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Chapter 30
The GLM Procedure

Overview

The GLM procedure uses the method of least squares to fit general linear models.
Among the statistical methods available in PROC GLM are regression, analysis of
variance, analysis of covariance, multivariate analysis of variance, and partial corre-
lation.

PROC GLM analyzes data within the framework of General linear models. PROC
GLM handles models relating one or several continuous dependent variables to one or
several independent variables. The independent variables may be eitherclassification
variables, which divide the observations into discrete groups, orcontinuousvariables.
Thus, the GLM procedure can be used for many different analyses, including

� simple regression

� multiple regression

� analysis of variance (ANOVA), especially for unbalanced data

� analysis of covariance

� response-surface models

� weighted regression

� polynomial regression

� partial correlation

� multivariate analysis of variance (MANOVA)

� repeated measures analysis of variance

PROC GLM Features

The following list summarizes the features in PROC GLM:

� PROC GLM enables you to specify any degree of interaction (crossed effects)
and nested effects. It also provides for polynomial, continuous-by-class, and
continuous-nesting-class effects.

� Through the concept of estimability, the GLM procedure can provide tests of
hypotheses for the effects of a linear model regardless of the number of missing
cells or the extent of confounding. PROC GLM displays the Sum of Squares
(SS) associated with each hypothesis tested and, upon request, the form of the
estimable functions employed in the test. PROC GLM can produce the general
form of all estimable functions.
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� The REPEATED statement enables you to specify effects in the model that
represent repeated measurements on the same experimental unit for the same
response, providing both univariate and multivariate tests of hypotheses.

� The RANDOM statement enables you to specify random effects in the model;
expected mean squares are produced for each Type I, Type II, Type III, Type
IV, and contrast mean square used in the analysis. Upon request,F tests using
appropriate mean squares or linear combinations of mean squares as error terms
are performed.

� The ESTIMATE statement enables you to specify anL vector for estimating a
linear function of the parametersL�.

� The CONTRAST statement enables you to specify a contrast vector or matrix
for testing the hypothesis thatL� = 0. When specified, the contrasts are also
incorporated into analyses using the MANOVA and REPEATED statements.

� The MANOVA statement enables you to specify both the hypothesis effects
and the error effect to use for a multivariate analysis of variance.

� PROC GLM can create an output data set containing the input dataset in addi-
tion to predicted values, residuals, and other diagnostic measures.

� PROC GLM can be used interactively. After specifying and running a model,
a variety of statements can be executed without recomputing the model param-
eters or sums of squares.

� For analysis involving multiple dependent variables but not the MANOVA
or REPEATED statements, a missing value in one dependent variable does
not eliminate the observation from the analysis for other dependent variables.
PROC GLM automatically groups together those variables that have the same
pattern of missing values within the data set or within a BY group. This en-
sures that the analysis for each dependent variable brings into use all possible
observations.

PROC GLM Contrasted with Other SAS Procedures

As described previously, PROC GLM can be used for many different analyses and
has many special features not available in other SAS procedures. However, for some
types of analyses, other procedures are available. As discussed in the “PROC GLM
for Unbalanced ANOVA” and “PROC GLM for Quadratic Least Squares Regression”
sections (beginning on page 1469), sometimes these other procedures are more effi-
cient than PROC GLM. The following procedures perform some of the same analyses
as PROC GLM:

ANOVA performs analysis of variance for balanced designs. The ANOVA
procedure is generally more efficient than PROC GLM for these
designs.

MIXED fits mixed linear models by incorporating covariance structures in
the model fitting process. Its RANDOM and REPEATED state-
ments are similar to those in PROC GLM but offer different func-
tionalities.
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PROC GLM for Unbalanced ANOVA � 1469

NESTED performs analysis of variance and estimates variance components
for nested random models. The NESTED procedure is generally
more efficient than PROC GLM for these models.

NPAR1WAY performs nonparametric one-way analysis of rank scores. This can
also be done using the RANK procedure and PROC GLM.

REG performs simple linear regression. The REG procedure allows sev-
eral MODEL statements and gives additional regression diagnos-
tics, especially for detection of collinearity. PROC REG also cre-
ates plots of model summary statistics and regression diagnostics.

RSREG performs quadratic response-surface regression, and canonical and
ridge analysis. The RSREG procedure is generally recommended
for data from a response surface experiment.

TTEST compares the means of two groups of observations. Also, tests for
equality of variances for the two groups are available. The TTEST
procedure is usually more efficient than PROC GLM for this type
of data.

VARCOMP estimates variance components for a general linear model.

Getting Started

PROC GLM for Unbalanced ANOVA

Analysis of variance, or ANOVA, typically refers to partitioning the variation in a
variable’s values into variation between and within several groups or classes of ob-
servations. The GLM procedure can perform simple or complicated ANOVA for
balanced or unbalanced data.

This example discusses a2 � 2 ANOVA model. The experimental design is a full
factorial, in which each level of one treatment factor occurs at each level of the other
treatment factor. The data are shown in a table and then read into a SAS data set.

A
1 2

12 20
1

14 18
B

11 17
2

9

title ’Analysis of Unbalanced 2-by-2 Factorial’;
data exp;

input A $ B $ Y @@;
datalines;

A1 B1 12 A1 B1 14 A1 B2 11 A1 B2 9
A2 B1 20 A2 B1 18 A2 B2 17
;
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Note that there is only one value for the cell withA=‘A2’ and B=‘B2’. Since one
cell contains a different number of values from the other cells in the table, this is an
unbalanced design.

The following PROC GLM invocation produces the analysis.

proc glm;
class A B;
model Y=A B A*B;

run;

Both treatments are listed in the CLASS statement because they are classification
variables.A*B denotes the interaction of theA effect and theB effect. The results
are shown in Figure 30.1 and Figure 30.2.

Analysis of Unbalanced 2-by-2 Factorial

The GLM Procedure

Class Level Information

Class Levels Values

A 2 A1 A2

B 2 B1 B2

Number of observations 7

Figure 30.1. Class Level Information

Figure 30.1 displays information about the classes as well as the number of observa-
tions in the data set. Figure 30.2 shows the ANOVA table, simple statistics, and tests
of effects.
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Analysis of Unbalanced 2-by-2 Factorial

The GLM Procedure

Dependent Variable: Y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 91.71428571 30.57142857 15.29 0.0253

Error 3 6.00000000 2.00000000

Corrected Total 6 97.71428571

R-Square Coeff Var Root MSE Y Mean

0.938596 9.801480 1.414214 14.42857

Source DF Type I SS Mean Square F Value Pr > F

A 1 80.04761905 80.04761905 40.02 0.0080
B 1 11.26666667 11.26666667 5.63 0.0982
A*B 1 0.40000000 0.40000000 0.20 0.6850

Source DF Type III SS Mean Square F Value Pr > F

A 1 67.60000000 67.60000000 33.80 0.0101
B 1 10.00000000 10.00000000 5.00 0.1114
A*B 1 0.40000000 0.40000000 0.20 0.6850

Figure 30.2. ANOVA Table and Tests of Effects

The degrees of freedom may be used to check your data. The Model degrees of
freedom for a2 � 2 factorial design with interaction are(ab � 1), wherea is the
number of levels ofA andb is the number of levels ofB; in this case,(2� 2� 1) =
3. The Corrected Total degrees of freedom are always one less than the number of
observations used in the analysis; in this case,7� 1 = 6.

The overallF test is significant(F = 15:29; p = 0:0253), indicating strong evidence
that the means for the four differentA�B cells are different. You can further analyze
this difference by examining the individual tests for each effect.

Four types of estimable functions of parameters are available for testing hypotheses
in PROC GLM. For data with no missing cells, the Type III and Type IV estimable
functions are the same and test the same hypotheses that would be tested if the data
were balanced. Type I and Type III sums of squares are typically not equal when
the data are unbalanced; Type III sums of squares are preferred in testing effects in
unbalanced cases because they test a function of the underlying parameters that is
independent of the number of observations per treatment combination.

According to a significance level of5% (� = 0:05), theA*B interaction is not signif-
icant(F = 0:20; p = 0:6850). This indicates that the effect ofA does not depend on
the level ofB and vice versa. Therefore, the tests for the individual effects are valid,
showing a significantA effect (F = 33:80; p = 0:0101) but no significantB effect
(F = 5:00; p = 0:1114).
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PROC GLM for Quadratic Least Squares Regression

In polynomial regression, the values of a dependent variable (also called a response
variable) are described or predicted in terms of polynomial terms involving one or
more independent or explanatory variables. An example of quadratic regression in
PROC GLM follows. These data are taken from Draper and Smith (1966, p. 57).
Thirteen specimens of 90/10 Cu-Ni alloys are tested in a corrosion-wheel setup in
order to examine corrosion. Each specimen has a certain iron content. The wheel is
rotated in salt sea water at 30 ft/sec for 60 days. Weight loss is used to quantify the
corrosion. Thefe variable represents the iron content, and theloss variable denotes
the weight loss in milligrams/square decimeter/day in the following DATA step.

title ’Regression in PROC GLM’;
data iron;

input fe loss @@;
datalines;

0.01 127.6 0.48 124.0 0.71 110.8 0.95 103.9
1.19 101.5 0.01 130.1 0.48 122.0 1.44 92.3
0.71 113.1 1.96 83.7 0.01 128.0 1.44 91.4
1.96 86.2
;

The GPLOT procedure is used to request a scatter plot of the response variable versus
the independent variable.

symbol1 c=blue;
proc gplot;

plot loss*fe / vm=1;
run;

The plot in Figure 30.3 displays a strong negative relationship between iron content
and corrosion resistance, but it is not clear whether there is curvature in this relation-
ship.
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Figure 30.3. Plot of LOSS vs. FE

The following statements fit a quadratic regression model to the data. This enables
you to estimate the linear relationship between iron content and corrosion resistance
and test for the presence of a quadratic component. The intercept is automatically fit
unless the NOINT option is specified.

proc glm;
model loss=fe fe*fe;

run;

The CLASS statement is omitted because a regression line is being fitted. Unlike
PROC REG, PROC GLM allows polynomial terms in the MODEL statement.

Regression in PROC GLM

The GLM Procedure

Number of observations 13

Figure 30.4. Class Level Information

The preliminary information in Figure 30.4 informs you that the GLM procedure has
been invoked and states the number of observations in the data set. If the model
involves classification variables, they are also listed here, along with their levels.
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Figure 30.5 shows the overall ANOVA table and some simple statistics. The degrees
of freedom can be used to check that the model is correct and that the data have
been read correctly. The Model degrees of freedom for a regression is the number of
parameters in the model minus 1. You are fitting a model with three parameters in
this case,

loss = �0 + �1 � (fe) + �2 � (fe)2 + error

so the degrees of freedom are3� 1 = 2. The Corrected Total degrees of freedom are
always one less than the number of observations used in the analysis.

Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 3296.530589 1648.265295 164.68 <.0001

Error 10 100.086334 10.008633

Corrected Total 12 3396.616923

R-Square Coeff Var Root MSE loss Mean

0.970534 2.907348 3.163642 108.8154

Figure 30.5. ANOVA Table

TheR2 indicates that the model accounts for 97% of the variation in LOSS. The
coefficient of variation (C.V.), Root MSE (Mean Square for Error), and mean of the
dependent variable are also listed.

The overallF test is significant(F = 164:68; p < 0:0001), indicating that the model
as a whole accounts for a significant amount of the variation in LOSS. Thus, it is
appropriate to proceed to testing the effects.

Figure 30.6 contains tests of effects and parameter estimates. The latter are displayed
by default when the model contains only continuous variables.
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Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Source DF Type I SS Mean Square F Value Pr > F

fe 1 3293.766690 3293.766690 329.09 <.0001
fe*fe 1 2.763899 2.763899 0.28 0.6107

Source DF Type III SS Mean Square F Value Pr > F

fe 1 356.7572421 356.7572421 35.64 0.0001
fe*fe 1 2.7638994 2.7638994 0.28 0.6107

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 130.3199337 1.77096213 73.59 <.0001
fe -26.2203900 4.39177557 -5.97 0.0001
fe*fe 1.1552018 2.19828568 0.53 0.6107

Figure 30.6. Tests of Effects and Parameter Estimates

The t tests provided are equivalent to the Type IIIF tests. The quadratic term is
not significant(F = 0:28; p = 0:6107; t = 0:53; p = 0:6107) and thus can be
removed from the model; the linear term is significant(F = 35:64; p = 0:0001; t =
�5:97; p = 0:0001). This suggests that there is indeed a straight line relationship
betweenloss andfe.

Fitting the model without the quadratic term provides more accurate estimates for
�0 and�1. PROC GLM allows only one MODEL statement per invocation of the
procedure, so the PROC GLM statement must be issued again. The statements used
to fit the linear model are

proc glm;
model loss=fe;

run;

Figure 30.7 displays the output produced by these statements. The linear term is still
significant(F = 352:27; p < 0:0001). The estimated model is now

loss = 129:79 � 24:02 � fe
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Regression in PROC GLM

The GLM Procedure

Dependent Variable: loss

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1 3293.766690 3293.766690 352.27 <.0001

Error 11 102.850233 9.350021

Corrected Total 12 3396.616923

R-Square Coeff Var Root MSE loss Mean

0.969720 2.810063 3.057780 108.8154

Source DF Type I SS Mean Square F Value Pr > F

fe 1 3293.766690 3293.766690 352.27 <.0001

Source DF Type III SS Mean Square F Value Pr > F

fe 1 3293.766690 3293.766690 352.27 <.0001

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 129.7865993 1.40273671 92.52 <.0001
fe -24.0198934 1.27976715 -18.77 <.0001

Figure 30.7. Linear Model Output
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Syntax � 1477

Syntax

The following statements are available in PROC GLM.

PROC GLM < options > ;
CLASS variables ;
MODEL dependents=independents < / options > ;

ABSORB variables ;
BY variables ;
FREQ variable ;
ID variables ;
WEIGHT variable ;

CONTRAST ’label’ effect values < : : : effect values > < / options > ;
ESTIMATE ’label’ effect values < : : : effect values > < / options > ;
LSMEANS effects < / options > ;
MANOVA < test-options >< / detail-options > ;
MEANS effects < / options > ;
OUTPUT < OUT=SAS-data-set >

keyword=names < : : : keyword=names > < / option > ;
RANDOM effects < / options > ;
REPEATED factor-specification < / options > ;
TEST < H=effects > E=effect < / options > ;

Although there are numerous statements and options available in PROC GLM, many
applications use only a few of them. Often you can find the features you need by
looking at an example or by quickly scanning through this section.

To use PROC GLM, the PROC GLM and MODEL statements are required. You
can specify only one MODEL statement (in contrast to the REG procedure, for ex-
ample, which allows several MODEL statements in the same PROC REG run). If
your model contains classification effects, the classification variables must be listed
in a CLASS statement, and the CLASS statement must appear before the MODEL
statement. In addition, if you use a CONTRAST statement in combination with a
MANOVA, RANDOM, REPEATED, or TEST statement, the CONTRAST statement
must be entered first in order for the contrast to be included in the MANOVA, RAN-
DOM, REPEATED, or TEST analysis.

The following table summarizes the positional requirements for the statements in the
GLM procedure.

SAS OnlineDoc: Version 8



1478 � Chapter 30. The GLM Procedure

Table 30.1. Positional Requirements for PROC GLM Statements

Statement Must Appear Before the Must Appear After the
ABSORB first RUN statement

BY first RUN statement

CLASS MODEL statement

CONTRAST MANOVA, REPEATED, MODEL statement
or RANDOM statement

ESTIMATE MODEL statement

FREQ first RUN statement

ID first RUN statement

LSMEANS MODEL statement

MANOVA CONTRAST or
MODEL statement

MEANS MODEL statement

MODEL CONTRAST, ESTIMATE, CLASS statement
LSMEANS, or MEANS
statement

OUTPUT MODEL statement

RANDOM CONTRAST or
MODEL statement

REPEATED CONTRAST, MODEL,
or TEST statement

TEST MANOVA or MODEL statement
REPEATED statement

WEIGHT first RUN statement

The following table summarizes the function of each statement (other than the PROC
statement) in the GLM procedure:

Table 30.2. Statements in the GLM Procedure

Statement Description
ABSORB absorbs classification effects in a model
BY specifies variables to define subgroups for the analysis
CLASS declares classification variables
CONTRAST constructs and tests linear functions of the parameters
ESTIMATE estimates linear functions of the parameters
FREQ specifies a frequency variable
ID identifies observations on output
LSMEANS computes least-squares (marginal) means
MANOVA performs a multivariate analysis of variance
MEANS computes and optionally compares arithmetic means
MODEL defines the model to be fit
OUTPUT requests an output data set containing diagnostics for each

observation
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Table 30.2. (continued)

Statement Description
RANDOM declares certain effects to be random and computes expected mean

squares
REPEATED performs multivariate and univariate repeated measures analysis of

variance
TEST constructs tests using the sums of squares for effects and the error

term you specify
WEIGHT specifies a variable for weighting observations

The rest of this section gives detailed syntax information for each of these statements,
beginning with the PROC GLM statement. The remaining statements are covered in
alphabetical order.

PROC GLM Statement

PROC GLM < options > ;

The PROC GLM statement starts the GLM procedure. You can specify the following
options in the PROC GLM statement:

ALPHA= p
specifies the level of significancep for 100(1 � p)% confidence intervals. The value
must be between 0 and 1; the default value ofp = 0:05 results in 95% intervals. This
value is used as the default confidence level for limits computed by the following
options.

Statement Options
LSMEANS CL

MEANS CLM CLDIFF

MODEL CLI CLM CLPARM

OUTPUT UCL= LCL= UCLM= LCLM=

You can override the default in each of these cases by specifying the ALPHA= option
for each statement individually.

DATA=SAS-data-set
names the SAS data set used by the GLM procedure. By default, PROC GLM uses
the most recently created SAS data set.

MANOVA
requests the multivariate mode of eliminating observations with missing values. If
any of the dependent variables have missing values, the procedure eliminates that
observation from the analysis. The MANOVA option is useful if you use PROC
GLM in interactive mode and plan to perform a multivariate analysis.
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MULTIPASS
requests that PROC GLM reread the input data set when necessary, instead of writing
the necessary values of dependent variables to a utility file. This option decreases
disk space usage at the expense of increased execution times, and is useful only in
rare situations where disk space is at an absolute premium.

NAMELEN=n
specifies the length of effect names in tables and output data sets to ben characters
long, wheren is a value between 20 and 200 characters. The default length is 20
characters.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you
want only to create one or more output data sets with the procedure. Note that this op-
tion temporarily disables the Output Delivery System (ODS); see Chapter 15, “Using
the Output Delivery System,” for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of all classification variables (specified in the
CLASS statement). This ordering determines which parameters in the model corre-
spond to each level in the data, so the ORDER= option may be useful when you use
CONTRAST or ESTIMATE statements. Note that the ORDER= option applies to the
levels for all classification variables. The exception is ORDER=FORMATTED (the
default) for numeric variables for which you have supplied no explicit format (that is,
for which there is no corresponding FORMAT statement in the current PROC GLM
run or in the DATA step that created the data set). In this case, the levels are ordered
by their internal (numeric) value. Note that this represents a change from previous
releases for how class levels are ordered. In releases previous to Version 8, numeric
class levels with no explicit format were ordered by their BEST12. formatted values,
and in order to revert to the previous ordering you can specify this format explic-
itly for the affected classification variables. The change was implemented because
the former default behavior for ORDER=FORMATTED often resulted in levels not
being ordered numerically and usually required the user to intervene with an explicit
format or ORDER=INTERNAL to get the more natural ordering. The following table
shows how PROC GLM interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value
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By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort
order is machine dependent. For more information on sorting order, see the chapter
on the SORT procedure in theSAS Procedures Guide, and the discussion of BY-group
processing inSAS Language Reference: Concepts.

OUTSTAT=SAS-data-set
names an output data set that contains sums of squares, degrees of freedom,F statis-
tics, and probability levels for each effect in the model, as well as for each CON-
TRAST that uses the overall residual or error mean square (MSE) as the denominator
in constructing theF statistic. If you use the CANONICAL option in the MANOVA
statement and do not use an M= specification in the MANOVA statement, the data set
also contains results of the canonical analysis. See the section “Output Data Sets” on
page 1574 for more information.

ABSORB Statement

ABSORB variables ;

Absorption is a computational technique that provides a large reduction in time and
memory requirements for certain types of models. Thevariablesare one or more
variables in the input data set.

For a main effect variable that does not participate in interactions, you can absorb
the effect by naming it in an ABSORB statement. This means that the effect can be
adjusted out before the construction and solution of the rest of the model. This is
particularly useful when the effect has a large number of levels.

Several variables can be specified, in which case each one is assumed to be nested in
the preceding variable in the ABSORB statement.

Note: When you use the ABSORB statement, the data set (or each BY group, if a BY
statement appears) must be sorted by the variables in the ABSORB statement. The
GLM procedure cannot produce predicted values or least-squares means (LS-means)
or create an output data set of diagnostic values if an ABSORB statement is used. If
the ABSORB statement is used, it must appear before the first RUN statement or it is
ignored.

When you use an ABSORB statement and also use the INT option in the MODEL
statement, the procedure ignores the option but computes the uncorrected total sum
of squares (SS) instead of the corrected total sums of squares.

See the “Absorption” section on page 1532 for more information.
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BY Statement

BY variables ;

You can specify a BY statement with PROC GLM to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

� Sort the data using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the GLM procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

� Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

Since sorting the data changes the order in which PROC GLM reads observations, the
sorting order for the levels of the classification variables may be affected if you have
also specified ORDER=DATA in the PROC GLM statement. This, in turn, affects
specifications in CONTRAST and ESTIMATE statements.

If you specify the BY statement, it must appear before the first RUN statement or it
is ignored. When you use a BY statement, the interactive features of PROC GLM are
disabled.

When both BY and ABSORB statements are used, observations must be sorted first
by the variables in the BY statement, and then by the variables in the ABSORB
statement.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Contents. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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CLASS Statement

CLASS variables ;

The CLASS statement names the classification variables to be used in the model. Typ-
ical class variables are TREATMENT, SEX, RACE, GROUP, and REPLICATION.
If you specify the CLASS statement, it must appear before the MODEL statement.

Class levels are determined from up to the first 16 characters of the formatted values
of the CLASS variables. Thus, you can use formats to group values into levels.
Refer to the discussion of the FORMAT procedure in theSAS Procedures Guide,
and the discussions for the FORMAT statement and SAS formats inSAS Language
Reference: Dictionary.

The GLM procedure displays a table summarizing the class variables and their levels,
and you can use this to check the ordering of levels and, hence, of the corresponding
parameters for main effects. If you need to check the ordering of parameters for
interaction effects, use the E option in the MODEL, CONTRAST, ESTIMATE, and
LSMEANS statements. See the “Parameterization of PROC GLM Models” section
on page 1521 for more information.

CONTRAST Statement

CONTRAST ’label’ effect values < : : : effect values > < / options > ;

The CONTRAST statement enables you to perform custom hypothesis tests by spec-
ifying an L vector or matrix for testing the univariate hypothesisL� = 0 or the
multivariate hypothesisLBM = 0. Thus, to use this feature you must be familiar
with the details of the model parameterization that PROC GLM uses. For more in-
formation, see the “Parameterization of PROC GLM Models” section on page 1521.
All of the elements of theL vector may be given, or if only certain portions of the
L vector are given, the remaining elements are constructed by PROC GLM from the
context (in a manner similar to rule 4 discussed in the “Construction of Least-Squares
Means” section on page 1555).

There is no limit to the number of CONTRAST statements you can specify, but they
must appear after the MODEL statement. In addition, if you use a CONTRAST
statement and a MANOVA, REPEATED, or TEST statement, appropriate tests for
contrasts are carried out as part of the MANOVA, REPEATED, or TEST analysis.
If you use a CONTRAST statement and a RANDOM statement, the expected mean
square of the contrast is displayed. As a result of these additional analyses, the CON-
TRAST statement must appear before the MANOVA, REPEATED, RANDOM, or
TEST statement.
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In the CONTRAST statement,

label identifies the contrast on the output. A label is required for every
contrast specified. Labels must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement, or the
INTERCEPT effect. The INTERCEPT effect can be used when
an intercept is fitted in the model. You do not need to include all
effects that are in the MODEL statement.

values are constants that are elements of theL vector associated with the
effect.

You can specify the following options in the CONTRAST statement after a slash(/):

E
displays the entireL vector. This option is useful in confirming the ordering of pa-
rameters for specifyingL.

E=effect
specifies an error term, which must be one of the effects in the model. The procedure
uses this effect as the denominator inF tests in univariate analysis. In addition, if you
use a MANOVA or REPEATED statement, the procedure uses the effect specified by
the E= option as the basis of theEmatrix. By default, the procedure uses the overall
residual or error mean square (MSE) as an error term.

ETYPE=n
specifies the type (1, 2, 3, or 4, corresponding to Type I, II, III, and IV tests, respec-
tively) of the E= effect. If the E= option is specified and the ETYPE= option is not,
the procedure uses the highest type computed in the analysis.

SINGULAR=number
checking (GLM) tunes the estimability checking. If ABS(L � LH) > C�number
for any row in the contrast, thenL is declared nonestimable.H is the(X0X)�X0X
matrix, andC is ABS(L) except for rows whereL is zero, and then it is 1. The default
value for the SINGULAR= option is10�4. Values for the SINGULAR= option must
be between 0 and 1.

As stated previously, the CONTRAST statement enables you to perform custom hy-
pothesis tests. If the hypothesis is testable in the univariate case, SS(H0:L� = 0) is
computed as

(Lb)0(L(X0X)�L0)�1(Lb)

whereb = (X0X)�X0y. This is the sum of squares displayed on the analysis-of-
variance table.
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For multivariate testable hypotheses, the usual multivariate tests are performed using

H =M0(LB)0(L(X0X)�L0)�1(LB)M

whereB = (X0X)�X0Y andY is the matrix of multivariate responses or dependent
variables. The degrees of freedom associated with the hypothesis is equal to the row
rank ofL. The sum of squares computed in this situation are equivalent to the sum of
squares computed using anLmatrix with any row deleted that is a linear combination
of previous rows.

Multiple-degree-of-freedom hypotheses can be specified by separating the rows of
theLmatrix with commas.

For example, for the model

proc glm;
class A B;
model Y=A B;

run;

with A at 5 levels andB at 2 levels, the parameter vector is

(� �1 �2 �3 �4 �5 �1 �2)

To test the hypothesis that the pooled A linear and A quadratic effect is zero, you can
use the followingLmatrix:

L =

�
0 �2 �1 0 1 2 0 0
0 2 �1 �2 �1 2 0 0

�

The corresponding CONTRAST statement is

contrast ’A LINEAR & QUADRATIC’
a -2 -1 0 1 2,
a 2 -1 -2 -1 2;

If the first level ofA is a control level and you want a test of control versus others,
you can use this statement:

contrast ’CONTROL VS OTHERS’ a -1 0.25 0.25 0.25 0.25;

See the following discussion of the ESTIMATE statement and the “Specification of
ESTIMATE Expressions” section on page 1536 for rules on specification, construc-
tion, distribution, and estimability in the CONTRAST statement.
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ESTIMATE Statement

ESTIMATE ’label’ effect values < : : : effect values > < / options > ;

The ESTIMATE statement enables you to estimate linear functions of the parameters
by multiplying the vectorL by the parameter estimate vectorb resulting inLb. All
of the elements of theL vector may be given, or, if only certain portions of the
L vector are given, the remaining elements are constructed by PROC GLM from the
context (in a manner similar to rule 4 discussed in the “Construction of Least-Squares
Means” section on page 1555).

The linear function is checked for estimability. The estimateLb, whereb =
(X0X)�X0y, is displayed along with its associated standard error,

p
L(X0X)�L0s2,

and t test. If you specify the CLPARM option in the MODEL statement (see
page 1505), confidence limits for the true value are also displayed.

There is no limit to the number of ESTIMATE statements that you can specify, but
they must appear after the MODEL statement. In the ESTIMATE statement,

label identifies the estimate on the output. A label is required for every
contrast specified. Labels must be enclosed in quotes.

effect identifies an effect that appears in the MODEL statement, or the
INTERCEPT effect. The INTERCEPT effect can be used as an
effect when an intercept is fitted in the model. You do not need to
include all effects that are in the MODEL statement.

values are constants that are the elements of theL vector associated with
the preceding effect. For example,

estimate ’A1 VS A2’ A 1 -1;

forms an estimate that is the difference between the parameters
estimated for the first and second levels of the CLASS variable A.

You can specify the following options in the ESTIMATE statement after a slash:

DIVISOR=number
specifies a value by which to divide all coefficients so that fractional coefficients can
be entered as integer numerators. For example, you can use

estimate ’1/3(A1+A2) - 2/3A3’ a 1 1 -2 / divisor=3;

instead of

estimate ’1/3(A1+A2) - 2/3A3’ a 0.33333 0.33333 -0.66667;

E
displays the entireL vector. This option is useful in confirming the ordering of pa-
rameters for specifyingL.
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SINGULAR=number
tunes the estimability checking. If ABS(L� LH) > C�number, then theL vector
is declared nonestimable.H is the(X0X)�X0Xmatrix, andC is ABS(L) except for
rows whereL is zero, and then it is 1. The default value for the SINGULAR= option
is 10�4. Values for the SINGULAR= option must be between 0 and 1.

See also the “Specification of ESTIMATE Expressions” section on page 1536.

FREQ Statement

FREQ variable ;

The FREQ statement names a variable that provides frequencies for each observation
in the DATA= data set. Specifically, ifn is the value of the FREQ variable for a given
observation, then that observation is usedn times.

The analysis produced using a FREQ statement reflects the expanded number of ob-
servations. For example, means and total degrees of freedom reflect the expanded
number of observations. You can produce the same analysis (without the FREQ state-
ment) by first creating a new data set that contains the expanded number of observa-
tions. For example, if the value of the FREQ variable is 5 for the first observation,
the first 5 observations in the new data set are identical. Each observation in the old
data set is replicatedni times in the new data set, whereni is the value of the FREQ
variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not
used in the analysis. If the value is not an integer, only the integer portion is used.

If you specify the FREQ statement, it must appear before the first RUN statement or
it is ignored.

ID Statement

ID variables ;

When predicted values are requested as a MODEL statement option, values of the
variables given in the ID statement are displayed beside each observed, predicted, and
residual value for identification. Although there are no restrictions on the length of ID
variables, PROC GLM may truncate the number of values listed in order to display
them on one line. The GLM procedure displays a maximum of five ID variables.

If you specify the ID statement, it must appear before the first RUN statement or it is
ignored.
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LSMEANS Statement

LSMEANS effects < / options > ;

Least-squares means (LS-means) are computed for eacheffect listed in the
LSMEANS statement. You may specify only classification effects in the LSMEANS
statement—that is, effects that contain only classification variables. You may also
specify options to perform multiple comparisons. In contrast to the MEANS state-
ment, the LSMEANS statement performs multiple comparisons on interactions as
well as main effects.

LS-means arepredicted population margins; that is, they estimate the marginal means
over a balanced population. In a sense, LS-means are to unbalanced designs as class
and subclass arithmetic means are to balanced designs. Each LS-mean is computed as
L0b for a certain column vectorL, whereb is the vector of parameter estimates—that
is, the solution of the normal equations. For further information, see the section
“Construction of Least-Squares Means” on page 1555.

Multiple effects can be specified in one LSMEANS statement, or multiple
LSMEANS statements can be used, but they must all appear after the MODEL
statement. For example,

proc glm;
class A B;
model Y=A B A*B;
lsmeans A B A*B;

run;

LS-means are displayed for each level of theA, B, andA*B effects.

