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Chapter 26
The FACTOR Procedure

Overview

The FACTOR procedure performs a variety of common factor and component anal-
yses and rotations. Input can be multivariate data, a correlation matrix, a covariance
matrix, a factor pattern, or a matrix of scoring coefficients. The procedure can factor
either the correlation or covariance matrix, and you can save most results in an output
data set.

PROC FACTOR can process output from other procedures. For example, it can rotate
the canonical coefficients from multivariate analyses in the GLM procedure.

The methods for factor extraction are principal component analysis, principal fac-
tor analysis, iterated principal factor analysis, unweighted least-squares factor anal-
ysis, maximum-likelihood (canonical) factor analysis, alpha factor analysis, image
component analysis, and Harris component analysis. A variety of methods for prior
communality estimation is also available.

The methods for rotation are varimax, quartimax, parsimax, equamax, orthomax with
user-specified gamma, promax with user-specified exponent, Harris-Kaiser case II
with user-specified exponent, and oblique Procrustean with a user-specified target
pattern.

Output includes means, standard deviations, correlations, Kaiser’s measure of sam-
pling adequacy, eigenvalues, a scree plot, eigenvectors, prior and final communality
estimates, the unrotated factor pattern, residual and partial correlations, the rotated
primary factor pattern, the primary factor structure, interfactor correlations, the refer-
ence structure, reference axis correlations, the variance explained by each factor both
ignoring and eliminating other factors, plots of both rotated and unrotated factors,
squared multiple correlation of each factor with the variables, and scoring coeffi-
cients.

Any topics that are not given explicit references are discussed in Mulaik (1972) or
Harman (1976).

Background

See Chapter 52, “The PRINCOMP Procedure,” for a discussion of principal compo-
nent analysis. See Chapter 19, “The CALIS Procedure,” for a discussion of confir-
matory factor analysis.

Common factor analysis was invented by Spearman (1904). Kim and Mueller
(1978a,b) provide a very elementary discussion of the common factor model.
Gorsuch (1974) contains a broad survey of factor analysis, and Gorsuch (1974) and
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Cattell (1978) are useful as guides to practical research methodology. Harman (1976)
gives a lucid discussion of many of the more technical aspects of factor analysis, espe-
cially oblique rotation. Morrison (1976) and Mardia, Kent, and Bibby (1979) provide
excellent statistical treatments of common factor analysis. Mulaik (1972) is the most
thorough and authoritative general reference on factor analysis and is highly recom-
mended to anyone familiar with matrix algebra. Stewart (1981) gives a nontechnical
presentation of some issues to consider when deciding whether or not a factor analy-
sis may be appropriate.

A frequent source of confusion in the field of factor analysis is the termfactor. It
sometimes refers to a hypothetical, unobservable variable, as in the phrasecommon
factor. In this sense,factor analysismust be distinguished from component analy-
sis since a component is an observable linear combination.Factor is also used in
the sense ofmatrix factor,in that one matrix is a factor of a second matrix if the first
matrix multiplied by its transpose equals the second matrix. In this sense,factor anal-
ysisrefers to all methods of data analysis using matrix factors, including component
analysis and common factor analysis.

A common factoris an unobservable, hypothetical variable that contributes to the
variance of at least two of the observed variables. The unqualified term “factor” often
refers to a common factor. Aunique factoris an unobservable, hypothetical variable
that contributes to the variance of only one of the observed variables. The model for
common factor analysis posits one unique factor for each observed variable.

The equation for the common factor model is

yij = xi1b1j + xi2b2j + � � � + xiqbqj + eij

where

yij is the value of theith observation on thejth variable

xik is the value of theith observation on thekth common factor

bkj is the regression coefficient of thekth common factor for predicting thejth
variable

eij is the value of theith observation on thejth unique factor

q is the number of common factors

It is assumed, for convenience, that all variables have a mean of 0. In matrix terms,
these equations reduce to

Y = XB+E

In the preceding equation,X is the matrix of factor scores, andB0 is the factor pattern.
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There are two critical assumptions:

� The unique factors are uncorrelated with each other.

� The unique factors are uncorrelated with the common factors.

In principal component analysis, the residuals are generally correlated with each
other. In common factor analysis, the unique factors play the role of residuals and
are defined to be uncorrelated both with each other and with the common factors.
Each common factor is assumed to contribute to at least two variables; otherwise, it
would be a unique factor.

When the factors are initially extracted, it is also assumed, for convenience, that the
common factors are uncorrelated with each other and have unit variance. In this case,
the common factor model implies that the covariancesjk between thejth andkth
variables,j 6= k, is given by

sjk = b1jb1k + b2jb2k + � � �+ bqjbqk

or

S = B0
B+U2

whereS is the covariance matrix of the observed variables, andU
2 is the diagonal

covariance matrix of the unique factors.

If the original variables are standardized to unit variance, the preceding formula yields
correlations instead of covariances. It is in this sense that common factors explain the
correlations among the observed variables. The difference between the correlation
predicted by the common factor model and the actual correlation is theresidual cor-
relation. A good way to assess the goodness-of-fit of the common factor model is to
examine the residual correlations.

The common factor model implies that the partial correlations among the variables,
removing the effects of the common factors, must all be 0. When the common factors
are removed, only unique factors, which are by definition uncorrelated, remain.

The assumptions of common factor analysis imply that the common factors are, in
general, not linear combinations of the observed variables. In fact, even if the data
contain measurements on the entire population of observations, you cannot compute
the scores of the observations on the common factors. Although the common factor
scores cannot be computed directly, they can be estimated in a variety of ways.

The problem of factor score indeterminacy has led several factor analysts to propose
methods yielding components that can be considered approximations to common fac-
tors. Since these components are defined as linear combinations, they are computable.
The methods include Harris component analysis and image component analysis. The
advantage of producing determinate component scores is offset by the fact that, even
if the data fit the common factor model perfectly, component methods do not gener-
ally recover the correct factor solution. You should not use any type of component
analysis if you really want a common factor analysis (Dziuban and Harris 1973; Lee
and Comrey 1979).
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After the factors are estimated, it is necessary to interpret them. Interpretation usu-
ally means assigning to each common factor a name that reflects the importance of
the factor in predicting each of the observed variables, that is, the coefficients in the
pattern matrix corresponding to the factor. Factor interpretation is a subjective pro-
cess. It can sometimes be made less subjective byrotating the common factors, that
is, by applying a nonsingular linear transformation. A rotated pattern matrix in which
all the coefficients are close to 0 or�1 is easier to interpret than a pattern with many
intermediate elements. Therefore, most rotation methods attempt to optimize a func-
tion of the pattern matrix that measures, in some sense, how close the elements are to
0 or�1.

After the initial factor extraction, the common factors are uncorrelated with each
other. If the factors are rotated by anorthogonal transformation,the rotated factors
are also uncorrelated. If the factors are rotated by anoblique transformation,the
rotated factors become correlated. Oblique rotations often produce more useful pat-
terns than do orthogonal rotations. However, a consequence of correlated factors is
that there is no single unambiguous measure of the importance of a factor in explain-
ing a variable. Thus, for oblique rotations, the pattern matrix does not provide all the
necessary information for interpreting the factors; you must also examine thefactor
structureand thereference structure.

Rotating a set of factors does not change the statistical explanatory power of the
factors. You cannot say that any rotation is better than any other rotation from a
statistical point of view; all rotations are equally good statistically. Therefore, the
choice among different rotations must be based on nonstatistical grounds. For most
applications, the preferred rotation is that which is most easily interpretable.

If two rotations give rise to different interpretations, those two interpretations must
not be regarded as conflicting. Rather, they are two different ways of looking at the
same thing, two different points of view in the common-factor space. Any conclusion
that depends on one and only one rotation being correct is invalid.

Outline of Use

Principal Component Analysis
One important type of analysis performed by the FACTOR procedure is principal
component analysis. The statements

proc factor;
run;

result in a principal component analysis. The output includes all the eigenvalues and
the pattern matrix for eigenvalues greater than one.

Most applications require additional output. For example, you may want to compute
principal component scores for use in subsequent analyses or obtain a graphical aid to
help decide how many components to keep. You can save the results of the analysis
in a permanent SAS data library by using the OUTSTAT= option. (Refer to the
SAS Language Reference: Dictionaryfor more information on permanent SAS data
libraries and librefs.) Assuming that your SAS data library has the librefsave and
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that the data are in a SAS data set calledraw, you could do a principal component
analysis as follows:

proc factor data=raw method=principal scree mineigen=0 score
outstat=save.fact_all;

run;

The SCREE option produces a plot of the eigenvalues that is helpful in deciding how
many components to use. The MINEIGEN=0 option causes all components with
variance greater than zero to be retained. The SCORE option requests that scoring
coefficients be computed. The OUTSTAT= option saves the results in a specially
structured SAS data set. The name of the data set, in this casefact–all, is arbitrary.
To compute principal component scores, use the SCORE procedure.

proc score data=raw score=save.fact_all out=save.scores;
run;

The SCORE procedure uses the data and the scoring coefficients that are saved in
save.fact–all to compute principal component scores. The component scores are
placed in variables namedFactor1, Factor2, : : : , Factorn and are saved in the data
setsave.scores. If you know ahead of time how many principal components you
want to use, you can obtain the scores directly from PROC FACTOR by specifying
the NFACTORS= and OUT= options. To get scores from three principal components,
specify

proc factor data=raw method=principal
nfactors=3 out=save.scores;

run;

To plot the scores for the first three components, use the PLOT procedure.

proc plot;
plot factor2*factor1 factor3*factor1 factor3*factor2;

run;

Principal Factor Analysis
The simplest and computationally most efficient method of common factor analysis
is principal factor analysis, which is obtained the same way as principal component
analysis except for the use of the PRIORS= option. The usual form of the initial
analysis is

proc factor data=raw method=principal scree
mineigen=0 priors=smc outstat=save.fact_all;

run;
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The squared multiple correlations (SMC) of each variable with all the other variables
are used as the prior communality estimates. If your correlation matrix is singu-
lar, you should specify PRIORS=MAX instead of PRIORS=SMC. The SCREE and
MINEIGEN= options serve the same purpose as in the preceding principal compo-
nent analysis. Saving the results with the OUTSTAT= option enables you to examine
the eigenvalues and scree plot before deciding how many factors to rotate and to try
several different rotations without re-extracting the factors. The OUTSTAT= data set
is automatically marked TYPE=FACTOR, so the FACTOR procedure realizes that it
contains statistics from a previous analysis instead of raw data.

After looking at the eigenvalues to estimate the number of factors, you can try some
rotations. Two and three factors can be rotated with the following statements:

proc factor data=save.fact_all method=principal n=2
rotate=promax reorder score outstat=save.fact_2;

proc factor data=save.fact_all method=principal n=3
rotate=promax reorder score outstat=save.fact_3;

run;

The output data set from the previous run is used as input for these analyses. The
options N=2 and N=3 specify the number of factors to be rotated. The specifica-
tion ROTATE=PROMAX requests a promax rotation, which has the advantage of
providing both orthogonal and oblique rotations with only one invocation of PROC
FACTOR. The REORDER option causes the variables to be reordered in the output
so that variables associated with the same factor appear next to each other.

You can now compute and plot factor scores for the two-factor promax-rotated solu-
tion as follows:

proc score data=raw score=save.fact_2 out=save.scores;
proc plot;

plot factor2*factor1;
run;

Maximum-Likelihood Factor Analysis
Although principal factor analysis is perhaps the most commonly used method of
common factor analysis, most statisticians prefer maximum-likelihood (ML) factor
analysis (Lawley and Maxwell 1971). The ML method of estimation has desirable
asymptotic properties (Bickel and Doksum 1977) and produces better estimates than
principal factor analysis in large samples. You can test hypotheses about the number
of common factors using the ML method.

The ML solution is equivalent to Rao’s (1955) canonical factor solution and Howe’s
solution maximizing the determinant of the partial correlation matrix (Morrison
1976). Thus, as a descriptive method, ML factor analysis does not require a mul-
tivariate normal distribution. The validity of Bartlett’s�2 test for the number of
factors does require approximate normality plus additional regularity conditions that
are usually satisfied in practice (Geweke and Singleton 1980).
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The ML method is more computationally demanding than principal factor analysis
for two reasons. First, the communalities are estimated iteratively, and each iteration
takes about as much computer time as principal factor analysis. The number of it-
erations typically ranges from about five to twenty. Second, if you want to extract
different numbers of factors, as is often the case, you must run the FACTOR proce-
dure once for each number of factors. Therefore, an ML analysis can take 100 times
as long as a principal factor analysis.

You can use principal factor analysis to get a rough idea of the number of factors
before doing an ML analysis. If you think that there are between one and three
factors, you can use the following statements for the ML analysis:

proc factor data=raw method=ml n=1
outstat=save.fact1;

run;
proc factor data=raw method=ml n=2 rotate=promax

outstat=save.fact2;
run;
proc factor data=raw method=ml n=3 rotate=promax

outstat=save.fact3;
run;

The output data sets can be used for trying different rotations, computing scoring
coefficients, or restarting the procedure in case it does not converge within the allotted
number of iterations.

