis of variance table in Output 22.7.4 shows that theSide effect is sig-
nificant, so there is not marginal homogeneity between left-eye vision and right-eye
vision. In other words, the distribution of the quality of right-eye vision differs signif-
icantly from the quality of left-eye vision in the same subjects. The test of theSide
effect is equivalent to Bhapkar’s test (Agresti 1990).

Example 22.8. Repeated Measures, Logistic Analysis of
Growth Curve

The data, from a longitudinal study reported in Koch et al. (1977), are from patients
in four populations (2 diagnostic groups� 2 treatments) who are measured at three
times to assess their response (n=normal or a=abnormal) to treatment.

title ’Growth Curve Analysis’;
data growth2;

input Diagnosis $ Treatment $ week1 $ week2 $ week4
$ count @@;

datalines;
mild std n n n 16 severe std n n n 2
mild std n n a 13 severe std n n a 2
mild std n a n 9 severe std n a n 8
mild std n a a 3 severe std n a a 9
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mild std a n n 14 severe std a n n 9
mild std a n a 4 severe std a n a 15
mild std a a n 15 severe std a a n 27
mild std a a a 6 severe std a a a 28
mild new n n n 31 severe new n n n 7
mild new n n a 0 severe new n n a 2
mild new n a n 6 severe new n a n 5
mild new n a a 0 severe new n a a 2
mild new a n n 22 severe new a n n 31
mild new a n a 2 severe new a n a 5
mild new a a n 9 severe new a a n 32
mild new a a a 0 severe new a a a 6
;

The analysis is directed at assessing the effect of the repeated measurement factor,
Time, as well as the independent variables,Diagnosis (mild or severe) andTreat-
ment (std or new). The RESPONSE statement is used to compute the logits of the
marginal probabilities. The times used in the design matrix (0, 1, 2) correspond to the
logarithms (base 2) of the actual times (1, 2, 4). The following statements produce
Output 22.8.1 through Output 22.8.7:

proc catmod order=data data=growth2;
title2 ’Reduced Logistic Model’;
weight count;
population Diagnosis Treatment;
response logit;
model week1*week2*week4=(1 0 0 0, /* mild, std */

1 0 1 0,
1 0 2 0,

1 0 0 0, /* mild, new */
1 0 0 1,
1 0 0 2,

0 1 0 0, /* severe, std */
0 1 1 0,
0 1 2 0,

0 1 0 0, /* severe, new */
0 1 0 1,
0 1 0 2)

(1=’Mild diagnosis, week 1’,
2=’Severe diagnosis, week 1’,
3=’Time effect for std trt’,
4=’Time effect for new trt’)
/ freq;

contrast ’Diagnosis effect, week 1’ all_parms 1 -1 0 0;
contrast ’Equal time effects’ all_parms 0 0 1 -1;

quit;
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Output 22.8.1. Logistic Analysis of Growth Curve

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Response week1*week2*week4 Response Levels 8
Weight Variable count Populations 4
Data Set GROWTH2 Total Frequency 340
Frequency Missing 0 Observations 29

Output 22.8.2. Population Profiles

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Population Profiles

Sample Diagnosis Treatment Sample Size
-----------------------------------------------

1 mild std 80
2 mild new 70
3 severe std 100
4 severe new 90

Response Profiles

Response week1 week2 week4
-----------------------------------

1 n n n
2 n n a
3 n a n
4 n a a
5 a n n
6 a n a
7 a a n
8 a a a

The samples and the response numbers are defined in Output 22.8.2.

Output 22.8.3. Response Frequencies

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 16 13 9 3 14 4 15 6
2 31 0 6 0 22 2 9 0
3 2 2 8 9 9 15 27 28
4 7 2 5 2 31 5 32 6
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Output 22.8.4. Design Matrix

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Function Response Design Matrix
Sample Number Function 1 2 3 4
--------------------------------------------------------------------

1 1 0.05001 1 0 0 0
2 0.35364 1 0 1 0
3 0.73089 1 0 2 0

2 1 0.11441 1 0 0 0
2 1.29928 1 0 0 1
3 3.52636 1 0 0 2

3 1 -1.32493 0 1 0 0
2 -0.94446 0 1 1 0
3 -0.16034 0 1 2 0

4 1 -1.53148 0 1 0 0
2 0.00000 0 1 0 1
3 1.60944 0 1 0 2

Output 22.8.5. Analysis of Variance

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
----------------------------------------------------------
Mild diagnosis, week 1 1 0.28 0.5955
Severe diagnosis, week 1 1 100.48 <.0001
Time effect for std trt 1 26.35 <.0001
Time effect for new trt 1 125.09 <.0001