You can specify the following options in the LSMEANS statement after a slash:

ADJUST=BON
ADJUST=DUNNETT
ADJUST=SCHEFFE
ADJUST=SIDAK
ADJUST=SIMULATE <( simoptions)>
ADJUST=SMM | GT2
ADJUST=TUKEY
ADJUST=T

requests a multiple comparison adjustment for thep-values and confidence limits
for the differences of LS-means. The ADJUST= option modifies the results of the
TDIFF and PDIFF options; thus, if you omit the TDIFF or PDIFF option then the
ADJUST= option has no effect. By default, PROC GLM analyzes all pairwise differ-
ences unless you specify ADJUST=DUNNETT, in which case PROC GLM analyzes
all differences with a control level. The default is ADJUST=T, which really signifies
no adjustment for multiple comparisons.
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The BON (Bonferroni) and SIDAK adjustments involve correction factors described
in the “Multiple Comparisons” section on page 1540 and in Chapter 43, “The
MULTTEST Procedure.” When you specify ADJUST=TUKEY and your data are
unbalanced, PROC GLM uses the approximation described in Kramer (1956) and
identifies the adjustment as “Tukey-Kramer” in the results. Similarly, when you
specify ADJUST=DUNNETT and the LS-means are correlated, PROC GLM uses
the factor-analytic covariance approximation described in Hsu (1992) and identifies
the adjustment as “Dunnett-Hsu” in the results. The preceding references also de-
scribe the SCHEFFE and SMM adjustments.

The SIMULATE adjustment computes the adjustedp-values from the simulated dis-
tribution of the maximum or maximum absolute value of a multivariatet random
vector. The simulation estimatesq, the true(1 � �)th quantile, where1 � � is the
confidence coefficient. The default� is the value of the ALPHA= option in the PROC
GLM statement or 0.05 if that option is not specified. You can change this value with
the ALPHA= option in the LSMEANS statement.

The number of samples for the SIMULATE adjustment is set so that the tail area
for the simulatedq is within a certainaccuracy radius
 of 1 � � with anaccuracy
confidenceof 100(1 � �)%. In equation form,

P (jF (q̂)� (1� �)j � 
) = 1� �

whereq̂ is the simulatedq andF is the true distribution function of the maximum;
refer to Edwards and Berry (1987) for details. By default,
 = 0.005 and� = 0.01 so
that the tail area of̂q is within 0.005 of 0.95 with 99% confidence.

You can specify the following simoptions in parentheses after the AD-
JUST=SIMULATE option.

ACC=value specifies the target accuracy radius
 of a100(1 � �)% confidence
interval for the true probability content of the estimated(1 � �)th
quantile. The default value is ACC=0.005. Note that, if you also
specify the CVADJUSTsimoption, then the actual accuracy radius
will probably be substantially less than this target.

CVADJUST specifies that the quantile should be estimated by the control vari-
ate adjustment method of Hsu and Nelson (1998) instead of simply
as the quantile of the simulated sample. Specifying the CVAD-
JUST option typically has the effect of significantly reducing the
accuracy radius
 of a 100 � (1 � �)% confidence interval for the
true probability content of the estimated(1 � �)th quantile. The
control-variate-adjusted quantile estimate takes roughly twice as
long to compute, but it is typically much more accurate than the
sample quantile.

EPS=value specifies the value� for a100�(1��)% confidence interval for the
true probability content of the estimated(1 � �)th quantile. The
default value for the accuracy confidence is 99%, corresponding to
EPS=0.01.
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NSAMP=n specifies the sample size for the simulation. By default,n is set
based on the values of the target accuracy radius
 and accuracy
confidence100 � (1 � �)true probability content of the estimated
(1 � �)th quantile. With the default values for
, �, and� (0.005,
0.01, and 0.05, respectively), NSAMP=12604 by default.

REPORT specifies that a report on the simulation should be displayed, in-
cluding a listing of the parameters, such as
, �, and� as well as
an analysis of various methods for estimating or approximating the
quantile.

SEED=number specifies a positive integer less than231 � 1. The value of the
SEED= option is used to start the pseudo-random number genera-
tor for the simulation. The default is a value generated from read-
ing the time of day from the computer’s clock.

ALPHA= p
specifies the level of significancep for 100(1�p)% confidence intervals. This option
is useful only if you also specify the CL option, and, optionally, the PDIFF option.
By default,p is equal to the value of the ALPHA= option in the PROC GLM state-
ment or 0.05 if that option is not specified, This value is used to set the endpoints
for confidence intervals for the individual means as well as for differences between
means.

AT variable = value
AT (variable-list) = (value-list)
AT MEANS

enables you to modify the values of the covariates used in computing LS-means. By
default, all covariate effects are set equal to their mean values for computation of stan-
dard LS-means. The AT option enables you to set the covariates to whatever values
you consider interesting. For more information, see the section “Setting Covariate
Values” on page 1556.

BYLEVEL
requests that PROC GLM process the OM data set by each level of the LS-mean
effect in question. For more details, see the entry for the OM option in this section.

CL
requests confidence limits for the individual LS-means. If you specify the PDIFF
option, confidence limits for differences between means are produced as well. You
can control the confidence level with the ALPHA= option. Note that, if you specify an
ADJUST= option, the confidence limits for the differences are adjusted for multiple
inference but the confidence intervals for individual means arenot adjusted.

COV
includes variances and covariances of the LS-means in the output data set specified
in the OUT= option in the LSMEANS statement. Note that this is the covariance
matrix for the LS-means themselves, not the covariance matrix for the differences
between the LS-means, which is used in the PDIFF computations. If you omit the
OUT= option, the COV option has no effect. When you specify the COV option, you
can specify only one effect in the LSMEANS statement.
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E
displays the coefficients of the linear functions used to compute the LS-means.

E=effect
specifies an effect in the model to use as an error term. The procedure uses the mean
square for theeffectas the error mean square when calculating estimated standard
errors (requested with the STDERR option) and probabilities (requested with the
STDERR, PDIFF, or TDIFF option). Unless you specify STDERR, PDIFF or TDIFF,
the E= option is ignored. By default, if you specify the STDERR, PDIFF, or TDIFF
option and do not specify the E= option, the procedure uses the error mean square for
calculating standard errors and probabilities.

ETYPE=n
specifies the type (1, 2, 3, or 4, corresponding to Type I, II, III, and IV tests, respec-
tively) of the E= effect. If you specify the E= option but not the ETYPE= option, the
highest type computed in the analysis is used. If you omit the E= option, the ETYPE=
option has no effect.

NOPRINT
suppresses the normal display of results from the LSMEANS statement. This option
is useful when an output data set is created with the OUT= option in the LSMEANS
statement.

OBSMARGINS
OM

specifies a potentially different weighting scheme for computing LS-means coeffi-
cients. The standard LS-means have equal coefficients across classification effects;
however, the OM option changes these coefficients to be proportional to those found
in the input data set. For more information, see the section “Changing the Weighting
Scheme” on page 1557.

The BYLEVEL option modifies the observed-margins LS-means. Instead of comput-
ing the margins across the entire data set, the procedure computes separate margins
for each level of the LS-mean effect in question. The resulting LS-means are actually
equal to raw means in this case. If you specify the BYLEVEL option, it disables the
AT option.

OUT=SAS-data-set
creates an output data set that contains the values, standard errors, and, optionally,
the covariances (see the COV option) of the LS-means. For more information, see
the “Output Data Sets” section on page 1574.

PDIFF<=difftype>
requests thatp-values for differences of the LS-means be produced. The optional
difftypespecifies which differences to display. Possible values fordifftypeare ALL,
CONTROL, CONTROLL, and CONTROLU. The ALL value requests all pairwise
differences, and it is the default. The CONTROL value requests the differences with
a control that, by default, is the first level of each of the specified LS-mean effects.
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To specify which levels of the effects are the controls, list the quoted formatted values
in parentheses after the keyword CONTROL. For example, if the effectsA, B, and
C are class variables, each having two levels, ’1’ and ’2’, the following LSMEANS
statement specifies the ’1’ ’2’ level ofA*B and the ’2’ ’1’ level ofB*C as controls:

lsmeans A*B B*C / pdiff=control(’1’ ’2’, ’2’ ’1’);

For multiple effect situations such as this one, the ordering of the list is significant,
and you should check the output to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROLdifftype.
For one-tailed results, use either the CONTROLL or CONTROLUdifftype. The
CONTROLL difftype tests whether the noncontrol levels are significantly less than
the control; the lower confidence limits for the control minus the noncontrol levels are
considered to be minus infinity. Conversely, the CONTROLUdifftype tests whether
the noncontrol levels are significantly greater than the control; the upper confidence
limits for the noncontrol levels minus the control are considered to be infinity.

The default multiple comparisons adjustment for eachdifftype is shown in the fol-
lowing table.

difftype Default ADJUST=
Not specified T

ALL TUKEY
CONTROL

CONTROLL DUNNETT
CONTROLU

If no difftypeis specified, the default for the ADJUST= option is T (that is, no adjust-
ment); for PDIFF=ALL, ADJUST=TUKEY is the default; in all other instances, the
default value for the ADJUST= option is DUNNETT. If there is a conflict between
the PDIFF= and ADJUST= options, the ADJUST= option takes precedence.

For example, in order to compute one-sided confidence limits for differences with
a control, adjusted according to Dunnett’s procedure, the following statements are
equivalent:

lsmeans Treatment / pdiff=controll cl;
lsmeans Treatment / pdiff=controll cl adjust=dunnett;

SLICE = fixed-effect
SLICE = (fixed-effects)

specifies effects within which to test for differences between interaction LS-mean
effects. This can produce what are known as tests of simple effects (Winer 1971).
For example, suppose thatA*B is significant and you want to test for the effect ofA
within each level ofB. The appropriate LSMEANS statement is

lsmeans A*B / slice=B;
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This code tests for the simple main effects ofA for B, which are calculated by ex-
tracting the appropriate rows from the coefficient matrix for theA*B LS-means and
using them to form anF-test as performed by the CONTRAST statement.

SINGULAR=number
tunes the estimability checking. If ABS(L�LH) > C�numberfor any row, thenL
is declared nonestimable.H is the(X0X)�X0Xmatrix, andC is ABS(L) except for
rows whereL is zero, and then it is 1. The default value for the SINGULAR= option
is 10�4. Values for the SINGULAR= option must be between 0 and 1.

STDERR
produces the standard error of the LS-means and the probability level for the hypoth-
esisH0:LS-mean= 0.

TDIFF
produces thet values for all hypothesesH0:LS-mean(i) = LS-mean(j) and the
corresponding probabilities.

MANOVA Statement

MANOVA < test-options >< / detail-options > ;

If the MODEL statement includes more than one dependent variable, you can perform
multivariate analysis of variance with the MANOVA statement. Thetest-optionsde-
fine which effects to test, while thedetail-optionsspecify how to execute the tests
and what results to display.

When a MANOVA statement appears before the first RUN statement, PROC GLM
enters a multivariate mode with respect to the handling of missing values; in addition
to observations with missing independent variables, observations withany missing
dependent variables are excluded from the analysis. If you want to use this mode
of handling missing values and do not need any multivariate analyses, specify the
MANOVA option in the PROC GLM statement.

If you use both the CONTRAST and MANOVA statements, the MANOVA statement
must appear after the CONTRAST statement.

Test Options
The following options can be specified in the MANOVA statement astest-optionsin
order to define which multivariate tests to perform.

H=effects j INTERCEPT j –ALL –
specifies effects in the preceding model to use as hypothesis matrices. For eachH

matrix (the SSCP matrix associated with an effect), the H= specification displays
the characteristic roots and vectors ofE�1H (whereE is the matrix associated with
the error effect), Hotelling-Lawley trace, Pillai’s trace, Wilks’ criterion, and Roy’s
maximum root criterion with approximateF statistic.
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Use the keyword INTERCEPT to produce tests for the intercept. To produce tests
for all effects listed in the MODEL statement, use the keyword–ALL – in place of a
list of effects. For background and further details, see the “Multivariate Analysis of
Variance” section on page 1558.

E=effect
specifies the error effect. If you omit the E= specification, the GLM procedure uses
the error SSCP (residual) matrix from the analysis.

M=equation,: : :,equation j (row-of-matrix,: : :,row-of-matrix)
specifies a transformation matrix for the dependent variables listed in the MODEL
statement. The equations in the M= specification are of the form

c1 � dependent-variable� c2 � dependent-variable

� � � � cn � dependent-variable

where theci values are coefficients for the variousdependent-variables. If the value
of a givenci is 1, it can be omitted; in other words1 � Y is the same asY . Equa-
tions should involve two or more dependent variables. For sample syntax, see the
“Examples” section on page 1496.

Alternatively, you can input the transformation matrix directly by entering the ele-
ments of the matrix with commas separating the rows and parentheses surrounding
the matrix. When this alternate form of input is used, the number of elements in each
row must equal the number of dependent variables. Although these combinations
actually represent the columns of theM matrix, they are displayed by rows.

When you include an M= specification, the analysis requested in the MANOVA state-
ment is carried out for the variables defined by the equations in the specification, not
the original dependent variables. If you omit the M= option, the analysis is performed
for the original dependent variables in the MODEL statement.

If an M= specification is included without either the MNAMES= or PREFIX= option,
the variables are labeled MVAR1, MVAR2, and so forth, by default. For further
information, see the “Multivariate Analysis of Variance” section on page 1558.

MNAMES=names
provides names for the variables defined by the equations in the M= specification.
Names in the list correspond to the M= equations or to the rows of theM matrix (as
it is entered).

PREFIX=name
is an alternative means of identifying the transformed variables defined by the M=
specification. For example, if you specify PREFIX=DIFF, the transformed variables
are labeled DIFF1, DIFF2, and so forth.

SAS OnlineDoc: Version 8



MANOVA Statement � 1495

Detail Options
You can specify the following options in the MANOVA statement after a slash as
detail-options.

CANONICAL
displays a canonical analysis of theH andEmatrices (transformed by theMmatrix,
if specified) instead of the default display of characteristic roots and vectors.

ETYPE=n
specifies the type (1, 2, 3, or 4, corresponding to Type I, II, III, and IV tests, respec-
tively) of theE matrix, the SSCP matrix associated with the E= effect. You need this
option if you use the E= specification to specify an error effect other than residual
error and you want to specify the type of sums of squares used for the effect. If you
specify ETYPE=n, the corresponding test must have been performed in the MODEL
statement, either by options SSn, En, or the default Type I and Type III tests. By de-
fault, the procedure uses an ETYPE= value corresponding to the highest type (largest
n) used in the analysis.

HTYPE=n
specifies the type (1, 2, 3, or 4, corresponding to Type I, II, III, and IV tests, respec-
tively) of theH matrix. See the ETYPE= option for more details.

ORTH
requests that the transformation matrix in the M= specification of the MANOVA state-
ment be orthonormalized by rows before the analysis.

PRINTE
displays the error SSCP matrixE. If theE matrix is the error SSCP (residual) ma-
trix from the analysis, the partial correlations of the dependent variables given the
independent variables are also produced.

For example, the statement

manova / printe;

displays the error SSCP matrix and the partial correlation matrix computed from the
error SSCP matrix.

PRINTH
displays the hypothesis SSCP matrixH associated with each effect specified by the
H= specification.

SUMMARY
produces analysis-of-variance tables for each dependent variable. When noM ma-
trix is specified, a table is displayed for each original dependent variable from the
MODEL statement; with anMmatrix other than the identity, a table is displayed for
each transformed variable defined by theM matrix.
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Examples
The following statements provide several examples of using a MANOVA statement.

proc glm;
class A B;
model Y1-Y5=A B(A) / nouni;
manova h=A e=B(A) / printh printe htype=1 etype=1;
manova h=B(A) / printe;
manova h=A e=B(A) m=Y1-Y2,Y2-Y3,Y3-Y4,Y4-Y5

prefix=diff;
manova h=A e=B(A) m=(1 -1 0 0 0,

0 1 -1 0 0,
0 0 1 -1 0,
0 0 0 1 -1) prefix=diff;

run;

Since this MODEL statement requests no options for type of sums of squares, the
procedure uses Type I and Type III sums of squares. The first MANOVA statement
specifiesA as the hypothesis effect andB(A) as the error effect. As a result of the
PRINTH option, the procedure displays the hypothesis SSCP matrix associated with
theA effect; and, as a result of the PRINTE option, the procedure displays the error
SSCP matrix associated with theB(A) effect. The option HTYPE=1 specifies a Type I
H matrix, and the option ETYPE=1 specifies a Type IEmatrix.

The second MANOVA statement specifiesB(A) as the hypothesis effect. Since no
error effect is specified, PROC GLM uses the error SSCP matrix from the analysis as
theE matrix. The PRINTE option displays thisE matrix. Since theE matrix is the
error SSCP matrix from the analysis, the partial correlation matrix computed from
this matrix is also produced.

The third MANOVA statement requests the same analysis as the first MANOVA state-
ment, but the analysis is carried out for variables transformed to be successive dif-
ferences between the original dependent variables. The option PREFIX=DIFF labels
the transformed variables as DIFF1, DIFF2, DIFF3, and DIFF4.

Finally, the fourth MANOVA statement has the identical effect as the third, but it uses
an alternative form of the M= specification. Instead of specifying a set of equations,
the fourth MANOVA statement specifies rows of a matrix of coefficients for the five
dependent variables.

As a second example of the use of the M= specification, consider the following:

proc glm;
class group;
model dose1-dose4=group / nouni;
manova h = group

m = -3*dose1 - dose2 + dose3 + 3*dose4,
dose1 - dose2 - dose3 + dose4,

-dose1 + 3*dose2 - 3*dose3 + dose4
mnames = Linear Quadratic Cubic
/ printe;

run;

SAS OnlineDoc: Version 8



MEANS Statement � 1497

The M= specification gives a transformation of the dependent variablesdose1
throughdose4 into orthogonal polynomial components, and the MNAMES= option
labels the transformed variables LINEAR, QUADRATIC, and CUBIC, respectively.
Since the PRINTE option is specified and the default residual matrix is used as an
error term, the partial correlation matrix of the orthogonal polynomial components is
also produced.

MEANS Statement

MEANS effects < / options > ;

Within each group corresponding to each effect specified in the MEANS statement,
PROC GLM computes the arithmetic means and standard deviations of all contin-
uous variables in the model (both dependent and independent). You may specify
only classification effects in the MEANS statement—that is, effects that contain only
classification variables.

Note that the arithmetic means are not adjusted for other effects in the model; for
adjusted means, see the “LSMEANS Statement” section on page 1488. If you use
a WEIGHT statement, PROC GLM computes weighted means; see the “Weighted
Means” section on page 1555.

You may also specify options to perform multiple comparisons. However, the
MEANS statement performs multiple comparisons only for main effect means; for
multiple comparisons of interaction means, see the “LSMEANS Statement” section
on page 1488.

You can use any number of MEANS statements, provided that they appear after the
MODEL statement. For example, supposeA andB each have two levels. Then, if
you use the following statements

proc glm;
class A B;
model Y=A B A*B;
means A B / tukey;
means A*B;

run;

the means, standard deviations, and Tukey’s multiple comparisons tests are displayed
for each level of the main effectsA andB, and just the means and standard deviations
are displayed for each of the four combinations of levels forA*B. Since multiple
comparisons tests apply only to main effects, the single MEANS statement

means A B A*B / tukey;

produces the same results.
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PROC GLM does not compute means for interaction effects containing continuous
variables. Thus, if you have the model

class A;
model Y=A X A*X;

then the effectsX andA*X cannot be used in the MEANS statement. However, if
you specify the effectA in the means statement

means A;

then PROC GLM, by default, displays within-A arithmetic means of bothY andX.
Use the DEPONLY option to display means of only the dependent variables.

means A / deponly;

If you use a WEIGHT statement, PROC GLM computes weighted means and esti-
mates their variance as inversely proportional to the corresponding sum of weights
(see the “Weighted Means” section on page 1555). However, note that the statistical
interpretation of multiple comparison tests for weighted means is not well under-
stood. See the “Multiple Comparisons” section on page 1540 for formulas. The
following table summarizes categories of options available in the MEANS statement.
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Task Available options
Modify output DEPONLY

Perform multiple comparison tests BON
DUNCAN
DUNNETT
DUNNETTL
DUNNETTU
GABRIEL
GT2
LSD
REGWQ
SCHEFFE
SIDAK
SMM
SNK
T
TUKEY
WALLER

Specify additional details ALPHA=
for multiple comparison tests CLDIFF

CLM
E=
ETYPE=
HTYPE=
KRATIO=
LINES
NOSORT

Test for homogeneity of variances HOVTEST

Compensate for heterogeneous variances WELCH

These options are described in the following list.

ALPHA= p
specifies the level of significance for comparisons among the means. By default,p is
equal to the value of the ALPHA= option in the PROC GLM statement or 0.05 if that
option is not specified. You can specify any value greater than 0 and less than 1.

BON
performs Bonferronit tests of differences between means for all main effect means
in the MEANS statement. See the CLDIFF and LINES options for a discussion of
how the procedure displays results.

CLDIFF
presents results of the BON, GABRIEL, SCHEFFE, SIDAK, SMM, GT2, T, LSD,
and TUKEY options as confidence intervals for all pairwise differences between
means, and the results of the DUNNETT, DUNNETTU, and DUNNETTL options
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as confidence intervals for differences with the control. The CLDIFF option is the
default for unequal cell sizes unless the DUNCAN, REGWQ, SNK, or WALLER
option is specified.

CLM
presents results of the BON, GABRIEL, SCHEFFE, SIDAK, SMM, T, and LSD op-
tions as intervals for the mean of each level of the variables specified in the MEANS
statement. For all options except GABRIEL, the intervals are confidence intervals for
the true means. For the GABRIEL option, they arecomparison intervalsfor compar-
ing means pairwise: in this case, if the intervals corresponding to two means overlap,
then the difference between them is insignificant according to Gabriel’s method.

DEPONLY
displays only means for the dependent variables. By default, PROC GLM produces
means for all continuous variables, including continuous independent variables.

DUNCAN
performs Duncan’s multiple range test on all main effect means given in the MEANS
statement. See the LINES option for a discussion of how the procedure displays
results.

DUNNETT < (formatted-control-values) >
performs Dunnett’s two-tailedt test, testing if any treatments are significantly differ-
ent from a single control for all main effects means in the MEANS statement.

To specify which level of the effect is the control, enclose the formatted value in
quotes in parentheses after the keyword. If more than one effect is specified in the
MEANS statement, you can use a list of control values within the parentheses. By
default, the first level of the effect is used as the control. For example,

means A / dunnett(’CONTROL’);

where CONTROL is the formatted control value ofA. As another example,

means A B C / dunnett(’CNTLA’ ’CNTLB’ ’CNTLC’);

where CNTLA, CNTLB, and CNTLC are the formatted control values forA, B, and
C, respectively.

DUNNETTL < (formatted-control-value) >
performs Dunnett’s one-tailedt test, testing if any treatment is significantly less than
the control. Control level information is specified as described for the DUNNETT
option.

DUNNETTU < (formatted-control-value) >
performs Dunnett’s one-tailedt test, testing if any treatment is significantly greater
than the control. Control level information is specified as described for the DUN-
NETT option.
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E=effect
specifies the error mean square used in the multiple comparisons. By default, PROC
GLM uses the overall residual or error mean square (MS). The effect specified with
the E= option must be a term in the model; otherwise, the procedure uses the residual
MS.

ETYPE=n
specifies the type of mean square for the error effect. When you specify E=effect, you
may need to indicate which type (1, 2, 3, or 4) of MS is to be used. Then value must
be one of the types specified in or implied by the MODEL statement. The default MS
type is the highest type used in the analysis.

GABRIEL
performs Gabriel’s multiple-comparison procedure on all main effect means in the
MEANS statement. See the CLDIFF and LINES options for discussions of how the
procedure displays results.

GT2
see the SMM option.

HOVTEST
HOVTEST=BARTLETT
HOVTEST=BF
HOVTEST=LEVENE < ( TYPE= ABS | SQUARE )>
HOVTEST=OBRIEN < ( W=number )>

requests a homogeneity of variance test for the groups defined by the MEANS effect.
You can optionally specify a particular test; if you do not specify a test, Levene’s test
(Levene 1960) with TYPE=SQUARE is computed. Note that this option is ignored
unless your MODEL statement specifies a simple one-way model.

The HOVTEST=BARTLETT option specifies Bartlett’s test (Bartlett 1937), a modi-
fication of the normal-theory likelihood ratio test.

The HOVTEST=BF option specifies Brown and Forsythe’s variation of Levene’s test
(Brown and Forsythe 1974).

The HOVTEST=LEVENE option specifies Levene’s test (Levene 1960), which is
widely considered to be the standard homogeneity of variance test. You can use
the TYPE= option in parentheses to specify whether to use the absolute resid-
uals (TYPE=ABS) or the squared residuals (TYPE=SQUARE) in Levene’s test.
TYPE=SQUARE is the default.

The HOVTEST=OBRIEN option specifies O’Brien’s test (O’Brien 1979), which is
basically a modification of HOVTEST=LEVENE(TYPE=SQUARE). You can use
the W= option in parentheses to tune the variable to match the suspected kurtosis
of the underlying distribution. By default, W=0.5, as suggested by O’Brien (1979,
1981).

See the “Homogeneity of Variance in One-Way Models” section on page 1553 for
more details on these methods. Example 30.10 on page 1623 illustrates the use of the
HOVTEST and WELCH options in the MEANS statement in testing for equal group
variances and adjusting for unequal group variances in a one-way ANOVA.
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HTYPE=n
specifies the MS type for the hypothesis MS. The HTYPE= option is needed only
when the WALLER option is specified. The default HTYPE= value is the highest
type used in the model.

KRATIO=value
specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test. Rea-
sonable values for the KRATIO= option are 50, 100, 500, which roughly correspond
for the two-level case to ALPHA levels of 0.1, 0.05, and 0.01, respectively. By de-
fault, the procedure uses the value of 100.

LINES
presents results of the BON, DUNCAN, GABRIEL, REGWQ, SCHEFFE, SIDAK,
SMM, GT2, SNK, T, LSD, TUKEY, and WALLER options by listing the means in
descending order and indicating nonsignificant subsets by line segments beside the
corresponding means. The LINES option is appropriate for equal cell sizes, for which
it is the default. The LINES option is also the default if the DUNCAN, REGWQ,
SNK, or WALLER option is specified, or if there are only two cells of unequal size.
The LINES option cannot be used in combination with the DUNNETT, DUNNETTL,
or DUNNETTU option. In addition, the procedure has a restriction that no more than
24 overlapping groups of means can exist. If a mean belongs to more than 24 groups,
the procedure issues an error message. You can either reduce the number of levels of
the variable or use a multiple comparison test that allows the CLDIFF option rather
than the LINES option.

Note: If the cell sizes are unequal, the harmonic mean of the cell sizes is used to
compute the critical ranges. This approach is reasonable if the cell sizes are not
too different, but it can lead to liberal tests if the cell sizes are highly disparate. In
this case, you should not use the LINES option for displaying multiple comparisons
results; use the TUKEY and CLDIFF options instead.

LSD
see the T option.

NOSORT
prevents the means from being sorted into descending order when the CLDIFF or
CLM option is specified.

REGWQ
performs the Ryan-Einot-Gabriel-Welsch multiple range test on all main effect means
in the MEANS statement. See the LINES option for a discussion of how the proce-
dure displays results.

SCHEFFE
performs Scheffé’s multiple-comparison procedure on all main effect means in the
MEANS statement. See the CLDIFF and LINES options for discussions of how the
procedure displays results.
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SIDAK
performs pairwiset tests on differences between means with levels adjusted accord-
ing to Sidak’s inequality for all main effect means in the MEANS statement. See the
CLDIFF and LINES options for discussions of how the procedure displays results.

SMM
GT2

performs pairwise comparisons based on the studentized maximum modulus and
Sidak’s uncorrelated-t inequality, yielding Hochberg’s GT2 method when sample
sizes are unequal, for all main effect means in the MEANS statement. See the CLD-
IFF and LINES options for discussions of how the procedure displays results.

SNK
performs the Student-Newman-Keuls multiple range test on all main effect means in
the MEANS statement. See the LINES option for discussions of how the procedure
displays results.

T
LSD

performs pairwiset tests, equivalent to Fisher’s least-significant-difference test in the
case of equal cell sizes, for all main effect means in the MEANS statement. See the
CLDIFF and LINES options for discussions of how the procedure displays results.

TUKEY
performs Tukey’s studentized range test (HSD) on all main effect means in the
MEANS statement. (When the group sizes are different, this is the Tukey-Kramer
test.) See the CLDIFF and LINES options for discussions of how the procedure dis-
plays results.

WALLER
performs the Waller-Duncank-ratio t test on all main effect means in the MEANS
statement. See the KRATIO= and HTYPE= options for information on controlling
details of the test, and the LINES option for a discussion of how the procedure dis-
plays results.

WELCH
requests Welch’s (1951) variance-weighted one-way ANOVA. This alternative to the
usual analysis of variance for a one-way model is robust to the assumption of equal
within-group variances. This option is ignored unless your MODEL statement spec-
ifies a simple one-way model.

Note that using the WELCH option merely produces one additional table consisting
of Welch’s ANOVA. It does not affect all of the other tests displayed by the GLM
procedure, which still require the assumption of equal variance for exact validity.

See the “Homogeneity of Variance in One-Way Models” section on page 1553 for
more details on Welch’s ANOVA. Example 30.10 on page 1623 illustrates the use of
the HOVTEST and WELCH options in the MEANS statement in testing for equal
group variances and adjusting for unequal group variances in a one-way ANOVA.
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MODEL Statement

MODEL dependents=independents < / options > ;

The MODEL statement names the dependent variables and independent effects. The
syntax of effects is described in the “Specification of Effects” section on page 1517.
If no independent effects are specified, only an intercept term is fit. You can specify
only one MODEL statement (in contrast to the REG procedure, for example, which
allows several MODEL statements in the same PROC REG run).

The following table summarizes options available in the MODEL statement.

Task Options
Produce tests for the intercept INTERCEPT

Omit the intercept parameter from model NOINT

Produce parameter estimates SOLUTION

Produce tolerance analysis TOLERANCE

Suppress univariate tests and output NOUNI

Display estimable functions E
E1
E2
E3
E4
ALIASING

Control hypothesis tests performed SS1
SS2
SS3
SS4

Produce confidence intervals ALPHA=
CLI
CLM
CLPARM

Display predicted and residual values P

Display intermediate calculations INVERSE
XPX

Tune sensitivity SINGULAR=
ZETA=

These options are described in the following list.
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ALIASING
specifies that the estimable functions should be displayed as analiasing structure,
for which each row says which linear combination of the parameters is estimated by
each estimable function; also, adds a column of the same information to the table
of parameter estimates, giving for each parameter the expected value of the estimate
associated with that parameter. This option is most useful in fractional factorial ex-
periments that can be analyzed without a CLASS statement.

ALPHA= p
specifies the level of significancep for 100(1�p)% confidence intervals. By default,
p is equal to the value of the ALPHA= option in the PROC GLM statement, or 0.05
if that option is not specified. You may use values between 0 and 1.

CLI
produces confidence limits for individual predicted values for each observation. The
CLI option is ignored if the CLM option is also specified.

CLM
produces confidence limits for a mean predicted value for each observation.

CLPARM
produces confidence limits for the parameter estimates (if the SOLUTION option is
also specified) and for the results of all ESTIMATE statements.

E
displays the general form of all estimable functions. This is useful for determining
the order of parameters when writing CONTRAST and ESTIMATE statements.

E1
displays the Type I estimable functions for each effect in the model and computes the
corresponding sums of squares.

E2
displays the Type II estimable functions for each effect in the model and computes
the corresponding sums of squares.

E3
displays the Type III estimable functions for each effect in the model and computes
the corresponding sums of squares.

E4
displays the Type IV estimable functions for each effect in the model and computes
the corresponding sums of squares.

INTERCEPT
INT

produces the hypothesis tests associated with the intercept as an effect in the model.
By default, the procedure includes the intercept in the model but does not display
associated tests of hypotheses. Except for producing the uncorrected total sum of
squares instead of the corrected total sum of squares, the INT option is ignored when
you use an ABSORB statement.
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INVERSE
I

displays the augmented inverse (or generalized inverse)X0X matrix:�
(X 0X)� (X 0X)�X 0Y

Y 0X(X 0X)� Y 0Y � Y 0X(X 0X)�X 0Y

�

The upper left-hand corner is the generalized inverse ofX0X, the upper right-hand
corner is the parameter estimates, and the lower right-hand corner is the error sum of
squares.