The ML method cannot be used with a singular correlation matrix, and it is especially
prone to Heywood cases. (See the section “Heywood Cases and Other Anomalies”
on page 1153 for a discussion of Heywood cases.) If you have problems with ML,
the best alternative is to use the METHOD=ULS option for unweighted least-squares
factor analysis.

Getting Started

The following example demonstrates how you can use the FACTOR procedure to
perform common factor analysis and use a transformation to rotate the extracted fac-
tors.

Suppose that you want to use factor analysis to explore the relationship among as-
sessment scores of a group of students. For each student in the group, you record six
homework scores, two midterm examination scores, and the final exam score.
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The following DATA step creates the SAS data setGrades:

data Grades;
input HomeWork1 - HomeWork6 MidTerm1 MidTerm2 FinalExam;
datalines;

15 18 36 29 44 30 78 87 70
15 16 24 30 41 30 71 73 89
15 14 23 34 28 24 84 72 76
15 20 39 35 50 30 74 79 96
15 20 39 35 46 30 76 77 94
15 20 28 30 49 28 40 44 66
15 15 29 25 36 30 88 69 93
15 20 37 35 50 30 97 95 98
14 16 24 30 44 28 57 78 85
15 17 29 26 38 28 56 78 76
15 17 31 34 40 27 72 67 84
11 16 29 34 31 27 83 68 75
15 18 31 18 40 30 75 43 67
14 14 29 25 49 30 71 93 93
15 18 36 29 44 30 85 64 75
;

The data setGrades contains the variables representing homework scores (Home-
Work1—HomeWork6), the two midterm exam scores (MidTerm1 andMidTerm2),
and the final exam score (FinalExam).

The following statements invoke the FACTOR procedure:

proc factor data=Grades priors=smc rotate=varimax nfactors=2;
run;

The DATA= option in PROC FACTOR specifies the SAS data setGrades as the in-
put data set. The PRIORS= option specifies that the squared multiple correlations
(SMC) of each variable with all the other variables are used as the prior communality
estimates and also that PROC FACTOR gives a principal factor solution to the com-
mon factor model. The ROTATE= option specifies the VARIMAX orthogonal factor
rotation method. To see if two latent factors can explain the observed variation in the
data, the NFACTOR= option specifies that two factors be retained. All variables in
the data set are analyzed.

The output from this analysis is displayed in the following figures.
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The SAS System

The FACTOR Procedure
Initial Factor Method: Principal Factors

Prior Communality Estimates: SMC

HomeWork1 HomeWork2 HomeWork3 HomeWork4 HomeWork5

0.27602335 0.86733312 0.82222517 0.79295256 0.80742053

HomeWork6 MidTerm1 MidTerm2 FinalExam

0.83330706 0.67135234 0.64889405 0.68860512

Eigenvalues of the Reduced Correlation Matrix:
Total = 6.40811331 Average = 0.71201259

Eigenvalue Difference Proportion Cumulative

1 3.00212450 1.21898414 0.4685 0.4685
2 1.78314036 0.71888817 0.2783 0.7468
3 1.06425218 0.34974843 0.1661 0.9128
4 0.71450375 0.55643869 0.1115 1.0243
5 0.15806506 0.10471212 0.0247 1.0490
6 0.05335294 0.15681933 0.0083 1.0573
7 -.10346639 0.01266761 -0.0161 1.0412
8 -.11613399 0.03159110 -0.0181 1.0231
9 -.14772509 -0.0231 1.0000

2 factors will be retained by the NFACTOR criterion.

Figure 26.1. Table of Eigenvalues from PROC FACTOR

As displayed in Figure 26.1, the prior communality estimates are set to the squared
multiple correlations. Figure 26.1 also displays the table of eigenvalues, which are the
variances of the principal factors, of the reduced correlation matrix. Each row of the
table pertains to a single eigenvalue. Following the column of eigenvalues are three
measures of each eigenvalue’s relative size and importance. The first of these displays
the difference between the eigenvalue and its successor. The last two columns display
the individual and cumulative proportions that the corresponding factor contributes
to the total variation. The last line displayed in Figure 26.1 states that two factors are
retained, as specified by the NFACTORS= option in the PROC FACTOR statement.
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The FACTOR Procedure
Initial Factor Method: Principal Factors

Factor Pattern

Factor1 Factor2

HomeWork1 0.31105 -0.26516
HomeWork2 0.70521 -0.42151
HomeWork3 0.83281 -0.01966
HomeWork4 0.23315 0.54773
HomeWork5 0.79715 -0.29570
HomeWork6 0.73831 -0.24142
MidTerm1 0.21725 0.58751
MidTerm2 0.39266 0.64770
FinalExam 0.52745 0.56953

Figure 26.2. Factor Pattern Matrix from PROC FACTOR

Figure 26.2 displays the factor pattern matrix. The factor pattern matrix is the matrix
of correlations between variables and the common factors. When the factors are
orthogonal, the pattern matrix is also equal to the matrix of standardized regression
coefficients for predicting the variables using the extracted factors.

The pattern matrix suggests that the first factor represents general ability, with posi-
tive loadings from all variables. The second factor is more difficult to interpret, but it
may represent a contrast between exam and homework scores, with the exception of
the score forHomeWork4.

The FACTOR Procedure
Initial Factor Method: Principal Factors

Variance Explained by Each Factor

Factor1 Factor2

3.0021245 1.7831404

Final Communality Estimates: Total = 4.785265

HomeWork1 HomeWork2 HomeWork3 HomeWork4 HomeWork5

0.16706002 0.67498965 0.69395408 0.35436611 0.72288063

HomeWork6 MidTerm1 MidTerm2 FinalExam

0.60338875 0.39236928 0.57369380 0.60256254

Figure 26.3. Variance Explained and Final Communality Estimates
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Figure 26.3 displays the variance explained by each factor and the final communality
estimates, including the total communality. The final communality estimates are the
proportion of variance of the variables accounted for by the common factors. When
the factors are orthogonal, the final communalities are calculated by taking the sum of
squares of each row of the factor pattern matrix. For example, the final communality
estimate for the variableFinalExam is computed as follows:

0:60256254 = (0:52745)2 + (0:56953)2

Figure 26.4 displays the results of the VARIMAX rotation of the two extracted factors
and the final communality estimates of the rotated factors.

The rotated factor pattern matrix is calculated by postmultiplying the original factor
pattern matrix (Figure 26.2) by the orthogonal transformation matrix (Figure 26.4).

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2

1 0.89675 0.44254
2 -0.44254 0.89675

Rotated Factor Pattern

Factor1 Factor2

HomeWork1 0.39628 -0.10013
HomeWork2 0.81893 -0.06590
HomeWork3 0.75552 0.35093
HomeWork4 -0.03332 0.59435
HomeWork5 0.84570 0.08761
HomeWork6 0.76892 0.11024
MidTerm1 -0.06518 0.62299
MidTerm2 0.06549 0.75459
FinalExam 0.22095 0.74414

Figure 26.4. Transformation Matrix and Rotated Factor Pattern

The rotated factor pattern matrix is somewhat simpler to interpret: the rotatedFac-
tor1 can now be interpreted as general ability in homework performance. The home-
work variables load higher onFactor1 (with the single exception of the variable
HomeWork4), with small loadings for the exam score variables. The rotatedFac-
tor2 seems to measure exam performance or test-taking ability. The exam score
variables load heavily onFactor2, as doesHomeWork4.
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The FACTOR Procedure
Rotation Method: Varimax

Variance Explained by Each Factor

Factor1 Factor2

2.7633918 2.0218731

Final Communality Estimates: Total = 4.785265

HomeWork1 HomeWork2 HomeWork3 HomeWork4 HomeWork5

0.16706002 0.67498965 0.69395408 0.35436611 0.72288063

HomeWork6 MidTerm1 MidTerm2 FinalExam

0.60338875 0.39236928 0.57369380 0.60256254

Figure 26.5. Variance Explained and Final Communality Estimates after Rotation

Figure 26.5 displays the variance explained by each factor and the final communality
estimates. Even though the variance explained by the rotatedFactor1 is less than
that explained by the unrotated factor (compare with Figure 26.3), the cumulative
variance explained by both common factors remains the same after the orthogonal
rotation. Also note that the VARIMAX rotation, as with any orthogonal rotation, has
not changed the final communalities.

Syntax

You can specify the following statements with the FACTOR procedure.

PROC FACTOR < options > ;
VAR variables ;
PRIORS communalities ;
PARTIAL variables ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

Usually only the VAR statement is needed in addition to the PROC FACTOR state-
ment. The descriptions of the BY, FREQ, PARTIAL, PRIORS, VAR, and WEIGHT
statements follow the description of the PROC FACTOR statement in alphabetical
order.
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PROC FACTOR Statement

PROC FACTOR < options > ;

The options available with the PROC FACTOR statement are listed in the following
table and then are described in alphabetical order.

Table 26.1. Options Available in the PROC FACTOR Statement

Task Option
Data sets DATA=

OUT=
OUTSTAT=
TARGET=

Extract factors and communalities HEYWOOD
METHOD=
PRIORS=
RANDOM=
ULTRAHEYWOOD

Analyze data COVARIANCE
NOINT
VARDEF=
WEIGHT

Specify number of factors MINEIGEN=
NFACTORS=
PROPORTION=

Specify numerical properties CONVERGE=
MAXITER=
SINGULAR=

Specify rotation method GAMMA=
HKPOWER=
NORM=
POWER=
PREROTATE=
ROTATE=

Control displayed output ALL
CORR
EIGENVECTORS
MSA
NOPRINT
NPLOT=
PLOT
PREPLOT
PRINT
REORDER
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Table 26.1. (continued)

Task Option
RESIDUALS
SCORE
SCREE
SIMPLE

Exclude the correlation matrix NOCORR
from the OUTSTAT= data set

Miscellaneous NOBS=

ALL
displays all optional output except plots. When the input data set is TYPE=CORR,
TYPE=UCORR, TYPE=COV, TYPE=UCOV or TYPE=FACTOR, simple statistics,
correlations, and MSA are not displayed.

CONVERGE=p
CONV=p

specifies the convergence criterion for the METHOD=PRINIT, METHOD=ULS,
METHOD=ALPHA, or METHOD=ML option. Iteration stops when the maximum
change in the communalities is less than the value of the CONVERGE= option. The
default value is 0.001. Negative values are not allowed.

CORR
C

displays the correlation matrix or partial correlation matrix.

COVARIANCE
COV

requests factoring of the covariance matrix instead of the correlation matrix. The
COV option can be used only with the METHOD=PRINCIPAL, METHOD=PRINIT,
METHOD=ULS, or METHOD=IMAGE option.

DATA=SAS-data-set
specifies the input data set, which can be an ordinary SAS data set or a specially

structured SAS data set as described in the section “Input Data Set” beginning on
page 1146. If the DATA= option is omitted, the most recently created SAS data set
is used.

EIGENVECTORS
EV

displays the eigenvectors. PROC FACTOR chooses the solution that makes the sum
of the elements of each eigenvector nonnegative. If the sum of the elements is equal
to zero, then the sign depends on how the number is rounded off.

GAMMA=p
specifies the orthomax weight used with the option ROTATE=ORTHOMAX or PRE-
ROTATE=ORTHOMAX. There is no restriction on valid values.
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HEYWOOD
HEY

sets to 1 any communality greater than 1, allowing iterations to proceed.

HKPOWER=p
HKP=p

specifies the power of the square roots of the eigenvalues used to rescale the eigen-
vectors for Harris-Kaiser (ROTATE=HK) rotation. Values between 0.0 and 1.0 are
reasonable. The default value is 0.0, yielding the independent cluster solution (each
variable tends to have a large loading on only one factor). A value of 1.0 is equiv-
alent to a varimax rotation. You can also specify the HKPOWER= option with
the ROTATE=QUARTIMAX,ROTATE=VARIMAX, ROTATE=EQUAMAX, or RO-
TATE=ORTHOMAX option, in which case the Harris-Kaiser rotation uses the spec-
ified orthogonal rotation method.

MAXITER=n
specifies the maximum number of iterations. You can use the MAXITER= option
with the PRINIT, ULS, ALPHA, or ML methods. The default is 30.

METHOD=name
M=name

specifies the method for extracting factors. The default is METHOD=PRINCIPAL
unless the DATA= data set is TYPE=FACTOR, in which case the default is
METHOD=PATTERN. Valid values fornameare as follows:

ALPHA | A produces alpha factor analysis.

HARRIS | H yields Harris component analysis ofS�1
RS

�1 (Harris 1962), a
noniterative approximation to canonical component analysis.

IMAGE | I yields principal component analysis of the image covariance ma-
trix, not Kaiser’s (1963, 1970) or Kaiser and Rice’s (1974) image
analysis. A nonsingular correlation matrix is required.

ML | M performs maximum-likelihood factor analysis with an algorithm
due, except for minor details, to Fuller (1987). The option
METHOD=ML requires a nonsingular correlation matrix.