Residual 8 4.20 0.8387

The analysis of variance table (Output 22.8.5) shows that the data can be adequately
modeled by two parameters that represent diagnosis effects at week 1 and two log-
linear time effects (one for each treatment). Both of the time effects are significant.
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Output 22.8.6. Parameter Estimates

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------
Model 1 -0.0716 0.1348 0.28 0.5955

2 -1.3529 0.1350 100.48 <.0001
3 0.4944 0.0963 26.35 <.0001
4 1.4552 0.1301 125.09 <.0001

Output 22.8.7. Contrasts

Growth Curve Analysis
Reduced Logistic Model

The CATMOD Procedure

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
---------------------------------------------------------
Diagnosis effect, week 1 1 77.02 <.0001
Equal time effects 1 59.12 <.0001

The analysis of contrasts (Output 22.8.7) shows that the diagnosis effect at week 1
is highly significant. In Output 22.8.6, since the estimate of the logit for the severe
diagnosis effect (parameter 2) is more negative than it is for the mild diagnosis effect
(parameter 1), there is a smaller predicted probability of the first response (normal)
for the severe diagnosis group. In other words, those subjects with a severe diagnosis
have a significantly higher probability of abnormal response at week 1 than those
subjects with a mild diagnosis.

The analysis of contrasts also shows that the time effect for the standard treatment
is significantly different than the one for the new treatment. The table of parameter
estimates (Output 22.8.6) shows that the time effect for the new treatment (parameter
4) is stronger than it is for the standard treatment (parameter 3).

Example 22.9. Repeated Measures, Two Repeated
Measurement Factors

This example, from MacMillan et al. (1981), illustrates a repeated measurement
analysis in which there are two repeated measurement factors. Two diagnostic pro-
cedures (standard and test) are performed on each subject, and the results of both are
evaluated at each of two times as being positive or negative.

title ’Diagnostic Procedure Comparison’;
data a;

input std1 $ test1 $ std2 $ test2 $ wt @@;
datalines;
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neg neg neg neg 509 neg neg neg pos 4 neg neg pos neg 17
neg neg pos pos 3 neg pos neg neg 13 neg pos neg pos 8
neg pos pos pos 8 pos neg neg neg 14 pos neg neg pos 1
pos neg pos neg 17 pos neg pos pos 9 pos pos neg neg 7
pos pos neg pos 4 pos pos pos neg 9 pos pos pos pos 170
;

For the initial model, the response functions are marginal probabilities, and the re-
peated measurement factors areTime andTreatment. The model is a saturated one,
containing effects forTime, Treatment, andTime*Treatment. The following state-
ments produce Output 22.9.1 through Output 22.9.5:

proc catmod data=a;
title2 ’Marginal Symmetry, Saturated Model’;
weight wt;
response marginals;
model std1*test1*std2*test2=_response_ / freq noparm;
repeated Time 2, Treatment 2 / _response_=Time Treatment

Time*Treatment;
run;

Output 22.9.1. Diagnosis Data: Two Repeated Measurement Factors

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

The CATMOD Procedure

Response std1*test1*std2*test2 Response Levels 15
Weight Variable wt Populations 1
Data Set A Total Frequency 793
Frequency Missing 0 Observations 15

Sample Sample Size
---------------------

1 793
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Output 22.9.2. Response Profiles

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

The CATMOD Procedure

Response Profiles

Response std1 test1 std2 test2
------------------------------------------

1 neg neg neg neg
2 neg neg neg pos
3 neg neg pos neg
4 neg neg pos pos
5 neg pos neg neg
6 neg pos neg pos
7 neg pos pos pos
8 pos neg neg neg
9 pos neg neg pos

10 pos neg pos neg
11 pos neg pos pos
12 pos pos neg neg
13 pos pos neg pos
14 pos pos pos neg
15 pos pos pos pos

Output 22.9.3. Response Frequencies

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

The CATMOD Procedure

Response Frequencies

Response Number
Sample 1 2 3 4 5 6 7 8
------------------------------------------------------------------------------

1 509 4 17 3 13 8 8 14

Response Frequencies

Response Number
Sample 9 10 11 12 13 14 15
---------------------------------------------------------------------