NOINT
omits the intercept parameter from the model.

NOUNI
suppresses the display of univariate statistics. You typically use the NOUNI option
with a multivariate or repeated measures analysis of variance when you do not need
the standard univariate results. The NOUNI option in a MODEL statement does not
affect the univariate output produced by the REPEATED statement.

P
displays observed, predicted, and residual values for each observation that does not
contain missing values for independent variables. The Durbin-Watson statistic is also
displayed when the P option is specified. The PRESS statistic is also produced if
either the CLM or CLI option is specified.

SINGULAR=number
tunes the sensitivity of the regression routine to linear dependencies in the design.
If a diagonal pivot element is less thanC � number as PROC GLM sweeps the
X0X matrix, the associated design column is declared to be linearly dependent with
previous columns, and the associated parameter is zeroed.

TheC value adjusts the check to the relative scale of the variable. TheC value is
equal to the corrected sum of squares for the variable, unless the corrected sum of
squares is 0, in which caseC is 1. If you specify the NOINT option but not the
ABSORB statement, PROC GLM uses the uncorrected sum of squares instead.

The default value of the SINGULAR= option,10�7, may be too small, but this value
is necessary in order to handle the high-degree polynomials used in the literature to
compare regression routines.

SOLUTION
produces a solution to the normal equations (parameter estimates). PROC GLM dis-
plays a solution by default when your model involves no classification variables, so
you need this option only if you want to see the solution for models with classification
effects.

SS1
displays the sum of squares associated with Type I estimable functions for each effect.
These are also displayed by default.
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SS2
displays the sum of squares associated with Type II estimable functions for each
effect.

SS3
displays the sum of squares associated with Type III estimable functions for each
effect. These are also displayed by default.

SS4
displays the sum of squares associated with Type IV estimable functions for each
effect.

TOLERANCE
displays the tolerances used in the SWEEP routine. The tolerances are of the form
C/USS or C/CSS, as described in the discussion of the SINGULAR= option. The
tolerance value for the intercept is not divided by its uncorrected sum of squares.

XPX
displays the augmentedX0X crossproducts matrix:�

X 0X X 0Y
Y 0X Y 0Y

�

ZETA=value
tunes the sensitivity of the check for estimability for Type III and Type IV functions.
Any element in the estimable function basis with an absolute value less than the
ZETA= option is set to zero. The default value for the ZETA= option is10�8.

Although it is possible to generate data for which this absolute check can be defeated,
the check suffices in most practical examples. Additional research needs to be per-
formed to make this check relative rather than absolute.

OUTPUT Statement

OUTPUT < OUT=SAS-data-set > keyword=names
< : : : keyword=names > < / option > ;

The OUTPUT statement creates a new SAS data set that saves diagnostic mea-
sures calculated after fitting the model. At least one specification of the formkey-
word=namesis required.

All the variables in the original data set are included in the new data set, along with
variables created in the OUTPUT statement. These new variables contain the values
of a variety of diagnostic measures that are calculated for each observation in the
data set. If you want to create a permanent SAS data set, you must specify a two-
level name (refer toSAS Language Reference: Conceptsfor more information on
permanent SAS data sets).

Details on the specifications in the OUTPUT statement follow.
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keyword=names
specifies the statistics to include in the output data set and provides names to the new
variables that contain the statistics. Specify a keyword for each desired statistic (see
the following list of keywords), an equal sign, and the variable or variables to contain
the statistic.

In the output data set, the first variable listed after a keyword in the OUTPUT state-
ment contains that statistic for the first dependent variable listed in the MODEL state-
ment; the second variable contains the statistic for the second dependent variable in
the MODEL statement, and so on. The list of variables following the equal sign
can be shorter than the list of dependent variables in the MODEL statement. In this
case, the procedure creates the new names in order of the dependent variables in the
MODEL statement. See the “Examples” section on page 1509.

The keywords allowed and the statistics they represent are as follows:

COOKD Cook’sD influence statistic

COVRATIO standard influence of observation on covariance of parameter esti-
mates

DFFITS standard influence of observation on predicted value

H leverage,hi = xi(X
0X)�1x0i

LCL lower bound of a100(1 � p)% confidence interval for an individ-
ual prediction. Thep-level is equal to the value of the ALPHA=
option in the OUTPUT statement or, if this option is not specified,
to the ALPHA= option in the PROC GLM statement. If neither of
these options is set thenp = 0:05 by default, resulting in the lower
bound for a 95% confidence interval. The interval also depends
on the variance of the error, as well as the variance of the param-
eter estimates. For the corresponding upper bound, see the UCL
keyword.

LCLM lower bound of a100(1�p)% confidence interval for the expected
value (mean) of the predicted value. Thep-level is equal to the
value of the ALPHA= option in the OUTPUT statement or, if this
option is not specified, to the ALPHA= option in the PROC GLM
statement. If neither of these options is set thenp = 0:05 by de-
fault, resulting in the lower bound for a 95% confidence interval.
For the corresponding upper bound, see the UCLM keyword.

PREDICTED | P predicted values

PRESS residual for theith observation that results from dropping it and
predicting it on the basis of all other observations. This is the resid-
ual divided by(1�hi) wherehi is the leverage, defined previously.

RESIDUAL | R residuals, calculated as ACTUAL� PREDICTED

RSTUDENT a studentized residual with the current observation deleted

STDI standard error of the individual predicted value

STDP standard error of the mean predicted value
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STDR standard error of the residual

STUDENT studentized residuals, the residual divided by its standard error

UCL upper bound of a100(1 � p)% confidence interval for an individ-
ual prediction. Thep-level is equal to the value of the ALPHA=
option in the OUTPUT statement or, if this option is not specified,
to the ALPHA= option in the PROC GLM statement. If neither of
these options is set thenp = 0:05 by default, resulting in the upper
bound for a 95% confidence interval. The interval also depends
on the variance of the error, as well as the variance of the param-
eter estimates. For the corresponding lower bound, see the LCL
keyword.

UCLM upper bound of a100(1�p)% confidence interval for the expected
value (mean) of the predicted value. Thep-level is equal to the
value of the ALPHA= option in the OUTPUT statement or, if this
option is not specified, to the ALPHA= option in the PROC GLM
statement. If neither of these options is set thenp = 0:05 by de-
fault, resulting in the upper bound for a 95% confidence interval.
For the corresponding lower bound, see the LCLM keyword.

OUT=SAS-data-set
gives the name of the new data set. By default, the procedure uses the DATAn con-
vention to name the new data set.

The following option is available in the OUTPUT statement and is specified after a
slash(/):

ALPHA= p
specifies the level of significancep for 100(1�p)% confidence intervals. By default,
p is equal to the value of the ALPHA= option in the PROC GLM statement or 0.05 if
that option is not specified. You may use values between 0 and 1.

See Chapter 3, “Introduction to Regression Procedures,” and the “Influence Diagnos-
tics” section in Chapter 55, “The REG Procedure,” for details on the calculation of
these statistics.

Examples
The following statements show the syntax for creating an output data set with a single
dependent variable.

proc glm;
class a b;
model y=a b a*b;
output out=new p=yhat r=resid stdr=eresid;

run;

These statements create an output data set namednew. In addition to all the variables
from the original data set,new contains the variableyhat, with values that are pre-
dicted values of the dependent variabley; the variableresid, with values that are the
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residual values ofy; and the variableeresid, with values that are the standard errors
of the residuals.

The following statements show a situation with five dependent variables.

proc glm;
by group;
class a;
model y1-y5=a x(a);
output out=pout predicted=py1-py5;

run;

Data setpout contains five new variables,py1 throughpy5. The values ofpy1 are
the predicted values ofy1; the values ofpy2 are the predicted values ofy2; and so
on.

For more information on the data set produced by the OUTPUT statement, see the
section “Output Data Sets” on page 1574.

RANDOM Statement

RANDOM effects < / options > ;

When some model effects are random (that is, assumed to be sampled from a normal
population of effects), you can specify these effects in the RANDOM statement in
order to compute the expected values of mean squares for various model effects and
contrasts and, optionally, to perform random effects analysis of variance tests. You
can use as many RANDOM statements as you want, provided that they appear after
the MODEL statement. If you use a CONTRAST statement with a RANDOM state-
ment and you want to obtain the expected mean squares for the contrast hypothesis,
you must enter the CONTRAST statement before the RANDOM statement.

Note: PROC GLM uses only the information pertaining to expected mean squares
when you specify the TEST option in the RANDOM statement and, even then,
only in the extraF tests produced by the RANDOM statement. Other features in
the GLM procedure—including the results of the LSMEANS and ESTIMATE state-
ments—assume that all effects are fixed, so that all tests and estimability checks for
these statements are based on a fixed effects model, even when you use a RANDOM
statement. Therefore, you should use the MIXED procedure to compute tests involv-
ing these features that take the random effects into account; see the section “PROC
GLM versus PROC MIXED for Random Effects Analysis” on page 1567 and Chap-
ter 41, “The MIXED Procedure,” for more information.

When you use the RANDOM statement, by default the GLM procedure produces the
Type III expected mean squares for model effects and for contrasts specified before
the RANDOM statement in the program code. In order to obtain expected values for
other types of mean squares, you need to specify which types of mean squares are
of interest in the MODEL statement. See the section “Computing Type I, II, and IV
Expected Mean Squares” on page 1570 for more information.
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The list of effects in the RANDOM statement should contain one or more of the pure
classification effects specified in the MODEL statement (that is, main effects, crossed
effects, or nested effects involving only class variables). The coefficients correspond-
ing to each effect specified are assumed to be normally and independently distributed
with common variance. Levels in different effects are assumed to be independent.

You can specify the following options in the RANDOM statement after a slash:

Q
displays all quadratic forms in the fixed effects that appear in the expected mean
squares. For some designs, large mixed-level factorials, for example, the Q option
may generate a substantial amount of output.

TEST
performs hypothesis tests for each effect specified in the model, using appropriate
error terms as determined by the expected mean squares.

Caution: PROC GLM does not automatically declare interactions to be random when
the effects in the interaction are declared random. For example,

random a b / test;

does not produce the same expected mean squares or tests as

random a b a*b / test;

To ensure correct tests, you need to list all random interactions and random main
effects in the RANDOM statement.

See the section “Random Effects Analysis” on page 1567 for more information on
the calculation of expected mean squares and tests and on the similarities and dif-
ferences between the GLM and MIXED procedures. See Chapter 4, “Introduction
to Analysis-of-Variance Procedures,” and Chapter 41, “The MIXED Procedure,” for
more information on random effects.

REPEATED Statement

REPEATED factor-specification < / options > ;

When values of the dependent variables in the MODEL statement represent repeated
measurements on the same experimental unit, the REPEATED statement enables you
to test hypotheses about the measurement factors (often calledwithin-subject fac-
tors) as well as the interactions of within-subject factors with independent variables
in the MODEL statement (often calledbetween-subject factors). The REPEATED
statement provides multivariate and univariate tests as well as hypothesis tests for
a variety of single-degree-of-freedom contrasts. There is no limit to the number of
within-subject factors that can be specified.

The REPEATED statement is typically used for handling repeated measures designs
with one repeated response variable. Usually, the variables on the left-hand side of
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the equation in the MODEL statement represent one repeated response variable. This
does not mean that only one factor can be listed in the REPEATED statement. For
example, one repeated response variable (hemoglobin count) might be measured 12
times (implying variables Y1 to Y12 on the left-hand side of the equal sign in the
MODEL statement), with the associated within-subject factors treatment and time
(implying two factors listed in the REPEATED statement). See the “Examples” sec-
tion on page 1514 for an example of how PROC GLM handles this case. Designs
with two or more repeated response variables can, however, be handled with the
IDENTITY transformation; see page 1513 for more information, and Example 30.9
on page 1618 for an example of analyzing a doubly-multivariate repeated measures
design.

When a REPEATED statement appears, the GLM procedure enters a multivariate
mode of handling missing values. If any values for variables corresponding to each
combination of the within-subject factors are missing, the observation is excluded
from the analysis.

If you use a CONTRAST or TEST statement with a REPEATED statement, you must
enter the CONTRAST or TEST statement before the REPEATED statement.

The simplest form of the REPEATED statement requires only afactor-name. With
two repeated factors, you must specify thefactor-nameand number of levels (levels)
for each factor. Optionally, you can specify the actual values for the levels (level-
values), atransformationthat defines single-degree-of freedom contrasts, andoptions
for additional analyses and output. When you specify more than one within-subject
factor, thefactor-names(and associated level and transformation information) must
be separated by a comma in the REPEATED statement. These terms are described
in the following section, “Syntax Details.”

Syntax Details
You can specify the following terms in the REPEATED statement.

factor-specification
The factor-specificationfor the REPEATED statement can include any number of
individual factor specifications, separated by commas, of the following form:

factor-name levels < (level-values) > < transformation >

where

factor-name names a factor to be associated with the dependent variables. The
name should not be the same as any variable name that already
exists in the data set being analyzed and should conform to the
usual conventions of SAS variable names.

When specifying more than one factor, list the dependent variables
in the MODEL statement so that the within-subject factors defined
in the REPEATED statement are nested; that is, the first factor de-
fined in the REPEATED statement should be the one with values
that change least frequently.
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levels gives the number of levels associated with the factor being defined.
When there is only one within-subject factor, the number of levels
is equal to the number of dependent variables. In this case,levels
is optional. When more than one within-subject factor is defined,
however,levelsis required, and the product of the number of levels
of all the factors must equal the number of dependent variables in
the MODEL statement.

(level-values) gives values that correspond to levels of a repeated-measures factor.
These values are used to label output and as spacings for construct-
ing orthogonal polynomial contrasts if you specify a POLYNO-
MIAL transformation. The number of values specified must cor-
respond to the number of levels for that factor in the REPEATED
statement. Enclose thelevel-valuesin parentheses.

The following transformationkeywords define single-degree-of-freedom contrasts
for factors specified in the REPEATED statement. Since the number of contrasts
generated is always one less than the number of levels of the factor, you have some
control over which contrast is omitted from the analysis by which transformation you
select. The only exception is the IDENTITY transformation; this transformation is
not composed of contrasts and has the same degrees of freedom as the factor has
levels. By default, the procedure uses the CONTRAST transformation.

CONTRAST < (ordinal-reference-level ) > generates contrasts between levels of
the factor and a reference level. By default, the procedure uses
the last level as the reference level; you can optionally specify a
reference level in parentheses after the keyword CONTRAST. The
reference level corresponds to the ordinal value of the level rather
than the level value specified. For example, to generate contrasts
between the first level of a factor and the other levels, use

contrast(1)

HELMERT generates contrasts between each level of the factor and the mean
of subsequent levels.

IDENTITY generates an identity transformation corresponding to the associ-
ated factor. This transformation isnot composed of contrasts; it
hasn degrees of freedom for ann-level factor, instead ofn � 1.
This can be used for doubly-multivariate repeated measures.

MEAN < (ordinal-reference-level ) > generates contrasts between levels of the
factor and the mean of all other levels of the factor. Specifying
a reference level eliminates the contrast between that level and the
mean. Without a reference level, the contrast involving the last
level is omitted. See the CONTRAST transformation for an exam-
ple.

POLYNOMIAL generates orthogonal polynomial contrasts. Level values, if pro-
vided, are used as spacings in the construction of the polynomials;
otherwise, equal spacing is assumed.

PROFILE generates contrasts between adjacent levels of the factor.
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You can specify the following options in the REPEATED statement after a slash.

CANONICAL
performs a canonical analysis of theH andE matrices corresponding to the trans-
formed variables specified in the REPEATED statement.

HTYPE=n
specifies the type of theH matrix used in the multivariate tests and the type of sums
of squares used in the univariate tests. See the HTYPE= option in the specifications
for the MANOVA statement for further details.

MEAN
generates the overall arithmetic means of the within-subject variables.

NOM
displays only the results of the univariate analyses.

NOU
displays only the results of the multivariate analyses.

PRINTE
displays theE matrix for each combination of within-subject factors, as well as par-
tial correlation matrices for both the original dependent variables and the variables
defined by the transformations specified in the REPEATED statement. In addition,
the PRINTE option provides sphericity tests for each set of transformed variables. If
the requested transformations are not orthogonal, the PRINTE option also provides a
sphericity test for a set of orthogonal contrasts.

PRINTH
displays theH (SSCP) matrix associated with each multivariate test.

PRINTM
displays the transformation matrices that define the contrasts in the analysis. PROC
GLM always displays theM matrix so that the transformed variables are defined by
the rows, not the columns, of the displayedM matrix. In other words, PROC GLM
actually displaysM0.

PRINTRV
displays the characteristic roots and vectors for each multivariate test.

SUMMARY
produces analysis-of-variance tables for each contrast defined by the within-subject
factors. Along with tests for the effects of the independent variables specified in the
MODEL statement, a term labeled MEAN tests the hypothesis that the overall mean
of the contrast is zero.

Examples
When specifying more than one factor, list the dependent variables in the MODEL
statement so that the within-subject factors defined in the REPEATED statement are
nested; that is, the first factor defined in the REPEATED statement should be the one
with values that change least frequently. For example, assume that three treatments
are administered at each of four times, for a total of twelve dependent variables on
each experimental unit. If the variables are listed in the MODEL statement asY1
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throughY12, then the following REPEATED statement

proc glm;
classes group;
model Y1-Y12=group / nouni;
repeated trt 3, time 4;

run;

implies the following structure:

Dependent Variables
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12

Value oftrt 1 1 1 1 2 2 2 2 3 3 3 3

Value oftime 1 2 3 4 1 2 3 4 1 2 3 4

The REPEATED statement always produces a table like the preceding one. For more
information, see the section “Repeated Measures Analysis of Variance” on page 1560.

TEST Statement

TEST < H=effects > E=effect < / options > ;

Although anF value is computed for all sums of squares in the analysis using the
residual MS as an error term, you may request additionalF tests using other effects
as error terms. You need a TEST statement when a nonstandard error structure (as in a
split-plot design) exists. Note, however, that this may not be appropriate if the design
is unbalanced, since in most unbalanced designs with nonstandard error structures,
mean squares are not necessarily independent with equal expectations under the null
hypothesis.

Caution: The GLM procedure does not check any of the assumptions underlying
theF statistic. When you specify a TEST statement, you assume sole responsibility
for the validity of theF statistic produced. To help validate a test, you can use
the RANDOM statement and inspect the expected mean squares, or you can use the
TEST option of the RANDOM statement.

You may use as many TEST statements as you want, provided that they appear after
the MODEL statement.

You can specify the following terms in the TEST statement.

H=effects specifies which effects in the preceding model are to be used as
hypothesis (numerator) effects.

E=effect specifies one, and only one, effect to use as the error (denominator)
term. The E= specification is required.

By default, the sum of squares type for all hypothesis sum of squares and error sum
of squares is the highest type computed in the model. If the hypothesis type or error
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type is to be another type that was computed in the model, you should specify one or
both of the following options after a slash.

ETYPE=n
specifies the type of sum of squares to use for the error term. The type must be a type
computed in the model (n=1, 2, 3, or 4 ).

HTYPE=n
specifies the type of sum of squares to use for the hypothesis. The type must be a
type computed in the model (n=1, 2, 3, or 4).

This example illustrates the TEST statement with a split-plot model:

proc glm;
class a b c;
model y=a b(a) c a*c b*c(a);
test h=a e=b(a)/ htype=1 etype=1;
test h=c a*c e=b*c(a) / htype=1 etype=1;

run;

WEIGHT Statement

WEIGHT variable ;

When a WEIGHT statement is used, a weighted residual sum of squares

X
i

wi(yi � ŷi)
2

is minimized, wherewi is the value of the variable specified in the WEIGHT state-
ment,yi is the observed value of the response variable, andŷi is the predicted value
of the response variable.

If you specify the WEIGHT statement, it must appear before the first RUN statement
or it is ignored.

An observation is used in the analysis only if the value of the WEIGHT statement
variable is nonmissing and greater than zero.

The WEIGHT statement has no effect on degrees of freedom or number of obser-
vations, but it is used by the MEANS statement when calculating means and per-
forming multiple comparison tests (as described in the “MEANS Statement” section
beginning on page 1497). The normal equations used when a WEIGHT statement is
present are

X0WX� = X0WY

whereW is a diagonal matrix consisting of the values of the variable specified in the
WEIGHT statement.
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If the weights for the observations are proportional to the reciprocals of the error vari-
ances, then the weighted least-squares estimates are best linear unbiased estimators
(BLUE).

Details

Statistical Assumptions for Using PROC GLM

The basic statistical assumption underlying the least-squares approach to general lin-
ear modeling is that the observed values of each dependent variable can be written
as the sum of two parts: a fixed componentx0�, which is a linear function of the
independent coefficients, and a random noise, or error, component�:

y = x0� + �

The independent coefficientsx are constructed from the model effects as described
in the “Parameterization of PROC GLM Models” section on page 1521. Further,
the errors for different observations are assumed to be uncorrelated with identical
variances. Thus, this model can be written

E(Y ) = X�; Var(Y ) = �2I

whereY is the vector of dependent variable values,X is the matrix of independent
coefficients,I is the identity matrix, and�2 is the common variance for the errors. For
multiple dependent variables, the model is similar except that the errors for different
dependent variables within the same observation are not assumed to be uncorrelated.
This yields a multivariate linear model of the form

E(Y ) = XB; Var(vec(Y )) = �
 I

whereY andB are now matrices, with one column for each dependent variable,
vec(Y ) stringsY out by rows, and
 indicates the Kronecker matrix product.

Under the assumptions thus far discussed, the least-squares approach provides esti-
mates of the linear parameters that are unbiased and have minimum variance among
linear estimators. Under the further assumption that the errors have a normal (or
Gaussian) distribution, the least-squares estimates are the maximum likelihood esti-
mates and their distribution is known. All of the significance levels (“p values”) and
confidence limits calculated by the GLM procedure require this assumption of nor-
mality in order to be exactly valid, although they are good approximations in many
other cases.

Specification of Effects

Each term in a model, called aneffect, is a variable or combination of variables. Ef-
fects are specified with a special notation using variable names and operators. There
are two kinds of variables:classification(or class) variablesandcontinuous vari-
ables. There are two primary operators:crossingandnesting. A third operator, the
bar operator, is used to simplify effect specification.
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In an analysis-of-variance model, independent variables must be variables that iden-
tify classification levels. In the SAS System, these are calledclass variablesand are
declared in the CLASS statement. (They can also be calledcategorical, qualitative,
discrete, or nominal variables.) Class variables can be eithernumericor character.
The values of a class variable are calledlevels. For example, the class variableSex
has the levels “male” and “female.”

In a model, an independent variable that is not declared in the CLASS statement is
assumed to be continuous. Continuous variables, which must be numeric, are used for
response variables and covariates. For example, the heights and weights of subjects
are continuous variables.

Types of Effects
There are seven different types of effects used in the GLM procedure. In the following
list, assume thatA, B, C, D, andE are class variables and thatX1, X2, andY are
continuous variables:

� Regressor effects are specified by writing continuous variables by themselves:
X1 X2.

� Polynomial effects are specified by joining two or more continuous variables
with asterisks:X1*X1 X1*X2.

� Main effects are specified by writing class variables by themselves:A B C.

� Crossed effects (interactions) are specified by joining class variables with as-
terisks:A*B B*C A*B*C.

� Nested effects are specified by following a main effect or crossed effect with a
class variable or list of class variables enclosed in parentheses. The main effect
or crossed effect is nested within the effects listed in parentheses:

B(A) C(B*A) D*E(C*B*A) .

In this example,B(A) is read “B nested withinA.”

� Continuous-by-class effects are written by joining continuous variables and
class variables with asterisks:X1*A.

� Continuous-nesting-class effects consist of continuous variables followed by a
class variable interaction enclosed in parentheses:X1(A) X1*X2(A*B).
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One example of the general form of an effect involving several variables is

X1*X2*A*B*C(D*E)

This example contains crossed continuous terms by crossed classification terms
nested within more than one class variable. The continuous list comes first, followed
by the crossed list, followed by the nesting list in parentheses. Note that asterisks can
appear within the nested list but not immediately before the left parenthesis. For de-
tails on how the design matrix and parameters are defined with respect to the effects
specified in this section, see the section “Parameterization of PROC GLM Models”
on page 1521.

The MODEL statement and several other statements use these effects. Some exam-
ples of MODEL statements using various kinds of effects are shown in the following
table;a, b, andc represent class variables, andy, y1, y2, x, andz represent continu-
ous variables.

Specification Kind of Model
model y=x; simple regression

model y=x z; multiple regression

model y=x x*x; polynomial regression

model y1 y2=x z; multivariate regression

model y=a; one-way ANOVA

model y=a b c; main effects model

model y=a b a*b; factorial model (with interaction)

model y=a b(a) c(b a); nested model

model y1 y2=a b; multivariate analysis of variance (MANOVA)

model y=a x; analysis-of-covariance model

model y=a x(a); separate-slopes model

model y=a x x*a; homogeneity-of-slopes model

The Bar Operator
You can shorten the specification of a large factorial model using the bar operator.
For example, two ways of writing the model for a full three-way factorial model are

proc glm; and proc glm;
class A B C; class A B C;
model Y=A B C A*B model Y=A|B|C;

A*C B*C A*B*C; run;
run;

When the bar (|) is used, the right- and left-hand sides become effects, and the cross of
them becomes an effect. Multiple bars are permitted. The expressions are expanded
from left to right, using rules 2–4 given in Searle (1971, p. 390).
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� Multiple bars are evaluated left to right. For instance,A|B|C is evaluated as
follows.

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B A*C B*C A*B*C

� Crossed and nested groups of variables are combined. For example,
A(B) | C(D) generatesA*C(B D), among other terms.

� Duplicate variables are removed. For example,A(C) | B(C) generates
A*B(C C), among other terms, and the extraC is removed.

� Effects are discarded if a variable occurs on both the crossed and nested parts
of an effect. For instance,A(B) | B(D E) generatesA*B(B D E), but this effect
is eliminated immediately.

You can also specify the maximum number of variables involved in any effect that
results from bar evaluation by specifying that maximum number, preceded by an
@ sign, at the end of the bar effect. For example, the specificationA | B | C@2
would result in only those effects that contain 2 or fewer variables: in this case,
A B A*B C A*C andB*C.

The following table gives more examples of using the bar and at operators.

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)

Using PROC GLM Interactively

You can use the GLM procedure interactively. After you specify a model with a
MODEL statement and run PROC GLM with a RUN statement, you can execute a
variety of statements without reinvoking PROC GLM.

The “Syntax” section (page 1477) describes which statements can be used interac-
tively. These interactive statements can be executed singly or in groups by following
the single statement or group of statements with a RUN statement. Note that the
MODEL statement cannot be repeated; PROC GLM allows only one MODEL state-
ment.

If you use PROC GLM interactively, you can end the GLM procedure with a DATA
step, another PROC step, an ENDSAS statement, or a QUIT statement.
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When you are using PROC GLM interactively, additional RUN statements do not end
the procedure but tell PROC GLM to execute additional statements.

When you specify a WHERE statement with PROC GLM, it should appear before
the first RUN statement. The WHERE statement enables you to select only certain
observations for analysis without using a subsetting DATA step. For example, the
statement where group ne 5 omits observations with GROUP=5 from the
analysis. Refer toSAS Language Reference: Dictionaryfor details on this statement.

When you specify a BY statement with PROC GLM, interactive processing is not
possible; that is, once the first RUN statement is encountered, processing proceeds
for each BY group in the data set, and no further statements are accepted by the
procedure.

Interactivity is also disabled when there are different patterns of missing values
among the dependent variables. For details, see the “Missing Values” section on
page 1571.

Parameterization of PROC GLM Models

The GLM procedure constructs a linear model according to the specifications in the
MODEL statement. Each effect generates one or more columns in a design matrix
X. This section shows precisely howX is built.

Intercept
All models include a column of 1s by default to estimate an intercept parameter�.
You can use the NOINT option to suppress the intercept.

Regression Effects
Regression effects (covariates) have the values of the variables copied into the design
matrix directly. Polynomial terms are multiplied out and then installed inX.

Main Effects
If a class variable hasm levels, PROC GLM generatesm columns in the design
matrix for its main effect. Each column is an indicator variable for one of the levels
of the class variable. The default order of the columns is the sort order of the values
of their levels; this order can be controlled with the ORDER= option in the PROC
GLM statement, as shown in the following table.

Data Design Matrix
A B

A B � A1 A2 B1 B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1
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There are more columns for these effects than there are degrees of freedom for them;
in other words, PROC GLM is using an over-parameterized model.

Crossed Effects
First, PROC GLM reorders the terms to correspond to the order of the variables in the
CLASS statement; thus,B*A becomesA*B if A precedesB in the CLASS statement.
Then, PROC GLM generates columns for all combinations of levels that occur in
the data. The order of the columns is such that the rightmost variables in the cross
index faster than the leftmost variables. No columns are generated corresponding to
combinations of levels that do not occur in the data.

Data Design Matrix
A B A*B

A B � A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1

In this matrix, main-effects columns are not linearly independent of crossed-effect
columns; in fact, the column space for the crossed effects contains the space of the
main effect.

Nested Effects
Nested effects are generated in the same manner as crossed effects. Hence, the design
columns generated by the following statements are the same (but the ordering of the
columns is different):

model y=a b(a); (B nested within A)

model y=a a*b; (omitted main effect for B)

The nesting operator in PROC GLM is more a notational convenience than an opera-
tion distinct from crossing. Nested effects are characterized by the property that the
nested variables never appear as main effects. The order of the variables within nest-
ing parentheses is made to correspond to the order of these variables in the CLASS
statement. The order of the columns is such that variables outside the parentheses in-
dex faster than those inside the parentheses, and the rightmost nested variables index
faster than the leftmost variables.
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Data Design Matrix
A B(A)

A B � A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1

Continuous-Nesting-Class Effects
When a continuous variable nests with a class variable, the design columns are con-
structed by multiplying the continuous values into the design columns for the class
effect.

Data Design Matrix
A X(A)

X A � A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

This model estimates a separate slope forX within each level ofA.

Continuous-by-Class Effects
Continuous-by-class effects generate the same design columns as continuous-nesting-
class effects. The two models differ by the presence of the continuous variable as a
regressor by itself, in addition to being a contributor toX*A.

Data Design Matrix
A X*A

X A � X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

Continuous-by-class effects are used to test the homogeneity of slopes. If the
continuous-by-class effect is nonsignificant, the effect can be removed so that the
response with respect toX is the same for all levels of the class variables.
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General Effects
An example that combines all the effects is

X1*X2*A*B*C(D E)

The continuous list comes first, followed by the crossed list, followed by the nested
list in parentheses.

The sequencing of parameters is important to learn if you use the CONTRAST or
ESTIMATE statement to compute or test some linear function of the parameter esti-
mates.

Effects may be retitled by PROC GLM to correspond to ordering rules. For example,
B*A(E D) may be retitledA*B(D E) to satisfy the following:

� Class variables that occur outside parentheses (crossed effects) are sorted in the
order in which they appear in the CLASS statement.

� Variables within parentheses (nested effects) are sorted in the order in which
they appear in a CLASS statement.

The sequencing of the parameters generated by an effect can be described by which
variables have their levels indexed faster:

� Variables in the crossed part index faster than variables in the nested list.

� Within a crossed or nested list, variables to the right index faster than variables
to the left.

For example, suppose a model includes four effects—A, B, C, andD—each having
two levels, 1 and 2. If the CLASS statement is

class A B C D;

then the order of the parameters for the effectB*A(C D), which is retitledA*B(C D),
is as follows.

A1B1C1D1

A1B2C1D1

A2B1C1D1

A2B2C1D1

A1B1C1D2

A1B2C1D2

A2B1C1D2

A2B2C1D2

A1B1C2D1

A1B2C2D1

A2B1C2D1

A2B2C2D1
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A1B1C2D2

A1B2C2D2

A2B1C2D2

A2B2C2D2

Note that first the crossed effectsB andA are sorted in the order in which they appear
in the CLASS statement so thatA precedesB in the parameter list. Then, for each
combination of the nested effects in turn, combinations ofA andB appear. TheB
effect changes fastest because it is rightmost in the (renamed) cross list. ThenA
changes next fastest. TheD effect changes next fastest, andC is the slowest since it
is leftmost in the nested list.