PATTERN reads a factor pattern from a TYPE=FACTOR, TYPE=CORR,
TYPE=UCORR, TYPE=COV or TYPE=UCOV data set. If you
create a TYPE=FACTOR data set in a DATA step, only ob-
servations containing the factor pattern (–TYPE–=’PATTERN’)
and, if the factors are correlated, the interfactor correlations
(–TYPE–=’FCORR’) are required.

PRINCIPAL | PRIN | P yields principal component analysis if no PRIORS option or
statement is used or if you specify PRIORS=ONE; if you specify a
PRIORS statement or a PRIORS= value other than PRIORS=ONE,
a principal factor analysis is performed.

PRINIT yields iterated principal factor analysis.

SCORE reads scoring coefficients (–TYPE–=’SCORE’) from a
TYPE=FACTOR, TYPE=CORR, TYPE=UCORR, TYPE=COV,
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or TYPE=UCOV data set. The data set must also contain either
a correlation or a covariance matrix. Scoring coefficients are also
displayed if you specify the OUT= option.

ULS | U produces unweighted least squares factor analysis.

MINEIGEN=p
MIN=p

specifies the smallest eigenvalue for which a factor is retained. If you specify two
or more of the MINEIGEN=, NFACTORS=, and PROPORTION= options, the num-
ber of factors retained is the minimum number satisfying any of the criteria. The
MINEIGEN= option cannot be used with either the METHOD=PATTERN or the
METHOD=SCORE option. Negative values are not allowed. The default is 0 un-
less you omit both the NFACTORS= and the PROPORTION= options and one of the
following conditions holds:

� If you specify the METHOD=ALPHA or METHOD=HARRIS option, then
MINEIGEN=1.

� If you specify the METHOD=IMAGE option, then

MINEIGEN =
total image variance
number of variables

� For any other METHOD= specification, if prior communality estimates of 1.0
are used, then

MINEIGEN =
total weighted variance

number of variables

When an unweighted correlation matrix is factored, this value is 1.

MSA
produces the partial correlations between each pair of variables controlling for all
other variables (the negative anti-image correlations) and Kaiser’s measure of sam-
pling adequacy (Kaiser 1970; Kaiser and Rice 1974; Cerny and Kaiser 1977).

NFACTORS=n
NFACT=n
N=n

specifies the maximum number of factors to be extracted and determines the amount
of memory to be allocated for factor matrices. The default is the number of variables.
Specifying a number that is small relative to the number of variables can substantially
decrease the amount of memory required to run PROC FACTOR, especially with
oblique rotations. If you specify two or more of the NFACTORS=, MINEIGEN=, and
PROPORTION= options, the number of factors retained is the minimum number sat-
isfying any of the criteria. If you specify the option NFACTORS=0, eigenvalues are
computed, but no factors are extracted. If you specify the option NFACTORS=�1,
neither eigenvalues nor factors are computed. You can use the NFACTORS= option
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with the METHOD=PATTERN or METHOD=SCORE option to specify a smaller
number of factors than are present in the data set.

NOBS=n
specifies the number of observations. If the DATA= input data set is a raw data set,
nobsis defined by default to be the number of observations in the raw data set. The
NOBS= option overrides this default definition. If the DATA= input data set contains
a covariance, correlation, or scalar product matrix, the number of observations can be
specified either by using the NOBS= option in the PROC FACTOR statement or by
including a–TYPE–=’N’ observation in the DATA= input data set.

NOCORR
prevents the correlation matrix from being transferred to the OUTSTAT= data set
when you specify the METHOD=PATTERN option. The NOCORR option greatly
reduces memory requirements when there are many variables but few factors. The
NOCORR option is not effective if the correlation matrix is required for other re-
quested output; for example, if the scores or the residual correlations are displayed
(using SCORE, RESIDUALS, ALL options).

NOINT
omits the intercept from the analysis; covariances or correlations are not corrected for
the mean.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the
Output Delivery System (ODS). For more information, see Chapter 15, “Using the
Output Delivery System.”

NORM=COV | KAISER | NONE | RAW | WEIGHT
specifies the method for normalizing the rows of the factor pattern for rotation. If
you specify the option NORM=KAISER, Kaiser’s normalization is used(

P
j p

2

ij =

1). If you specify the option NORM=WEIGHT, the rows are weighted by the
Cureton-Mulaik technique (Cureton and Mulaik 1975). If you specify the option
NORM=COV, the rows of the pattern matrix are rescaled to represent covariances
instead of correlations. If you specify the option NORM=NONE or NORM=RAW,
normalization is not performed. The default is NORM=KAISER.

NPLOT=n
specifies the number of factors to be plotted. The default is to plot all factors. The
smallest allowable value is 2. If you specify the option NPLOT=n, all pairs of the
first n factors are plotted, producing a total ofn(n� 1)=2 plots.

OUT=SAS-data-set
creates a data set containing all the data from the DATA= data set plus variables called
Factor1, Factor2, and so on, containing estimated factor scores. The DATA= data
set must contain multivariate data, not correlations or covariances. You must also
specify the NFACTORS= option to determine the number of factor score variables.
If you want to create a permanent SAS data set, you must specify a two-level name.
Refer to “SAS Files” inSAS Language Reference: Conceptsfor more information on
permanent data sets.
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OUTSTAT=SAS-data-set
specifies an output data set containing most of the results of the analysis. The output
data set is described in detail in the section “Output Data Sets” on page 1149. If
you want to create a permanent SAS data set, you must specify a two-level name.
Refer to “SAS Files” inSAS Language Reference: Conceptsfor more information on
permanent data sets.

PLOT
plots the factor pattern after rotation.

POWER=n
specifies the power to be used in computing the target pattern for the option RO-
TATE=PROMAX. Valid values must be integers� 1. The default value is 3.

PREPLOT
plots the factor pattern before rotation.

PREROTATE=name
PRE=name

specifies the prerotation method for the option ROTATE=PROMAX. Any rota-
tion method other than PROMAX or PROCRUSTES can be used. The default is
PREROTATE=VARIMAX. If a previously rotated pattern is read using the option
METHOD=PATTERN, you should specify the PREROTATE=NONE option.

PRINT
displays the input factor pattern or scoring coefficients and related statistics. In
oblique cases, the reference and factor structures are computed and displayed.
The PRINT option is effective only with the option METHOD=PATTERN or
METHOD=SCORE.

PRIORS=name
specifies a method for computing prior communality estimates. You can specify nu-
meric values for the prior communality estimates by using the PRIORS statement.
Valid values fornameare as follows:

ASMC | A sets the prior communality estimates proportional to the squared
multiple correlations but adjusted so that their sum is equal to that
of the maximum absolute correlations (Cureton 1968).

INPUT | I reads the prior communality estimates from the first observation
with either–TYPE–=’PRIORS’ or–TYPE–=’COMMUNAL’ in
the DATA= data set (which must be TYPE=FACTOR).

MAX | M sets the prior communality estimate for each variable to its maxi-
mum absolute correlation with any other variable.

ONE | O sets all prior communalities to 1.0.

RANDOM | R sets the prior communality estimates to pseudo-random numbers
uniformly distributed between 0 and 1.

SMC | S sets the prior communality estimate for each variable to its squared
multiple correlation with all other variables.
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The default prior communality estimates are as follows.

METHOD= PRIORS=
PRINCIPAL ONE

PRINIT ONE

ALPHA SMC

ULS SMC

ML SMC

HARRIS (not applicable)

IMAGE (not applicable)

PATTERN (not applicable)

SCORE (not applicable)

By default, the options METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA,
and METHOD=ML stop iterating and set the number of factors to 0 if an estimated
communality exceeds 1. The options HEYWOOD and ULTRAHEYWOOD allow
processing to continue.

PROPORTION=p
PERCENT=p
P=p

specifies the proportion of common variance to be accounted for by the retained fac-
tors using the prior communality estimates. If the value is greater than one, it is in-
terpreted as a percentage and divided by 100. The options PROPORTION=0.75 and
PERCENT=75 are equivalent. The default value is 1.0 or 100%. You cannot specify
the PROPORTION= option with the METHOD=PATTERN or METHOD=SCORE
option. If you specify two or more of the PROPORTION=, NFACTORS=, and
MINEIGEN= options, the number of factors retained is the minimum number sat-
isfying any of the criteria.

RANDOM=n
specifies a positive integer as a starting value for the pseudo-random number gener-
ator for use with the option PRIORS=RANDOM. If you do not specify the RAN-
DOM= option, the time of day is used to initialize the pseudo-random number se-
quence. Valid values must be integers� 1.

REORDER
RE

causes the rows (variables) of various factor matrices to be reordered on the output.
Variables with their highest absolute loading (reference structure loading for oblique
rotations) on the first factor are displayed first, from largest to smallest loading, fol-
lowed by variables with their highest absolute loading on the second factor, and so
on. The order of the variables in the output data set is not affected. The factors are
not reordered.
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RESIDUALS
RES

displays the residual correlation matrix and the associated partial correlation matrix.
The diagonal elements of the residual correlation matrix are the unique variances.

ROTATE=name
R=name

specifies the rotation method. The default is ROTATE=NONE. The following or-
thogonal rotation methods are available in the FACTOR procedure: EQUAMAX,
ORTHOMAX, QUARTIMAX, PARSIMAX, and VARIMAX.

After the initial factor extraction, the common factors are uncorrelated with each
other. If the factors are rotated by anorthogonal transformation,the rotated factors
are also uncorrelated. If the factors are rotated by anoblique transformation,the
rotated factors become correlated. Oblique rotations often produce more useful pat-
terns than do orthogonal rotations. However, a consequence of correlated factors is
that there is no single unambiguous measure of the importance of a factor in explain-
ing a variable. Thus, for oblique rotations, the pattern matrix does not provide all the
necessary information for interpreting the factors; you must also examine thefactor
structureand thereference structure. Refer to Harman (1976) and Mulaik (1972)
for further information.

Valid values fornameare as follows:

EQUAMAX | E specifies orthogonal equamax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with GAMMA=number of
factors/2.

HK specifies Harris-Kaiser case II orthoblique rotation. You can use
the HKPOWER= option to set the power of the square roots of the
eigenvalues by which the eigenvectors are scaled.

NONE | N specifies that no rotation be performed.

ORTHOMAX specifies general orthomax rotation with the weight specified by
the GAMMA= option.

PARSIMAX specifies orthogonal Parsimax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with

GAMMA =
nvar� (nfact� 1)

nvar+ nfact� 2

wherenvar is the number of variables, andnfact is the number of
factors.

PROCRUSTES specifies oblique Procrustes rotation with target pattern provided
by the TARGET= data set. The unrestricted least squares method
is used with factors scaled to unit variance after rotation.

PROMAX | P specifies oblique promax rotation. The PREROTATE=
and POWER= options can be used with the option RO-
TATE=PROMAX.
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QUARTIMAX | Q specifies orthogonal quartimax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with GAMMA=0.

VARIMAX | V specifies orthogonal varimax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with GAMMA=1.

SCORE
displays the factor scoring coefficients. The squared multiple correlation of each
factor with the variables is also displayed except in the case of unrotated principal
components.

SCREE
displays a scree plot of the eigenvalues (Cattell 1966, 1978; Cattell and Vogelman
1977; Horn and Engstrom 1979).

SIMPLE
S

displays means, standard deviations, and the number of observations.

SINGULAR=p
SING=p

specifies the singularity criterion, where0 < p < 1. The default value is 1E�8.

TARGET=SAS-data-set
specifies an input data set containing the target pattern for Procrustes rotation (see the
description of the ROTATE= option). The TARGET= data set must contain variables
with the same names as those being factored. Each observation in the TARGET=
data set becomes one column of the target factor pattern. Missing values are treated
as zeros. The–NAME– and–TYPE– variables are not required and are ignored if
present.

ULTRAHEYWOOD
ULTRA

allows communalities to exceed 1. The ULTRAHEYWOOD option can cause con-
vergence problems because communalities can become extremely large, and ill-
conditioned Hessians may occur.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor used in the calculation of variances and covariances. The default
value is VARDEF=DF. The values and associated divisors are displayed in the fol-
lowing table wherei= 0 if the NOINT option is used andi= 1 otherwise, and where
k is the number of partial variables specified in the PARTIAL statement.

Value Description Divisor
DF degrees of freedom n� k � i

N number of observations n� k

WDF sum of weights DF
P

i wi � k � i

WEIGHT | WGT sum of weights
P

i wi � k
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WEIGHT
factors a weighted correlation or covariance matrix. The WEIGHT option can be
used only with the METHOD=PRINCIPAL, METHOD=PRINIT, METHOD=ULS,
or METHOD=IMAGE option. The input data set must be of type CORR, UCORR,
COV, UCOV or FACTOR, and the variable weights are obtained from an observation
with –TYPE–=’WEIGHT’.

BY Statement

BY variables ;

You can specify a BY statement with PROC FACTOR to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

� Sort the data using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the FACTOR procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

� Create an index on the BY variables using the DATASETS procedure (in Base
SAS software). For more information on creating indexes and using the BY
statement with indexed datasets, refer to “SAS Files” inSAS Language Refer-
ence: Concepts.