1 1 17 9 7 4 9 170

Output 22.9.4. Design Matrix

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

The CATMOD Procedure

Function Response Design Matrix
Sample Number Function 1 2 3 4
--------------------------------------------------------------------

1 1 0.70870 1 1 1 1
2 0.72383 1 1 -1 -1
3 0.70618 1 -1 1 -1
4 0.73897 1 -1 -1 1
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Output 22.9.5. ANOVA Table

Diagnostic Procedure Comparison
Marginal Symmetry, Saturated Model

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
------------------------------------------------
Intercept 1 2385.34 <.0001
Time 1 0.85 0.3570
Treatment 1 8.20 0.0042
Time*Treatment 1 2.40 0.1215

Residual 0 . .

The analysis of variance table in Output 22.9.5 shows that there is no significant effect
of Time, either by itself or in its interaction withTreatment. Thus, the second model
includes only theTreatment effect. Again, the response functions are marginal prob-
abilities, and the repeated measurement factors areTime andTreatment. A main
effect model with respect toTreatment is fit. The following statements produce Out-
put 22.9.6 through Output 22.9.9:

title2 ’Marginal Symmetry, Reduced Model’;
model std1*test1*std2*test2=_response_ / noprofile corrb;
repeated Time 2, Treatment 2 / _response_=Treatment;

run;

Output 22.9.6. Diagnosis Data: Reduced Model

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

The CATMOD Procedure

Response std1*test1*std2*test2 Response Levels 15
Weight Variable wt Populations 1
Data Set A Total Frequency 793
Frequency Missing 0 Observations 15

Output 22.9.7. Design Matrix

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

The CATMOD Procedure

Function Response Design Matrix
Sample Number Function 1 2
--------------------------------------------------

1 1 0.70870 1 1
2 0.72383 1 -1
3 0.70618 1 1
4 0.73897 1 -1
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Output 22.9.8. ANOVA Table

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 2386.97 <.0001
Treatment 1 9.55 0.0020

Residual 2 3.51 0.1731

Output 22.9.9. Parameter Estimates

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 0.7196 0.0147 2386.97 <.0001
Treatment 2 -0.0128 0.00416 9.55 0.0020

Output 22.9.10. Correlation Matrix

Diagnostic Procedure Comparison
Marginal Symmetry, Reduced Model

The CATMOD Procedure

Correlation Matrix of the Parameter Estimates

1 2
-----------------------------------

1 1.00000 0.04194
2 0.04194 1.00000

The analysis of variance table for the reduced model (Output 22.9.8) shows that the
model fits (since the Residual is nonsignificant) and that the treatment effect is sig-
nificant. The negative parameter estimate forTreatment in Output 22.9.9 shows that
the first level of treatment (std) has a smaller probability of the first response level
(neg) than the second level of treatment (test). In other words, the standard diagnos-
tic procedure gives a significantly higher probability of a positive response than the
test diagnostic procedure.

The next example illustrates a RESPONSE statement that, at each time, computes
the sensitivity and specificity of the test diagnostic procedure with respect to the
standard procedure. Since these are measures of the relative accuracy of the two di-
agnostic procedures, the repeated measurement factors in this case are labeledTime
andAccuracy. Only fifteen of the sixteen possible responses are observed, so addi-
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tional care must be taken in formulating the RESPONSE statement for computation
of sensitivity and specificity.

The following statements produce Output 22.9.11 through Output 22.9.15:

title2 ’Sensitivity and Specificity Analysis, ’
’Main-Effects Model’;

model std1*test1*std2*test2=_response_ / covb noprofile;
repeated Time 2, Accuracy 2 / _response_=Time Accuracy;
response exp 1 -1 0 0 0 0 0 0,

0 0 1 -1 0 0 0 0,
0 0 0 0 1 -1 0 0,
0 0 0 0 0 0 1 -1

log 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1,
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1,
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0,
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0,
0 0 0 1 0 0 1 0 0 0 1 0 0 0 1,
0 0 1 1 0 0 1 0 0 1 1 0 0 1 1,
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0,
1 1 0 0 1 1 0 1 1 0 0 1 1 0 0;

quit;

Output 22.9.11. Diagnosis Data: Sensitivity and Specificity Analysis

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

The CATMOD Procedure

Response std1*test1*std2*test2 Response Levels 15
Weight Variable wt Populations 1
Data Set A Total Frequency 793
Frequency Missing 0 Observations 15