When numeric class variables are used, their levels are sorted by their charac-
ter format, which may not correspond to their numeric sort sequence. Therefore,
it is advisable to include a format for numeric class variables or to use the OR-
DER=INTERNAL option in the PROC GLM statement to ensure that levels are
sorted by their internal values.

Degrees of Freedom
For models with classification (categorical) effects, there are more design columns
constructed than there are degrees of freedom for the effect. Thus, there are linear
dependencies among the columns. In this event, the parameters are not jointly es-
timable; there is an infinite number of least-squares solutions. The GLM procedure
uses a generalized (g2) inverse to obtain values for the estimates; see the “Compu-
tational Method” section on page 1574 for more details. The solution values are not
produced unless the SOLUTION option is specified in the MODEL statement. The
solution has the characteristic that estimates are zero whenever the design column
for that parameter is a linear combination of previous columns. (Strictly termed, the
solution values should not be called estimates, since the parameters may not be for-
mally estimable.) With this full parameterization, hypothesis tests are constructed to
test linear functions of the parameters that are estimable.

Other procedures (such as the CATMOD procedure) reparameterize models to full
rank using certain restrictions on the parameters. PROC GLM does not reparame-
terize, making the hypotheses that are commonly tested more understandable. See
Goodnight (1978) for additional reasons for not reparameterizing.

PROC GLM does not actually construct the entire design matrixX; rather, a rowxi
of X is constructed for each observation in the data set and used to accumulate the
crossproduct matrixX0X =

P
i x

0
ixi.
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Hypothesis Testing in PROC GLM

See Chapter 12, “The Four Types of Estimable Functions,” for a complete discussion
of the four standard types of hypothesis tests.

Example
To illustrate the four types of tests and the principles upon which they are based,
consider a two-way design with interaction based on the following data:

B
1 2

1 23.5 28.7
23.7

A 2 8.9 5.6
8.9

3 10.3 13.6
12.5 14.6

Invoke PROC GLM and specify all the estimable functions options to examine what
the GLM procedure can test. The following statements are followed by the summary
ANOVA table. See Figure 30.8.

data example;
input a b y @@;
datalines;

1 1 23.5 1 1 23.7 1 2 28.7 2 1 8.9 2 2 5.6
2 2 8.9 3 1 10.3 3 1 12.5 3 2 13.6 3 2 14.6
;

proc glm;
class a b;
model y=a b a*b / e e1 e2 e3 e4;

run;

SAS OnlineDoc: Version 8



Hypothesis Testing in PROC GLM � 1527

The GLM Procedure

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 520.4760000 104.0952000 49.66 0.0011

Error 4 8.3850000 2.0962500

Corrected Total 9 528.8610000

R-Square Coeff Var Root MSE y Mean

0.984145 9.633022 1.447843 15.03000

Figure 30.8. Summary ANOVA Table from PROC GLM

The following sections show the general form of estimable functions and discuss the
four standard tests, their properties, and abbreviated output for the two-way crossed
example.

Estimability
Figure 30.9 is the general form of estimable functions for the example. In order to be
testable, a hypothesis must be able to fit within the framework displayed here.

The GLM Procedure

General Form of Estimable Functions

Effect Coefficients

Intercept L1

a 1 L2
a 2 L3
a 3 L1-L2-L3

b 1 L5
b 2 L1-L5

a*b 1 1 L7
a*b 1 2 L2-L7
a*b 2 1 L9
a*b 2 2 L3-L9
a*b 3 1 L5-L7-L9
a*b 3 2 L1-L2-L3-L5+L7+L9

Figure 30.9. General Form of Estimable Functions

If a hypothesis is estimable, theLs in the preceding scheme can be set to values that
match the hypothesis. All the standard tests in PROC GLM can be shown in the
preceding format, with some of theLs zeroed and some set to functions of otherLs.
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The following sections show how many of the hypotheses can be tested by comparing
the model sum-of-squares regression from one model to a submodel. The notation
used is

SS(B effectsjA effects) = SS(B effects;A effects)� SS(A effects)

where SS(A effects) denotes the regression model sum of squares for the model con-
sisting of A effects. This notation is equivalent to the reduction notation defined
by Searle (1971) and summarized in Chapter 12, “The Four Types of Estimable
Functions.”

Type I Tests
Type I sums of squares (SS), also calledsequential sums of squares, are the incre-
mental improvement in error sums of squares as each effect is added to the model.
They can be computed by fitting the model in steps and recording the difference in
error sum of squares at each step.

Source Type I SS
A SS(A j �)
B SS(B j �;A)

A �B SS(A �B j�;A;B)

Type I sums of squares are displayed by default because they are easy to obtain and
can be used in various hand calculations to produce sum of squares values for a series
of different models. Nelder (1994) and others have argued that Type I and II sums
are essentially the only appropriate ones for testing ANOVA effects; however, refer
also to the discussion of Nelder’s article, especially Rodriguez, Tobias, and Wolfinger
(1995) and Searle (1995).

The Type I hypotheses have these properties:

� Type I sum of squares for all effects add up to the model sum of squares. None
of the other sum of squares types have this property, except in special cases.

� Type I hypotheses can be derived from rows of the Forward-Dolittle trans-
formation ofX0X (a transformation that reducesX0X to an upper triangular
matrix by row operations).

� Type I sum of squares are statistically independent of each other under the
usual assumption that the true residual errors are independent and identically
normally distributed (see page 1517).

� Type I hypotheses depend on the order in which effects are specified in the
MODEL statement.
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� Type I hypotheses are uncontaminated by parameters corresponding to effects
that precede the effect being tested; however, the hypotheses usually involve
parameters for effects following the tested effect in the model. For example, in
the model

Y=A B;

the Type I hypothesis forB does not involveA parameters, but the Type I
hypothesis forA does involveB parameters.

� Type I hypotheses are functions of the cell counts for unbalanced data; the
hypotheses are not usually the same hypotheses that are tested if the data are
balanced.

� Type I sums of squares are useful for polynomial models where you want to
know the contribution of a term as though it had been made orthogonal to pre-
ceding effects. Thus, in polynomial models, Type I sums of squares correspond
to tests of the orthogonal polynomial effects.

The Type I estimable functions and associated tests for the example are shown in
Figure 30.10. (This combines tables from several pages of output.)

The GLM Procedure

Type I Estimable Functions

----------------Coefficients----------------
Effect a b a*b

Intercept 0 0 0

a 1 L2 0 0
a 2 L3 0 0
a 3 -L2-L3 0 0

b 1 0.1667*L2-0.1667*L3 L5 0
b 2 -0.1667*L2+0.1667*L3 -L5 0

a*b 1 1 0.6667*L2 0.2857*L5 L7
a*b 1 2 0.3333*L2 -0.2857*L5 -L7
a*b 2 1 0.3333*L3 0.2857*L5 L9
a*b 2 2 0.6667*L3 -0.2857*L5 -L9
a*b 3 1 -0.5*L2-0.5*L3 0.4286*L5 -L7-L9
a*b 3 2 -0.5*L2-0.5*L3 -0.4286*L5 L7+L9

The GLM Procedure

Dependent Variable: y

Source DF Type I SS Mean Square F Value Pr > F

a 2 494.0310000 247.0155000 117.84 0.0003
b 1 10.7142857 10.7142857 5.11 0.0866
a*b 2 15.7307143 7.8653571 3.75 0.1209

Figure 30.10. Type I Estimable Functions and Associated Tests
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Type II Tests
The Type II tests can also be calculated by comparing the error sums of squares (SS)
for subset models. The Type II SS are the reduction in error SS due to adding the
term after all other terms have been added to the model except terms that contain the
effect being tested. An effect is contained in another effect if it can be derived by
deleting variables from the latter effect. For example,A andB are both contained in
A*B. For this model

Source Type II SS
A SS(A j �;B)
B SS(B j �;A)

A �B SS(A �B j �;A;B)

Type II SS have these properties:

� Type II SS do not necessarily sum to the model SS.

� The hypothesis for an effect does not involve parameters of other effects except
for containing effects (which it must involve to be estimable).

� Type II SS are invariant to the ordering of effects in the model.

� For unbalanced designs, Type II hypotheses for effects that are contained in
other effects are not usually the same hypotheses that are tested if the data are
balanced. The hypotheses are generally functions of the cell counts.

The Type II estimable functions and associated tests for the example are shown in
Figure 30.11. (Again, this combines tables from several pages of output.)

The GLM Procedure

Type II Estimable Functions

----------------Coefficients----------------
Effect a b a*b

Intercept 0 0 0

a 1 L2 0 0
a 2 L3 0 0
a 3 -L2-L3 0 0

b 1 0 L5 0
b 2 0 -L5 0

a*b 1 1 0.619*L2+0.0476*L3 0.2857*L5 L7
a*b 1 2 0.381*L2-0.0476*L3 -0.2857*L5 -L7
a*b 2 1 -0.0476*L2+0.381*L3 0.2857*L5 L9
a*b 2 2 0.0476*L2+0.619*L3 -0.2857*L5 -L9
a*b 3 1 -0.5714*L2-0.4286*L3 0.4286*L5 -L7-L9
a*b 3 2 -0.4286*L2-0.5714*L3 -0.4286*L5 L7+L9
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The GLM Procedure

Dependent Variable: y

Source DF Type II SS Mean Square F Value Pr > F

a 2 499.1202857 249.5601429 119.05 0.0003
b 1 10.7142857 10.7142857 5.11 0.0866
a*b 2 15.7307143 7.8653571 3.75 0.1209

Figure 30.11. Type II Estimable Functions and Associated Tests

Type III and Type IV Tests
Type III and Type IV sums of squares (SS), sometimes referred to aspartial sums
of squares, are considered by many to be the most desirable; see Searle (1987, Sec-
tion 4.6). These SS cannot, in general, be computed by comparing model SS from
several models using PROC GLM’s parameterization. However, they can sometimes
be computed by reduction for methods that reparameterize to full rank, when such a
reparameterization effectively imposes Type III linear constraints on the parameters.
In PROC GLM, they are computed by constructing a hypothesis matrixL and then
computing the SS associated with the hypothesisL� = 0. As long as there are no
missing cells in the design, Type III and Type IV SS are the same.

These are properties of Type III and Type IV SS:

� The hypothesis for an effect does not involve parameters of other effects except
for containing effects (which it must involve to be estimable).

� The hypotheses to be tested are invariant to the ordering of effects in the model.

� The hypotheses are the same hypotheses that are tested if there are no missing
cells. They are not functions of cell counts.

� The SS do not generally add up to the model SS and, in some cases, can exceed
the model SS.

The SS are constructed from the general form of estimable functions. Type III and
Type IV tests are different only if the design has missing cells. In this case, the Type
III tests have an orthogonality property, while the Type IV tests have a balancing
property. These properties are discussed in Chapter 12, “The Four Types of Estimable
Functions.” For this example, since the data contains observations for all pairs of
levels of A and B, Type IV tests are identical to the Type III tests that are shown in
Figure 30.12. (This combines tables from several pages of output.)
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The GLM Procedure

Type III Estimable Functions

-------------Coefficients-------------
Effect a b a*b

Intercept 0 0 0

a 1 L2 0 0
a 2 L3 0 0
a 3 -L2-L3 0 0

b 1 0 L5 0
b 2 0 -L5 0

a*b 1 1 0.5*L2 0.3333*L5 L7
a*b 1 2 0.5*L2 -0.3333*L5 -L7
a*b 2 1 0.5*L3 0.3333*L5 L9
a*b 2 2 0.5*L3 -0.3333*L5 -L9
a*b 3 1 -0.5*L2-0.5*L3 0.3333*L5 -L7-L9
a*b 3 2 -0.5*L2-0.5*L3 -0.3333*L5 L7+L9

The GLM Procedure

Dependent Variable: y

Source DF Type III SS Mean Square F Value Pr > F

a 2 479.1078571 239.5539286 114.28 0.0003
b 1 9.4556250 9.4556250 4.51 0.1009
a*b 2 15.7307143 7.8653571 3.75 0.1209

Figure 30.12. Type III Estimable Functions and Associated Tests

Absorption

Absorption is a computational technique used to reduce computing resource needs
in certain cases. The classic use of absorption occurs when a blocking factor with a
large number of levels is a term in the model.

For example, the statements

proc glm;
absorb herd;
class a b;
model y=a b a*b;

run;

are equivalent to

proc glm;
class herd a b;
model y=herd a b a*b;

run;
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The exception to the previous statements is that the Type II, Type III, or Type IV SS
for HERD are not computed when HERD is absorbed.

The algorithm for absorbing variables is similar to the one used by the NESTED
procedure for computing a nested analysis of variance. As each new row of[XjY ]
(corresponding to the nonabsorbed independent effects and the dependent variables)
is constructed, it is adjusted for the absorbed effects in a Type I fashion. The effi-
ciency of the absorption technique is due to the fact that this adjustment can be done
in one pass of the data and without solving any linear equations, assuming that the
data have been sorted by the absorbed variables.

Several effects can be absorbed at one time. For example, these statements

proc glm;
absorb herd cow;
class a b;
model y=a b a*b;

run;

are equivalent to

proc glm;
class herd cow a b;
model y=herd cow(herd) a b a*b;

run;

When you use absorption, the size of theX0Xmatrix is a function only of the effects
in the MODEL statement. The effects being absorbed do not contribute to the size of
theX0X matrix.

For the preceding example,a andb can be absorbed:

proc glm;
absorb a b;
class herd cow;
model y=herd cow(herd);

run;

Although the sources of variation in the results are listed as

a b(a) herd cow(herd)

all types of estimable functions forherd andcow(herd) are free ofa, b, anda*b
parameters.
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To illustrate the savings in computing using the ABSORB statement, PROC GLM is
run on generated data with 1147 degrees of freedom in the model with the following
statements:

data a;
do herd=1 to 40;

do cow=1 to 30;
do treatment=1 to 3;

do rep=1 to 2;
y = herd/5 + cow/10 + treatment + rannor(1);
output;

end;
end;

end;
end;

proc glm;
class herd cow treatment;
model y=herd cow(herd) treatment;

run;

This analysis would have required over 6 megabytes of memory for theX0X matrix
had PROC GLM solved it directly. However, in the following statements, the GLM
procedure needs only a4� 4 matrix for the intercept and treatment because the other
effects are absorbed.

proc glm;
absorb herd cow;
class treatment;
model y = treatment;

run;

These statements produce the results shown in Figure 30.13.
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The GLM Procedure

Class Level Information

Class Levels Values

treatment 3 1 2 3

Number of observations 7200

The GLM Procedure

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 1201 49465.40242 41.18685 41.57 <.0001

Error 5998 5942.23647 0.99070

Corrected Total 7199 55407.63889

R-Square Coeff Var Root MSE y Mean

0.892754 13.04236 0.995341 7.631598

Source DF Type I SS Mean Square F Value Pr > F

herd 39 38549.18655 988.44068 997.72 <.0001
cow(herd) 1160 6320.18141 5.44843 5.50 <.0001
treatment 2 4596.03446 2298.01723 2319.58 <.0001

Source DF Type III SS Mean Square F Value Pr > F

treatment 2 4596.034455 2298.017228 2319.58 <.0001

Figure 30.13. Absorption of Effects
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Specification of ESTIMATE Expressions

Consider the model

E(Y ) = �0 + �1x1 + �2x2 + �3x3:

The corresponding MODEL statement for PROC GLM is

model y=x1 x2 x3;

To estimate the difference between the parameters forx1 andx2,

�1 � �2 = ( 0 1 �1 0 )�; where� = ( �0 �1 �2 �3 )0

you can use the following ESTIMATE statement:

estimate ’B1-B2’ x1 1 x2 -1;

To predicty atx1 = 1, x2 = 0, andx3 = �2, you can estimate

�0 + �1 � 2�3 = ( 1 1 0 �2 )�

with the following ESTIMATE statement:

estimate ’B0+B1-2B3’ intercept 1 x1 1 x3 -2;

Now consider models involving class variables such as

model y=A B A*B;

with the associated parameters:

�
� �1 �2 �3 �1 �2 
11 
12 
21 
22 
31 
32

�

The LS-mean for the first level ofA isL�, where

L = ( 1 j 1 0 0 j 0:5 0:5 j 0:5 0:5 0 0 0 0 )

You can estimate this with the following ESTIMATE statement:

estimate ’LS-mean(A1)’ intercept 1 A 1 B 0.5 0.5 A*B 0.5 0.5;
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Note in this statement that only one element ofL is specified following theA effect,
even thoughA has three levels. Whenever the list of constants following an effect
name is shorter than the effect’s number of levels, zeros are used as the remaining
constants. (If the list of constants is longer than the number of levels for the effect,
the extra constants are ignored, and a warning message is displayed.)

To estimate theA linear effect in the preceding model, assuming equally spaced levels
for A, you can use the followingL:

L = ( 0 j �1 0 1 j 0 0 j �0:5 �0:5 0 0 0:5 0:5 )

The ESTIMATE statement for thisL is written as

estimate ’A Linear’ A -1 0 1;

If you do not specify the elements ofL for an effect that contains a specified effect,
then the elements of the specified effect are equally distributed over the correspond-
ing levels of the higher-order effect. In addition, if you specify the intercept in an
ESTIMATE or CONTRAST statement, it is distributed over all classification effects
that are not contained by any other specified effect. The distribution of lower-order
coefficients to higher-order effect coefficients follows the same general rules as in the
LSMEANS statement, and it is similar to that used to construct Type IV tests. In the
previous example, the�1 associated with�1 is divided by the numbern1j of 
1j
parameters; then each
1j coefficient is set to�1=n1j . The 1 associated with�3 is
distributed among the
3j parameters in a similar fashion. In the event that an unspec-
ified effect contains several specified effects, only that specified effect with the most
factors in common with the unspecified effect is used for distribution of coefficients
to the higher-order effect.

Numerous syntactical expressions for the ESTIMATE statement were considered,
including many that involved specifying the effect and level information associated
with each coefficient. For models involving higher-level effects, the requirement of
specifying level information can lead to very bulky specifications. Consequently, the
simpler form of the ESTIMATE statement described earlier was implemented. The
syntax of this ESTIMATE statement puts a burden on you to know a priori the order
of the parameter list associated with each effect. You can use the ORDER= option
in the PROC GLM statement to ensure that the levels of the classification effects are
sorted appropriately.

Note: If you use the ESTIMATE statement with unspecified effects, use the E option
to make sure that the actualL constructed by the preceding rules is the one you
intended.
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A Check for Estimability
EachL is checked for estimability using the relationship:L = LH whereH =
(X0X)�X0X. TheL vector is declared nonestimable, if for anyi

ABS(Li � (LH)i >

(
� if Li = 0 or

�� ABS(Li) otherwise

where � = 10�4 by default; you can change this with the SINGULAR= option.
Continued fractions (like 1/3) should be specified to at least six decimal places, or the
DIVISOR parameter should be used.

Comparing Groups

An important task in analyzing data with classification effects is to estimate the typ-
ical response for each level of a given effect; often, you also want to compare these
estimates to determine which levels are equivalent in terms of the response. You can
perform this task in two ways with the GLM procedure: with direct, arithmetic group
means; and with so-calledleast-squares means(LS-means).

Means Versus LS-Means
Computing and comparing arithmetic means—either simple or weighted within-
group averages of the input data—is a familiar and well-studied statistical process.
This is the right approach to summarizing and comparing groups for one-way and
balanced designs. However, in unbalanced designs with more than one effect, the
arithmetic mean for a group may not accurately reflect the “typical” response for that
group, since it does not take other effects into account.

For example, consider the following analysis of an unbalanced two-way design:

data twoway;
input Treatment Block y @@;
datalines;

1 1 17 1 1 28 1 1 19 1 1 21 1 1 19
1 2 43 1 2 30 1 2 39 1 2 44 1 2 44
1 3 16
2 1 21 2 1 21 2 1 24 2 1 25
2 2 39 2 2 45 2 2 42 2 2 47
2 3 19 2 3 22 2 3 16
3 1 22 3 1 30 3 1 33 3 1 31
3 2 46
3 3 26 3 3 31 3 3 26 3 3 33 3 3 29 3 3 25
;

title1 "Unbalanced Two-way Design";
ods select ModelANOVA Means LSMeans;
proc glm data=twoway;

class Treatment Block;
model y = Treatment|Block;
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means Treatment;
lsmeans Treatment;

run;
ods select all;

The ANOVA results are shown in Figure 30.14.

Unbalanced Two-way Design

The GLM Procedure

Dependent Variable: y

Source DF Type I SS Mean Square F Value Pr > F

Treatment 2 8.060606 4.030303 0.24 0.7888
Block 2 2621.864124 1310.932062 77.95 <.0001
Treatment*Block 4 32.684361 8.171090 0.49 0.7460

Source DF Type III SS Mean Square F Value Pr > F

Treatment 2 266.130682 133.065341 7.91 0.0023
Block 2 1883.729465 941.864732 56.00 <.0001
Treatment*Block 4 32.684361 8.171090 0.49 0.7460

Figure 30.14. ANOVA Results for Unbalanced Two-Way Design

Unbalanced Two-way Design

The GLM Procedure

Level of --------------y--------------
Treatment N Mean Std Dev

1 11 29.0909091 11.5104695
2 11 29.1818182 11.5569735
3 11 30.1818182 6.3058414

Figure 30.15. Treatment Means for Unbalanced Two-Way Design

Unbalanced Two-way Design

The GLM Procedure
Least Squares Means

Treatment y LSMEAN

1 25.6000000
2 28.3333333
3 34.4444444

Figure 30.16. Treatment LS-means for Unbalanced Two-Way Design
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No matter how you look at it, this data exhibits a strong effect due to the blocks (F -
testp < 0:0001) and no significant interaction between treatments and blocks (F -test
p > 0:7). But the lack of balance affects how the treatment effect is interpreted: in
a main-effects-only model, there are no significant differences between the treatment
means themselves (Type IF -testp > 0:7), but there are highly significant differences
between the treatment means corrected for the block effects (Type IIIF -test p <
0:01).

LS-means are, in effect, within-group means appropriately adjusted for the other ef-
fects in the model. More precisely, they estimate the marginal means for a balanced
population (as opposed to the unbalanced design). For this reason, they are also called
estimated population marginal meansby Searle, Speed, and Milliken (1980). In the
same way that the Type IF -test assesses differences between the arithmetic treat-
ment means (when the treatment effect comes first in the model), the Type IIIF -test
assesses differences between the LS-means. Accordingly, for the unbalanced two-
way design, the discrepancy between the Type I and Type III tests is reflected in the
arithmetic treatment means and treatment LS-means, as shown in Figure 30.15 and
Figure 30.16. See the section “Construction of Least-Squares Means” on page 1555
for more on LS-means.

Note that, while the arithmetic means are always uncorrelated (under the usual as-
sumptions for analysis of variance; see page 1517), the LS-means may not be. This
fact complicates the problem of multiple comparisons for LS-means; see the follow-
ing section.

Multiple Comparisons
When comparing more than two means, an ANOVAF -test tells you whether the
means are significantly different from each other, but it does not tell you which
means differ from which other means. Multiple comparison procedures (MCPs), also
called mean separation tests, give you more detailed information about the differ-
ences among the means. The goal in multiple comparisons is to compare the average
effects of three or more “treatments” (for example, drugs, groups of subjects) to de-
cide which treatments are better, which ones are worse, and by how much, while
controlling the probability of making an incorrect decision. A variety of multiple
comparison methods are available with the MEANS and LSMEANS statement in the
GLM procedure.

The following classification is due to Hsu (1996). Multiple comparison procedures
can be categorized in two ways: by the comparisons they make and by the strength
of inference they provide. With respect to which comparisons are made, the GLM
procedure offers two types:

� comparisons between all pairs of means

� comparisons between a control and all other means

The strength of inference says what can be inferred about the structure of the means
when a test is significant; it is related to what type of error rate the MCP controls.
MCPs available in the GLM procedure provide one of the following types of infer-
ence, in order from weakest to strongest.
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� Individual: differences between means, unadjusted for multiplicity

� Inhomogeneity: means are different

� Inequalities: which means are different

� Intervals: simultaneous confidence intervals for mean differences

Methods that control only individual error rates are not true MCPs at all. Methods that
yield the strongest level of inference, simultaneous confidence intervals, are usually
preferred, since they enable you not only to say which means are different but also
to put confidence bounds onhow muchthey differ, making it easier to assess the
practical significance of a difference. They are also less likely to lead nonstatisticians
to the invalid conclusion that nonsignificantly different sample means imply equal
population means. Interval MCPs are available for both arithmetic means and LS-
means via the MEANS and LSMEANS statements, respectively.�

Table 30.3 and Table 30.4 display MCPs available in PROC GLM for all pairwise
comparisons and comparisons with a control, respectively, along with associated
strength of inference and the syntax (when applicable) for both the MEANS and
the LSMEANS statements.

Table 30.3. Multiple Comparisons Procedures for All Pairwise Comparison

Strength of Syntax
Method Inference MEANS LSMEANS
Student’st Individual T PDIFF ADJUST=T
Duncan Individual DUNCAN
Student-Newman-Keuls Inhomogeneity SNK
REGWQ Inequalities REGWQ
Tukey-Kramer Intervals TUKEY PDIFF ADJUST=TUKEY
Bonferroni Intervals BON PDIFF ADJUST=BON
Sidak Intervals SIDAK PDIFF ADJUST=SIDAK
Scheffé Intervals SCHEFFE PDIFF ADJUST=SCHEFFE
SMM Intervals SMM PDIFF ADJUST=SMM
Gabriel Intervals GABRIEL
Simulation Intervals PDIFF ADJUST=SIMULATE

Table 30.4. Multiple Comparisons Procedures for Comparisons with a Control

Strength of Syntax
Method Inference MEANS LSMEANS
Student’st Individual PDIFF=CONTROL ADJUST=T
Dunnett Intervals DUNNETT PDIFF=CONTROL ADJUST=DUNNETT
Bonferroni Intervals PDIFF=CONTROL ADJUST=BON
Sidak Intervals PDIFF=CONTROL ADJUST=SIDAK
Scheffé Intervals PDIFF=CONTROL ADJUST=SCHEFFE
SMM Intervals PDIFF=CONTROL ADJUST=SMM
Simulation Intervals PDIFF=CONTROL ADJUST=SIMULATE

�The Duncan-Waller method does not fit into the preceding scheme, since it is based on the Bayes
risk rather than any particular error rate.
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Note: One-sided Dunnett’s tests are also available from the MEANS statement with
the DUNNETTL and DUNNETTU options and from the LSMEANS statement with
PDIFF=CONTROLL and PDIFF=CONTROLU.

Details of these multiple comparison methods are given in the following sections.

Pairwise Comparisons
All the methods discussed in this section depend on the standardized pairwise differ-
encestij = (�yi � �yj)=�̂ij , where

� i andj are the indices of two groups

� �yi and�yj are the means or LS-means for groupsi andj

� �̂ij is the square-root of the estimated variance of�yi��yj. For simple arithmetic
means,�̂2ij = s2(1=ni + 1=nj), whereni andnj are the sizes of groupsi
and j, respectively, ands2 is the mean square for error, with� degrees of
freedom. For weighted arithmetic means,�̂2ij = s2(1=wi + 1=wj), wherewi

andwj are the sums of the weights in groupsi and j, respectively. Finally,
for LS-means defined by the linear combinationsl0ib and l0jb of the parameter
estimates,̂�2ij = s2l0i(X

0X)�lj .

Furthermore, all of the methods are discussed in terms of significance tests of the
form

jtij j � c(�)

wherec(�) is some constant depending on the significance level. Such tests can be
inverted to form confidence intervals of the form

(�yi � �yj)� �̂ijc(�) � �i � �j � (�yi � �yj) + �̂ijc(�)

The simplest approach to multiple comparisons is to do at test on every pair of means
(the T option in the MEANS statement, ADJUST=T in the LSMEANS statement).
For the ith andjth means, you can reject the null hypothesis that the population
means are equal if

jtij j � t(�; �)

where� is the significance level,� is the number of error degrees of freedom, and
t(�; �) is the two-tailed critical value from a Student’st distribution. If the cell sizes
are all equal to, say,n, the preceding formula can be rearranged to give

j�yi � �yjj � t(�; �)s

r
2

n

the value of the right-hand side being Fisher’s least significant difference (LSD).

There is a problem with repeatedt tests, however. Suppose there are ten means and
eacht test is performed at the 0.05 level. There are 10(10-1)/2=45 pairs of means
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to compare, each with a 0.05 probability of a type 1 error (a false rejection of the
null hypothesis). The chance of making at least one type 1 error is much higher than
0.05. It is difficult to calculate the exact probability, but you can derive a pessimistic
approximation by assuming that the comparisons are independent, giving an upper
bound to the probability of making at least one type 1 error (the experimentwise error
rate) of

1� (1� 0:05)45 = 0:90

The actual probability is somewhat less than 0.90, but as the number of means in-
creases, the chance of making at least one type 1 error approaches 1.

If you decide to control the individual type 1 error rates for each comparison, you
are controlling the individual or comparisonwise error rate. On the other hand, if
you want to control the overall type 1 error rate for all the comparisons, you are con-
trolling the experimentwise error rate. It is up to you to decide whether to control
the comparisonwise error rate or the experimentwise error rate, but there are many
situations in which the experimentwise error rate should be held to a small value. Sta-
tistical methods for comparing three or more means while controlling the probability
of making at least one type 1 error are calledmultiple comparisons procedures.

It has been suggested that the experimentwise error rate can be held to the� level by
performing the overall ANOVAF -test at the� level and making further comparisons
only if theF -test is significant, as in Fisher’s protected LSD. This assertion is false
if there are more than three means (Einot and Gabriel 1975). Consider again the
situation with ten means. Suppose that one population mean differs from the others
by such a sufficiently large amount that the power (probability of correctly rejecting
the null hypothesis) of theF -test is near 1 but that all the other population means are
equal to each other. There will be9(9 � 1)=2 = 36 t tests of true null hypotheses,
with an upper limit of 0.84 on the probability of at least one type 1 error. Thus,
you must distinguish between the experimentwise error rate under the complete null
hypothesis, in which all population means are equal, and the experimentwise error
rate under a partial null hypothesis, in which some means are equal but others differ.
The following abbreviations are used in the discussion:

CER comparisonwise error rate

EERC experimentwise error rate under the complete null hypothesis

MEER maximum experimentwise error rate under any complete or partial null hy-
pothesis

These error rates are associated with the different strengths of inference discussed on
page 1541: individual tests control the CER; tests for inhomogeneity of means control
the EERC; tests that yield confidence inequalities or confidence intervals control the
MEER. A preliminaryF -test controls the EERC but not the MEER.

You can control the MEER at the� level by setting the CER to a sufficiently small
value. The Bonferroni inequality (Miller 1981) has been widely used for this purpose.
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If

CER =
�

c

wherec is the total number of comparisons, then the MEER is less than�. Bonferroni
t tests (the BON option in the MEANS statement, ADJUST=BON in the LSMEANS
statement) withMEER < � declare two means to be significantly different if

jtij j � t(�; �)

where

� =
2�

k(k � 1)

for comparison ofk means.

Sidak (1967) has provided a tighter bound, showing that

CER = 1� (1� �)1=c

also ensures thatMEER � � for any set ofc comparisons. A Sidakt test (Games
1977), provided by the SIDAK option, is thus given by

jtij j � t(�; �)

where

� = 1� (1� �)
2

k(k�1)

for comparison ofk means.

You can use the Bonferroni additive inequality and the Sidak multiplicative inequality
to control the MEER for any set of contrasts or other hypothesis tests, not just pair-
wise comparisons. The Bonferroni inequality can provide simultaneous inferences in
any statistical application requiring tests of more than one hypothesis. Other meth-
ods discussed in this section for pairwise comparisons can also be adapted for general
contrasts (Miller 1981).