If you specify the TARGET= option and the TARGET= data set does not contain any
of the BY variables, then the entire TARGET= data set is used as a Procrustean target
for each BY group in the DATA= data set.

If the TARGET= data set contains some but not all of the BY variables, or if some
BY variables do not have the same type or length in the TARGET= data set as in the
DATA= data set, then PROC FACTOR displays an error message and stops.

If all the BY variables appear in the TARGET= data set with the same type and length
as in the DATA= data set, then each BY group in the TARGET= data set is used as
a Procrustean target for the corresponding BY group in the DATA= data set. The
BY groups in the TARGET= data set must be in the same order as in the DATA=
data set. If you specify the NOTSORTED option in the BY statement, there must
be identical BY groups in the same order in both data sets. If you do not specify
the NOTSORTED option, some BY groups can appear in one data set but not in the
other.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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FREQ Statement

FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other values
in the observation, include the variable’s name in a FREQ statement. The procedure
then treats the data set as if each observation appearsn times, wheren is the value
of the FREQ variable for the observation. The total number of observations is con-
sidered to be equal to the sum of the FREQ variable when the procedure determines
degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not
used in the analysis. If the value is not an integer, the value is truncated to an integer.

The WEIGHT and FREQ statements have a similar effect, except in determining the
number of observations for significance tests.

PARTIAL Statement

PARTIAL variables ;

If you want the analysis to be based on a partial correlation or covariance matrix, use
the PARTIAL statement to list the variables that are used to partial out the variables
in the analysis.

PRIORS Statement

PRIORS communalities ;

The PRIORS statement specifies numeric values between 0.0 and 1.0 for the prior
communality estimates for each variable. The first numeric value corresponds to the
first variable in the VAR statement, the second value to the second variable, and so
on. The number of numeric values must equal the number of variables. For example,

proc factor;
var x y z;
priors .7 .8 .9;

run;

You can specify various methods for computing prior communality estimates with
the PRIORS= option of the PROC FACTOR statement. Refer to the description of
that option for more information on the default prior communality estimates.
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VAR Statement

VAR variables ;

The VAR statement specifies the numeric variables to be analyzed. If the VAR state-
ment is omitted, all numeric variables not specified in other statements are analyzed.

WEIGHT Statement

WEIGHT variable ;

If you want to use relative weights for each observation in the input data set, specify
a variable containing weights in a WEIGHT statement. This is often done when the
variance associated with each observation is different and the values of the weight
variable are proportional to the reciprocals of the variances. If a variable value is
negative or is missing, it is excluded from the analysis.

Details

Incompatibilities with Earlier Versions of PROC FACTOR

PROC FACTOR no longer supports the FUZZ, FLAG, and ROUND options. How-
ever, a more flexible form of formatting is available. For an example of creating
customized output, see Example 26.2.

Input Data Set

The FACTOR procedure can read an ordinary SAS data set containing raw data
or a special data set specified as a TYPE=CORR, TYPE=UCORR, TYPE=SSCP,
TYPE=COV, TYPE=UCOV, or TYPE=FACTOR data set containing previously com-
puted statistics. A TYPE=CORR data set can be created by the CORR procedure or
various other procedures such as the PRINCOMP procedure. It contains means, stan-
dard deviations, the sample size, the correlation matrix, and possibly other statis-
tics if it is created by some procedure other than PROC CORR. A TYPE=COV
data set is similar to a TYPE=CORR data set but contains a covariance matrix. A
TYPE=UCORR or TYPE=UCOV data set contains a correlation or covariance ma-
trix that is not corrected for the mean. The default VAR variable list does not include
Intercept if the DATA= data set is TYPE=SSCP. If theIntercept variable is explic-
itly specified in the VAR statement with a TYPE=SSCP data set, the NOINT option
is activated. A TYPE=FACTOR data set can be created by the FACTOR procedure
and is described in the section “Output Data Sets” on page 1149.

If your data set has many observations and you plan to run FACTOR several times,
you can save computer time by first creating a TYPE=CORR data set and using it as
input to PROC FACTOR.
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proc corr data=raw out=correl; /* create TYPE=CORR data set */
proc factor data=correl method=ml; /* maximum likelihood */
proc factor data=correl; /* principal components */

The data set created by the CORR procedure is automatically given the TYPE=CORR
data set option, so you do not have to specify TYPE=CORR. However, if you use a
DATA step with a SET statement to modify the correlation data set, you must use the
TYPE=CORR attribute in the new data set. You can use a VAR statement with PROC
FACTOR when reading a TYPE=CORR data set to select a subset of the variables or
change the order of the variables.

Problems can arise from using the CORR procedure when there are missing data.
By default, PROC CORR computes each correlation from all observations that have
values present for the pair of variables involved (pairwise deletion). The resulting
correlation matrix may have negative eigenvalues. If you specify the NOMISS op-
tion with the CORR procedure, observations with any missing values are completely
omitted from the calculations (listwise deletion), and there is no danger of negative
eigenvalues.

PROC FACTOR can also create a TYPE=FACTOR data set, which includes all the
information in a TYPE=CORR data set, and use it for repeated analyses. For a
TYPE=FACTOR data set, the default value of the METHOD= option is PATTERN.
The following statements produce the same PROC FACTOR results as the previous
example:

proc factor data=raw method=ml outstat=fact; /* max. likelihood */
proc factor data=fact method=prin; /* principal components */

You can use a TYPE=FACTOR data set to try several different rotation methods on
the same data without repeatedly extracting the factors. In the following example, the
second and third PROC FACTOR statements use the data setfact created by the first
PROC FACTOR statement:

proc factor data=raw outstat=fact; /* principal components */
proc factor rotate=varimax; /* varimax rotation */
proc factor rotate=quartimax; /* quartimax rotation */

You can create a TYPE=CORR, TYPE=UCORR, or TYPE=FACTOR data set in a
DATA step. Be sure to specify the TYPE= option in parentheses after the data set
name in the DATA statement and include the–TYPE– and–NAME– variables. In
a TYPE=CORR data set, only the correlation matrix (–TYPE–=’CORR’) is neces-
sary. It can contain missing values as long as every pair of variables has at least one
nonmissing value.
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data correl(type=corr);
_TYPE_=’CORR’;
input _NAME_ $ x y z;
datalines;

x 1.0 . .
y .7 1.0 .
z .5 .4 1.0
;
proc factor;
run;

You can create a TYPE=FACTOR data set containing only a factor pattern
(–TYPE–=’PATTERN’) and use the FACTOR procedure to rotate it.

data pat(type=factor);
_TYPE_=’PATTERN’;
input _NAME_ $ x y z;
datalines;

factor1 .5 .7 .3
factor2 .8 .2 .8
;
proc factor rotate=promax prerotate=none;
run;

If the input factors are oblique, you must also include the interfactor correlation ma-
trix with –TYPE–=’FCORR’.

data pat(type=factor);
input _TYPE_ $ _NAME_ $ x y z;
datalines;

pattern factor1 .5 .7 .3
pattern factor2 .8 .2 .8
fcorr factor1 1.0 .2 .
fcorr factor2 .2 1.0 .
;
proc factor rotate=promax prerotate=none;
run;

Some procedures, such as the PRINCOMP and CANDISC procedures, pro-
duce TYPE=CORR or TYPE=UCORR data sets containing scoring coefficients
(–TYPE–=’SCORE’ or–TYPE–= ’USCORE’). These coefficients can be input to
PROC FACTOR and rotated by using the METHOD=SCORE option. The input data
set must contain the correlation matrix as well as the scoring coefficients.

proc princomp data=raw n=2 outstat=prin;
run;
proc factor data=prin method=score rotate=varimax;
run;
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Output Data Sets

The OUT= Data Set
The OUT= data set contains all the data in the DATA= data set plus new variables
calledFactor1, Factor2, and so on, containing estimated factor scores. If more than
99 factors are requested, the new variable names areFact1, Fact2, and so on. Each
estimated factor score is computed as a linear combination of the standardized values
of the variables that are factored. The coefficients are always displayed if the OUT=
option is specified and are labeled “Standardized Scoring Coefficients.”

The OUTSTAT= Data Set
The OUTSTAT= data set is similar to the TYPE=CORR or TYPE=UCORR data set
produced by the CORR procedure, but it is a TYPE=FACTOR data set and it contains
many results in addition to those produced by PROC CORR. The OUTSTAT= data
set contains observations with–TYPE–=’UCORR’ and–TYPE–=’USTD’ if you
specify the NOINT option.

The output data set contains the following variables:

� the BY variables, if any

� two new character variables,–TYPE– and–NAME–

� the variables analyzed, that is, those in the VAR statement, or, if there is no
VAR statement, all numeric variables not listed in any other statement.

Each observation in the output data set contains some type of statistic as indicated
by the–TYPE– variable. The–NAME– variable is blank except where otherwise
indicated. The values of the–TYPE– variable are as follows:

–TYPE– Contents

MEAN means

STD standard deviations

USTD uncorrected standard deviations

N sample size

CORR correlations. The–NAME– variable contains the name of the vari-
able corresponding to each row of the correlation matrix.

UCORR uncorrected correlations. The–NAME– variable contains the
name of the variable corresponding to each row of the uncorrected
correlation matrix.

IMAGE image coefficients. The–NAME– variable contains the name of
the variable corresponding to each row of the image coefficient
matrix.

IMAGECOV image covariance matrix. The–NAME– variable contains the
name of the variable corresponding to each row of the image co-
variance matrix.
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COMMUNAL final communality estimates

PRIORS prior communality estimates, or estimates from the last iteration
for iterative methods

WEIGHT variable weights

SUMWGT sum of the variable weights

EIGENVAL eigenvalues

UNROTATE unrotated factor pattern. The–NAME– variable contains the name
of the factor.

RESIDUAL residual correlations. The–NAME– variable contains the name of
the variable corresponding to each row of the residual correlation
matrix.

PRETRANS transformation matrix from prerotation. The–NAME– variable
contains the name of the factor.

PREROTAT factor pattern from prerotation. The–NAME– variable contains
the name of the factor.

TRANSFOR transformation matrix from rotation. The–NAME– variable con-
tains the name of the factor.

FCORR interfactor correlations. The–NAME– variable contains the name
of the factor.

PATTERN factor pattern. The–NAME– variable contains the name of the
factor.

RCORR reference axis correlations. The–NAME– variable contains the
name of the factor.

REFERENC reference structure. The–NAME– variable contains the name of
the factor.

STRUCTUR factor structure. The–NAME– variable contains the name of the
factor.

SCORE scoring coefficients. The–NAME– variable contains the name of
the factor.

USCORE scoring coefficients to be applied without subtracting the mean
from the raw variables. The–NAME– variable contains the name
of the factor.

Missing Values

If the DATA= data set contains data (rather than a matrix or factor pattern), then
observations with missing values for any variables in the analysis are omitted from
the computations. If a correlation or covariance matrix is read, it can contain missing
values as long as every pair of variables has at least one nonmissing entry. Missing
values in a pattern or scoring coefficient matrix are treated as zeros.
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Cautions

� The amount of time that FACTOR takes is roughly proportional to the cube of
the number of variables. Factoring 100 variables, therefore, takes about 1000
times as long as factoring 10 variables. Iterative methods (PRINIT, ALPHA,
ULS, ML) can also take 100 times as long as noniterative methods (PRINCI-
PAL, IMAGE, HARRIS).

� No computer program is capable of reliably determining the optimal number of
factors since the decision is ultimately subjective. You should not blindly ac-
cept the number of factors obtained by default; instead, use your own judgment
to make a decision.

� Singular correlation matrices cause problems with the options PRIORS=SMC
and METHOD=ML. Singularities can result from using a variable that is the
sum of other variables, coding too many dummy variables from a classification
variable, or having more variables than observations.

� If you use the CORR procedure to compute the correlation matrix and there
are missing data and the NOMISS option is not specified, then the correlation
matrix may have negative eigenvalues.

� If a TYPE=CORR, TYPE=UCORR or TYPE=FACTOR data set is copied or
modified using a DATA step, the new data set does not automatically have
the same TYPE as the old data set. You must specify the TYPE= data set
option in the DATA statement. If you try to analyze a data set that has lost its
TYPE=CORR attribute, PROC FACTOR displays a warning message saying
that the data set contains–NAME– and–TYPE– variables but analyzes the
data set as an ordinary SAS data set.

� For a TYPE=FACTOR data set, the default is METHOD=PATTERN, not
METHOD=PRIN.

Factor Scores

The FACTOR procedure can compute estimated factor scores directly if you spec-
ify the NFACTORS= and OUT= options, or indirectly using the SCORE procedure.
The latter method is preferable if you use the FACTOR procedure interactively to
determine the number of factors, the rotation method, or various other aspects of the
analysis. To compute factor scores for each observation using the SCORE procedure,

� use the SCORE option in the PROC FACTOR statement

� create a TYPE=FACTOR output data set with the OUTSTAT= option

� use the SCORE procedure with both the raw data and the TYPE=FACTOR
data set

� do not use the TYPE= option in the PROC SCORE statement
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For example, the following statements could be used:

proc factor data=raw score outstat=fact;
run;
proc score data=raw score=fact out=scores;
run;

or

proc corr data=raw out=correl;
run;
proc factor data=correl score outstat=fact;
run;
proc score data=raw score=fact out=scores;
run;

A component analysis (principal, image, or Harris) produces scores with mean zero
and variance one. If you have done a common factor analysis, the true factor scores
have mean zero and variance one, but the computed factor scores are only estimates
of the true factor scores. These estimates have mean zero but variance equal to the
squared multiple correlation of the factor with the variables. The estimated factor
scores may have small nonzero correlations even if the true factors are uncorrelated.