Output 22.9.12. Design Matrix

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

The CATMOD Procedure

Function Response Design Matrix
Sample Number Function 1 2 3
-----------------------------------------------------------

1 1 0.82251 1 1 1
2 0.94840 1 1 -1
3 0.81545 1 -1 1
4 0.96964 1 -1 -1
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For the sensitivity and specificity analysis, the four response functions displayed next
to the design matrix (Output 22.9.12) represent the following:

1. sensitivity, time 1

2. specificity, time 1

3. sensitivity, time 2

4. specificity, time 2

The sensitivities and specificities are for the test diagnostic procedure relative to the
standard procedure.

Output 22.9.13. ANOVA Table

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 6448.79 <.0001
Time 1 4.10 0.0428
Accuracy 1 38.81 <.0001

Residual 1 1.00 0.3178

The ANOVA table shows that an additive model fits, that there is a significant effect
of time, and that the sensitivity is significantly different from the specificity.

Output 22.9.14. Parameter Estimates

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

The CATMOD Procedure

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 0.8892 0.0111 6448.79 <.0001
Time 2 -0.00932 0.00460 4.10 0.0428
Accuracy 3 -0.0702 0.0113 38.81 <.0001
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Output 22.9.15. Covariance Matrix

Diagnostic Procedure Comparison
Sensitivity and Specificity Analysis, Main-Effects Model

The CATMOD Procedure

Covariance Matrix of the Parameter Estimates

1 2 3
---------------------------------------------------

1 0.00012260 0.00000229 0.00010137
2 0.00000229 0.00002116 -.00000587
3 0.00010137 -.00000587 0.00012697

Output 22.9.14 shows that the predicted sensitivities and specificities are lower for
time 1 (since parameter 2 is negative). It also shows that the sensitivity is significantly
less than the specificity.

Example 22.10. Direct Input of Response Functions and
Covariance Matrix

This example illustrates the ability of PROC CATMOD to operate on an existing
vector of functions and the corresponding covariance matrix. The estimates under
investigation are composite indices summarizing the responses to eighteen psycho-
logical questions pertaining to general well-being. These estimates are computed for
domains corresponding to an age by sex cross-classification, and the covariance ma-
trix is calculated via the method of balanced repeated replications. The analysis is
directed at obtaining a description of the variation among these domain estimates.
The data are from Koch and Stokes (1979).

data fbeing(type=est);
input b1-b5 _type_ $ _name_ $ b6-b10 #2;
datalines;

7.93726 7.92509 7.82815 7.73696 8.16791 parms .
7.24978 7.18991 7.35960 7.31937 7.55184
0.00739 0.00019 0.00146 -0.00082 0.00076 cov b1
0.00189 0.00118 0.00140 -0.00140 0.00039
0.00019 0.01172 0.00183 0.00029 0.00083 cov b2

-0.00123 -0.00629 -0.00088 -0.00232 0.00034
0.00146 0.00183 0.01050 -0.00173 0.00011 cov b3
0.00434 -0.00059 -0.00055 0.00023 -0.00013

-0.00082 0.00029 -0.00173 0.01335 0.00140 cov b4
0.00158 0.00212 0.00211 0.00066 0.00240
0.00076 0.00083 0.00011 0.00140 0.01430 cov b5

-0.00050 -0.00098 0.00239 -0.00010 0.00213
0.00189 -0.00123 0.00434 0.00158 -0.00050 cov b6
0.01110 0.00101 0.00177 -0.00018 -0.00082
0.00118 -0.00629 -0.00059 0.00212 -0.00098 cov b7
0.00101 0.02342 0.00144 0.00369 0.25300
0.00140 -0.00088 -0.00055 0.00211 0.00239 cov b8
0.00177 0.00144 0.01060 0.00157 0.00226

-0.00140 -0.00232 0.00023 0.00066 -0.00010 cov b9
-0.00018 0.00369 0.00157 0.02298 0.00918
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0.00039 0.00034 -0.00013 0.00240 0.00213 cov b10
-0.00082 0.00253 0.00226 0.00918 0.01921
;