Scheffé (1953, 1959) proposes another method to control the MEER for any set of
contrasts or other linear hypotheses in the analysis of linear models, including pair-
wise comparisons, obtained with the SCHEFFE option. Two means are declared
significantly different if

jtij j �
p
(k � 1)F (�; k � 1; �)

whereF (�; k � 1; �) is the�-level critical value of anF distribution withk � 1
numerator degrees of freedom and� denominator degrees of freedom.
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Scheffé’s test is compatible with the overall ANOVAF -test in that Scheffé’s method
never declares a contrast significant if the overallF -test is nonsignificant. Most other
multiple comparison methods can find significant contrasts when the overallF -test
is nonsignificant and, therefore, suffer a loss of power when used with a preliminary
F -test.

Scheffé’s method may be more powerful than the Bonferroni or Sidak methods if
the number of comparisons is large relative to the number of means. For pairwise
comparisons, Sidakt tests are generally more powerful.

Tukey (1952, 1953) proposes a test designed specifically for pairwise comparisons
based on the studentized range, sometimes called the “honestly significant difference
test,” that controls the MEER when the sample sizes are equal. Tukey (1953) and
Kramer (1956) independently propose a modification for unequal cell sizes. The
Tukey or Tukey-Kramer method is provided by the TUKEY option in the MEANS
statement and the ADJUST=TUKEY option in the LSMEANS statement. This
method has fared extremely well in Monte Carlo studies (Dunnett 1980). In addition,
Hayter (1984) gives a proof that the Tukey-Kramer procedure controls the MEER
for means comparisons, and Hayter (1989) describes the extent to which the Tukey-
Kramer procedure has been proven to control the MEER for LS-means comparisons.
The Tukey-Kramer method is more powerful than the Bonferroni, Sidak, or Scheffé
methods for pairwise comparisons. Two means are considered significantly different
by the Tukey-Kramer criterion if

jtij j � q(�; k; �)

whereq(�; k; �) is the�-level critical value of a studentized range distribution ofk
independent normal random variables with� degrees of freedom.

Hochberg (1974) devised a method (the GT2 or SMM option) similar to Tukey’s,
but it uses the studentized maximum modulus instead of the studentized range and
employs Sidak’s (1967) uncorrelatedt inequality. It is proven to hold the MEER at
a level not exceeding� with unequal sample sizes. It is generally less powerful than
the Tukey-Kramer method and always less powerful than Tukey’s test for equal cell
sizes. Two means are declared significantly different if

jtij j � m(�; c; �)

wherem(�; c; �) is the�-level critical value of the studentized maximum modulus
distribution ofc independent normal random variables with� degrees of freedom and
c = k(k � 1)=2.

Gabriel (1978) proposes another method (the GABRIEL option) based on the stu-
dentized maximum modulus. This method is applicable only to arithmetic means. It
rejects if

j�yi � �yjj
s

�
1p
2ni

+ 1p
2nj

� � m(�; k; �)
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For equal cell sizes, Gabriel’s test is equivalent to Hochberg’s GT2 method. For
unequal cell sizes, Gabriel’s method is more powerful than GT2 but may become
liberal with highly disparate cell sizes (refer also to Dunnett 1980). Gabriel’s test is
the only method for unequal sample sizes that lends itself to a graphical representation
as intervals around the means. Assuming�yi > �yj, you can rewrite the preceding
inequality as

�yi �m(�; k; �)
sp
2ni

� �yj +m(�; k; �)
sp
2nj

The expression on the left does not depend onj, nor does the expression on the
right depend oni. Hence, you can form what Gabriel calls an(l; u)-interval around
each sample mean and declare two means to be significantly different if their(l; u)-
intervals do not overlap. See Hsu (1996, section 5.2.1.1) for a discussion of other
methods of graphically representing all pair-wise comparisons.

Comparing All Treatments to a Control
One special case of means comparison is that in which the only comparisons that need
to be tested are between a set of new treatments and a single control. In this case, you
can achieve better power by using a method that is restricted to test only comparisons
to the single control mean. Dunnett (1955) proposes a test for this situation that
declares a mean significantly different from the control if

jti0j � d(�; k; �; �1; : : : ; �k�1)

where �y0 is the control mean andd(�; k; �; �1; : : : ; �k�1) is the critical value of
the “many-to-onet statistic” (Miller 1981; Krishnaiah and Armitage 1966) fork
means to be compared to a control, with� error degrees of freedom and correlations
�1; : : : ; �k�1, �i = ni=(n0 + ni). The correlation terms arise because each of the
treatment means is being compared to the same control. Dunnett’s test holds the
MEER to a level not exceeding the stated�.

Approximate and Simulation-based Methods
Both Tukey’s and Dunnett’s tests are based on the same general quantile calculation:

qt(�; �;R) = fq 3 P (max(jt1j; : : : ; jtnj) > q) = �g

where theti have a joint multivariatet distribution with� degrees of freedom and
correlation matrixR. In general, evaluatingqt(�; �;R) requires repeated numerical
calculation of an(n + 1)-fold integral. This is usually intractable, but the problem
reduces to a feasible 2-fold integral whenR has a certain symmetry in the case of
Tukey’s test, and afactor analytic structure(cf. Hsu 1992) in the case of Dunnett’s
test. TheR matrix has the required symmetry for exact computation of Tukey’s test
if the tis are studentized differences between

� k(k � 1)=2 pairs ofk uncorrelated means with equal variances—that is, equal
sample sizes
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� k(k�1)=2 pairs ofk LS-means from avariance-balanceddesign (for example,
a balanced incomplete block design)

Refer to Hsu (1992, 1996) for more information. TheR matrix has the factor analytic
structure for exact computation of Dunnett’s test if thetis are studentized differences
between

� k�1means and a control mean, all uncorrelated. (Dunnett’s one-sided methods
depend on a similar probability calculation, without the absolute values.) Note
that it is not required that the variances of the means (that is, the sample sizes)
be equal.

� k�1 LS-means and a control LS-mean from either avariance-balanceddesign,
or a design in which the other factors areorthogonalto the treatment factor (for
example, a randomized block design with proportional cell frequencies).

However, other important situations that donot result in a correlation matrixR that
has the structure for exact computation include

� all pairwise differences with unequal sample sizes

� differences between LS-means in many unbalanced designs

In these situations, exact calculation ofqt(�; �;R) is intractable in general. Most of
the preceding methods can be viewed as using various approximations forqt(�; �;R).
When the sample sizes are unequal, the Tukey-Kramer test is equivalent to another
approximation. For comparisons with a control when the correlationR does not have
a factor analytic structure, Hsu (1992) suggests approximatingR with a matrixR�

that does have such a structure and correspondingly approximatingqt(�; �;R) with
qt(�; �;R�). When you request Dunnett’s test for LS-means (the PDIFF=CONTROL
and ADJUST=DUNNETT options), the GLM procedure automatically uses Hsu’s
approximation when appropriate.

Finally, Edwards and Berry (1987) suggest calculatingqt(�; �;R) by simulation.
Multivariate t vectors are sampled from a distribution with the appropriate� andR
parameters, and Edwards and Berry (1987) suggest estimatingqt(�; �;R) by q̂, the�
percentile of the observed values ofmax(jt1j; : : : ; jtnj). Sufficient samples are gen-
erated for the trueP (max(jt1j; : : : ; jtnj) > q̂) to be within a certain accuracy radius

 of � with accuracy confidence100(1 � �). You can approximateqt(�; �;R) by
simulation for comparisons between LS-means by specifying ADJUST=SIM (with
either PDIFF=ALL or PDIFF=CONTROL). By default,
 = 0:005 and� = 0:01,
so that the tail area of̂q is within 0.005 of� with 99% confidence. You can use the
ACC= and EPS= options with ADJUST=SIM to reset
 and �, or you can use the
NSAMP= option to set the sample size directly. You can also control the random
number sequence with the SEED= option.

Hsu and Nelson (1998) suggest a more accurate simulation method for estimating
qt(�; �;R), using a control variate adjustment technique. The same independent,
standardized normal variates that are used to generate multivariatet vectors from a
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distribution with the appropriate� andR parameters are also used to generate multi-
variatet vectors from a distribution for which the exact value ofqt(�; �;R) is known.
max(jt1j; : : : ; jtnj) for the second sample is used as a control variate for adjusting
the quantile estimate based on the first sample; refer to Hsu and Nelson (1998) for
more details. The control variate adjustment has the drawback that it takes some-
what longer than the crude technique of Edwards and Berry (1987), but it typically
yields an estimate that is many times more accurate. In most cases, if you are using
ADJUST=SIM, then you should specify ADJUST=SIM(CVADJUST). You can also
specify ADJUST=SIM(CVADJUST REPORT) to display a summary of the simula-
tion that includes, among other things, the actual accuracy radius
, which should be
substantially smaller than the target accuracy radius (0.005 by default).

Multiple-Stage Tests
You can use all of the methods discussed so far to obtain simultaneous confidence
intervals (Miller 1981). By sacrificing the facility for simultaneous estimation, you
can obtain simultaneous tests with greater power using multiple-stage tests (MSTs).
MSTs come in both step-up and step-down varieties (Welsch 1977). The step-down
methods, which have been more widely used, are available in SAS/STAT software.

Step-down MSTs first test the homogeneity of all of the means at a level
k. If the
test results in a rejection, then each subset ofk � 1 means is tested at level
k�1;
otherwise, the procedure stops. In general, if the hypothesis of homogeneity of a set
of p means is rejected at the
p level, then each subset ofp� 1 means is tested at the

p�1 level; otherwise, the set ofp means is considered not to differ significantly and
none of its subsets are tested. The many varieties of MSTs that have been proposed
differ in the levels
p and the statistics on which the subset tests are based. Clearly,
the EERC of a step-down MST is not greater than
k, and the CER is not greater than

2, but the MEER is a complicated function of
p, p = 2; : : : ; k.

With unequal cell sizes, PROC GLM uses the harmonic mean of the cell sizes as the
common sample size. However, since the resulting operating characteristics can be
undesirable, MSTs are recommended only for the balanced case. When the sample
sizes are equal and if the range statistic is used, you can arrange the means in as-
cending or descending order and test only contiguous subsets. But if you specify the
F statistic, this shortcut cannot be taken. For this reason, only range-based MSTs
are implemented. It is common practice to report the results of an MST by writing
the means in such an order and drawing lines parallel to the list of means spanning
the homogeneous subsets. This form of presentation is also convenient for pairwise
comparisons with equal cell sizes.

The best known MSTs are the Duncan (the DUNCAN option) and Student-Newman-
Keuls (the SNK option) methods (Miller 1981). Both use the studentized range statis-
tic and, hence, are calledmultiple range tests. Duncan’s method is often called the
“new” multiple range test despite the fact that it is one of the oldest MSTs in current
use.

SAS OnlineDoc: Version 8



Multiple Comparisons � 1549

The Duncan and SNK methods differ in the
p values used. For Duncan’s method,
they are


p = 1� (1� �)p�1

whereas the SNK method uses


p = �

Duncan’s method controls the CER at the� level. Its operating characteristics appear
similar to those of Fisher’s unprotected LSD or repeatedt tests at level� (Petrinovich
and Hardyck 1969). Since repeatedt tests are easier to compute, easier to explain,
and applicable to unequal sample sizes, Duncan’s method is not recommended. Sev-
eral published studies (for example, Carmer and Swanson 1973) have claimed that
Duncan’s method is superior to Tukey’s because of greater power without consider-
ing that the greater power of Duncan’s method is due to its higher type 1 error rate
(Einot and Gabriel 1975).

The SNK method holds the EERC to the� level but does not control the MEER (Einot
and Gabriel 1975). Consider ten population means that occur in five pairs such that
means within a pair are equal, but there are large differences between pairs. If you
make the usual sampling assumptions and also assume that the sample sizes are very
large, all subset homogeneity hypotheses for three or more means are rejected. The
SNK method then comes down to five independent tests, one for each pair, each at
the� level. Letting� be 0.05, the probability of at least one false rejection is

1� (1� 0:05)5 = 0:23

As the number of means increases, the MEER approaches 1. Therefore, the SNK
method cannot be recommended.

A variety of MSTs that control the MEER have been proposed, but these methods are
not as well known as those of Duncan and SNK. An approach developed by Ryan
(1959, 1960), Einot and Gabriel (1975), and Welsch (1977) sets


p =

(
1� (1� �)p=k for p < k � 1

� for p � k � 1

You can use range statistics, leading to what is called the REGWQ method after
the authors’ initials. If you assume that the sample means have been arranged in
descending order from�y1 through�yk, the homogeneity of means�yi; : : : ; �yj ; i < j, is
rejected by REGWQ if

�yi � �yj � q(
p; p; �)
sp
n

wherep = j � i + 1 and the summations are overu = i; : : : ; j (Einot and Gabriel
1975). To ensure that the MEER is controlled, the current implementation checks
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whetherq(
p; p; �) is monotonically increasing inp. If not, then a set of critical
values that are increasing inp is substituted instead.

REGWQ appears to be the most powerful step-down MST in the current literature
(for example, Ramsey 1978). Use of a preliminaryF -test decreases the power of
all the other multiple comparison methods discussed previously except for Scheffé’s
test.

Bayesian Approach
Waller and Duncan (1969) and Duncan (1975) take an approach to multiple com-
parisons that differs from all the methods previously discussed in minimizing the
Bayes risk under additive loss rather than controlling type 1 error rates. For each
pair of population means�i and�j, null (Hij

0
) and alternative(Hij

a ) hypotheses are
defined:

Hij
0
: �i � �j � 0

Hij
a : �i � �j > 0

For anyi, j pair, letd0 indicate a decision in favor ofHij
0

andda indicate a decision
in favor ofHij

a , and let� = �i � �j. The loss function for the decision on thei, j
pair is

L(d0 j �) =

(
0 if � � 0

� if � > 0

L(da j �) =

(
�k� if � � 0

0 if � > 0

wherek represents a constant that you specify rather than the number of means.
The loss for the joint decision involving all pairs of means is the sum of the losses
for each individual decision. The population means are assumed to have a normal
prior distribution with unknown variance, the logarithm of the variance of the means
having a uniform prior distribution. For thei, j pair, the null hypothesis is rejected if

�yi � �yj � tBs

r
2

n

wheretB is the Bayesiant value (Waller and Kemp 1976) depending onk, theF
statistic for the one-way ANOVA, and the degrees of freedom forF . The value oftB
is a decreasing function ofF , so the Waller-Duncan test (specified by the WALLER
option) becomes more liberal asF increases.

Recommendations
In summary, if you are interested in several individual comparisons and are not con-
cerned about the effects of multiple inferences, you can use repeatedt tests or Fisher’s
unprotected LSD. If you are interested in all pairwise comparisons or all comparisons
with a control, you should use Tukey’s or Dunnett’s test, respectively, in order to make
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the strongest possible inferences. If you have weaker inferential requirements and,
in particular, if you don’t want confidence intervals for the mean differences, you
should use the REGWQ method. Finally, if you agree with the Bayesian approach
and Waller and Duncan’s assumptions, you should use the Waller-Duncan test.

Interpretation of Multiple Comparisons
When you interpret multiple comparisons, remember that failure to reject the hypoth-
esis that two or more means are equal should not lead you to conclude that the popu-
lation means are, in fact, equal. Failure to reject the null hypothesis implies only that
the difference between population means, if any, is not large enough to be detected
with the given sample size. A related point is that nonsignificance is nontransitive:
that is, given three sample means, the largest and smallest may be significantly dif-
ferent from each other, while neither is significantly different from the middle one.
Nontransitive results of this type occur frequently in multiple comparisons.

Multiple comparisons can also lead to counter-intuitive results when the cell sizes
are unequal. Consider four cells labeled A, B, C, and D, with sample means in the
order A>B>C>D. If A and D each have two observations, and B and C each have
10,000 observations, then the difference between B and C may be significant, while
the difference between A and D is not.

Simple Effects
Suppose you use the following statements to fit a full factorial model to a two-way
design:

data twoway;
input A B Y @@;
datalines;

1 1 10.6 1 1 11.0 1 1 10.6 1 1 11.3
1 2 -0.2 1 2 1.3 1 2 -0.2 1 2 0.2
1 3 0.1 1 3 0.4 1 3 -0.4 1 3 1.0
2 1 19.7 2 1 19.3 2 1 18.5 2 1 20.4
2 2 -0.2 2 2 0.5 2 2 0.8 2 2 -0.4
2 3 -0.9 2 3 -0.1 2 3 -0.2 2 3 -1.7
3 1 29.7 3 1 29.6 3 1 29.0 3 1 30.2
3 2 1.5 3 2 0.2 3 2 -1.5 3 2 1.3
3 3 0.2 3 3 0.4 3 3 -0.4 3 3 -2.2
;
proc glm data=twoway;

class A B;
model Y = A B A*B;

run;

Partial results for the analysis of variance are shown in Figure 30.17. The Type I and
Type III results are the same because this is a balanced design.
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The GLM Procedure

Dependent Variable: Y

Source DF Type I SS Mean Square F Value Pr > F

A 2 219.905000 109.952500 165.11 <.0001
B 2 3206.101667 1603.050833 2407.25 <.0001
A*B 4 487.103333 121.775833 182.87 <.0001

Source DF Type III SS Mean Square F Value Pr > F

A 2 219.905000 109.952500 165.11 <.0001
B 2 3206.101667 1603.050833 2407.25 <.0001
A*B 4 487.103333 121.775833 182.87 <.0001

Figure 30.17. Two-way Design with Significant Interaction

The interactionA*B is significant, indicating that the effect ofA depends on the level
of B. In some cases, you may be interested in looking at the differences between
predicted values acrossA for different levels ofB. Winer (1971) calls this thesimple
effectsof A. You can compute simple effects with the LSMEAN statement by spec-
ifying the SLICE= option. In this case, since the GLM procedure is interactive, you
can compute the simple effects ofA by submitting the following statements after the
preceding statements.

lsmeans A*B / slice=B;
run;

The results are shown Figure 30.18. Note thatA has a significant effect forB=1 but
not for B=2 andB=3.
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The GLM Procedure
Least Squares Means

A B Y LSMEAN

1 1 10.8750000
1 2 0.2750000
1 3 0.2750000
2 1 19.4750000
2 2 0.1750000
2 3 -0.7250000
3 1 29.6250000
3 2 0.3750000
3 3 -0.5000000

The GLM Procedure
Least Squares Means

A*B Effect Sliced by B for Y

Sum of
B DF Squares Mean Square F Value Pr > F

1 2 704.726667 352.363333 529.13 <.0001
2 2 0.080000 0.040000 0.06 0.9418
3 2 2.201667 1.100833 1.65 0.2103

Figure 30.18. Interaction LS-means and Simple Effects

Homogeneity of Variance in One-Way Models
One of the usual assumptions for the GLM procedure is that the underlying errors
are all uncorrelated with homogeneous variances (see page 1517). You can test this
assumption in PROC GLM by using the HOVTEST option in the MEANS statement,
requesting ahomogeneity of variancetest. This section discusses the computational
details behind these tests. Note that the GLM procedure allows homogeneity of vari-
ance testing for simple one-way models only. Homogeneity of variance testing for
more complex models is a subject of current research.

Bartlett (1937) proposes a test for equal variances that is a modification of the normal-
theory likelihood ratio test (the HOVTEST=BARTLETT option). While Bartlett’s
test has accurate Type I error rates and optimal power when the underlying distribu-
tion of the data is normal, it can be very inaccurate if that distribution is even slightly
nonnormal (Box 1953). Therefore, Bartlett’s test is not recommended for routine use.

An approach that leads to tests that are much more robust to the underlying distribu-
tion is to transform the original values of the dependent variable to derive adispersion
variable and then to perform analysis of variance on this variable. The significance
level for the test of homogeneity of variance is thep-value for the ANOVAF-test on
the dispersion variable. All of the homogeneity of variance tests available in PROC
GLM except Bartlett’s use this approach.
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Levene’s test (Levene 1960) is widely considered to be the standard homogeneity of
variance test (the HOVTEST=LEVENE option). Levene’s test is of the dispersion-
variable-ANOVA form discussed previously, where the dispersion variable is either

z2ij = (yij � �yi)
2 (TYPE=SQUARE, the default)

zij = jyij � �yij (TYPE=ABS)

O’Brien (1979) proposes a test (HOVTEST=OBRIEN) that is basically a modifica-
tion of Levene’sz2ij , using the dispersion variable

zWij =
(W + ni � 2)ni(yij � �yi)

2 �W (ni � 1)�2i
(ni � 1)(ni � 2)

whereni is the size of theith group and�2i is its sample variance. You can use
the W= option in parentheses to tune O’Brien’szWij dispersion variable to match the
suspected kurtosis of the underlying distribution. The choice of the value of the W=
option is rarely critical. By default, W=0.5, as suggested by O’Brien (1979, 1981).

Finally, Brown and Forsythe (1974) suggest using the absolute deviations from the
groupmedians:

zBFij = jyij �mij

wheremi is the median of theith group. You can use the HOVTEST=BF option to
specify this test.

Simulation results (Conover, Johnson, and Johnson 1981; Olejnik and Algina 1987)
show that, while all of these ANOVA-based tests are reasonably robust to the under-
lying distribution, the Brown-Forsythe test seems best at providing power to detect
variance differences while protecting the Type I error probability. However, since the
within-group medians are required for the Brown-Forsythe test, it can be resource
intensive if there are very many groups or if some groups are very large.

If one of these tests rejects the assumption of homogeneity of variance, you should
use Welch’s ANOVA instead of the usual ANOVA to test for differences between
group means. However, this conclusion holds only if you use one of the robust ho-
mogeneity of variance tests (that is, not for HOVTEST=BARTLETT); even then, any
homogeneity of variance test has too little power to be relied upon always to detect
when Welch’s ANOVA is appropriate. Unless the group variances are extremely dif-
ferent or the number of groups is large, the usual ANOVA test is relatively robust
when the groups are all about the same size. As Box (1953) notes, “To make the
preliminary test on variances is rather like putting to sea in a rowing boat to find out
whether conditions are sufficiently calm for an ocean liner to leave port!”

Example 30.10 on page 1623 illustrates the use of the HOVTEST and WELCH op-
tions in the MEANS statement in testing for equal group variances and adjusting for
unequal group variances in a one-way ANOVA.
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Weighted Means
In previous releases, if you specified a WEIGHT statement and one or more of the
multiple comparisons options, PROC GLM estimated the variance of the difference
between weighted group means for groupi andj as

MSE �
�

1

ni
+

1

nj

�

where MSE is the (weighted) mean square for error andni is the size of groupi.
This variance is involved in all of the multiple comparison methods. Beginning with
Release 6.12, the variance of the difference between weighted group means for group
i andj is computed as

MSE �
�

1

wi
+

1

wj

�

wherewi is the sum of the weights for the observations in groupi.

Construction of Least-Squares Means
To construct a least-squares mean (LS-mean) for a given level of a given effect, con-
struct a row vectorL according to the following rules and use it in an ESTIMATE
statement to compute the value of the LS-mean:

1. Set allLi corresponding to covariates (continuous variables) to their mean
value.

2. Consider effects contained by the given effect. Set theLi corresponding to
levels associated with the given level equal to 1. Set all otherLi in these effects
equal to 0. (See Chapter 12, “The Four Types of Estimable Functions,” for a
definition ofcontaining.)

3. Consider the given effect. Set theLi corresponding to the given level equal to
1. Set theLi corresponding to other levels equal to 0.

4. Consider the effects that contain the given effect. If these effects are not nested
within the given effect, then set theLi corresponding to the given level to1=k,
wherek is the number of such columns. If these effects are nested within the
given effect, then set theLi corresponding to the given level to1=(k1k2), where
k1 is the number of nested levels within this combination of nested effects, and
k2 is the number of such combinations. ForLi corresponding to other levels,
use 0.

5. Consider the other effects not yet considered. If there are no nested factors,
then set allLi corresponding to this effect to1=j, wherej is the number of
levels in the effect. If there are nested factors, then set allLi corresponding to
this effect to1=(j1j2), wherej1 is the number of nested levels within a given
combination of nested effects andj2 is the number of such combinations.

The consequence of these rules is that the sum of the Xs within any classification
effect is 1. This set of Xs forms a linear combination of the parameters that is checked
for estimability before it is evaluated.

SAS OnlineDoc: Version 8



1556 � Chapter 30. The GLM Procedure

For example, consider the following model:

proc glm;
class A B C;
model Y=A B A*B C Z;
lsmeans A B A*B C;

run;

AssumeA has 3 levels,B has 2 levels, andC has 2 levels, and assume that every
combination of levels ofA andB exists in the data. Assume also thatZ is a continuous
variable with an average of 12.5. Then the least-squares means are computed by the
following linear combinations of the parameter estimates:

A B A*B C
� 1 2 3 1 2 11 12 21 22 31 32 1 2 Z

LSM( ) 1 1/3 1/3 1/3 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 1/2 1/2 12.5

LSM(A1) 1 1 0 0 1/2 1/2 1/2 1/2 0 0 0 0 1/2 1/2 12.5
LSM(A2) 1 0 1 0 1/2 1/2 0 0 1/2 1/2 0 0 1/2 1/2 12.5
LSM(A3) 1 0 0 1 1/2 1/2 0 0 0 0 1/2 1/2 1/2 1/2 12.5

LSM(B1) 1 1/3 1/3 1/3 1 0 1/3 0 1/3 0 1/3 0 1/2 1/2 12.5
LSM(B2) 1 1/3 1/3 1/3 0 1 0 1/3 0 1/3 0 1/3 1/2 1/2 12.5

LSM(AB11) 1 1 0 0 1 0 1 0 0 0 0 0 1/2 1/2 12.5
LSM(AB12) 1 1 0 0 0 1 0 1 0 0 0 0 1/2 1/2 12.5
LSM(AB21) 1 0 1 0 1 0 0 0 1 0 0 0 1/2 1/2 12.5
LSM(AB22) 1 0 1 0 0 1 0 0 0 1 0 0 1/2 1/2 12.5
LSM(AB31) 1 0 0 1 1 0 0 0 0 0 1 0 1/2 1/2 12.5
LSM(AB32) 1 0 0 1 0 1 0 0 0 0 0 1 1/2 1/2 12.5

LSM(C1) 1 1/3 1/3 1/3 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 1 0 12.5
LSM(C2) 1 1/3 1/3 1/3 1/2 1/2 1/6 1/6 1/6 1/6 1/6 1/6 0 1 12.5

Setting Covariate Values
By default, all covariate effects are set equal to their mean values for computation of
standard LS-means. The AT option in the LSMEANS statement enables you to set
the covariates to whatever values you consider interesting.

If there is an effect containing two or more covariates, the AT option sets the ef-
fect equal to the product of the individual means rather than the mean of the product
(as with standard LS-means calculations). The AT MEANS option leaves covariates
equal to their mean values (as with standard LS-means) and incorporates this adjust-
ment to cross products of covariates.

As an example, the following is a model with a classification variableA and two
continuous variables,x1 andx2:

class A;
model y = A x1 x2 x1*x2;
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The coefficients for the continuous effects with various AT specifications are shown
in the following table.

Syntax x1 x2 x1*x2
lsmeans A; x1 x2 x1x2
lsmeans A / at means; x1 x2 x1 � x2
lsmeans A / at x1=1.2; 1.2 x2 1:2 � x2
lsmeans A / at (x1 x2)=(1.2 0.3); 1.2 0.3 1:2 � 0:3

For the first two LSMEANS statements, theA LS-mean coefficient forx1 is x1 (the
mean ofx1) and forx2 is x2 (the mean ofx2). However, for the first LSMEANS
statement, the coefficient forx1*x2 is x1x2, but for the second LSMEANS statement
the coefficient isx1 � x2. The third LSMEANS statement sets the coefficient forx1
equal to1:2 and leaves that forx2 atx2, and the final LSMEANS statement sets these
values to1:2 and0:3, respectively.

If you specify a WEIGHT variable, then weighted means are used for the covariate
values. Also, observations with missing dependent variables are included in comput-
ing the covariate means, unless these observations form a missing cell. You can use
the E option in conjunction with the AT option to check that the modified LS-means
coefficients are the ones you desire.

The AT option is disabled if you specify the BYLEVEL option, in which case the
coefficients for the covariates are set equal to their means within each level of the
LS-mean effect in question.

Changing the Weighting Scheme
The standard LS-means have equal coefficients across classification effects; however,
the OM option in the LSMEANS statement changes these coefficients to be propor-
tional to those found in the input data set. This adjustment is reasonable when you
want your inferences to apply to a population that is not necessarily balanced but has
the margins observed in the original data set.

In computing the observed margins, PROC GLM uses all observations for which
there are no missing independent variables, including those for which there are miss-
ing dependent variables. Also, if there is a WEIGHT variable, PROC GLM uses
weighted margins to construct the LS-means coefficients. If the analysis data set is
balanced or if you specify a simple one-way model, the LS-means will be unchanged
by the OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of com-
puting the margins across the entire data set, PROC GLM computes separate margins
for each level of the LS-mean effect in question. The resulting LS-means are actually
equal to raw means in this case. The BYLEVEL option disables the AT option if it is
specified.

Note that the MIXED procedure implements a more versatile form of the OM option,
enabling you to specifying an alternative data set over which to compute observed
margins. If you use the BYLEVEL option, too, then this data set is effectively the
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“population” over which the population marginal means are computed. See Chap-
ter 41, “The MIXED Procedure,” for more information.

You may want to use the E option in conjunction with either the OM or BYLEVEL
option to check that the modified LS-means coefficients are the ones you desire. It is
possible that the modified LS-means are not estimable when the standard ones are, or
vice versa.

Multivariate Analysis of Variance

If you fit several dependent variables to the same effects, you may want to make
tests jointly involving parameters of several dependent variables. Suppose you have
p dependent variables,k parameters for each dependent variable, andn observations.
The models can be collected into one equation:

Y = X� + �

whereY is n� p,X is n� k, � is k � p, and� is n� p. Each of thep models can
be estimated and tested separately. However, you may also want to consider the joint
distribution and test thep models simultaneously.

For multivariate tests, you need to make some assumptions about the errors. Withp
dependent variables, there aren � p errors that are independent across observations
but not across dependent variables. Assume

vec(�) � N(0; In 
�)

where vec(�) strings� out by rows,
 denotes Kronecker product multiplication, and
� is p� p. � can be estimated by

S =
e0e
n� r

=
(Y �Xb)0(Y �Xb)

n� r

whereb = (X0X)�X0Y, r is the rank of theX matrix, ande is the matrix of
residuals.

If S is scaled to unit diagonals, the values inS are calledpartial correlations of the
Ys adjusting for the Xs. This matrix can be displayed by PROC GLM if PRINTE is
specified as a MANOVA option.

The multivariate general linear hypothesis is written

L�M = 0

You can form hypotheses for linear combinations across columns, as well as across
rows of�.
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The MANOVA statement of the GLM procedure tests special cases whereL corre-
sponds to Type I, Type II, Type III, or Type IV tests, andM is thep � p identity
matrix. These tests are joint tests that the given type of hypothesis holds for all de-
pendent variables in the model, and they are often sufficient to test all hypotheses of
interest.

Finally, when these special cases are not appropriate, you can specify your ownL and
Mmatrices by using the CONTRAST statement before the MANOVA statement and
the M= specification in the MANOVA statement, respectively. Another alternative
is to use a REPEATED statement, which automatically generates a variety ofM

matrices useful in repeated measures analysis of variance. See the “REPEATED
Statement” section on page 1511 and the “Repeated Measures Analysis of Variance”
section on page 1560 for more information.

One useful way to think of a MANOVA analysis with anM matrix other than the
identity is as an analysis of a set of transformed variables defined by the columns of
theM matrix. You should note, however, that PROC GLM always displays theM

matrix in such a way that the transformed variables are defined by the rows, not the
columns, of the displayedM matrix.

All multivariate tests carried out by the GLM procedure first construct the matricesH

andE corresponding to the numerator and denominator, respectively, of a univariate
F -test.