Variable Weights and Variance Explained

A principal component analysis of a correlation matrix treats all variables as equally
important. A principal component analysis of a covariance matrix gives more weight
to variables with larger variances. A principal component analysis of a covariance
matrix is equivalent to an analysis of a weighted correlation matrix, where the weight
of each variable is equal to its variance. Variables with large weights tend to have
larger loadings on the first component and smaller residual correlations than variables
with small weights.

You may want to give weights to variables using values other than their variances.
Mulaik (1972) explains how to obtain a maximally reliable component by means of
a weighted principal component analysis. With the FACTOR procedure, you can
indirectly give arbitrary weights to the variables by using the COV option and rescal-
ing the variables to have variance equal to the desired weight, or you can give arbi-
trary weights directly by using the WEIGHT option and including the weights in a
TYPE=CORR data set.

Arbitrary variable weights can be used with the METHOD=PRINCIPAL,
METHOD=PRINIT, METHOD=ULS, or METHOD=IMAGE option. Alpha and
ML factor analyses compute variable weights based on the communalities (Harman
1976, pp. 217-218). For alpha factor analysis, the weight of a variable is the recip-
rocal of its communality. In ML factor analysis, the weight is the reciprocal of the
uniqueness. Harris component analysis uses weights equal to the reciprocal of one
minus the squared multiple correlation of each variable with the other variables.
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For uncorrelated factors, the variance explained by a factor can be computed with or
without taking the weights into account. The usual method for computing variance
accounted for by a factor is to take the sum of squares of the corresponding column
of the factor pattern, yielding an unweighted result. If the square of each loading
is multiplied by the weight of the variable before the sum is taken, the result is the
weighted variance explained, which is equal to the corresponding eigenvalue except
in image analysis. Whether the weighted or unweighted result is more important
depends on the purpose of the analysis.

In the case of correlated factors, the variance explained by a factor can be com-
puted with or without taking the other factors into account. If you want to ignore
the other factors, the variance explained is given by the weighted or unweighted sum
of squares of the appropriate column of the factor structure since the factor struc-
ture contains simple correlations. If you want to subtract the variance explained by
the other factors from the amount explained by the factor in question (the Type II
variance explained), you can take the weighted or unweighted sum of squares of the
appropriate column of the reference structure because the reference structure contains
semipartial correlations. There are other ways of measuring the variance explained.
For example, given a prior ordering of the factors, you can eliminate from each factor
the variance explained by previous factors and compute a Type I variance explained.
Harman (1976, pp. 268-270) provides another method, which is based on direct and
joint contributions.

Heywood Cases and Other Anomalies

Since communalities are squared correlations, you would expect them always to lie
between 0 and 1. It is a mathematical peculiarity of the common factor model, how-
ever, that final communality estimates may exceed 1. If a communality equals 1,
the situation is referred to as a Heywood case, and if a communality exceeds 1, it is
an ultra-Heywood case. An ultra-Heywood case implies that some unique factor has
negative variance, a clear indication that something is wrong. Possible causes include

� bad prior communality estimates

� too many common factors

� too few common factors

� not enough data to provide stable estimates

� the common factor model is not an appropriate model for the data

An ultra-Heywood case renders a factor solution invalid. Factor analysts disagree
about whether or not a factor solution with a Heywood case can be considered legiti-
mate.

Theoretically, the communality of a variable should not exceed its reliability. Viola-
tion of this condition is called a quasi-Heywood case and should be regarded with the
same suspicion as an ultra-Heywood case.
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Elements of the factor structure and reference structure matrices can exceed 1 only in
the presence of an ultra-Heywood case. On the other hand, an element of the factor
pattern may exceed 1 in an oblique rotation.

The maximum-likelihood method is especially susceptible to quasi- or ultra-
Heywood cases. During the iteration process, a variable with high communality
is given a high weight; this tends to increase its communality, which increases its
weight, and so on.

It is often stated that the squared multiple correlation of a variable with the other
variables is a lower bound to its communality. This is true if the common factor
model fits the data perfectly, but it is not generally the case with real data. A final
communality estimate that is less than the squared multiple correlation can, therefore,
indicate poor fit, possibly due to not enough factors. It is by no means as serious
a problem as an ultra-Heywood case. Factor methods using the Newton-Raphson
method can actually produce communalities less than 0, a result even more disastrous
than an ultra-Heywood case.

The squared multiple correlation of a factor with the variables may exceed 1, even
in the absence of ultra-Heywood cases. This situation is also cause for alarm. Alpha
factor analysis seems to be especially prone to this problem, but it does not occur
with maximum likelihood. If a squared multiple correlation is negative, there are too
many factors retained.

With data that do not fit the common factor model perfectly, you can expect some of
the eigenvalues to be negative. If an iterative factor method converges properly, the
sum of the eigenvalues corresponding to rejected factors should be 0; hence, some
eigenvalues are positive and some negative. If a principal factor analysis fails to
yield any negative eigenvalues, the prior communality estimates are probably too
large. Negative eigenvalues cause the cumulative proportion of variance explained
to exceed 1 for a sufficiently large number of factors. The cumulative proportion of
variance explained by the retained factors should be approximately 1 for principal
factor analysis and should converge to 1 for iterative methods. Occasionally, a single
factor can explain more than 100 percent of the common variance in a principal factor
analysis, indicating that the prior communality estimates are too low.

If a squared canonical correlation or a coefficient alpha is negative, there are too many
factors retained.

Principal component analysis, unlike common factor analysis, has none of these prob-
lems if the covariance or correlation matrix is computed correctly from a data set with
no missing values. Various methods for missing value correlation or severe rounding
of the correlations can produce negative eigenvalues in principal components.
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Time Requirements

n = number of observations

v = number of variables

f = number of factors

i = number of iterations during factor extraction

r = length of iterations during factor rotation

The time required to compute: : : is roughly proportional to
an overall factor analysis iv3

the correlation matrix nv2

PRIORS=SMC or ASMC v3

PRIORS=MAX v2

eigenvalues v3

final eigenvectors fv2

ROTATE=VARIMAX, QUARTIMAX,
EQUAMAX, ORTHOMAX, PARSIMAX,
PROMAX, or HK rvf2

ROTATE=PROCRUSTES vf2

Each iteration in the PRINIT or ALPHA method requires computation of eigenvalues
andf eigenvectors.

Each iteration in the ML or ULS method requires computation of eigenvalues and
v � f eigenvectors.

The amount of time that PROC FACTOR takes is roughly proportional to the cube
of the number of variables. Factoring 100 variables, therefore, takes about 1000
times as long as factoring 10 variables. Iterative methods (PRINIT, ALPHA, ULS,
ML) can also take 100 times as long as noniterative methods (PRINCIPAL, IMAGE,
HARRIS).

Displayed Output

PROC FACTOR output includes

� Mean and Std Dev (standard deviation) of each variable and the number of
observations, if you specify the SIMPLE option

� Correlations, if you specify the CORR option

� Inverse Correlation Matrix, if you specify the ALL option

� Partial Correlations Controlling all other Variables (negative anti-image cor-
relations), if you specify the MSA option. If the data are appropriate for the
common factor model, the partial correlations should be small.
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� Kaiser’s Measure of Sampling Adequacy (Kaiser 1970; Kaiser and Rice 1974;
Cerny and Kaiser 1977) both overall and for each variable, if you specify the
MSA option. The MSA is a summary of how small the partial correlations
are relative to the ordinary correlations. Values greater than 0.8 can be consid-
ered good. Values less than 0.5 require remedial action, either by deleting the
offending variables or by including other variables related to the offenders.

� Prior Communality Estimates, unless 1.0s are used or unless you spec-
ify the METHOD=IMAGE, METHOD=HARRIS, METHOD=PATTERN, or
METHOD=SCORE option

� Squared Multiple Correlations of each variable with all the other variables, if
you specify the METHOD=IMAGE or METHOD=HARRIS option

� Image Coefficients, if you specify the METHOD=IMAGE option

� Image Covariance Matrix, if you specify the METHOD=IMAGE option

� Preliminary Eigenvalues based on the prior communalities, if you spec-
ify the METHOD=PRINIT, METHOD=ALPHA, METHOD=ML, or
METHOD=ULS option. The table produced includes the Total and the
Average of the eigenvalues, the Difference between successive eigenvalues,
the Proportion of variation represented, and the Cumulative proportion of
variation.

� the number of factors that are retained, unless you specify the
METHOD=PATTERN or METHOD=SCORE option

� the Scree Plot of Eigenvalues, if you specify the SCREE option. The
preliminary eigenvalues are used if you specify the METHOD=PRINIT,
METHOD=ALPHA, METHOD=ML, or METHOD=ULS option.

� the iteration history, if you specify the METHOD=PRINIT, METHOD=ALPHA,
METHOD=ML, or METHOD=ULS option. The table produced contains
the iteration number (Iter); the Criterion being optimized (Joreskog 1977);
the Ridge value for the iteration if you specify the METHOD=ML or
METHOD=ULS option; the maximum Change in any communality estimate;
and the Communalities

� Significance tests, if you specify the option METHOD=ML, including
Bartlett’s Chi-square, df, and Prob> �2 for H0: No common factors and
H0: factors retained are sufficient to explain the correlations. The variables
should have an approximate multivariate normal distribution for the probabil-
ity levels to be valid. Lawley and Maxwell (1971) suggest that the number of
observations should exceed the number of variables by fifty or more, although
Geweke and Singleton (1980) claim that as few as ten observations are ade-
quate with five variables and one common factor. Certain regularity conditions
must also be satisfied for Bartlett’s�2 test to be valid (Geweke and Singleton
1980), but in practice these conditions usually are satisfied. The notation
Prob>chi**2 means “the probability under the null hypothesis of obtaining a
greater�2 statistic than that observed.” The Chi-square value is displayed with
and without Bartlett’s correction.

� Akaike’s Information Criterion, if you specify the METHOD=ML option.
Akaike’s information criterion (AIC) (Akaike 1973, 1974, 1987) is a general
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criterion for estimating the best number of parameters to include in a model
when maximum-likelihood estimation is used. The number of factors that
yields the smallest value of AIC is considered best. Like the chi-square test,
AIC tends to include factors that are statistically significant but inconsequential
for practical purposes.

� Schwarz’s Bayesian Criterion, if you specify the METHOD=ML option.
Schwarz’s Bayesian Criterion (SBC) (Schwarz 1978) is another criterion, sim-
ilar to AIC, for determining the best number of parameters. The number of
factors that yields the smallest value of SBC is considered best; SBC seems to
be less inclined to include trivial factors than either AIC or the chi-square test.

� Tucker and Lewis’s Reliability Coefficient, if you specify the METHOD=ML
option (Tucker and Lewis 1973)

� Squared Canonical Correlations, if you specify the METHOD=ML option.
These are the same as the squared multiple correlations for predicting each
factor from the variables.

� Coefficient Alpha for Each Factor, if you specify the METHOD=ALPHA op-
tion

� Eigenvectors, if you specify the EIGENVECTORS or ALL option, unless you
also specify the METHOD=PATTERN or METHOD=SCORE option

� Eigenvalues of the (Weighted) (Reduced) (Image) Correlation or Covariance
Matrix, unless you specify the METHOD=PATTERN or METHOD=SCORE
option. Included are the Total and the Average of the eigenvalues, the Differ-
ence between successive eigenvalues, the Proportion of variation represented,
and the Cumulative proportion of variation.

� the Factor Pattern, which is equal to both the matrix of standardized regression
coefficients for predicting variables from common factors and the matrix of
correlations between variables and common factors since the extracted factors
are uncorrelated

� Variance explained by each factor, both Weighted and Unweighted, if variable
weights are used

� Final Communality Estimates, including the Total communality; or Final Com-
munality Estimates and Variable Weights, including the Total communality,
both Weighted and Unweighted, if variable weights are used. Final commu-
nality estimates are the squared multiple correlations for predicting the vari-
ables from the estimated factors, and they can be obtained by taking the sum
of squares of each row of the factor pattern, or a weighted sum of squares if
variable weights are used.

� Residual Correlations with Uniqueness on the Diagonal, if you specify the
RESIDUAL or ALL option

� Root Mean Square Off-diagonal Residuals, both Over-all and for each variable,
if you specify the RESIDUAL or ALL option

� Partial Correlations Controlling Factors, if you specify the RESIDUAL or ALL
option
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� Root Mean Square Off-diagonal Partials, both Over-all and for each variable,
if you specify the RESIDUAL or ALL option

� Plots of Factor Pattern for unrotated factors, if you specify the PREPLOT op-
tion. The number of plots is determined by the NPLOT= option.