The following statements produce Output 22.10.1 through Output 22.10.3:

proc catmod data=fbeing;
title ’Complex Sample Survey Analysis’;
response read b1-b10;
factors sex $ 2, age $ 5 / _response_=sex age

profile=(male ’25-34’,
male ’35-44’,
male ’45-54’,
male ’55-64’,
male ’65-74’,
female ’25-34’,
female ’35-44’,
female ’45-54’,
female ’55-64’,
female ’65-74’);

model _f_=_response_
/ title=’Main Effects for Sex and Age’;

run;

Output 22.10.1. Health Survey Data: Using Direct Input

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Function Response Design Matrix
Sample Number Function 1 2 3 4 5 6
------------------------------------------------------------------------------

1 1 7.93726 1 1 1 0 0 0
2 7.92509 1 1 0 1 0 0
3 7.82815 1 1 0 0 1 0
4 7.73696 1 1 0 0 0 1
5 8.16791 1 1 -1 -1 -1 -1
6 7.24978 1 -1 1 0 0 0
7 7.18991 1 -1 0 1 0 0
8 7.35960 1 -1 0 0 1 0
9 7.31937 1 -1 0 0 0 1

10 7.55184 1 -1 -1 -1 -1 -1
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Output 22.10.2. ANOVA Table

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 28089.07 <.0001
sex 1 65.84 <.0001
age 4 9.21 0.0561

Residual 4 2.92 0.5713

Output 22.10.3. Parameter Estimates

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
------------------------------------------------------------------------
Intercept 1 7.6319 0.0455 28089.07 <.0001
sex 2 0.2900 0.0357 65.84 <.0001
age 3 -0.00780 0.0645 0.01 0.9037

4 -0.0465 0.0636 0.54 0.4642
5 -0.0343 0.0557 0.38 0.5387
6 -0.1098 0.0764 2.07 0.1506

The analysis of variance table (Output 22.10.2) shows that the additive model fits
and that there is a significant effect of both sex and age. The following statements
produce Output 22.10.4:

contrast ’No Age Effect for Age<65’ all_parms 0 0 1 0 0 -1,
all_parms 0 0 0 1 0 -1,
all_parms 0 0 0 0 1 -1;

run;
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Output 22.10.4. Age<65 Contrast

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq
---------------------------------------------------------
No Age Effect for Age<65 3 0.72 0.8678

The analysis of the contrast shows that there is no significant difference among the
four age groups that are under age 65. Thus, the next model contains a binary age
effect (less than 65 versus 65 and over). The following statements produce Out-
put 22.10.5 through Output 22.10.7:

model _f_=(1 1 1,
1 1 1,
1 1 1,
1 1 1,
1 1 -1,
1 -1 1,
1 -1 1,
1 -1 1,
1 -1 1,
1 -1 -1)

(1=’Intercept’ ,
2=’Sex’ ,
3=’Age (25-64 vs. 65-74)’)

/ title=’Binary Age Effect (25-64 vs. 65-74)’ ;
quit;
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Output 22.10.5. Design Matrix

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Complex Sample Survey Analysis

Binary Age Effect (25-64 vs. 65-74)

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Function Response Design Matrix
Sample Number Function 1 2 3
-----------------------------------------------------------

1 1 7.93726 1 1 1
2 7.92509 1 1 1
3 7.82815 1 1 1
4 7.73696 1 1 1
5 8.16791 1 1 -1
6 7.24978 1 -1 1
7 7.18991 1 -1 1
8 7.35960 1 -1 1
9 7.31937 1 -1 1

10 7.55184 1 -1 -1

Output 22.10.6. ANOVA Table

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Complex Sample Survey Analysis

Binary Age Effect (25-64 vs. 65-74)

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------------------
Intercept 1 19087.16 <.0001
Sex 1 72.64 <.0001
Age (25-64 vs. 65-74) 1 8.49 0.0036

Residual 7 3.64 0.8198
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Output 22.10.7. Parameter Estimates

Complex Sample Survey Analysis

Main Effects for Sex and Age

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Complex Sample Survey Analysis

Binary Age Effect (25-64 vs. 65-74)

The CATMOD Procedure

Response Functions Directly Input from Data Set FBEING

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
--------------------------------------------------------------------
Model 1 7.7183 0.0559 19087.16 <.0001

2 0.2800 0.0329 72.64 <.0001
3 -0.1304 0.0448 8.49 0.0036

The analysis of variance table in Output 22.10.6 shows that the model fits (note that
the goodness-of-fit statistic is the sum of the previous one (Output 22.10.2) plus the
chi-square for the contrast matrix in Output 22.10.4). The age and sex effects are
significant. Since the second parameter in the table of estimates is positive, males
(the first level for the sex variable) have a higher predicted index of well-being than
females. Since the third parameter estimate is negative, those younger than age 65
(the first level of age) have a lower predicted index of well-being than those 65 and
older.