H = M0(Lb)0(L(X0X)�L0)�1(Lb)M

E = M0(Y0Y � b0(X0X)b)M

The diagonal elements ofH andE correspond to the hypothesis and error SS for
univariate tests. When theM matrix is the identity matrix (the default), these tests
are for the original dependent variables on the left-hand side of the MODEL state-
ment. When anM matrix other than the identity is specified, the tests are for trans-
formed variables defined by the columns of theMmatrix. These tests can be studied
by requesting the SUMMARY option, which produces univariate analyses for each
original or transformed variable.

Four multivariate test statistics, all functions of the eigenvalues ofE�1H (or (E +
H)�1H), are constructed:

� Wilks’ lambda = det(E)/det(H +E)

� Pillai’s trace = trace(H(H +E)�1)

� Hotelling-Lawley trace = trace(E�1H)

� Roy’s maximum root =�, largest eigenvalue ofE�1H

All four are reported withF approximations. For further details on these four statis-
tics, see the “Multivariate Tests” section in Chapter 3, “Introduction to Regression
Procedures.”
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Repeated Measures Analysis of Variance

When several measurements are taken on the same experimental unit (person, plant,
machine, and so on), the measurements tend to be correlated with each other. When
the measurements represent qualitatively different things, such as weight, length, and
width, this correlation is best taken into account by use of multivariate methods, such
as multivariate analysis of variance. When the measurements can be thought of as
responses to levels of an experimental factor of interest, such as time, treatment, or
dose, the correlation can be taken into account by performing a repeated measures
analysis of variance.

PROC GLM provides both univariate and multivariate tests for repeated measures
for one response. For an overall reference on univariate repeated measures, refer to
Winer (1971). The multivariate approach is covered in Cole and Grizzle (1966). For
a discussion of the relative merits of the two approaches, see LaTour and Miniard
(1983).

Another approach to analysis of repeated measures is via general mixed models. This
approach can handle balanced as well as unbalanced or missing within-subject data,
and it offers more options for modeling the within-subject covariance. The main
drawback of the mixed models approach is that it generally requires iteration and,
thus, may be less computationally efficient. For further details on this approach, see
Chapter 41, “The MIXED Procedure,” and Wolfinger and Chang (1995).

Organization of Data for Repeated Measures Analysis
In order to deal efficiently with the correlation of repeated measures, the GLM proce-
dure uses the multivariate method of specifying the model, even if only a univariate
analysis is desired. In some cases, data may already be entered in the univariate mode,
with each repeated measure listed as a separate observation along with a variable that
represents the experimental unit (subject) on which measurement is taken. Consider
the following data setold:

SUBJ GROUP TIME Y
1 1 1 15
1 1 2 19
1 1 3 25
2 1 1 21
2 1 2 18
2 1 3 17
1 2 1 14
1 2 2 12
1 2 3 16
2 2 1 11
2 2 2 20

.

.

.
10 3 1 14
10 3 2 18
10 3 3 16
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There are three observations for each subject, corresponding to measurements taken
at times 1, 2, and 3. These data could be analyzed using the following statements:

proc glm data=old;
class group subj time;
model y=group subj(group) time group*time;
test h=group e=subj(group);

run;

However, this analysis assumes subjects’ measurements are uncorrelated across time.
A repeated measures analysis does not make this assumption. It uses a data setnew:

GROUP Y1 Y2 Y3
1 15 19 25
1 21 18 17
2 14 12 16
2 11 20 21

.

.

.
3 14 18 16

In the data setnew, the three measurements for a subject are all in one observation.
For example, the measurements for subject 1 for times 1, 2, and 3 are 15, 19, and
25. For these data, the statements for a repeated measures analysis (assuming default
options) are

proc glm data=new;
class group;
model y1-y3=group / nouni;
repeated time;

run;

To convert the univariate form of repeated measures data to the multivariate form,
you can use a program like the following:

proc sort data=old;
by group subj;

run;

data new(keep=y1-y3 group);
array yy(3) y1-y3;
do time=1 to 3;

set old;
by group subj;
yy(time)=y;
if last.subj then return;

end;
run;
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Alternatively, you could use PROC TRANSPOSE to achieve the same results with a
program like this one:

proc sort data=old;
by group subj;

run;

proc transpose out=new(rename=(_1=y1 _2=y2 _3=y3));
by group subj;
id time;

run;

Refer to the discussions inSAS Language Reference: Conceptsfor more information
on rearrangement of data sets.

Hypothesis Testing in Repeated Measures Analysis
In repeated measures analysis of variance, the effects of interest are

� between-subject effects (such as GROUP in the previous example)

� within-subject effects (such as TIME in the previous example)

� interactions between the two types of effects (such as GROUP*TIME in the
previous example)

Repeated measures analyses are distinguished from MANOVA because of interest
in testing hypotheses about the within-subject effects and the within-subject-by-
between-subject interactions.

For tests that involve only between-subjects effects, both the multivariate and uni-
variate approaches give rise to the same tests. These tests are provided for all effects
in the MODEL statement, as well as for any CONTRASTs specified. The ANOVA
table for these tests is labeled “Tests of Hypotheses for Between Subjects Effects”
on the PROC GLM results. These tests are constructed by first adding together the
dependent variables in the model. Then an analysis of variance is performed on the
sum divided by the square root of the number of dependent variables. For example,
the statements

model y1-y3=group;
repeated time;

give a one-way analysis of variance using(Y 1 + Y 2 + Y 3)=
p
3 as the dependent

variable for performing tests of hypothesis on the between-subject effect GROUP.
Tests for between-subject effects are equivalent to tests of the hypothesisL�M = 0,
whereM is simply a vector of 1s.

For within-subject effects and for within-subject-by-between-subject interaction ef-
fects, the univariate and multivariate approaches yield different tests. These tests
are provided for the within-subject effects and for the interactions between these ef-
fects and the other effects in the MODEL statement, as well as for any CONTRASTs
specified. The univariate tests are displayed in a table labeled “Univariate Tests of
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Hypotheses for Within Subject Effects.” Results for multivariate tests are displayed
in a table labeled “Repeated Measures Analysis of Variance.”

The multivariate tests provided for within-subjects effects and interactions involving
these effects are Wilks’ Lambda, Pillai’s Trace, Hotelling-Lawley Trace, and Roy’s
maximum root. For further details on these four statistics, see the “Multivariate Tests”
section in Chapter 3, “Introduction to Regression Procedures.” As an example, the
statements

model y1-y3=group;
repeated time;

produce multivariate tests for the within-subject effect TIME and the interaction
TIME*GROUP.

The multivariate tests for within-subject effects are produced by testing the hypothe-
sisL�M = 0, where theL matrix is the usual matrix corresponding to Type I, Type
II, Type III, or Type IV hypotheses tests, and theM matrix is one of several matrices
depending on the transformation that you specify in the REPEATED statement. The
only assumption required for valid tests is that the dependent variables in the model
have a multivariate normal distribution with a common covariance matrix across the
between-subject effects.

The univariate tests for within-subject effects and interactions involving these effects
require some assumptions for the probabilities provided by the ordinaryF -tests to
be correct. Specifically, these tests require certain patterns of covariance matrices,
known as Type H covariances (Huynh and Feldt 1970). Data with these patterns in the
covariance matrices are said to satisfy the Huynh-Feldt condition. You can test this
assumption (and the Huynh-Feldt condition) by applying a sphericity test (Anderson
1958) to any set of variables defined by an orthogonal contrast transformation. Such
a set of variables is known as a set of orthogonal components. When you use the
PRINTE option in the REPEATED statement, this sphericity test is applied both to the
transformed variables defined by the REPEATED statement and to a set of orthogonal
components if the specified transformation is not orthogonal. It is the test applied to
the orthogonal components that is important in determining whether your data have
Type H covariance structure. When there are only two levels of the within-subject
effect, there is only one transformed variable, and a sphericity test is not needed. The
sphericity test is labeled “Test for Sphericity” on the output.

If your data satisfy the preceding assumptions, use the usualF -tests to test univariate
hypotheses for the within-subject effects and associated interactions.

If your data do not satisfy the assumption of Type H covariance, an adjustment to
numerator and denominator degrees of freedom can be used. Two such adjustments,
based on a degrees of freedom adjustment factor known as� (epsilon) (Box 1954),
are provided in PROC GLM. Both adjustments estimate� and then multiply the nu-
merator and denominator degrees of freedom by this estimate before determining
significance levels for theF -tests. Significance levels associated with the adjusted
tests are labeled “Adj Pr > F” on the output. The first adjustment, initially proposed
for use in data analysis by Greenhouse and Geisser (1959), is labeled “Greenhouse-
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Geisser Epsilon” and represents the maximum-likelihood estimate of Box’s� factor.
Significance levels associated with adjustedF -tests are labeled “G-G” on the output.
Huynh and Feldt (1976) have shown that the G-G estimate tends to be biased down-
ward (that is, too conservative), especially for small samples, and they have proposed
an alternative estimator that is constructed using unbiased estimators of the numera-
tor and denominator of Box’s�. Huynh and Feldt’s estimator is labeled “Huynh-Feldt
Epsilon” on the PROC GLM output, and the significance levels associated with ad-
justedF -tests are labeled “H-F.” Although� must be in the range of 0 to 1, the H-F
estimator can be outside this range. When the H-F estimator is greater than 1, a value
of 1 is used in all calculations for probabilities, and the H-F probabilities are not ad-
justed. In summary, if your data do not meet the assumptions, use adjustedF -tests.
However, when you strongly suspect that your data may not have Type H covariance,
all these univariate tests should be interpreted cautiously. In such cases, you should
consider using the multivariate tests instead.

The univariate sums of squares for hypotheses involving within-subject effects can
be easily calculated from theH andE matrices corresponding to the multivariate
tests described in the “Multivariate Analysis of Variance” section on page 1558. If
theM matrix is orthogonal, the univariate sums of squares is calculated as the trace
(sum of diagonal elements) of the appropriateHmatrix; if it is not orthogonal, PROC
GLM calculates the trace of theH matrix that results from an orthogonalM matrix
transformation. The appropriate error term for the univariateF -tests is constructed
in a similar way from the error SSCP matrix and is labeled Error(factorname), where
factornameindicates theM matrix that is used in the transformation.

When the design specifies more than one repeated measures factor, PROC GLM com-
putes theM matrix for a given effect as the direct (Kronecker) product of theM
matrices defined by the REPEATED statement if the factor is involved in the effect
or as a vector of 1s if the factor is not involved. The test for the main effect of
a repeated-measures factor is constructed using anL matrix that corresponds to a
test that the mean of the observation is zero. Thus, the main effect test for repeated
measures is a test that the means of the variables defined by theM matrix are all
equal to zero, while interactions involving repeated-measures effects are tests that the
between-subjects factors involved in the interaction have no effect on the means of
the transformed variables defined by theMmatrix. In addition, you can specify other
L matrices to test hypotheses of interest by using the CONTRAST statement, since
hypotheses defined by CONTRAST statements are also tested in the REPEATED
analysis. To see which combinations of the original variables the transformed vari-
ables represent, you can specify the PRINTM option in the REPEATED statement.
This option displays the transpose ofM, which is labeled as M in the PROC GLM
results. The tests produced are the same for any choice of transformation(M) ma-
trix specified in the REPEATED statement; however, depending on the nature of the
repeated measurements being studied, a particular choice of transformation matrix,
coupled with the CANONICAL or SUMMARY option, can provide additional in-
sight into the data being studied.

Transformations Used in Repeated Measures Analysis of Variance
As mentioned in the specifications of the REPEATED statement, several differentM

matrices can be generated automatically, based on the transformation that you specify
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in the REPEATED statement. Remember that both the univariate and multivariate
tests that PROC GLM performs are unaffected by the choice of transformation; the
choice of transformation is important only when you are trying to study the nature
of a repeated measures effect, particularly with the CANONICAL and SUMMARY
options. If one of these matrices does not meet your needs for a particular analysis,
you may want to use the M= option in the MANOVA statement to perform the tests
of interest.

The following sections describe the transformations available in the REPEATED
statement, provide an example of theM matrix that is produced, and give guide-
lines for the use of the transformation. As in the PROC GLM output, the displayed
matrix is labeled M. This is theM0 matrix.

CONTRAST Transformation
This is the default transformation used by the REPEATED statement. It is useful
when one level of the repeated measures effect can be thought of as a control level
against which the others are compared. For example, if five drugs are administered
to each of several animals and the first drug is a control or placebo, the statements

proc glm;
model d1-d5= / nouni;
repeated drug 5 contrast(1) / summary printm;

run;

produce the followingM matrix:

M =

2
664
�1 1 0 0 0
�1 0 1 0 0
�1 0 0 1 0
�1 0 0 0 1

3
775

When you examine the analysis of variance tables produced by the SUMMARY op-
tion, you can tell which of the drugs differed significantly from the placebo.

POLYNOMIAL Transformation
This transformation is useful when the levels of the repeated measure represent quan-
titative values of a treatment, such as dose or time. If the levels are unequally spaced,
level valuescan be specified in parentheses after the number of levels in the RE-
PEATED statement. For example, if five levels of a drug corresponding to 1, 2, 5, 10
and 20 milligrams are administered to different treatment groups, represented by the
variablegroup, the statements

proc glm;
class group;
model r1-r5=group / nouni;
repeated dose 5 (1 2 5 10 20) polynomial / summary printm;

run;
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produce the followingM matrix.

M =

2
664
�0:4250 �0:3606 �0:1674 0:1545 0:7984
0:4349 0:2073 �0:3252 �0:7116 0:3946

�0:4331 0:1366 0:7253 �0:5108 0:0821
0:4926 �0:7800 0:3743 �0:0936 0:0066

3
775

The SUMMARY option in this example provides univariate ANOVAs for the vari-
ables defined by the rows of thisM matrix. In this case, they represent the linear,
quadratic, cubic, and quartic trends for dose and are labeled dose–1, dose–2, dose–3,
and dose–4, respectively.

HELMERT Transformation
Since the Helmert transformation compares a level of a repeated measure to the mean
of subsequent levels, it is useful when interest lies in the point at which responses
cease to change. For example, if four levels of a repeated measures factor represent
responses to treatments administered over time to males and females, the statements

proc glm;
class sex;
model resp1-resp4=sex / nouni;
repeated trtmnt 4 helmert / canon printm;

run;

produce the followingM matrix:

M =

2
4 1 �0:33333 �0:33333 �0:33333

0 1 �0:50000 �0:50000
0 0 1 �1

3
5

MEAN Transformation
This transformation can be useful in the same types of situations in which the CON-
TRAST transformation is useful. If you substitute the following statement for the
REPEATED statement shown in the “CONTRAST Transformation” section,

repeated drug 5 mean / printm;

the followingM matrix is produced:

M =

2
664

1 �0:25 �0:25 �0:25 �0:25
�0:25 1 �0:25 �0:25 �0:25
�0:25 �0:25 1 �0:25 �0:25
�0:25 �0:25 �0:25 1 �0:25

3
775

As with the CONTRAST transformation, if you want to omit a level other than the
last, you can specify it in parentheses after the keyword MEAN in the REPEATED
statement.
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PROFILE Transformation
When a repeated measure represents a series of factors administered over time, but
a polynomial response is unreasonable, a profile transformation may prove useful.
As an example, consider a training program in which four different methods are em-
ployed to teach students at several different schools. The repeated measure is the
score on tests administered after each of the methods is completed. The statements

proc glm;
class school;
model t1-t4=school / nouni;
repeated method 4 profile / summary nom printm;

run;

produce the followingM matrix:

M =

2
4 1 �1 0 0

0 1 �1 0
0 0 1 �1

3
5

To determine the point at which an improvement in test scores takes place, you can
examine the analyses of variance for the transformed variables representing the dif-
ferences between adjacent tests. These analyses are requested by the SUMMARY
option in the REPEATED statement, and the variables are labeled METHOD.1,
METHOD.2, and METHOD.3.

Random Effects Analysis

When some model effects are random (that is, assumed to be sampled from a normal
population of effects), you can specify these effects in the RANDOM statement in
order to compute the expected values of mean squares for various model effects and
contrasts and, optionally, to perform random effects analysis of variance tests.

PROC GLM versus PROC MIXED for Random Effects Analysis
Other SAS procedures that can be used to analyze models with random effects in-
clude the MIXED and VARCOMP procedures. Note that, for these procedures, the
random effects specification is an integral part of the model, affecting how both ran-
dom and fixed effects are fit; for PROC GLM, the random effects are treated in apost
hoc fashion after the complete fixed effect model is fit. This distinction affects other
features in the GLM procedure, such as the results of the LSMEANS and ESTIMATE
statements. These features assume that all effects are fixed, so that all tests and es-
timability checks for these statements are based on a fixed effects model, even when
you use a RANDOM statement. Standard errors for estimates and LS-means based
on the fixed effects model may be significantly smaller than those based on a true
random effects model; in fact, some functions that are estimable under a true random
effects model may not even be estimable under the fixed effects model. Therefore,
you should use the MIXED procedure to compute tests involving these features that
take the random effects into account; see Chapter 41, “The MIXED Procedure,” for
more information.
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Note that, for balanced data, the test statistics computed when you specify the TEST
option on the RANDOM statement have an exactF distribution only when the design
is balanced; for unbalanced designs, thep values for theF-tests are approximate. For
balanced data, the values obtained by PROC GLM and PROC MIXED agree; for
unbalanced data, they usually do not.

Computation of Expected Mean Squares for Random Effects
The RANDOM statement in PROC GLM declares one or more effects in the model
to be random rather than fixed. By default, PROC GLM displays the coefficients of
the expected mean squares for all terms in the model. In addition, when you specify
the TEST option in the RANDOM statement, the procedure determines what tests are
appropriate and providesF ratios and probabilities for these tests.

The expected mean squares are computed as follows. Consider the model

Y = X0�0 +X1�1 + � � �+Xk�k + �

where�0 represents the fixed effects and�1;�2; � � � ; � represent the random effects.
Random effects are assumed to be normally and independently distributed. For any
L in the row space ofX = (X0 j X1 j X2 j � � � j Xk), the expected value of the sum
of squares forL� is

E(SSL) = �00C
0
0C0�0 + SSQ(C1)�

2

1 + SSQ(C2)�
2

2 + � � �+ SSQ(Ck)�
2

k + rank(L)�2�

whereC is of the same dimensions asL and is partitioned as theX matrix. In other
words,

C = (C0 j C1 j � � � j Ck)

Furthermore,C = ML, whereM is the inverse of the lower triangular Cholesky
decomposition matrix ofL(X0X)�L0. SSQ(A) is defined as tr(A0A).

For the model in the following MODEL statement

model Y=A B(A) C A*C;
random B(A);

with B(A) declared as random, the expected mean square of each effect is displayed
as

Var(Error)+ constant� Var(B(A)) +Q(A;C;A � C)

If any fixed effects appear in the expected mean square of an effect, the letter Q
followed by the list of fixed effects in the expected value is displayed. The actual
numeric values of the quadratic form (Qmatrix) can be displayed using the Q option.

To determine appropriate means squares for testing the effects in the model, the TEST
option in the RANDOM statement performs the following.
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1. First, it forms a matrix of coefficients of the expected mean squares of those
effects that were declared to be random.

2. Next, for each effect in the model, it determines the combination of these ex-
pected mean squares that produce an expectation that includes all the terms in
the expected mean square of the effect of interest except the one corresponding
to the effect of interest. For example, if the expected mean square of an effect
A*B is

Var(Error)+ 3� Var(A) + Var(A � B)

PROC GLM determines the combination of other expected mean squares in the
model that has expectation

Var(Error)+ 3� Var(A)

3. If the preceding criterion is met by the expected mean square of a single effect
in the model (as is often the case in balanced designs), theF test is formed
directly. In this case, the mean square of the effect of interest is used as the nu-
merator, the mean square of the single effect with an expected mean square that
satisfies the criterion is used as the denominator, and the degrees of freedom
for the test are simply the usual model degrees of freedom.

4. When more than one mean square must be combined to achieve the appropri-
ate expectation, an approximation is employed to determine the appropriate
degrees of freedom (Satterthwaite 1946). When effects other than the effect
of interest are listed after the Q in the output, tests of hypotheses involving
the effect of interest are not valid unless all other fixed effects involved in it
are assumed to be zero. When tests such as these are performed by using the
TEST option in the RANDOM statement, a note is displayed reminding you
that further assumptions are necessary for the validity of these tests. Remem-
ber that although the tests are not valid unless these assumptions are made, this
does not provide a basis for these assumptions to be true. The particulars of
a given experiment must be examined to determine whether the assumption is
reasonable.

Refer to Goodnight and Speed (1978), Milliken and Johnson (1984, Chapters 22 and
23), and Hocking (1985) for further theoretical discussion.

Sum-to-Zero Assumptions
The formulation and parameterization of the expected mean squares for random ef-
fects in mixed models is an ongoing item of controversy in the statistical literature.
Confusion arises over whether or not to assume that terms involving fixed effects sum
to zero. Cornfield and Tukey (1956), Winer (1971), and others assume that they do
sum to zero; Searle (1971), Hocking (1973), and others (including PROC GLM) do
not. The assumption usually makes no difference for balanced data, but with unbal-
anced designs it can yield different expected mean squares for certain terms, and,
hence, differentF andp values.
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For arguments in favor of not assuming that terms involving fixed effects sum to
zero, see Section 9.7 of Searle (1971) and Sections 1 and 4 of McLean, Sanders, and
Stroup (1991). Other references are Hartley and Searle (1969) and Searle, Casella,
McCulloch (1992).

Computing Type I, II, and IV Expected Mean Squares
When you use the RANDOM statement, by default the GLM procedure produces
the Type III expected mean squares for model effects and for contrasts specified be-
fore the RANDOM statement. In order to obtain expected values for other types of
mean squares, you need to specify which types of mean squares are of interest in
the MODEL statement. For example, in order to obtain the Type IV expected mean
squares for effects in the RANDOM and CONTRAST statements, specify the SS4
option in the MODEL statement. If you want both Type III and Type IV expected
mean squares, specify both the SS3 and SS4 options in the MODEL statement. Since
the estimable function basis is not automatically calculated for Type I and Type II SS,
the E1 (for Type I) or E2 (for Type II) option must be specified in the MODEL state-
ment in order for the RANDOM statement to produce the expected mean squares for
the Type I or Type II sums of squares. Note that it is important to list the fixed effects
first in the MODEL statement when requesting the Type I expected mean squares.

For example, suppose you have a two-way design with factorsA and B in which
the main effect forB and the interaction are random. In order to compute the Type
III expected mean squares (in addition to the fixed-effect analysis), you can use the
following statements:

proc glm;
class A B;
model Y = A B A*B;
random B A*B;

run;

If you use the SS4 option in the MODEL statement,

proc glm;
class A B;
model Y = A B A*B / ss4;
random B A*B;

run;

then only the Type IV expected mean squares are computed (as well as the Type IV
fixed-effect tests). For the Type I expected mean squares, you can use the following
statements:

proc glm;
class A B;
model Y = A B A*B / e1;
random B A*B;

run;
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For each of these cases, in order to perform random effect analysis of variance tests
for each effect specified in the model, you need to specify the TEST option in the
RANDOM statement, as follows:

proc glm;
class A B;
model Y = A B A*B;
random B A*B / test;

run;

The GLM procedure automatically determines the appropriate error term for each
test, based on the expected mean squares.

Missing Values

For an analysis involving one dependent variable, PROC GLM uses an observation if
values are nonmissing for that dependent variable and all the class variables.

For an analysis involving multiple dependent variables without the MANOVA or RE-
PEATED statement, or without the MANOVA option in the PROC GLM statement, a
missing value in one dependent variable does not eliminate the observation from the
analysis of other nonmissing dependent variables. On the other hand, for an analysis
with the MANOVA or REPEATED statement, or with the MANOVA option in the
PROC GLM statement, PROC GLM uses an observation if values are nonmissing for
all dependent variables and all the variables used in independent effects.

During processing, the GLM procedure groups the dependent variables by their pat-
tern of missing values across observations so that sums and cross products can be
collected in the most efficient manner.

If your data have different patterns of missing values among the dependent variables,
interactivity is disabled. This can occur when some of the variables in your data set
have missing values and

� you do not use the MANOVA option in the PROC GLM statement

� you do not use a MANOVA or REPEATED statement before the first RUN
statement

Note that the REG procedure handles missing values differently in this case; see
Chapter 55, “The REG Procedure,” for more information.

Computational Resources

Memory
For large problems, most of the memory resources are required for holding theX0X
matrix of the sums and cross products. The section “Parameterization of PROC GLM
Models” on page 1521 describes how columns of theX matrix are allocated for
various types of effects. For each level that occurs in the data for a combination of
class variables in a given effect, a row and column forX0X is needed.
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The following example illustrates the calculation. SupposeA has 20 levels,B has 4
levels, andC has 3 levels. Then consider the model

proc glm;
class A B C;
model Y1 Y2 Y3=A B A*B C A*C B*C A*B*C X1 X2;

run;

TheX0X matrix (bordered byX0Y andY0Y) can have as many as 425 rows and
columns:

1 for the intercept term

20 for A

4 for B

80 for A*B

3 for C

60 for A*C

12 for B*C

240 forA*B*C

2 for X1 andX2 (continuous variables)

3 for Y1, Y2, andY3 (dependent variables)

The matrix has 425 rows and columns only if all combinations of levels occur for
each effect in the model. Form rows and columns,8m2 bytes are needed for cross
products. In this case,8 � 4252 = 1; 445; 000 bytes, or about1; 445; 000=1024 =
1411K.

The required memory grows as the square of the number of columns ofX; most of the
memory is for theA*B*C interaction. WithoutA*B*C, you have 185 columns and
need 268K forX0X. Without eitherA*B*C or A*B, you need 86K. IfA is recoded
to have ten levels, then the full model has only 220 columns and requires 378K.

The second time that a large amount of memory is needed is when Type III, Type
IV, or contrast sums of squares are being calculated. This memory requirement is a
function of the number of degrees of freedom of the model being analyzed and the
maximum degrees of freedom for any single source. Let Rank equal the sum of the
model degrees of freedom, MaxDF be the maximum number of degrees of freedom
for any single source, andNy be the number of dependent variables in the model.
Then the memory requirement in bytes is

�
8�

�
Rank � (Rank + 1)

2

��
+ (Ny � Rank)

+

�
MaxDF� (MaxDF+ 1)

2

�
+ (Ny �MaxDF)
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Unfortunately, these quantities are not available when theX0X matrix is being con-
structed, so PROC GLM may occasionally request additional memory even after you
have increased the memory allocation available to the program.

If you have a large model that exceeds the memory capacity of your computer, these
are your options:

� Eliminate terms, especially high-level interactions.

� Reduce the number of levels for variables with many levels.

� Use the ABSORB statement for parts of the model that are large.

� Use the REPEATED statement for repeated measures variables.

� Use PROC ANOVA or PROC REG rather than PROC GLM, if your design
allows.

CPU Time
For large problems, two operations consume a lot of CPU time: the collection of
sums and cross products and the solution of the normal equations.

The time required for collecting sums and cross products is difficult to calculate be-
cause it is a complicated function of the model. For a model withm columns andn
rows (observations) inX, the worst case occurs if all columns are continuous vari-
ables, involvingnm2=2 multiplications and additions. If the columns are levels of
a classification, then onlym sums may be needed, but a significant amount of time
may be spent in look-up operations. Solving the normal equations requires time for
approximatelym3=2 multiplications and additions.

Suppose you know that Type IV sums of squares are appropriate for the model you
are analyzing (for example, if your design has no missing cells). You can specify the
SS4 option in your MODEL statement, which saves CPU time by requesting the Type
IV sums of squares instead of the more computationally burdensome Type III sums
of squares. This proves especially useful if you have a factor in your model that has
many levels and is involved in several interactions.
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Computational Method

LetX represent then � p design matrix andY then � 1 vector of dependent vari-
ables. (See the section “Parameterization of PROC GLM Models” on page 1521 for
information on howX is formed from your model specification.)

The normal equationsX0X� = X0Y are solved using a modified sweep routine
that produces a generalized (g2) inverse(X0X)� and a solutionb = (X0X)�X0y
(Pringle and Raynor 1971).

For each effect in the model, a matrixL is computed such that the rows ofL are
estimable. Tests of the hypothesisL� = 0 are then made by first computing

SS(L� = 0) = (Lb)0(L(X0X)�L0)�1(Lb)

and then computing the associatedF value using the mean squared error.

Output Data Sets

OUT= Data Set Created by the OUTPUT Statement
The OUTPUT statement produces an output data set that contains the following:

� all original data from the SAS data set input to PROC GLM

� the new variables corresponding to the diagnostic measures specified with
statistics keywords in the OUTPUT statement (PREDICTED=, RESIDUAL=,
and so on).

With multiple dependent variables, a name can be specified for any of the diagnostic
measures for each of the dependent variables in the order in which they occur in the
MODEL statement.

For example, suppose that the input data setA contains the variablesy1, y2, y3, x1,
andx2. Then you can use the following statements:

proc glm data=A;
model y1 y2 y3=x1;
output out=out p=y1hat y2hat y3hat

r=y1resid lclm=y1lcl uclm=y1ucl;
run;

The output data setout containsy1, y2, y3, x1, x2, y1hat, y2hat, y3hat, y1resid,
y1lcl, andy1ucl. The variablex2 is output even though it is not used by PROC GLM.
Although predicted values are generated for all three dependent variables, residuals
are output for only the first dependent variable.

When any independent variable in the analysis (including all class variables) is miss-
ing for an observation, then all new variables that correspond to diagnostic measures
are missing for the observation in the output data set.
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When a dependent variable in the analysis is missing for an observation, then some
new variables that correspond to diagnostic measures are missing for the observa-
tion in the output data set, and some are still available. Specifically, in this case, the
new variables that correspond to COOKD, COVRATIO, DFFITS, PRESS, R, RSTU-
DENT, STDR, and STUDENT are missing in the output data set. The variables
corresponding to H, LCL, LCLM, P, STDI, STDP, UCL, and UCLM are not missing.

OUT= Data Set Created by the LSMEANS Statement
The OUT= option in the LSMEANS statement produces an output data set that con-
tains

� the unformatted values of each classification variable specified in any effect in
the LSMEANS statement

� a new variable,LSMEAN, which contains the LS-mean for the specified levels
of the classification variables

� a new variable,STDERR, which contains the standard error of the LS-mean

The variances and covariances among the LS-means are also output when the COV
option is specified along with the OUT= option. In this case, only one effect can be
specified in the LSMEANS statement, and the following variables are included in the
output data set:

� new variables,COV1, COV2, . . . ,COVn, wheren is the number of levels of
the effect specified in the LSMEANS statement. These variables contain the
covariances of each LS-mean with each other LS-mean.

� a new variable,NUMBER, which provides an index for each observation to
identify the covariances that correspond to that observation. The covariances
for the observation withNUMBER equal ton can be found in the variable
COVn.

OUTSTAT= Data Set
The OUTSTAT= option in the PROC GLM statement produces an output data set that
contains

� the BY variables, if any

� –TYPE– , a new character variable.–TYPE– may take the values ‘SS1’,
‘SS2’, ‘SS3’, ‘SS4’, or ‘CONTRAST’, corresponding to the various types
of sums of squares generated, or the values ‘CANCORR’, ‘STRUCTUR’, or
‘SCORE’, if a canonical analysis is performed through the MANOVA state-
ment and no M= matrix is specified.

� –SOURCE– , a new character variable. For each observation in the data set,

–SOURCE– contains the name of the model effect or contrast label from
which the corresponding statistics are generated.

� –NAME– , a new character variable. For each observation in the data set,

–NAME– contains the name of one of the dependent variables in the model or,
in the case of canonical statistics, the name of one of the canonical variables
(CAN1, CAN2, and so forth).
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� four new numeric variables:SS, DF, F, and PROB, containing sums of
squares, degrees of freedom,F values, and probabilities, respectively, for each
model or contrast sum of squares generated in the analysis. For observations
resulting from canonical analyses, these variables have missing values.