� Variable Weights for Rotation, if you specify the NORM=WEIGHT option

� Factor Weights for Rotation, if you specify the HKPOWER= option

� Orthogonal Transformation Matrix, if you request an orthogonal rotation

� Rotated Factor Pattern, if you request an orthogonal rotation

� Variance explained by each factor after rotation. If you request an orthogonal
rotation and if variable weights are used, both weighted and unweighted values
are produced.

� Target Matrix for Procrustean Transformation, if you specify the RO-
TATE=PROCRUSTES or ROTATE=PROMAX option

� the Procrustean Transformation Matrix, if you specify the ROTATE=PROCRUSTES
or ROTATE=PROMAX option

� the Normalized Oblique Transformation Matrix, if you request an oblique rota-
tion, which, for the option ROTATE=PROMAX, is the product of the prerota-
tion and the Procrustean rotation

� Inter-factor Correlations, if you specify an oblique rotation

� Rotated Factor Pattern (Std Reg Coefs), if you specify an oblique rotation,
giving standardized regression coefficients for predicting the variables from
the factors

� Reference Axis Correlations if you specify an oblique rotation. These are the
partial correlations between the primary factors when all factors other than the
two being correlated are partialled out.

� Reference Structure (Semipartial Correlations), if you request an oblique ro-
tation. The reference structure is the matrix of semipartial correlations (Ker-
linger and Pedhazur 1973) between variables and common factors, removing
from each common factor the effects of other common factors. If the common
factors are uncorrelated, the reference structure is equal to the factor pattern.

� Variance explained by each factor eliminating the effects of all other factors,
if you specify an oblique rotation. Both Weighted and Unweighted values
are produced if variable weights are used. These variances are equal to the
(weighted) sum of the squared elements of the reference structure correspond-
ing to each factor.

� Factor Structure (Correlations), if you request an oblique rotation. The (pri-
mary) factor structure is the matrix of correlations between variables and com-
mon factors. If the common factors are uncorrelated, the factor structure is
equal to the factor pattern.

� Variance explained by each factor ignoring the effects of all other factors, if you
request an oblique rotation. Both Weighted and Unweighted values are pro-
duced if variable weights are used. These variances are equal to the (weighted)
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sum of the squared elements of the factor structure corresponding to each fac-
tor.

� Final Communality Estimates for the rotated factors if you specify the
ROTATE= option. The estimates should equal the unrotated communalities.

� Squared Multiple Correlations of the Variables with Each Factor, if you specify
the SCORE or ALL option, except for unrotated principal components

� Standardized Scoring Coefficients, if you specify the SCORE or ALL option

� Plots of the Factor Pattern for rotated factors, if you specify the PLOT option
and you request an orthogonal rotation. The number of plots is determined by
the NPLOT= option.

� Plots of the Reference Structure for rotated factors, if you specify the PLOT
option and you request an oblique rotation. The number of plots is determined
by the NPLOT= option. Included are the Reference Axis Correlation and the
Angle between the Reference Axes for each pair of factors plotted.

If you specify the ROTATE=PROMAX option, the output includes results for both
the prerotation and the Procrustean rotation.

ODS Table Names

PROC FACTOR assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 26.2. ODS Tables Produced in PROC FACTOR

ODS Table Name Description Option
AlphaCoef Coefficient alpha for each

factor
METHOD=ALPHA

CanCorr Squared canonical correlations METHOD=ML
CondStdDev Conditional standard

deviations
SIMPLE w/PARTIAL

ConvergenceStatus Convergence status METHOD=PRINIT, =ALPHA, =ML, or
=ULS

Corr Correlations CORR
Eigenvalues Eigenvalues default, SCREE
Eigenvectors Eigenvectors EIGENVECTORS
FactorWeightRotate Factor weights for rotation HKPOWER=
FactorPattern Factor pattern default
FactorStructure Factor structure ROTATE= any oblique rotation
FinalCommun Final communalities default
FinalCommunWgt Final communalities with

weights
METHOD=ML, METHOD=ALPHA

FitMeasures Measures of fit METHOD=ML
ImageCoef Image coefficients METHOD=IMAGE
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Table 26.2. (continued)

ODS Table Name Description Option
ImageCov Image covariance matrix METHOD=IMAGE
ImageFactors Image factor matrix METHOD=IMAGE
InputFactorPattern Input factor pattern PRINT
InputScoreCoef Standardized input scoring

coefficients
METHOD=SCORE

InterFactorCorr Inter-factor correlations ROTATE= any oblique rotation
InvCorr Inverse correlation matrix ALL
IterHistory Iteration history METHOD=PRINIT, =ALPHA, =ML, or

=ULS
MultipleCorr Squared multiple correlations METHOD=IMAGE or

METHOD=HARRIS
NormObliqueTrans Normalized oblique transfor-

mation matrix
ROTATE= any oblique rotation

ObliqueRotFactPat Rotated factor pattern ROTATE= any oblique rotation
ObliqueTrans Oblique transformation matrix HKPOWER=
OrthRotFactPat Rotated factor pattern ROTATE= any orthogonal rotation
OrthTrans Orthogonal transformation

matrix
ROTATE= any orthogonal rotation

ParCorrControlFactor Partial correlations controlling
factors

RESIDUAL

ParCorrControlVar Partial correlations controlling
other variables

MSA

PartialCorr Partial correlations MSA, CORR w/PARTIAL
PriorCommunalEst Prior communality estimates PRIORS=, METHOD=ML,

METHOD=ALPHA
ProcrustesTarget Target matrix for Procrustean

transformation
ROTATE=PROCRUSTES,
ROTATE=PROMAX

ProcrustesTrans Procrustean transformation
matrix

ROTATE=PROCRUSTES,
ROTATE=PROMAX

RMSOffDiagPartials Root mean square off-diagonal
partials

RESIDUAL

RMSOffDiagResids Root mean square off-diagonal
residuals

RESIDUAL

ReferenceAxisCorr Reference axis correlations ROTATE= any oblique rotation
ReferenceStructure Reference structure ROTATE= any oblique rotation
ResCorrUniqueDiag Residual correlations with

uniqueness on the diagonal
RESIDUAL

SamplingAdequacy Kaiser’s measure of sampling
adequacy

MSA

SignifTests Significance tests METHOD=ML
SimpleStatistics Simple statistics SIMPLE
StdScoreCoef Standardized scoring

coefficients
SCORE

VarExplain Variance explained default
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Table 26.2. (continued)

ODS Table Name Description Option
VarExplainWgt Variance explained with

weights
METHOD=ML, METHOD=ALPHA

VarFactorCorr Squared multiple correlations
of the variables with each factor

SCORE

VarWeightRotate Variable weights for rotation NORM=WEIGHT, ROTATE=

Examples

Example 26.1. Principal Component Analysis

The following example analyzes socioeconomic data provided by Harman (1976).
The five variables represent total population, median school years, total employment,
miscellaneous professional services, and median house value. Each observation rep-
resents one of twelve census tracts in the Los Angeles Standard Metropolitan Statis-
tical Area.

The first analysis is a principal component analysis. Simple descriptive statistics and
correlations are also displayed. This example produces Output 26.1.1:

data SocioEconomics;
title ’Five Socioeconomic Variables’;
title2 ’See Page 14 of Harman: Modern Factor Analysis, 3rd Ed’;
input Population School Employment Services HouseValue;
datalines;

5700 12.8 2500 270 25000
1000 10.9 600 10 10000
3400 8.8 1000 10 9000
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 16000
9100 11.5 3300 60 14000
9900 12.5 3400 180 18000
9600 13.7 3600 390 25000
9600 9.6 3300 80 12000
9400 11.4 4000 100 13000
;
proc factor data=SocioEconomics simple corr;

title3 ’Principal Component Analysis’;
run;

There are two large eigenvalues, 2.8733 and 1.7967, which together account for
93.4% of the standardized variance. Thus, the first two principal components pro-
vide an adequate summary of the data for most purposes. Three components, ex-
plaining 97.7% of the variation, should be sufficient for almost any application.
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PROC FACTOR retains two components on the basis of the eigenvalues-greater-than-
one rule since the third eigenvalue is only 0.2148.

The first component has large positive loadings for all five variables. The correlation
with Services (0.93239) is especially high. The second component is a contrast of
Population (0.80642) andEmployment (0.72605) againstSchool (�0:54476) and
HouseValue (�0:55818), with a very small loading onServices (�0:10431).

The final communality estimates show that all the variables are well accounted for
by two components, with final communality estimates ranging from 0.880236 for
Services to 0.987826 forPopulation.

Output 26.1.1. Principal Component Analysis

Five Socioeconomic Variables
See Page 14 of Harman: Modern Factor Analysis, 3rd Ed

Principal Component Analysis

The FACTOR Procedure

Means and Standard Deviations from 12 Observations

Variable Mean Std Dev

Population 6241.667 3439.9943
School 11.442 1.7865
Employment 2333.333 1241.2115
Services 120.833 114.9275
HouseValue 17000.000 6367.5313

Correlations

Population School Employment Services HouseValue

Population 1.00000 0.00975 0.97245 0.43887 0.02241
School 0.00975 1.00000 0.15428 0.69141 0.86307
Employment 0.97245 0.15428 1.00000 0.51472 0.12193
Services 0.43887 0.69141 0.51472 1.00000 0.77765
HouseValue 0.02241 0.86307 0.12193 0.77765 1.00000
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Principal Component Analysis

The FACTOR Procedure
Initial Factor Method: Principal Components

Eigenvalues of the Correlation Matrix: Total = 5 Average = 1

Eigenvalue Difference Proportion Cumulative

1 2.87331359 1.07665350 0.5747 0.5747
2 1.79666009 1.58182321 0.3593 0.9340
3 0.21483689 0.11490283 0.0430 0.9770
4 0.09993405 0.08467868 0.0200 0.9969
5 0.01525537 0.0031 1.0000

Factor Pattern

Factor1 Factor2

Population 0.58096 0.80642
School 0.76704 -0.54476
Employment 0.67243 0.72605
Services 0.93239 -0.10431
HouseValue 0.79116 -0.55818

Variance Explained by Each Factor

Factor1 Factor2

2.8733136 1.7966601

Final Communality Estimates: Total = 4.669974

Population School Employment Services HouseValue

0.98782629 0.88510555 0.97930583 0.88023562 0.93750041
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Example 26.2. Principal Factor Analysis

The following example uses the data presented in Example 26.1, and performs a
principal factor analysis with squared multiple correlations for the prior communality
estimates (PRIORS=SMC).

To help determine if the common factor model is appropriate, Kaiser’s measure of
sampling adequacy (MSA) is requested, and the residual correlations and partial cor-
relations are computed (RESIDUAL). To help determine the number of factors, a
scree plot (SCREE) of the eigenvalues is displayed, and the PREPLOT option plots
the unrotated factor pattern.

The ROTATE= and REORDER options are specified to enhance factor interpretabil-
ity. The ROTATE=PROMAX option produces an orthogonal varimax prerotation
followed by an oblique rotation, and the REORDER option reorders the variables
according to their largest factor loadings. The PLOT procedure is used to produce a
plot of the reference structure. An OUTSTAT= data set is created by PROC FACTOR
and displayed in Output 26.2.15.

This example also demonstrates how to define a picture format with the FORMAT
procedure and use the PRINT procedure to produce customized factor pattern output.
Small elements of the Rotated Factor Pattern matrix are displayed as ‘.’. Large values
are multiplied by 100, truncated at the decimal, and flagged with an asterisk ‘*’.
Intermediate values are scaled by 100 and truncated. For more information on picture
formats, refer to “Formats” inSAS Language Reference: Dictionary.

ods output ObliqueRotFactPat = rotfacpat;
proc factor data=SocioEconomics

priors=smc msa scree residual preplot
rotate=promax reorder plot
outstat=fact_all;

title3 ’Principal Factor Analysis with Promax Rotation’;

proc print;
title3 ’Factor Output Data Set’;

run;

proc format;
picture FuzzFlag
low - 0.1 = ’ . ’
0.10 - 0.90 = ’009 ’ (mult = 100)
0.90 - high = ’009 *’ (mult = 100);

run;

proc print data = rotfacpat;
format factor1-factor2 FuzzFlag.;

run;
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Output 26.2.1. Principal Factor Analysis

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Initial Factor Method: Principal Factors

Partial Correlations Controlling all other Variables

Population School Employment Services HouseValue

Population 1.00000 -0.54465 0.97083 0.09612 0.15871
School -0.54465 1.00000 0.54373 0.04996 0.64717
Employment 0.97083 0.54373 1.00000 0.06689 -0.25572
Services 0.09612 0.04996 0.06689 1.00000 0.59415
HouseValue 0.15871 0.64717 -0.25572 0.59415 1.00000

Kaiser’s Measure of Sampling Adequacy: Overall MSA = 0.57536759

Population School Employment Services HouseValue

0.47207897 0.55158839 0.48851137 0.80664365 0.61281377

2 factors will be retained by the PROPORTION criterion.