Example 22.11. Predicted Probabilities

Suppose you have collected marketing research data to examine the relationship be-
tween a prospect’s likelihood of buying your product and their education and income.
Specifically, the variables are as follows.

Variable Levels Interpretation
Education high, low prospect’s education level
Income high, low prospect’s income level
Purchase yes, no Did prospect purchase product?

The following statements first create a data set,loan, that contains the marketing
research data, then they use the CATMOD procedure to fit a model, obtain the pa-
rameter estimates, and obtain the predicted probabilities of interest. These statements
produce Output 22.11.1 through Output 22.11.5.
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data loan;
input Education $ Income $ Purchase $ wt;
datalines;

high high yes 54
high high no 23
high low yes 41
high low no 12
low high yes 35
low high no 42
low low yes 19
low low no 8
;

ods output PredictedValues=Predicted
(keep=Education Income PredFunction);

proc catmod data=loan order=data;
weight wt;
response marginals;
model Purchase=Education Income / pred;

run;

proc sort data=Predicted;
by descending PredFunction;

run;

proc print data=Predicted;
run;

Notice that the preceding statements use the Output Delivery system (ODS) to output
the parameter estimates instead of the OUT= option, though either can be used.

Output 22.11.1. Marketing Research Data: Obtaining Predicted Probabilities

The CATMOD Procedure

Response Purchase Response Levels 2
Weight Variable wt Populations 4
Data Set LOAN Total Frequency 234
Frequency Missing 0 Observations 8
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Output 22.11.2. Profiles and Design Matrix

The CATMOD Procedure

Population Profiles

Sample Education Income Sample Size
--------------------------------------------

1 high high 77
2 high low 53
3 low high 77
4 low low 27

Response Profiles

Response Purchase
--------------------

1 yes
2 no

Response Design Matrix
Sample Function 1 2 3
-----------------------------------------------

1 0.70130 1 1 1
2 0.77358 1 1 -1
3 0.45455 1 -1 1
4 0.70370 1 -1 -1

Output 22.11.3. ANOVA Table and Parameter Estimates

The CATMOD Procedure

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
-------------------------------------------
Intercept 1 418.36 <.0001
Education 1 8.85 0.0029
Income 1 4.70 0.0302

Residual 1 1.84 0.1745

Analysis of Weighted Least Squares Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 0.6481 0.0317 418.36 <.0001
Education 2 0.0924 0.0311 8.85 0.0029
Income 3 -0.0675 0.0312 4.70 0.0302
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Output 22.11.4. Predicted Values and Residuals

The CATMOD Procedure

Predicted Values for Response Functions

------Observed------ ------Predicted-----
Function Standard Standard

Sample Education Income Number Function Error Function Error Residual
-------------------------------------------------------------------------------------------

1 high high 1 0.7012987 0.052158 0.67293982 0.047794 0.02835888
2 high low 1 0.77358491 0.057487 0.80803395 0.051586 -0.034449
3 low high 1 0.45454545 0.056744 0.48811031 0.051077 -0.0335649
4 low low 1 0.7037037 0.087877 0.62320444 0.064867 0.08049927

Output 22.11.5. Predicted Probabilities Data Set

Pred
Obs Education Income Function

1 high low 0.80803395
2 high high 0.67293982
3 low low 0.62320444
4 low high 0.48811031

You can use the predicted values (values ofPredFunction in Output 22.11.5) as
scores representing the likelihood that a randomly chosen subject from one of these
populations will purchase the product. Notice that the Response Profiles in Out-
put 22.11.2 show you that the first sorted level ofPurchase is “yes,” indicating that
the predicted probabilities are for Pr(Purchase=’yes’). For example, someone with
high education and low income has an estimated probability of purchase of 0.808.
As with any response function estimate given by PROC CATMOD, this estimate can
be obtained by cross-multiplying the row from the design matrix corresponding to
the sample (sample number 2 in this case) with the vector of parameter estimates
((1 � 0:6481) + (1 � 0:0924) + (�1 � (�0:0675))).

This ranking of scores can help in decision making (for example, with respect to
allocation of advertising dollars, choice of advertising media, choice of print media,
and so on).
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