� if there is more than one dependent variable, then variables with the same
names as the dependent variables represent

� for –TYPE–=SS1, SS2, SS3, SS4, or CONTRAST, the crossproducts of
the hypothesis matrices

� for –TYPE–=CANCORR, canonical correlations for each variable

� for –TYPE–=STRUCTUR, coefficients of the total structure matrix

� for –TYPE–=SCORE, raw canonical score coefficients

The output data set can be used to perform special hypothesis tests (for example, with
the IML procedure in SAS/IML software), to reformat output, to produce canonical
variates (through the SCORE procedure), or to rotate structure matrices (through the
FACTOR procedure).

Displayed Output

The GLM procedure produces the following output by default:

� The overall analysis-of-variance table breaks down the Total Sum of Squares
for the dependent variable into the portion attributed to the Model and the por-
tion attributed to Error.

� The Mean Square term is the Sum of Squares divided by the degrees of freedom
(DF).

� The Mean Square for Error is an estimate of�2, the variance of the true errors.

� TheF Value is the ratio produced by dividing the Mean Square for the Model
by the Mean Square for Error. It tests how well the model as a whole (adjusted
for the mean) accounts for the dependent variable’s behavior. AnF -test is a
joint test to determine that all parameters except the intercept are zero.

� A small significance probability, Pr > F, indicates that some linear function of
the parameters is significantly different from zero.

� R-Square,R2, measures how much variation in the dependent variable can be
accounted for by the model.R2, which can range from 0 to 1, is the ratio of the
sum of squares for the model divided by the sum of squares for the corrected
total. In general, the larger the value ofR2, the better the model’s fit.

� Coef Var, the coefficient of variation, which describes the amount of variation
in the population, is 100 times the standard deviation estimate of the depen-
dent variable, Root MSE (Mean Square for Error), divided by the Mean. The
coefficient of variation is often a preferred measure because it is unitless.

� Root MSE estimates the standard deviation of the dependent variable (or equiv-
alently, the error term) and equals the square root of the Mean Square for Error.

� Mean is the sample mean of the dependent variable.
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These tests are used primarily in analysis-of-variance applications:

� The Type I SS (sum of squares) measures incremental sums of squares for the
model as each variable is added.

� The Type III SS is the sum of squares for a balanced test of each effect, adjusted
for every other effect.

These items are used primarily in regression applications:

� The Estimates for the model Parameters (the intercept and the coefficients)

� t Value is the Student’st value for testing the null hypothesis that the parameter
(if it is estimable) equals zero.

� The significance level, Pr > |t|, is the probability of getting a larger value oft
if the parameter is truly equal to zero. A very small value for this probability
leads to the conclusion that the independent variable contributes significantly
to the model.

� The Standard Error is the square root of the estimated variance of the estimate
of the true value of the parameter.

Other portions of output are discussed in the following examples.

ODS Table Names

PROC GLM assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 30.5. ODS Tables Produced in PROC GLM

ODS Table Name Description Statement / Option
Aliasing Type 1,2,3,4 aliasing structure MODEL / (E1 E2 E3 or E4) and

ALIASING
AltErrContrasts ANOVA table for contrasts with

alternative error
CONTRAST / E=

AltErrTests ANOVA table for tests with alter-
native error

TEST / E=

Bartlett Bartlett’s homogeneity of vari-
ance test

MEANS / HOVTEST=BARTLETT

CLDiffs Multiple comparisons of pair-
wise differences

MEANS / CLDIFF or DUNNETT or
(Unequal cells and not LINES)

CLDiffsInfo Information for multiple compar-
isons of pairwise differences

MEANS / CLDIFF or DUNNETT or
(Unequal cells and not LINES)

CLMeans Multiple comparisons of means
with confidence/comparison
interval

MEANS / CLM

SAS OnlineDoc: Version 8



1578 � Chapter 30. The GLM Procedure

Table 30.5. (continued)

ODS Table Name Description Statement / Option
CLMeansInfo Information for multiple com-

parison of means with confi-
dence/comparison interval

MEANS / CLM

CanAnalysis Canonical analysis (MANOVA or REPEATED)
/ CANONICAL

CanCoefficients Canonical coefficients (MANOVA or REPEATED)
/ CANONICAL

CanStructure Canonical structure (MANOVA or REPEATED)
/ CANONICAL

CharStruct Characteristic roots and vectors (MANOVA / not CANONICAL) or
(REPEATED / PRINTRV)

ClassLevels Classification variable levels CLASS statement
ContrastCoef L matrix for contrast CONTRAST / EST
Contrasts ANOVA table for contrasts CONTRAST statement
DependentInfo Simultaneously analyzed depen-

dent variables
default when there are multiple depen-
dent variables with different patterns
of missing values

Diff PDiff matrix of Least-Squares
Means

LSMEANS / PDIFF

Epsilons Greenhouse-Geisser and Huynh-
Feldt epsilons

REPEATED statement

ErrorSSCP Error SSCP matrix (MANOVA or REPEATED)
/ PRINTE

EstFunc Type 1,2,3,4 estimable functions MODEL / (E1 E2 E3 or E4)
Estimates Estimate statement results ESTIMATE statement
ExpectedMeanSquares Expected mean squares RANDOM statement
FitStatistics R-Square, C.V., Root MSE, and

dependent mean
default

GAliasing General form of aliasing
structure

MODEL / E and ALIASING

GEstFunc General form of estimable
functions

MODEL / E

HOVFTest Homogeneity of variance
ANOVA

MEANS / HOVTEST

HypothesisSSCP Hypothesis SSCP matrix (MANOVA or REPEATED)
/ PRINTH

Inv inv(X’X) matrix MODEL / INVERSE
LSMeanCL Confidence interval for LS-

means
LSMEANS / CL

LSMeanCoef Coefficients of Least-Squares
Means

LSMEANS / E

LSMeanDiffCL Confidence interval for LS-mean
differences

LSMEANS / PDIFF and CL

LSMeans Least-Squares means LSMEANS statement
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Table 30.5. (continued)

ODS Table Name Description Statement / Option
MANOVATransform Multivariate transformation

matrix
MANOVA / M=

MCLines Multiple comparisons LINES
output

MEANS / LINES or ((DUNCAN or
WALLER or SNK or REGWQ) and
not (CLDIFF or CLM))
or (Equal cells and not CLDIFF)

MCLinesInfo Information for multiple compar-
ison LINES output

MEANS / LINES or ((DUNCAN or
WALLER or SNK or REGWQ) and
not (CLDIFF or CLM))
or (Equal cells and not CLDIFF)

MCLinesRange Ranges for multiple range MC
tests

MEANS / LINES or ((DUNCAN or
WALLER or SNK or REGWQ) and
not (CLDIFF or CLM))
or (Equal cells and not CLDIFF)

MTests Multivariate tests MANOVA statement
MatrixRepresentation X matrix element

representation
as needed for other options

Means Group means MEANS statement
ModelANOVA ANOVA for model terms default
NObs Number of observations default
OverallANOVA Over-all ANOVA default
ParameterEstimates Estimated linear model

coefficients
MODEL / SOLUTION

PartialCorr Partial correlation matrix (MANOVA or REPEATED)
/ PRINTE

PredictedInfo Predicted values info MODEL / PREDICTED or CLM or
CLI

PredictedValues Predicted values MODEL / PREDICTED or CLM or
CLI

QForm Quadratic form for expected
mean squares

RANDOM / Q

RandomModelANOVA Random effect tests RANDOM / TEST
RepeatedLevelInfo Correspondence between depen-

dents and repeated measures
levels

REPEATED statement

RepeatedTransform Repeated Measures Transforma-
tion Matrix

REPEATED / PRINTM

SimDetails Details of difference quantile
simulation

LSMEANS
/ ADJUST=SIMULATE(REPORT)

SimResults Evaluation of difference quantile
simulation

LSMEANS
/ ADJUST=SIMULATE(REPORT)

SlicedANOVA Sliced effect ANOVA table LSMEANS / SLICE
Sphericity Sphericity tests REPEATED / PRINTE
Tests Summary ANOVA for specified

MANOVA H= effects
MANOVA / H= SUMMARY
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Table 30.5. (continued)

ODS Table Name Description Statement / Option
Tolerances X’X Tolerances MODEL / TOLERANCE
Welch Welch’s ANOVA MEANS / WELCH
XpX X’X matrix MODEL / XPX

Examples

Example 30.1. Balanced Data from Randomized Complete
Block with Means Comparisons and Contrasts

The following example� analyzes an experiment to investigate how snapdragons grow
in various soils. To eliminate the effect of local fertility variations, the experiment
is run in blocks, with each soil type sampled in each block. Since these data are
balanced, the Type I and Type III SS are the same and are equal to the traditional
ANOVA SS.

First, the standard analysis is shown followed by an analysis that uses the SOLUTION
option and includes MEANS and CONTRAST statements. The ORDER=DATA op-
tion in the second PROC GLM statement is used so that the ordering of coefficients
in the CONTRAST statement can correspond to the ordering in the input data. The
SOLUTION option requests a display of the parameter estimates, which are only
produced by default if there are no CLASS variables. A MEANS statement is used
to request a table of the means with two multiple comparison procedures requested.
In experiments with focused treatment questions, CONTRAST statements are prefer-
able to general means comparison methods. The following statements produce Out-
put 30.1.1 through Output 30.1.5:

title ’Balanced Data from Randomized Complete Block’;
data plants;

input Type $ @;
do Block = 1 to 3;

input StemLength @;
output;
end;

datalines;
Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
Knox 35.7 35.9 33.1
O’Neill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash 38.2 37.8 31.9
Webster 32.5 31.1 29.7
;

proc glm;
class Block Type;
model StemLength = Block Type;

run;

�reported by Stenstrom (1940)
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proc glm order=data;
class Block Type;
model StemLength = Block Type / solution;

/*----------------------------------clrn-cltn-knox-onel-cpst-wbsh-wstr */
contrast ’Compost vs. others’ Type -1 -1 -1 -1 6 -1 -1;
contrast ’River soils vs. non’ Type -1 -1 -1 -1 0 5 -1,

Type -1 4 -1 -1 0 0 -1;
contrast ’Glacial vs. drift’ Type - 1 0 1 1 0 0 -1;
contrast ’Clarion vs. Webster’ Type - 1 0 0 0 0 0 1;
contrast ’’Knox vs. O’Neill’’ Typ e 0 0 1 -1 0 0 0;
run;

means Type / waller regwq;
run;

Output 30.1.1. Standard Analysis for Randomized Complete Block

Balanced Data from Randomized Complete Block

The GLM Procedure

Class Level Information

Class Levels Values

Block 3 1 2 3

Type 7 Clarion Clinton Compost Knox O’Neill Wabash Webster

Number of observations 21

SAS OnlineDoc: Version 8



1582 � Chapter 30. The GLM Procedure

Balanced Data from Randomized Complete Block

The GLM Procedure

Dependent Variable: StemLength

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 8 142.1885714 17.7735714 10.80 0.0002

Error 12 19.7428571 1.6452381

Corrected Total 20 161.9314286

R-Square Coeff Var Root MSE StemLength Mean

0.878079 3.939745 1.282668 32.55714

Source DF Type I SS Mean Square F Value Pr > F

Block 2 39.0371429 19.5185714 11.86 0.0014
Type 6 103.1514286 17.1919048 10.45 0.0004

Source DF Type III SS Mean Square F Value Pr > F

Block 2 39.0371429 19.5185714 11.86 0.0014
Type 6 103.1514286 17.1919048 10.45 0.0004

This analysis shows that the stem length is significantly different for the different soil
types. In addition, there are significant differences in stem length between the three
blocks in the experiment.

Output 30.1.2. Standard Analysis Again

Balanced Data from Randomized Complete Block

The GLM Procedure

Class Level Information

Class Levels Values

Block 3 1 2 3

Type 7 Clarion Clinton Compost Knox O’Neill Wabash Webster

Number of observations 21

The GLM procedure is invoked again, this time with the ORDER=DATA option.
This enables you to write accurate contrast statements more easily because you know
the order SAS is using for the levels of the variableType. The standard analysis is
displayed again.
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Output 30.1.3. Contrasts and Solutions

Balanced Data from Randomized Complete Block

The GLM Procedure

Dependent Variable: StemLength

Contrast DF Contrast SS Mean Square F Value Pr > F

Compost vs. others 1 29.24198413 29.24198413 17.77 0.0012
River soils vs. non 2 48.24694444 24.12347222 14.66 0.0006
Glacial vs. drift 1 22.14083333 22.14083333 13.46 0.0032
Clarion vs. Webster 1 1.70666667 1.70666667 1.04 0.3285
Knox vs. O’Neill 1 1.81500000 1.81500000 1.10 0.3143

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept 29.35714286 B 0.83970354 34.96 <.0001
Block 1 3.32857143 B 0.68561507 4.85 0.0004
Block 2 1.90000000 B 0.68561507 2.77 0.0169
Block 3 0.00000000 B . . .
Type Clarion 1.06666667 B 1.04729432 1.02 0.3285
Type Clinton -0.80000000 B 1.04729432 -0.76 0.4597
Type Knox 3.80000000 B 1.04729432 3.63 0.0035
Type O’Neill 2.70000000 B 1.04729432 2.58 0.0242
Type Compost -1.43333333 B 1.04729432 -1.37 0.1962
Type Wabash 4.86666667 B 1.04729432 4.65 0.0006
Type Webster 0.00000000 B . . .

NOTE: The X’X matrix has been found to be singular, and a generalized inverse
was used to solve the normal equations. Terms whose estimates are
followed by the letter ’B’ are not uniquely estimable.

Output 30.1.3 shows the tests for contrasts that you specified as well as the estimated
parameters. The contrast label, degrees of freedom, sum of squares, Mean Square, F
Value, and Pr > F are shown for each contrast requested. In this example, the contrast
results show that at the 5% significance level,

� the stem length of plants grown in compost soil is significantly different from
the average stem length of plants grown in other soils

� the stem length of plants grown in river soils is significantly different from the
average stem length of those grown in nonriver soils

� the average stem length of plants grown in glacial soils (Clarion and Webster)
is significantly different from the average stem length of those grown in drift
soils (Knox and O’Neill)

� stem lengths for Clarion and Webster are not significantly different

� stem lengths for Knox and O’Neill are not significantly different

In addition to the estimates for the parameters of the model, the results oft tests
about the parameters are also displayed. The ‘B’ following the parameter estimates
indicates that the estimates are biased and do not represent a unique solution to the
normal equations.
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Output 30.1.4. Waller-Duncan tests

Balanced Data from Randomized Complete Block

The GLM Procedure

Waller-Duncan K-ratio t Test for StemLength

NOTE: This test minimizes the Bayes risk under additive loss and certain other
assumptions.

Kratio 100
Error Degrees of Freedom 12
Error Mean Square 1.645238
F Value 10.45
Critical Value of t 2.12034
Minimum Significant Difference 2.2206

Means with the same letter are not significantly different.

Waller Grouping Mean N Type

A 35.967 3 Wabash
A
A 34.900 3 Knox
A

B A 33.800 3 O’Neill
B
B C 32.167 3 Clarion

C
D C 31.100 3 Webster
D C
D C 30.300 3 Clinton
D
D 29.667 3 Compost

SAS OnlineDoc: Version 8



Example 30.1. Balanced Data from Randomized... � 1585

Output 30.1.5. Ryan-Einot-Gabriel-Welsch Multiple Range Test

Balanced Data from Randomized Complete Block

The GLM Procedure

Ryan-Einot-Gabriel-Welsch Multiple Range Test for StemLength

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 12
Error Mean Square 1.645238

Number of Means 2 3 4 5 6 7
Critical Range 2.9876649 3.283833 3.4396257 3.5402242 3.5402242 3.6634222

Means with the same letter are not significantly different.

REGWQ Grouping Mean N Type

A 35.967 3 Wabash
A

B A 34.900 3 Knox
B A
B A C 33.800 3 O’Neill
B C
B D C 32.167 3 Clarion

D C
D C 31.100 3 Webster
D
D 30.300 3 Clinton
D
D 29.667 3 Compost

The final two pages of output (Output 30.1.4 and Output 30.1.5) present results of the
Waller-Duncan and REGWQ multiple comparison procedures. For each test, notes
and information pertinent to the test are given on the output. TheType means are
arranged from highest to lowest. Means with the same letter are not significantly
different. For this example, while some pairs of means are significantly different,
there are no clear equivalence classes among the different soils.
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Example 30.2. Regression with Mileage Data

A car is tested for gas mileage at various speeds to determine at what speed the car
achieves the greatest gas mileage. A quadratic model is fit to the experimental data.
The following statements produce Output 30.2.1 through Output 30.2.4:

title ’Gasoline Mileage Experiment’;
data mileage;

input mph mpg @@;
datalines;

20 15.4
30 20.2
40 25.7
50 26.2 50 26.6 50 27.4
55 .
60 24.8
;

proc glm;
model mpg=mph mph*mph / p clm;
output out=pp p=mpgpred r=resid;

axis1 minor=none major=(number=5);
axis2 minor=none major=(number=8);
symbol1 c=black i=none v=plus;
symbol2 c=black i=spline v=none;
proc gplot data=pp;

plot mpg*mph=1 mpgpred*mph=2 / overlay haxis=axis1
vaxis=axis2;

run;

Output 30.2.1. Standard Regression Analysis Output from PROC GLM

Gasoline Mileage Experiment

The GLM Procedure

Number of observations 8

NOTE: Due to missing values, only 7 observations can be used in this analysis.
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Gasoline Mileage Experiment

The GLM Procedure

Dependent Variable: mpg

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 111.8086183 55.9043091 77.96 0.0006

Error 4 2.8685246 0.7171311

Corrected Total 6 114.6771429

R-Square Coeff Var Root MSE mpg Mean

0.974986 3.564553 0.846836 23.75714

Source DF Type I SS Mean Square F Value Pr > F

mph 1 85.64464286 85.64464286 119.43 0.0004
mph*mph 1 26.16397541 26.16397541 36.48 0.0038

Source DF Type III SS Mean Square F Value Pr > F

mph 1 41.01171219 41.01171219 57.19 0.0016
mph*mph 1 26.16397541 26.16397541 36.48 0.0038

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -5.985245902 3.18522249 -1.88 0.1334
mph 1.305245902 0.17259876 7.56 0.0016
mph*mph -0.013098361 0.00216852 -6.04 0.0038

The overallF statistic is significant. The tests ofmph andmph*mph in the Type I
sums of squares show that both the linear and quadratic terms in the regression model
are significant. The model fits well, with anR2 of 0.97. The table of parameter
estimates indicates that the estimated regression equation is

mpg = �5:9852 + 1:3052 �mph� 0:0131 �mph2
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Output 30.2.2. Results of Requesting the P and CLM Options

Gasoline Mileage Experiment

The GLM Procedure

Observation Observed Predicted Residual

1 15.40000000 14.88032787 0.51967213
2 20.20000000 21.38360656 -1.18360656
3 25.70000000 25.26721311 0.43278689
4 26.20000000 26.53114754 -0.33114754
5 26.60000000 26.53114754 0.06885246
6 27.40000000 26.53114754 0.86885246
7 * . 26.18073770 .
8 24.80000000 25.17540984 -0.37540984

95% Confidence Limits for
Observation Mean Predicted Value

1 12.69701317 17.06364257
2 20.01727192 22.74994119
3 23.87460041 26.65982582
4 25.44573423 27.61656085
5 25.44573423 27.61656085
6 25.44573423 27.61656085
7 * 24.88679308 27.47468233
8 23.05954977 27.29126990

* Observation was not used in this analysis

The P and CLM options in the MODEL statement produce the table shown in Out-
put 30.2.2. For each observation, the observed, predicted, and residual values are
shown. In addition, the 95% confidence limits for a mean predicted value are shown
for each observation. Note that the observation with a missing value formph is not
used in the analysis, but predicted and confidence limit values are shown.

Output 30.2.3. Additional Results of Requesting the P and CLM Options

Gasoline Mileage Experiment

The GLM Procedure

Sum of Residuals -0.00000000
Sum of Squared Residuals 2.86852459
Sum of Squared Residuals - Error SS -0.00000000
PRESS Statistic 23.18107335
First Order Autocorrelation -0.54376613
Durbin-Watson D 2.94425592

The final portion of output gives some additional information on the residuals. The
Press statistic gives the sum of squares of predicted residual errors, as described in
Chapter 3, “Introduction to Regression Procedures.” The First Order Autocorrelation
and the Durbin-WatsonD statistic, which measures first-order autocorrelation, are
also given.
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Output 30.2.4. Plot of Mileage Data

Output 30.2.4 shows the actual and predicted values for the data. The quadratic rela-
tionship betweenmpg andmph is evident.

Example 30.3. Unbalanced ANOVA for Two-Way Design with
Interaction

This example uses data from Kutner (1974, p. 98) to illustrate a two-way analysis of
variance. The original data source is Afifi and Azen (1972, p. 166). These statements
produce Output 30.3.1.

/*---------------------------------------------------------*/
/* Note: Kutner’s 24 for drug 2, disease 1 changed to 34. */
/*---------------------------------------------------------*/
title ’Unbalanced Two-Way Analysis of Variance’;
data a;

input drug disease @;
do i=1 to 6;

input y @;
output;

end;
datalines;

1 1 42 44 36 13 19 22
1 2 33 . 26 . 33 21
1 3 31 -3 . 25 25 24
2 1 28 . 23 34 42 13
2 2 . 34 33 31 . 36
2 3 3 26 28 32 4 16
3 1 . . 1 29 . 19
3 2 . 11 9 7 1 -6
3 3 21 1 . 9 3 .
4 1 24 . 9 22 -2 15
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4 2 27 12 12 -5 16 15
4 3 22 7 25 5 12 .
;

proc glm;
class drug disease;
model y=drug disease drug*disease / ss1 ss2 ss3 ss4;

run;

Output 30.3.1. Unbalanced ANOVA for Two-Way Design with Interaction

Unbalanced Two-Way Analysis of Variance

The GLM Procedure

Class Level Information

Class Levels Values

drug 4 1 2 3 4

disease 3 1 2 3

Number of observations 72

NOTE: Due to missing values, only 58 observations can be used in this analysis.
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Unbalanced Two-Way Analysis of Variance

The GLM Procedure

Dependent Variable: y

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 11 4259.338506 387.212591 3.51 0.0013

Error 46 5080.816667 110.452536

Corrected Total 57 9340.155172

R-Square Coeff Var Root MSE y Mean

0.456024 55.66750 10.50964 18.87931

Source DF Type I SS Mean Square F Value Pr > F

drug 3 3133.238506 1044.412835 9.46 <.0001
disease 2 418.833741 209.416870 1.90 0.1617
drug*disease 6 707.266259 117.877710 1.07 0.3958

Source DF Type II SS Mean Square F Value Pr > F

drug 3 3063.432863 1021.144288 9.25 <.0001
disease 2 418.833741 209.416870 1.90 0.1617
drug*disease 6 707.266259 117.877710 1.07 0.3958

Source DF Type III SS Mean Square F Value Pr > F

drug 3 2997.471860 999.157287 9.05 <.0001
disease 2 415.873046 207.936523 1.88 0.1637
drug*disease 6 707.266259 117.877710 1.07 0.3958

Source DF Type IV SS Mean Square F Value Pr > F

drug 3 2997.471860 999.157287 9.05 <.0001
disease 2 415.873046 207.936523 1.88 0.1637
drug*disease 6 707.266259 117.877710 1.07 0.3958

Note the differences between the four types of sums of squares. The Type I sum
of squares fordrug essentially tests for differences between the expected values of
the arithmetic mean response for different drugs, unadjusted for the effect of dis-
ease. By contrast, the Type II sum of squares fordrug measure the differences be-
tween arithmetic means for each drug after adjusting fordisease. The Type III sum
of squares measures the differences between predicted drug means over a balanced
drug�disease population—that is, between the LS-means fordrug. Finally, the Type
IV sum of squares is the same as the Type III sum of squares in this case, since there
is data for every drug-by-disease combination.
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No matter which sum of squares you prefer to use, this analysis shows a significant
difference among the four drugs, while the disease effect and the drug-by-disease
interaction are not significant. As the previous discussion indicates, Type III sums
of squares correspond to differences between LS-means, so you can follow up the
Type III tests with a multiple comparisons analysis of thedrug LS-means. Since the
GLM procedure is interactive, you can accomplish this by submitting the following
statements after the previous ones that performed the ANOVA.

lsmeans drug / pdiff=all adjust=tukey;
run;

Both the LS-means themselves and a matrix of adjustedp-values for pairwise differ-
ences between them are displayed; see Output 30.3.2.

Output 30.3.2. LS-Means for Unbalanced ANOVA

Unbalanced Two-Way Analysis of Variance

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

LSMEAN
drug y LSMEAN Number

1 25.9944444 1
2 26.5555556 2
3 9.7444444 3
4 13.5444444 4

Unbalanced Two-Way Analysis of Variance

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

Least Squares Means for effect drug
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: y

i/j 1 2 3 4

1 0.9989 0.0016 0.0107
2 0.9989 0.0011 0.0071
3 0.0016 0.0011 0.7870
4 0.0107 0.0071 0.7870

The multiple comparisons analysis shows that drugs 1 and 2 have very similar effects,
and that drugs 3 and 4 are also insignificantly different from each other. Evidently,
the main contribution to the significant drug effect is the difference between the 1/2
pair and the 3/4 pair.
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Example 30.4. Analysis of Covariance

Analysis of covariance combines some of the features of both regression and analysis
of variance. Typically, a continuous variable (the covariate) is introduced into the
model of an analysis-of-variance experiment.

Data in the following example are selected from a larger experiment on the use of
drugs in the treatment of leprosy (Snedecor and Cochran 1967, p. 422).

Variables in the study are

Drug - two antibiotics (A and D) and a control (F)
PreTreatment - a pre-treatment score of leprosy bacilli
PostTreatment - a post-treatment score of leprosy bacilli

Ten patients are selected for each treatment (Drug), and six sites on each patient are
measured for leprosy bacilli.

The covariate (a pretreatment score) is included in the model for increased precision
in determining the effect of drug treatments on the posttreatment count of bacilli.

The following code creates the data set, performs a parallel-slopes analysis of covari-
ance with PROC GLM, and computes Drug LS-means. These statements produce
Output 30.4.1.

data drugtest;
input Drug $ PreTreatment PostTreatment @@;
datalines;

A 11 6 A 8 0 A 5 2 A 14 8 A 19 11
A 6 4 A 10 13 A 6 1 A 11 8 A 3 0
D 6 0 D 6 2 D 7 3 D 8 1 D 18 18
D 8 4 D 19 14 D 8 9 D 5 1 D 15 9
F 16 13 F 13 10 F 11 18 F 9 5 F 21 23
F 16 12 F 12 5 F 12 16 F 7 1 F 12 20
;

proc glm;
class Drug;
model PostTreatment = Drug PreTreatment / solution;
lsmeans Drug / stderr pdiff cov out=adjmeans;

run;

proc print data=adjmeans;
run;
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Output 30.4.1. Overall Analysis of Variance

The GLM Procedure

Class Level Information

Class Levels Values

Drug 3 A D F

Number of observations 30

The GLM Procedure

Dependent Variable: PostTreatment

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 871.497403 290.499134 18.10 <.0001

Error 26 417.202597 16.046254

Corrected Total 29 1288.700000

R-Square Coeff Var Root MSE PostTreatment Mean

0.676261 50.70604 4.005778 7.900000

This model assumes that the slopes relating posttreatment scores to pretreatment
scores are parallel for all drugs. You can check this assumption by including the
class-by-covariate interaction,Drug*PreTreatment, in the model and examining the
ANOVA test for the significance of this effect. This extra test is omitted in this ex-
ample, but it is insignificant, justifying the equal-slopes assumption.

In Output 30.4.2, the Type I SS forDrug (293.6) gives the between-drug sums of
squares that are obtained for the analysis-of-variance modelPostTreatment=Drug.
This measures the difference between arithmetic means of posttreatment scores for
different drugs, disregarding the covariate. The Type III SS forDrug (68.5537) gives
the Drug sum of squares adjusted for the covariate. This measures the differences
betweenDrug LS-means, controlling for the covariate. The Type I test is highly sig-
nificant (p = 0:001), but the Type III test is not. This indicates that, while there is
a statistically significant difference between the arithmetic drug means, this differ-
ence is reduced to below the level of background noise when you take the pretreat-
ment scores into account. From the table of parameter estimates, you can derive the
least-squares predictive formula model for estimating posttreatment score based on
pretreatment score and drug.

post =

8<
:

(�0:435 +�3:446) + 0:987 � pre; if Drug=A
(�0:435 +�3:337) + 0:987 � pre; if Drug=D
� 0:435 + 0:987 � pre; if Drug=F
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Output 30.4.2. Tests and Parameter Estimates

The GLM Procedure

Dependent Variable: PostTreatment

Source DF Type I SS Mean Square F Value Pr > F

Drug 2 293.6000000 146.8000000 9.15 0.0010
PreTreatment 1 577.8974030 577.8974030 36.01 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Drug 2 68.5537106 34.2768553 2.14 0.1384
PreTreatment 1 577.8974030 577.8974030 36.01 <.0001

Standard
Parameter Estimate Error t Value Pr > |t|

Intercept -0.434671164 B 2.47135356 -0.18 0.8617
Drug A -3.446138280 B 1.88678065 -1.83 0.0793
Drug D -3.337166948 B 1.85386642 -1.80 0.0835
Drug F 0.000000000 B . . .
PreTreatment 0.987183811 0.16449757 6.00 <.0001

NOTE: The X’X matrix has been found to be singular, and a generalized inverse
was used to solve the normal equations. Terms whose estimates are
followed by the letter ’B’ are not uniquely estimable.

Output 30.4.3 displays the LS-means, which are, in a sense, the means adjusted for
the covariate. The STDERR option in the LSMEANS statement causes the standard
error of the LS-means and the probability of getting a largert value under the hypoth-
esisH0:LS-mean= 0 to be included in this table as well. Specifying the PDIFF op-
tion causes all probability values for the hypothesisH0:LS-mean(i) = LS-mean(j)
to be displayed, where the indexesi andj are numbered treatment levels.
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Output 30.4.3. LS-means

The GLM Procedure
Least Squares Means

Post
Treatment Standard LSMEAN

Drug LSMEAN Error Pr > |t| Number

A 6.7149635 1.2884943 <.0001 1
D 6.8239348 1.2724690 <.0001 2
F 10.1611017 1.3159234 <.0001 3

Least Squares Means for effect Drug
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: PostTreatment

i/j 1 2 3

1 0.9521 0.0793
2 0.9521 0.0835
3 0.0793 0.0835

NOTE: To ensure overall protection level, only probabilities associated with
pre-planned comparisons should be used.

The OUT= and COV options in the LSMEANS statement create a data set of the
estimates, their standard errors, and the variances and covariances of the LS-means,
which is displayed in Output 30.4.4

Output 30.4.4. LS-means Output Data Set

Obs _NAME_ Drug LSMEAN STDERR NUMBER COV1 COV2 COV3

1 PostTreatment A 6.7150 1.28849 1 1.66022 0.02844 -0.08403
2 PostTreatment D 6.8239 1.27247 2 0.02844 1.61918 -0.04299
3 PostTreatment F 10.1611 1.31592 3 -0.08403 -0.04299 1.73165

Example 30.5. Three-Way Analysis of Variance with Contrasts

This example uses data from Cochran and Cox (1957, p. 176) to illustrate the analysis
of a three-way factorial design with replication, including the use of the CONTRAST
statement with interactions, the OUTSTAT= data set, and the SLICE= option in the
LSMEANS statement.