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Initial Factor Method: Principal Factors

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Eigenvalues of the Reduced Correlation Matrix:
Total = 4.39280116 Average = 0.87856023

Eigenvalue Difference Proportion Cumulative

1 2.73430084 1.01823217 0.6225 0.6225
2 1.71606867 1.67650586 0.3907 1.0131
3 0.03956281 0.06408626 0.0090 1.0221
4 -.02452345 0.04808427 -0.0056 1.0165
5 -.07260772 -0.0165 1.0000

2 factors will be retained by the PROPORTION criterion.

Output 26.2.1 displays the results of the principal factor extraction.

If the data are appropriate for the common factor model, the partial correlations con-
trolling the other variables should be small compared to the original correlations. The
partial correlation between the variablesSchool andHouseValue, for example, is
0.65, slightly less than the original correlation of 0.86. The partial correlation be-
tweenPopulation andSchool is -0.54, which is much larger in absolute value than
the original correlation; this is an indication of trouble. Kaiser’s MSA is a summary,
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for each variable and for all variables together, of how much smaller the partial cor-
relations are than the original correlations. Values of 0.8 or 0.9 are considered good,
while MSAs below 0.5 are unacceptable. The variablesPopulation, School, and
Employment have very poor MSAs. Only theServices variable has a good MSA.
The overall MSA of 0.58 is sufficiently poor that additional variables should be in-
cluded in the analysis to better define the common factors. A commonly used rule is
that there should be at least three variables per factor. In the following analysis, there
seems to be two common factors in these data, so more variables are needed for a
reliable analysis.

The SMCs are all fairly large; hence, the factor loadings do not differ greatly from
the principal component analysis.

The eigenvalues show clearly that two common factors are present. There are two
large positive eigenvalues that together account for 101.31% of the common variance,
which is as close to 100% as you are ever likely to get without iterating. The scree plot
displays a sharp bend at the third eigenvalue, reinforcing the preceding conclusion.

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Initial Factor Method: Principal Factors

Scree Plot of Eigenvalues
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Output 26.2.2. Factor Pattern Matrix and Communalities

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Initial Factor Method: Principal Factors

Factor Pattern

Factor1 Factor2

Services 0.87899 -0.15847
HouseValue 0.74215 -0.57806
Employment 0.71447 0.67936
School 0.71370 -0.55515
Population 0.62533 0.76621

Variance Explained by Each Factor

Factor1 Factor2

2.7343008 1.7160687

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998

As displayed in Output 26.2.2, the principal factor pattern is similar to the principal
component pattern seen in Example 26.1. For example, the variableServices has the
largest loading on the first factor, and thePopulation variable has the smallest. The
variablesPopulation andEmployment have large positive loadings on the second
factor, and theHouseValue andSchool variables have large negative loadings.

The final communality estimates are all fairly close to the priors. Only the communal-
ity for the variableHouseValue increased appreciably, from 0.847019 to 0.884950.
Nearly 100% of the common variance is accounted for. The residual correlations
(off-diagonal elements) are low, the largest being 0.03 (Output 26.2.3). The partial
correlations are not quite as impressive, since the uniqueness values are also rather
small. These results indicate that the SMCs are good but not quite optimal commu-
nality estimates.
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Output 26.2.3. Residual and Partial Correlations

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Initial Factor Method: Principal Factors

Residual Correlations With Uniqueness on the Diagonal

Population School Employment Services HouseValue

Population 0.02189 -0.01118 0.00514 0.01063 0.00124
School -0.01118 0.18244 0.02151 -0.02390 0.01248
Employment 0.00514 0.02151 0.02800 -0.00565 -0.01561
Services 0.01063 -0.02390 -0.00565 0.20226 0.03370
HouseValue 0.00124 0.01248 -0.01561 0.03370 0.11505

Root Mean Square Off-Diagonal Residuals: Overall = 0.01693282

Population School Employment Services HouseValue

0.00815307 0.01813027 0.01382764 0.02151737 0.01960158

Partial Correlations Controlling Factors

Population School Employment Services HouseValue

Population 1.00000 -0.17693 0.20752 0.15975 0.02471
School -0.17693 1.00000 0.30097 -0.12443 0.08614
Employment 0.20752 0.30097 1.00000 -0.07504 -0.27509
Services 0.15975 -0.12443 -0.07504 1.00000 0.22093
HouseValue 0.02471 0.08614 -0.27509 0.22093 1.00000

Output 26.2.4. Root Mean Square Off-Diagonal Partials

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Initial Factor Method: Principal Factors

Root Mean Square Off-Diagonal Partials: Overall = 0.18550132

Population School Employment Services HouseValue

0.15850824 0.19025867 0.23181838 0.15447043 0.18201538
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Output 26.2.5. Unrotated Factor Pattern Plot

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Initial Factor Method: Principal Factors

Plot of Factor Pattern for Factor1 and Factor2
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As displayed in Output 26.2.5, the unrotated factor pattern reveals two tight clus-
ters of variables, with the variablesHouseValue andSchool at the negative end of
Factor2 axis and the variablesEmployment andPopulation at the positive end. The
Services variable is in between but closer to theHouseValue andSchool variables.
A good rotation would put the reference axes through the two clusters.
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Output 26.2.6. Varimax Rotation: Transform Matrix and Rotated Pattern

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Prerotation Method: Varimax

Orthogonal Transformation Matrix

1 2

1 0.78895 0.61446
2 -0.61446 0.78895

Rotated Factor Pattern

Factor1 Factor2

HouseValue 0.94072 -0.00004
School 0.90419 0.00055
Services 0.79085 0.41509
Population 0.02255 0.98874
Employment 0.14625 0.97499

Output 26.2.7. Varimax Rotation: Variance Explained and Communalities

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Prerotation Method: Varimax

Variance Explained by Each Factor

Factor1 Factor2

2.3498567 2.1005128

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998
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Output 26.2.8. Varimax Rotated Factor Pattern Plot

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Prerotation Method: Varimax

Plot of Factor Pattern for Factor1 and Factor2
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Output 26.2.6, Output 26.2.7 and Output 26.2.8 display the results of the varimax
rotation. This rotation puts one axis through the variablesHouseValue andSchool
but misses thePopulation andEmployment variables slightly.
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Output 26.2.9. Promax Rotation: Procrustean Target and Transform Matrix

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Rotation Method: Promax

Target Matrix for Procrustean Transformation

Factor1 Factor2

HouseValue 1.00000 -0.00000
School 1.00000 0.00000
Services 0.69421 0.10045
Population 0.00001 1.00000
Employment 0.00326 0.96793

Procrustean Transformation Matrix

1 2

1 1.04116598 -0.0986534
2 -0.1057226 0.96303019

Output 26.2.10. Promax Rotation: Oblique Transform Matrix and Correlation

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Rotation Method: Promax

Normalized Oblique Transformation Matrix

1 2

1 0.73803 0.54202
2 -0.70555 0.86528

Inter-Factor Correlations

Factor1 Factor2

Factor1 1.00000 0.20188
Factor2 0.20188 1.00000
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Output 26.2.11. Promax Rotation: Rotated Factor Pattern and Correlations

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Rotation Method: Promax

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2

HouseValue 0.95558485 -0.0979201
School 0.91842142 -0.0935214
Services 0.76053238 0.33931804
Population -0.0790832 1.00192402
Employment 0.04799 0.97509085

Reference Axis Correlations

Factor1 Factor2

Factor1 1.00000 -0.20188
Factor2 -0.20188 1.00000

Output 26.2.12. Promax Rotation: Variance Explained and Factor Structure

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Rotation Method: Promax

Reference Structure (Semipartial Correlations)

Factor1 Factor2

HouseValue 0.93591 -0.09590
School 0.89951 -0.09160
Services 0.74487 0.33233
Population -0.07745 0.98129
Employment 0.04700 0.95501

Variance Explained by Each Factor Eliminating Other Factors

Factor1 Factor2

2.2480892 2.0030200

Factor Structure (Correlations)

Factor1 Factor2

HouseValue 0.93582 0.09500
School 0.89954 0.09189
Services 0.82903 0.49286
Population 0.12319 0.98596
Employment 0.24484 0.98478
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Output 26.2.13. Promax Rotation: Variance Explained and Final Communalities

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Rotation Method: Promax

Variance Explained by Each Factor Ignoring Other Factors

Factor1 Factor2

2.4473495 2.2022803

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998
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Output 26.2.14. Promax Rotated Factor Pattern Plot

Principal Factor Analysis with Promax Rotation

The FACTOR Procedure
Rotation Method: Promax

Plot of Reference Structure for Factor1 and Factor2
Reference Axis Correlation = -0.2019 Angle = 101.6471
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The oblique promax rotation (Output 26.2.9 through Output 26.2.14) places an axis
through the variablesPopulation andEmployment but misses theHouseValue and
School variables. Since an independent-cluster solution would be possible if it were
not for the variableServices, a Harris-Kaiser rotation weighted by the Cureton-
Mulaik technique should be used.

SAS OnlineDoc: Version 8



1176 � Chapter 26. The FACTOR Procedure

Output 26.2.15. Output Data Set

Factor Output Data Set

House
Obs _TYPE_ _NAME_ Population School Employment Services Value

1 MEAN 6241.67 11.4417 2333.33 120.833 17000.00
2 STD 3439.99 1.7865 1241.21 114.928 6367.53
3 N 12.00 12.0000 12.00 12.000 12.00
4 CORR Population 1.00 0.0098 0.97 0.439 0.02
5 CORR School 0.01 1.0000 0.15 0.691 0.86
6 CORR Employment 0.97 0.1543 1.00 0.515 0.12
7 CORR Services 0.44 0.6914 0.51 1.000 0.78
8 CORR HouseValue 0.02 0.8631 0.12 0.778 1.00
9 COMMUNAL 0.98 0.8176 0.97 0.798 0.88

10 PRIORS 0.97 0.8223 0.97 0.786 0.85
11 EIGENVAL 2.73 1.7161 0.04 -0.025 -0.07
12 UNROTATE Factor1 0.63 0.7137 0.71 0.879 0.74
13 UNROTATE Factor2 0.77 -0.5552 0.68 -0.158 -0.58
14 RESIDUAL Population 0.02 -0.0112 0.01 0.011 0.00
15 RESIDUAL School -0.01 0.1824 0.02 -0.024 0.01
16 RESIDUAL Employment 0.01 0.0215 0.03 -0.006 -0.02
17 RESIDUAL Services 0.01 -0.0239 -0.01 0.202 0.03
18 RESIDUAL HouseValue 0.00 0.0125 -0.02 0.034 0.12
19 PRETRANS Factor1 0.79 -0.6145 . . .
20 PRETRANS Factor2 0.61 0.7889 . . .
21 PREROTAT Factor1 0.02 0.9042 0.15 0.791 0.94
22 PREROTAT Factor2 0.99 0.0006 0.97 0.415 -0.00
23 TRANSFOR Factor1 0.74 -0.7055 . . .
24 TRANSFOR Factor2 0.54 0.8653 . . .
25 FCORR Factor1 1.00 0.2019 . . .
26 FCORR Factor2 0.20 1.0000 . . .
27 PATTERN Factor1 -0.08 0.9184 0.05 0.761 0.96
28 PATTERN Factor2 1.00 -0.0935 0.98 0.339 -0.10
29 RCORR Factor1 1.00 -0.2019 . . .
30 RCORR Factor2 -0.20 1.0000 . . .
31 REFERENC Factor1 -0.08 0.8995 0.05 0.745 0.94
32 REFERENC Factor2 0.98 -0.0916 0.96 0.332 -0.10
33 STRUCTUR Factor1 0.12 0.8995 0.24 0.829 0.94
34 STRUCTUR Factor2 0.99 0.0919 0.98 0.493 0.09

The output data set displayed in Output 26.2.15 can be used for Harris-Kaiser rota-
tion by deleting observations with–TYPE–=’PATTERN’ and–TYPE–=’FCORR’,
which are for the promax-rotated factors, and changing–TYPE–=’UNROTATE’ to

–TYPE–=’PATTERN’.

Output 26.2.16 displays the rotated factor pattern output formatted with the picture
format ‘FuzzFlag’.

Output 26.2.16. Picture Format Output

Obs RowName Factor1 Factor2

1 HouseValue 95 * .
2 School 91 * .
3 Services 76 33
4 Population . 100 *
5 Employment . 97 *
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The following statements produce Output 26.2.17:

data fact2(type=factor);
set fact_all;
if _TYPE_ in(’PATTERN’ ’FCORR’) then delete;
if _TYPE_=’UNROTATE’ then _TYPE_=’PATTERN’;

proc factor rotate=hk norm=weight reorder plot;
title3 ’Harris-Kaiser Rotation with Cureton-Mulaik Weights’;

run;

The results of the Harris-Kaiser rotation are displayed in Output 26.2.17:

Output 26.2.17. Harris-Kaiser Rotation

Harris-Kaiser Rotation with Cureton-Mulaik Weights

The FACTOR Procedure
Rotation Method: Harris-Kaiser

Variable Weights for Rotation

Population School Employment Services HouseValue

0.95982747 0.93945424 0.99746396 0.12194766 0.94007263

Oblique Transformation Matrix

1 2

1 0.73537 0.61899
2 -0.68283 0.78987

Inter-Factor Correlations

Factor1 Factor2

Factor1 1.00000 0.08358
Factor2 0.08358 1.00000
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Harris-Kaiser Rotation with Cureton-Mulaik Weights

The FACTOR Procedure
Rotation Method: Harris-Kaiser

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2

HouseValue 0.94048 0.00279
School 0.90391 0.00327
Services 0.75459 0.41892
Population -0.06335 0.99227
Employment 0.06152 0.97885

Reference Axis Correlations

Factor1 Factor2

Factor1 1.00000 -0.08358
Factor2 -0.08358 1.00000

Reference Structure (Semipartial Correlations)

Factor1 Factor2

HouseValue 0.93719 0.00278
School 0.90075 0.00326
Services 0.75195 0.41745
Population -0.06312 0.98880
Employment 0.06130 0.97543

Variance Explained by Each Factor Eliminating Other Factors

Factor1 Factor2

2.2628537 2.1034731
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Harris-Kaiser Rotation with Cureton-Mulaik Weights

The FACTOR Procedure
Rotation Method: Harris-Kaiser

Factor Structure (Correlations)

Factor1 Factor2

HouseValue 0.94071 0.08139
School 0.90419 0.07882
Services 0.78960 0.48198
Population 0.01958 0.98698
Employment 0.14332 0.98399

Variance Explained by Each Factor Ignoring Other Factors

Factor1 Factor2

2.3468965 2.1875158

Final Communality Estimates: Total = 4.450370

Population School Employment Services HouseValue

0.97811334 0.81756387 0.97199928 0.79774304 0.88494998
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Harris-Kaiser Rotation with Cureton-Mulaik Weights

The FACTOR Procedure
Rotation Method: Harris-Kaiser

Plot of Reference Structure for Factor1 and Factor2
Reference Axis Correlation = -0.0836 Angle = 94.7941
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In the results of the Harris-Kaiser rotation, the variableServices receives a small
weight, and the axes are placed as desired.
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Example 26.3. Maximum-Likelihood Factor Analysis

This example uses maximum-likelihood factor analyses for one, two, and three fac-
tors. It is already apparent from the principal factor analysis that the best number of
common factors is almost certainly two. The one- and three-factor ML solutions re-
inforce this conclusion and illustrate some of the numerical problems that can occur.
The following statements produce Output 26.3.1:

proc factor data=SocioEconomics method=ml heywood n=1;
title3 ’Maximum-Likelihood Factor Analysis with One Factor’;

run;
proc factor data=SocioEconomics method=ml heywood n=2;

title3 ’Maximum-Likelihood Factor Analysis with Two Factors’;
run;
proc factor data=SocioEconomics method=ml heywood n=3;

title3 ’Maximum-Likelihood Factor Analysis with Three Factors’;
run;

Output 26.3.1. Maximum-Likelihood Factor Analysis

Maximum-Likelihood Factor Analysis with One Factor

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues: Total = 76.1165859 Average = 15.2233172

Eigenvalue Difference Proportion Cumulative

1 63.7010086 50.6462895 0.8369 0.8369
2 13.0547191 12.7270798 0.1715 1.0084
3 0.3276393 0.6749199 0.0043 1.0127
4 -0.3472805 0.2722202 -0.0046 1.0081
5 -0.6195007 -0.0081 1.0000

1 factor will be retained by the NFACTOR criterion.

Iteration Criterion Ridge Change Communalities

1 6.5429218 0.0000 0.1033 0.93828 0.72227 1.00000 0.71940
0.74371

2 3.1232699 0.0000 0.7288 0.94566 0.02380 1.00000 0.26493
0.01487

Convergence criterion satisfied.
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Maximum-Likelihood Factor Analysis with One Factor

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Significance Tests Based on 12 Observations

Pr >
Test DF Chi-Square ChiSq

H0: No common factors 10 54.2517 <.0001
HA: At least one common factor
H0: 1 Factor is sufficient 5 24.4656 0.0002
HA: More factors are needed

Chi-Square without Bartlett’s Correction 34.355969
Akaike’s Information Criterion 24.355969
Schwarz’s Bayesian Criterion 21.931436
Tucker and Lewis’s Reliability Coefficient 0.120231

Squared Canonical Correlations

Factor1

1.0000000

Eigenvalues of the Weighted Reduced Correlation Matrix: Total = 0 Average = 0

Eigenvalue Difference

1 Infty Infty
2 1.92716032 2.15547340
3 -.22831308 0.56464322
4 -.79295630 0.11293464
5 -.90589094
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Maximum-Likelihood Factor Analysis with One Factor

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Factor Pattern

Factor1

Population 0.97245
School 0.15428
Employment 1.00000
Services 0.51472
HouseValue 0.12193

Variance Explained by Each Factor

Factor Weighted Unweighted

Factor1 17.8010629 2.24926004

Final Communality Estimates and Variable Weights
Total Communality: Weighted = 17.801063 Unweighted = 2.249260

Variable Communality Weight

Population 0.94565561 18.4011648
School 0.02380349 1.0243839
Employment 1.00000000 Infty
Services 0.26493499 1.3604239
HouseValue 0.01486595 1.0150903

Output 26.3.1 displays the results of the analysis with one factor. The solution on the
second iteration is so close to the optimum that PROC FACTOR cannot find a better
solution, hence you receive this message:

Convergence criterion satisfied.
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When this message appears, you should try rerunning PROC FACTOR with different
prior communality estimates to make sure that the solution is correct. In this case,
other prior estimates lead to the same solution or possibly to worse local optima, as
indicated by the information criteria or the Chi-square values.

The variableEmployment has a communality of 1.0 and, therefore, an infinite weight
that is displayed next to the final communality estimate as a missing/infinite value.
The first eigenvalue is also infinite. Infinite values are ignored in computing the total
of the eigenvalues and the total final communality.

Output 26.3.2. Maximum-Likelihood Factor Analysis: Two Factors

Maximum-Likelihood Factor Analysis with Two Factors

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues: Total = 76.1165859 Average = 15.2233172

Eigenvalue Difference Proportion Cumulative

1 63.7010086 50.6462895 0.8369 0.8369
2 13.0547191 12.7270798 0.1715 1.0084
3 0.3276393 0.6749199 0.0043 1.0127
4 -0.3472805 0.2722202 -0.0046 1.0081
5 -0.6195007 -0.0081 1.0000

2 factors will be retained by the NFACTOR criterion.

Iteration Criterion Ridge Change Communalities

1 0.3431221 0.0000 0.0471 1.00000 0.80672 0.95058 0.79348
0.89412

2 0.3072178 0.0000 0.0307 1.00000 0.80821 0.96023 0.81048
0.92480

3 0.3067860 0.0000 0.0063 1.00000 0.81149 0.95948 0.81677
0.92023

4 0.3067373 0.0000 0.0022 1.00000 0.80985 0.95963 0.81498
0.92241

5 0.3067321 0.0000 0.0007 1.00000 0.81019 0.95955 0.81569
0.92187

Convergence criterion satisfied.
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Maximum-Likelihood Factor Analysis with Two Factors

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Significance Tests Based on 12 Observations

Pr >
Test DF Chi-Square ChiSq

H0: No common factors 10 54.2517 <.0001
HA: At least one common factor
H0: 2 Factors are sufficient 1 2.1982 0.1382
HA: More factors are needed

Chi-Square without Bartlett’s Correction 3.3740530
Akaike’s Information Criterion 1.3740530
Schwarz’s Bayesian Criterion 0.8891463
Tucker and Lewis’s Reliability Coefficient 0.7292200

Squared Canonical Correlations

Factor1 Factor2

1.0000000 0.9518891

Eigenvalues of the Weighted Reduced Correlation
Matrix: Total = 19.7853157 Average = 4.94632893

Eigenvalue Difference Proportion Cumulative

1 Infty Infty
2 19.7853143 19.2421292 1.0000 1.0000
3 0.5431851 0.5829564 0.0275 1.0275
4 -0.0397713 0.4636411 -0.0020 1.0254
5 -0.5034124 -0.0254 1.0000
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Maximum-Likelihood Factor Analysis with Two Factors

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Factor Pattern

Factor1 Factor2

Population 1.00000 0.00000
School 0.00975 0.90003
Employment 0.97245 0.11797
Services 0.43887 0.78930
HouseValue 0.02241 0.95989

Variance Explained by Each Factor

Factor Weighted Unweighted

Factor1 24.4329707 2.13886057
Factor2 19.7853143 2.36835294

Final Communality Estimates and Variable Weights
Total Communality: Weighted = 44.218285 Unweighted = 4.507214

Variable Communality Weight

Population 1.00000000 Infty
School 0.81014489 5.2682940
Employment 0.95957142 24.7246669
Services 0.81560348 5.4256462
HouseValue 0.92189372 12.7996793

Output 26.3.2 displays the results of the analysis using two factors. The analysis con-
verges without incident. This time, however, thePopulation variable is a Heywood
case.
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Output 26.3.3. Maximum-Likelihood Factor Analysis: Three Factors

Maximum-Likelihood Factor Analysis with Three Factors

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC

Population School Employment Services HouseValue

0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues: Total = 76.1165859 Average = 15.2233172

Eigenvalue Difference Proportion Cumulative

1 63.7010086 50.6462895 0.8369 0.8369
2 13.0547191 12.7270798 0.1715 1.0084
3 0.3276393 0.6749199 0.0043 1.0127
4 -0.3472805 0.2722202 -0.0046 1.0081
5 -0.6195007 -0.0081 1.0000

3 factors will be retained by the NFACTOR criterion.

WARNING: Too many factors for a unique solution.

Iteration Criterion Ridge Change Communalities

1 0.1798029 0.0313 0.0501 0.96081 0.84184 1.00000 0.80175
0.89716

2 0.0016405 0.0313 0.0678 0.98081 0.88713 1.00000 0.79559
0.96500

3 0.0000041 0.0313 0.0094 0.98195 0.88603 1.00000 0.80498
0.96751

4 0.0000000 0.0313 0.0006 0.98202 0.88585 1.00000 0.80561
0.96735

ERROR: Converged, but not to a proper optimum.
Try a different ’PRIORS’ statement.
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Maximum-Likelihood Factor Analysis with Three Factors

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Significance Tests Based on 12 Observations

Pr >
Test DF Chi-Square ChiSq

H0: No common factors 10 54.2517 <.0001
HA: At least one common factor
H0: 3 Factors are sufficient -2 0.0000 .
HA: More factors are needed

Chi-Square without Bartlett’s Correction 0.0000003
Akaike’s Information Criterion 4.0000003
Schwarz’s Bayesian Criterion 4.9698136
Tucker and Lewis’s Reliability Coefficient 0.0000000

Squared Canonical Correlations

Factor1 Factor2 Factor3

1.0000000 0.9751895 0.6894465

Eigenvalues of the Weighted Reduced Correlation
Matrix: Total = 41.5254193 Average = 10.3813548

Eigenvalue Difference Proportion Cumulative

1 Infty Infty
2 39.3054826 37.0854258 0.9465 0.9465
3 2.2200568 2.2199693 0.0535 1.0000
4 0.0000875 0.0002949 0.0000 1.0000
5 -0.0002075 -0.0000 1.0000
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Maximum-Likelihood Factor Analysis with Three Factors

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Factor Pattern

Factor1 Factor2 Factor3

Population 0.97245 -0.11233 -0.15409
School 0.15428 0.89108 0.26083
Employment 1.00000 0.00000 0.00000
Services 0.51472 0.72416 -0.12766
HouseValue 0.12193 0.97227 -0.08473

Variance Explained by Each Factor

Factor Weighted Unweighted

Factor1 54.6115241 2.24926004
Factor2 39.3054826 2.27634375
Factor3 2.2200568 0.11525433

Final Communality Estimates and Variable Weights
Total Communality: Weighted = 96.137063 Unweighted = 4.640858

Variable Communality Weight

Population 0.98201660 55.6066901
School 0.88585165 8.7607194
Employment 1.00000000 Infty
Services 0.80564301 5.1444261
HouseValue 0.96734687 30.6251078

The three-factor analysis displayed in Output 26.3.3 generates this message:

WARNING: Too many factors for a unique solution.

The number of parameters in the model exceeds the number of elements in the cor-
relation matrix from which they can be estimated, so an infinite number of different
perfect solutions can be obtained. The Criterion approaches zero at an improper op-
timum, as indicated by this message:

Converged, but not to a proper optimum.

The degrees of freedom for the chi-square test are�2, so a probability level cannot
be computed for three factors. Note also that the variableEmployment is a Heywood
case again.

The probability levels for the chi-square test are 0.0001 for the hypothesis of no
common factors, 0.0002 for one common factor, and 0.1382 for two common factors.
Therefore, the two-factor model seems to be an adequate representation. Akaike’s
information criterion and Schwarz’s Bayesian criterion attain their minimum values
at two common factors, so there is little doubt that two factors are appropriate for
these data.
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