The object of the study is to determine the effects of electric current on denervated
muscle. The variables are

Rep the replicate number, 1 or 2

Time the length of time the current is applied to the muscle, ranging from
1 to 4

Current the level of electric current applied, ranging from 1 to 4

Number the number of treatments per day, ranging from 1 to 3

MuscleWeight the weight of the denervated muscle
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The following code produces Output 30.5.1 through Output 30.5.4.

data muscles;
do Rep=1 to 2;

do Time=1 to 4;
do Current=1 to 4;

do Number=1 to 3;
input MuscleWeight @@;
output;

end;
end;

end;
end;
datalines;

72 74 69 61 61 65 62 65 70 85 76 61
67 52 62 60 55 59 64 65 64 67 72 60
57 66 72 72 43 43 63 66 72 56 75 92
57 56 78 60 63 58 61 79 68 73 86 71
46 74 58 60 64 52 71 64 71 53 65 66
44 58 54 57 55 51 62 61 79 60 78 82
53 50 61 56 57 56 56 56 71 56 58 69
46 55 64 56 55 57 64 66 62 59 58 88
;

proc glm outstat=summary;
class Rep Current Time Number;
model MuscleWeight = Rep Current|Time|Number;
contrast ’Time in Current 3’

Time 1 0 0 -1 Current*Time 0 0 0 0 0 0 0 0 1 0 0 -1,
Time 0 1 0 -1 Current*Time 0 0 0 0 0 0 0 0 0 1 0 -1,
Time 0 0 1 -1 Current*Time 0 0 0 0 0 0 0 0 0 0 1 -1;

contrast ’Current 1 versus 2’ Current 1 -1;
lsmeans Current*Time / slice=Current;

run;

proc print data=summary;
run;

The first CONTRAST statement examines the effects ofTime within level 3 ofCur-
rent. This is also called thesimple effectof Time within Current*Time. Note that,
since there are three degrees of freedom, it is necessary to specify three rows in
the CONTRAST statement, separated by commas. Since the parameterization that
PROC GLM uses is determined in part by the ordering of the variables in the CLASS
statement,Current is specified beforeTime so that theTime parameters are nested
within theCurrent*Time parameters; thus, theCurrent*Time contrast coefficients
in each row are simply theTime coefficients of that row within the appropriate level
of Current.

SAS OnlineDoc: Version 8



1598 � Chapter 30. The GLM Procedure

The second CONTRAST statement isolates a single degree of freedom effect corre-
sponding to the difference between the first two levels ofCurrent. You can use such
a contrast in a large experiment where certain preplanned comparisons are important,
but you want to take advantage of the additional error degrees of freedom available
when all levels of the factors are considered.

The LSMEANS statement with the SLICE= option is an alternative way to test for
the simple effect ofTime within Current*Time. In addition to listing the LS-means
for each current strength and length of time, it gives a table ofF -tests for differences
between the LS-means acrossTime within eachCurrent level. In some cases, this
can be a way to disentangle a complex interaction.

Output 30.5.1. Overall Analysis

The GLM Procedure

Class Level Information

Class Levels Values

Rep 2 1 2

Current 4 1 2 3 4

Time 4 1 2 3 4

Number 3 1 2 3

Number of observations 96

The GLM Procedure

Dependent Variable: MuscleWeight

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 48 5782.916667 120.477431 1.77 0.0261

Error 47 3199.489583 68.074246

Corrected Total 95 8982.406250

R-Square Coeff Var Root MSE MuscleWeight Mean

0.643805 13.05105 8.250712 63.21875

The output, shown in Output 30.5.2 and Output 30.5.3, indicates that the main effects
for Rep, Current, andNumber are significant (withp-values of 0.0045, <0.0001,
and 0.0461, respectively), butTime is not significant, indicating that, in general, it
doesn’t matter how long the current is applied. None of the interaction terms are
significant, nor are the contrasts significant. Notice that the row in the sliced ANOVA
table corresponding to level 3 of current matches the “Time in Current 3” contrast.
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Output 30.5.2. Individual Effects and Contrasts

The GLM Procedure

Dependent Variable: MuscleWeight

Source DF Type I SS Mean Square F Value Pr > F

Rep 1 605.010417 605.010417 8.89 0.0045
Current 3 2145.447917 715.149306 10.51 <.0001
Time 3 223.114583 74.371528 1.09 0.3616
Current*Time 9 298.677083 33.186343 0.49 0.8756
Number 2 447.437500 223.718750 3.29 0.0461
Current*Number 6 644.395833 107.399306 1.58 0.1747
Time*Number 6 367.979167 61.329861 0.90 0.5023
Current*Time*Number 18 1050.854167 58.380787 0.86 0.6276

Source DF Type III SS Mean Square F Value Pr > F

Rep 1 605.010417 605.010417 8.89 0.0045
Current 3 2145.447917 715.149306 10.51 <.0001
Time 3 223.114583 74.371528 1.09 0.3616
Current*Time 9 298.677083 33.186343 0.49 0.8756
Number 2 447.437500 223.718750 3.29 0.0461
Current*Number 6 644.395833 107.399306 1.58 0.1747
Time*Number 6 367.979167 61.329861 0.90 0.5023
Current*Time*Number 18 1050.854167 58.380787 0.86 0.6276

Contrast DF Contrast SS Mean Square F Value Pr > F

Time in Current 3 3 34.83333333 11.61111111 0.17 0.9157
Current 1 versus 2 1 99.18750000 99.18750000 1.46 0.2334

Output 30.5.3. Simple Effects of Time

The GLM Procedure
Least Squares Means

Current*Time Effect Sliced by Current for MuscleWeight

Sum of
Current DF Squares Mean Square F Value Pr > F

1 3 271.458333 90.486111 1.33 0.2761
2 3 120.666667 40.222222 0.59 0.6241
3 3 34.833333 11.611111 0.17 0.9157
4 3 94.833333 31.611111 0.46 0.7085

The SS,F statistics, andp-values can be stored in an OUTSTAT= data set, as shown
in Output 30.5.4.
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Output 30.5.4. Contents of the OUTSTAT= Data Set

Obs _NAME_ _SOURCE_ _TYPE_ DF SS F PROB

1 MuscleWeight ERROR ERROR 47 3199.49 . .
2 MuscleWeight Rep SS1 1 605.01 8.8875 0.00454
3 MuscleWeight Current SS1 3 2145.45 10.5054 0.00002
4 MuscleWeight Time SS1 3 223.11 1.0925 0.36159
5 MuscleWeight Current*Time SS1 9 298.68 0.4875 0.87562
6 MuscleWeight Number SS1 2 447.44 3.2864 0.04614
7 MuscleWeight Current*Number SS1 6 644.40 1.5777 0.17468
8 MuscleWeight Time*Number SS1 6 367.98 0.9009 0.50231
9 MuscleWeight Current*Time*Number SS1 18 1050.85 0.8576 0.62757

10 MuscleWeight Rep SS3 1 605.01 8.8875 0.00454
11 MuscleWeight Current SS3 3 2145.45 10.5054 0.00002
12 MuscleWeight Time SS3 3 223.11 1.0925 0.36159
13 MuscleWeight Current*Time SS3 9 298.68 0.4875 0.87562
14 MuscleWeight Number SS3 2 447.44 3.2864 0.04614
15 MuscleWeight Current*Number SS3 6 644.40 1.5777 0.17468
16 MuscleWeight Time*Number SS3 6 367.98 0.9009 0.50231
17 MuscleWeight Current*Time*Number SS3 18 1050.85 0.8576 0.62757
18 MuscleWeight Time in Current 3 CONTRAST 3 34.83 0.1706 0.91574
19 MuscleWeight Current 1 versus 2 CONTRAST 1 99.19 1.4570 0.23344

Example 30.6. Multivariate Analysis of Variance

The following example employs multivariate analysis of variance (MANOVA) to
measure differences in the chemical characteristics of ancient pottery found at four
kiln sites in Great Britain. The data are from Tubb, Parker, and Nickless (1980), as
reported in Hand et al. (1994).

For each of 26 samples of pottery, the percentages of oxides of five metals are mea-
sured. The following statements create the data set and invoke the GLM procedure
to perform a one-way MANOVA. Additionally, it is of interest to know whether the
pottery from one site in Wales (Llanederyn) differs from the samples from other sites;
a CONTRAST statement is used to test this hypothesis.

data pottery;
title1 "Romano-British Pottery";
input Site $12. Al Fe Mg Ca Na;
datalines;

Llanederyn 14.4 7.00 4.30 0.15 0.51
Llanederyn 13.8 7.08 3.43 0.12 0.17
Llanederyn 14.6 7.09 3.88 0.13 0.20
Llanederyn 11.5 6.37 5.64 0.16 0.14
Llanederyn 13.8 7.06 5.34 0.20 0.20
Llanederyn 10.9 6.26 3.47 0.17 0.22
Llanederyn 10.1 4.26 4.26 0.20 0.18
Llanederyn 11.6 5.78 5.91 0.18 0.16
Llanederyn 11.1 5.49 4.52 0.29 0.30
Llanederyn 13.4 6.92 7.23 0.28 0.20
Llanederyn 12.4 6.13 5.69 0.22 0.54
Llanederyn 13.1 6.64 5.51 0.31 0.24
Llanederyn 12.7 6.69 4.45 0.20 0.22
Llanederyn 12.5 6.44 3.94 0.22 0.23
Caldicot 11.8 5.44 3.94 0.30 0.04
Caldicot 11.6 5.39 3.77 0.29 0.06
IslandThorns 18.3 1.28 0.67 0.03 0.03
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IslandThorns 15.8 2.39 0.63 0.01 0.04
IslandThorns 18.0 1.50 0.67 0.01 0.06
IslandThorns 18.0 1.88 0.68 0.01 0.04
IslandThorns 20.8 1.51 0.72 0.07 0.10
AshleyRails 17.7 1.12 0.56 0.06 0.06
AshleyRails 18.3 1.14 0.67 0.06 0.05
AshleyRails 16.7 0.92 0.53 0.01 0.05
AshleyRails 14.8 2.74 0.67 0.03 0.05
AshleyRails 19.1 1.64 0.60 0.10 0.03
;
proc glm data=pottery;

class Site;
model Al Fe Mg Ca Na = Site;
contrast ’Llanederyn vs. the rest’ Site 1 1 1 -3;
manova h=_all_ / printe printh;

run;

After the summary information, displayed in Output 30.6.1, PROC GLM produces
the univariate analyses for each of the dependent variables, as shown in Output 30.6.2.
These analyses show that sites are significantly different for all oxides individually.
You can suppress these univariate analyses by specifying the NOUNI option in the
MODEL statement.

Output 30.6.1. Summary Information on Groups

Romano-British Pottery

The GLM Procedure

Class Level Information

Class Levels Values

Site 4 AshleyRails Caldicot IslandThorns Llanederyn

Number of observations 26
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Output 30.6.2. Univariate Analysis of Variance for Each Dependent

Romano-British Pottery

The GLM Procedure

Dependent Variable: Al

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 175.6103187 58.5367729 26.67 <.0001

Error 22 48.2881429 2.1949156

Corrected Total 25 223.8984615

R-Square Coeff Var Root MSE Al Mean

0.784330 10.22284 1.481525 14.49231

Source DF Type I SS Mean Square F Value Pr > F

Site 3 175.6103187 58.5367729 26.67 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 175.6103187 58.5367729 26.67 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 58.58336640 58.58336640 26.69 <.0001
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Romano-British Pottery

The GLM Procedure

Dependent Variable: Fe

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 134.2216158 44.7405386 89.88 <.0001

Error 22 10.9508457 0.4977657

Corrected Total 25 145.1724615

R-Square Coeff Var Root MSE Fe Mean

0.924567 15.79171 0.705525 4.467692

Source DF Type I SS Mean Square F Value Pr > F

Site 3 134.2216158 44.7405386 89.88 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 134.2216158 44.7405386 89.88 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 71.15144132 71.15144132 142.94 <.0001
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Romano-British Pottery

The GLM Procedure

Dependent Variable: Mg

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 103.3505270 34.4501757 49.12 <.0001

Error 22 15.4296114 0.7013460

Corrected Total 25 118.7801385

R-Square Coeff Var Root MSE Mg Mean

0.870099 26.65777 0.837464 3.141538

Source DF Type I SS Mean Square F Value Pr > F

Site 3 103.3505270 34.4501757 49.12 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 103.3505270 34.4501757 49.12 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 56.59349339 56.59349339 80.69 <.0001
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Romano-British Pottery

The GLM Procedure

Dependent Variable: Ca

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 0.20470275 0.06823425 29.16 <.0001

Error 22 0.05148571 0.00234026

Corrected Total 25 0.25618846

R-Square Coeff Var Root MSE Ca Mean

0.799032 33.01265 0.048376 0.146538

Source DF Type I SS Mean Square F Value Pr > F

Site 3 0.20470275 0.06823425 29.16 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Site 3 0.20470275 0.06823425 29.16 <.0001

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 0.03531688 0.03531688 15.09 0.0008
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Romano-British Pottery

The GLM Procedure

Dependent Variable: Na

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 3 0.25824560 0.08608187 9.50 0.0003

Error 22 0.19929286 0.00905877

Corrected Total 25 0.45753846

R-Square Coeff Var Root MSE Na Mean

0.564424 60.06350 0.095178 0.158462

Source DF Type I SS Mean Square F Value Pr > F

Site 3 0.25824560 0.08608187 9.50 0.0003

Source DF Type III SS Mean Square F Value Pr > F

Site 3 0.25824560 0.08608187 9.50 0.0003

Contrast DF Contrast SS Mean Square F Value Pr > F

Llanederyn vs. the rest 1 0.23344446 0.23344446 25.77 <.0001

The PRINTE option in the MANOVA statement displays the elements of the error
matrix, also called the Error Sums of Squares and Crossproducts matrix. See Out-
put 30.6.3. The diagonal elements of this matrix are the error sums of squares from
the corresponding univariate analyses.

The PRINTE option also displays the partial correlation matrix associated with the E
matrix. In this example, none of the oxides are very strongly correlated; the strongest
correlation (r = 0:488) is between magnesium oxide and calcium oxide.
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Output 30.6.3. Error SSCP Matrix and Partial Correlations

Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

E = Error SSCP Matrix

Al Fe Mg Ca Na

Al 48.288142857 7.0800714286 0.6080142857 0.1064714286 0.5889571429
Fe 7.0800714286 10.950845714 0.5270571429 -0.155194286 0.0667585714
Mg 0.6080142857 0.5270571429 15.429611429 0.4353771429 0.0276157143
Ca 0.1064714286 -0.155194286 0.4353771429 0.0514857143 0.0100785714
Na 0.5889571429 0.0667585714 0.0276157143 0.0100785714 0.1992928571

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

DF = 22 Al Fe Mg Ca Na

Al 1.000000 0.307889 0.022275 0.067526 0.189853
0.1529 0.9196 0.7595 0.3856

Fe 0.307889 1.000000 0.040547 -0.206685 0.045189
0.1529 0.8543 0.3440 0.8378

Mg 0.022275 0.040547 1.000000 0.488478 0.015748
0.9196 0.8543 0.0180 0.9431

Ca 0.067526 -0.206685 0.488478 1.000000 0.099497
0.7595 0.3440 0.0180 0.6515

Na 0.189853 0.045189 0.015748 0.099497 1.000000
0.3856 0.8378 0.9431 0.6515

The PRINTH option produces the SSCP matrix for the hypotheses being tested (Site
and the contrast); see Output 30.6.3. Since the Type III SS are the highest level SS
produced by PROC GLM by default, and since the HTYPE= option is not specified,
the SSCP matrix forSite gives the Type IIIH matrix. The diagonal elements of this
matrix are the model sums of squares from the corresponding univariate analyses.

Four multivariate tests are computed, all based on the characteristic roots and vectors
of E�1H. These roots and vectors are displayed along with the tests. All four tests
can be transformed to variates that haveF distributions under the null hypothesis.
Note that the four tests all give the same results for the contrast, since it has only
one degree of freedom. In this case, the multivariate analysis matches the univariate
results: there is an overall difference between the chemical composition of samples
from different sites, and the samples from Llanederyn are different from the average
of the other sites.
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Output 30.6.4. Hypothesis SSCP Matrix and Multivariate Tests

Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

H = Type III SSCP Matrix for Site

Al Fe Mg Ca Na

Al 175.61031868 -149.295533 -130.8097066 -5.889163736 -5.372264835
Fe -149.295533 134.22161582 117.74503516 4.8217865934 5.3259491209
Mg -130.8097066 117.74503516 103.35052703 4.2091613187 4.7105458242
Ca -5.889163736 4.8217865934 4.2091613187 0.2047027473 0.154782967
Na -5.372264835 5.3259491209 4.7105458242 0.154782967 0.2582456044

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for Site

E = Error SSCP Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent Al Fe Mg Ca Na

34.1611140 96.39 0.09562211 -0.26330469 -0.05305978 -1.87982100 -0.47071123
1.2500994 3.53 0.02651891 -0.01239715 0.17564390 -4.25929785 1.23727668
0.0275396 0.08 0.09082220 0.13159869 0.03508901 -0.15701602 -1.39364544
0.0000000 0.00 0.03673984 -0.15129712 0.20455529 0.54624873 -0.17402107
0.0000000 0.00 0.06862324 0.03056912 -0.10662399 2.51151978 1.23668841

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall Site Effect
H = Type III SSCP Matrix for Site

E = Error SSCP Matrix

S=3 M=0.5 N=8

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.01230091 13.09 15 50.091 <.0001
Pillai’s Trace 1.55393619 4.30 15 60 <.0001
Hotelling-Lawley Trace 35.43875302 40.59 15 29.13 <.0001
Roy’s Greatest Root 34.16111399 136.64 5 20 <.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
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Romano-British Pottery

The GLM Procedure
Multivariate Analysis of Variance

H = Contrast SSCP Matrix for Llanederyn vs. the rest

Al Fe Mg Ca Na

Al 58.583366402 -64.56230291 -57.57983466 -1.438395503 -3.698102513
Fe -64.56230291 71.151441323 63.456352116 1.5851961376 4.0755256878
Mg -57.57983466 63.456352116 56.593493386 1.4137558201 3.6347541005
Ca -1.438395503 1.5851961376 1.4137558201 0.0353168783 0.0907993915
Na -3.698102513 4.0755256878 3.6347541005 0.0907993915 0.2334444577

Characteristic Roots and Vectors of: E Inverse * H, where
H = Contrast SSCP Matrix for Llanederyn vs. the rest

E = Error SSCP Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent Al Fe Mg Ca Na

16.1251646 100.00 -0.08883488 0.25458141 0.08723574 0.98158668 0.71925759
0.0000000 0.00 -0.00503538 0.03825743 -0.17632854 5.16256699 -0.01022754
0.0000000 0.00 0.00162771 -0.08885364 -0.01774069 -0.83096817 2.17644566
0.0000000 0.00 0.04450136 -0.15722494 0.22156791 0.00000000 0.00000000
0.0000000 0.00 0.11939206 0.10833549 0.00000000 0.00000000 0.00000000

MANOVA Test Criteria and Exact F Statistics for the Hypothesis
of No Overall Llanederyn vs. the rest Effect

H = Contrast SSCP Matrix for Llanederyn vs. the rest
E = Error SSCP Matrix

S=1 M=1.5 N=8

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.05839360 58.05 5 18 <.0001
Pillai’s Trace 0.94160640 58.05 5 18 <.0001
Hotelling-Lawley Trace 16.12516462 58.05 5 18 <.0001
Roy’s Greatest Root 16.12516462 58.05 5 18 <.0001

Example 30.7. Repeated Measures Analysis of Variance

This example uses data from Cole and Grizzle (1966) to illustrate a commonly occur-
ring repeated measures ANOVA design. Sixteen dogs are randomly assigned to four
groups. (One animal is removed from the analysis due to a missing value for one de-
pendent variable.) Dogs in each group receive either morphine or trimethaphan (vari-
ableDrug) and have either depleted or intact histamine levels (variableDepleted)
before receiving the drugs. The dependent variable is the blood concentration of his-
tamine at 0, 1, 3, and 5 minutes after injection of the drug. Logarithms are applied to
these concentrations to minimize correlation between the mean and the variance of
the data.

The following SAS statements perform both univariate and multivariate repeated
measures analyses and produce Output 30.7.1 through Output 30.7.7:

data dogs;
input Drug $12. Depleted $ Histamine0 Histamine1

Histamine3 Histamine5;
LogHistamine0=log(Histamine0);
LogHistamine1=log(Histamine1);
LogHistamine3=log(Histamine3);
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LogHistamine5=log(Histamine5);
datalines;

Morphine N .04 .20 .10 .08
Morphine N .02 .06 .02 .02
Morphine N .07 1.40 .48 .24
Morphine N .17 .57 .35 .24
Morphine Y .10 .09 .13 .14
Morphine Y .12 .11 .10 .
Morphine Y .07 .07 .06 .07
Morphine Y .05 .07 .06 .07
Trimethaphan N .03 .62 .31 .22
Trimethaphan N .03 1.05 .73 .60
Trimethaphan N .07 .83 1.07 .80
Trimethaphan N .09 3.13 2.06 1.23
Trimethaphan Y .10 .09 .09 .08
Trimethaphan Y .08 .09 .09 .10
Trimethaphan Y .13 .10 .12 .12
Trimethaphan Y .06 .05 .05 .05
;
proc glm;

class Drug Depleted;
model LogHistamine0--LogHistamine5 =

Drug Depleted Drug*Depleted / nouni;
repeated Time 4 (0 1 3 5) polynomial / summary printe;

run;

The NOUNI option in the MODEL statement suppresses the individual ANOVA ta-
bles for the original dependent variables. These analyses are usually of no interest in
a repeated measures analysis. The POLYNOMIAL option in the REPEATED state-
ment indicates that the transformation used to implement the repeated measures anal-
ysis is an orthogonal polynomial transformation, and the SUMMARY option requests
that the univariate analyses for the orthogonal polynomial contrast variables be dis-
played. The parenthetical numbers (0 1 3 5) determine the spacing of the orthogonal
polynomials used in the analysis. The output is displayed in Output 30.7.1 through
Output 30.7.7.

Output 30.7.1. Summary Information on Groups

The GLM Procedure

Class Level Information

Class Levels Values

Drug 2 Morphine Trimethaphan

Depleted 2 N Y

Number of observations 16

NOTE: Observations with missing values will not be included in this analysis. Thus, only 15
observations can be used in this analysis.
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The “Repeated Measures Level Information” table gives information on the repeated
measures effect; it is displayed in Output 30.7.2. In this example, the within-subject
(within-dog) effect isTime, which has the levels 0, 1, 3, and 5.

Output 30.7.2. Repeated Measures Levels

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Log Log Log Log
Dependent Variable Histamine0 Histamine1 Histamine3 Histamine5

Level of Time 0 1 3 5

The multivariate analyses for within-subject effects and related interactions are dis-
played in Output 30.7.3. For the example, the first table displayed shows that the
TIME effect is significant. In addition, theTime*Drug*Depleted interaction is sig-
nificant, as shown in the fourth table. This means that the effect ofTime on the blood
concentration of histamine is different for the fourDrug*Depleted combinations
studied.
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Output 30.7.3. Multivariate Tests of Within-Subject Effects

The GLM Procedure
Repeated Measures Analysis of Variance

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Time Effect
H = Type III SSCP Matrix for Time

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.11097706 24.03 3 9 0.0001
Pillai’s Trace 0.88902294 24.03 3 9 0.0001
Hotelling-Lawley Trace 8.01087137 24.03 3 9 0.0001
Roy’s Greatest Root 8.01087137 24.03 3 9 0.0001

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Time*Drug Effect
H = Type III SSCP Matrix for Time*Drug

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.34155984 5.78 3 9 0.0175
Pillai’s Trace 0.65844016 5.78 3 9 0.0175
Hotelling-Lawley Trace 1.92774470 5.78 3 9 0.0175
Roy’s Greatest Root 1.92774470 5.78 3 9 0.0175

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Time*Depleted Effect
H = Type III SSCP Matrix for Time*Depleted

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.12339988 21.31 3 9 0.0002
Pillai’s Trace 0.87660012 21.31 3 9 0.0002
Hotelling-Lawley Trace 7.10373567 21.31 3 9 0.0002
Roy’s Greatest Root 7.10373567 21.31 3 9 0.0002

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Time*Drug*Depleted Effect
H = Type III SSCP Matrix for Time*Drug*Depleted

E = Error SSCP Matrix

S=1 M=0.5 N=3.5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.19383010 12.48 3 9 0.0015
Pillai’s Trace 0.80616990 12.48 3 9 0.0015
Hotelling-Lawley Trace 4.15915732 12.48 3 9 0.0015
Roy’s Greatest Root 4.15915732 12.48 3 9 0.0015

Output 30.7.4 displays tests of hypotheses for between-subject (between-dog) effects.
This section tests the hypotheses that the differentDrugs, Depleteds, and their in-
teractions have no effects on the dependent variables, while ignoring the within-dog
effects. From this analysis, there is a significant between-dog effect forDepleted
(p-value=0.0229). The interaction and the main effect forDrug are not significant
(p-values=0.1734 and 0.1281, respectively).
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Output 30.7.4. Tests of Between-Subject Effects

The GLM Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects

Source DF Type III SS Mean Square F Value Pr > F

Drug 1 5.99336243 5.99336243 2.71 0.1281
Depleted 1 15.44840703 15.44840703 6.98 0.0229
Drug*Depleted 1 4.69087508 4.69087508 2.12 0.1734
Error 11 24.34683348 2.21334850

Univariate analyses for within-subject (within-dog) effects and related interactions
are displayed in Output 30.7.6. The results for this example are the same as for the
multivariate analyses; this is not always the case. In addition, before the univariate
analyses are used to make conclusions about the data, the result of the sphericity test
(requested with the PRINTE option in the REPEATED statement and displayed in
Output 30.7.5) should be examined. If the sphericity test is rejected, use the adjusted
G-G or H-F probabilities. See the “Repeated Measures Analysis of Variance” section
on page 1560 for more information.

Output 30.7.5. Sphericity Test

The GLM Procedure
Repeated Measures Analysis of Variance

Sphericity Tests

Mauchly’s
Variables DF Criterion Chi-Square Pr > ChiSq

Transformed Variates 5 0.1752641 16.930873 0.0046
Orthogonal Components 5 0.1752641 16.930873 0.0046

Output 30.7.6. Univariate Tests of Within-Subject Effects

The GLM Procedure
Repeated Measures Analysis of Variance

Univariate Tests of Hypotheses for Within Subject Effects

Adj Pr > F
Source DF Type III SS Mean Square F Value Pr > F G - G H - F

Time 3 12.05898677 4.01966226 53.44 <.0001 <.0001 <.0001
Time*Drug 3 1.84429514 0.61476505 8.17 0.0003 0.0039 0.0008
Time*Depleted 3 12.08978557 4.02992852 53.57 <.0001 <.0001 <.0001
Time*Drug*Depleted 3 2.93077939 0.97692646 12.99 <.0001 0.0005 <.0001
Error(Time) 33 2.48238887 0.07522391

Greenhouse-Geisser Epsilon 0.5694
Huynh-Feldt Epsilon 0.8475

Output 30.7.7 is produced by the SUMMARY option in the REPEATED statement.
If the POLYNOMIAL option is not used, a similar table is displayed using the de-
fault CONTRAST transformation. The linear, quadratic, and cubic trends forTime,
labeled as ‘Time–1’, ‘Time–2’, and ‘Time–3’, are displayed, and in each case, the
Source labeled ‘Mean’ gives a test for the respective trend.
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Output 30.7.7. Tests of Between-Subject Effects for Transformed Variables

The GLM Procedure
Repeated Measures Analysis of Variance

Analysis of Variance of Contrast Variables

Time_N represents the nth degree polynomial contrast for Time

Contrast Variable: Time_1

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 2.00963483 2.00963483 34.99 0.0001
Drug 1 1.18069076 1.18069076 20.56 0.0009
Depleted 1 1.36172504 1.36172504 23.71 0.0005
Drug*Depleted 1 2.04346848 2.04346848 35.58 <.0001
Error 11 0.63171161 0.05742833

Contrast Variable: Time_2

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 5.40988418 5.40988418 57.15 <.0001
Drug 1 0.59173192 0.59173192 6.25 0.0295
Depleted 1 5.94945506 5.94945506 62.86 <.0001
Drug*Depleted 1 0.67031587 0.67031587 7.08 0.0221
Error 11 1.04118707 0.09465337

Contrast Variable: Time_3

Source DF Type III SS Mean Square F Value Pr > F

Mean 1 4.63946776 4.63946776 63.04 <.0001
Drug 1 0.07187246 0.07187246 0.98 0.3443
Depleted 1 4.77860547 4.77860547 64.94 <.0001
Drug*Depleted 1 0.21699504 0.21699504 2.95 0.1139
Error 11 0.80949018 0.07359002

Example 30.8. Mixed Model Analysis of Variance Using the
RANDOM Statement

Milliken and Johnson (1984) present an example of an unbalanced mixed model.
Three machines, which are considered as a fixed effect, and six employees, which are
considered a random effect, are studied. Each employee operates each machine for
either one, two, or three different times. The dependent variable is an overall rating,
which takes into account the number and quality of components produced.

The following statements form the data set and perform a mixed model analysis of
variance by requesting the TEST option in the RANDOM statement. Note that the
machine*person interaction is declared as a random effect; in general, when an
interaction involves a random effect, it too should be declared as random. The results
of the analysis are shown in Output 30.8.1 through Output 30.8.4.

data machine;
input machine person rating @@;
datalines;

1 1 52.0 1 2 51.8 1 2 52.8 1 3 60.0 1 4 51.1 1 4 52.3
1 5 50.9 1 5 51.8 1 5 51.4 1 6 46.4 1 6 44.8 1 6 49.2
2 1 64.0 2 2 59.7 2 2 60.0 2 2 59.0 2 3 68.6 2 3 65.8
2 4 63.2 2 4 62.8 2 4 62.2 2 5 64.8 2 5 65.0 2 6 43.7
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2 6 44.2 2 6 43.0 3 1 67.5 3 1 67.2 3 1 66.9 3 2 61.5
3 2 61.7 3 2 62.3 3 3 70.8 3 3 70.6 3 3 71.0 3 4 64.1
3 4 66.2 3 4 64.0 3 5 72.1 3 5 72.0 3 5 71.1 3 6 62.0
3 6 61.4 3 6 60.5
;

proc glm data=machine;
class machine person;
model rating=machine person machine*person;
random person machine*person / test;

run;

The TEST option in the RANDOM statement requests that PROC GLM determine
the appropriateF -tests based onperson andmachine*person being treated as ran-
dom effects. As you can see in Output 30.8.4, this requires that a linear combination
of mean squares be constructed to test both themachine andperson hypotheses;
thus,F -tests using Satterthwaite approximations are used.

Output 30.8.1. Summary Information on Groups

The GLM Procedure

Class Level Information

Class Levels Values

machine 3 1 2 3

person 6 1 2 3 4 5 6

Number of observations 44
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Output 30.8.2. Fixed-Effect Model Analysis of Variance

The GLM Procedure

Dependent Variable: rating

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 17 3061.743333 180.102549 206.41 <.0001

Error 26 22.686667 0.872564

Corrected Total 43 3084.430000

R-Square Coeff Var Root MSE rating Mean

0.992645 1.560754 0.934111 59.85000

Source DF Type I SS Mean Square F Value Pr > F

machine 2 1648.664722 824.332361 944.72 <.0001
person 5 1008.763583 201.752717 231.22 <.0001
machine*person 10 404.315028 40.431503 46.34 <.0001

Source DF Type III SS Mean Square F Value Pr > F

machine 2 1238.197626 619.098813 709.52 <.0001
person 5 1011.053834 202.210767 231.74 <.0001
machine*person 10 404.315028 40.431503 46.34 <.0001

Output 30.8.3. Expected Values of Type III Mean Squares

The GLM Procedure

Source Type III Expected Mean Square

machine Var(Error) + 2.137 Var(machine*person) + Q(machine)

person Var(Error) + 2.2408 Var(machine*person) + 6.7224
Var(person)

machine*person Var(Error) + 2.3162 Var(machine*person)
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Output 30.8.4. Mixed Model Analysis of Variance

The GLM Procedure
Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: rating

Source DF Type III SS Mean Square F Value Pr > F

machine 2 1238.197626 619.098813 16.57 0.0007

Error 10.036 375.057436 37.370384
Error: 0.9226*MS(machine*person) + 0.0774*MS(Error)

Source DF Type III SS Mean Square F Value Pr > F

person 5 1011.053834 202.210767 5.17 0.0133

Error 10.015 392.005726 39.143708
Error: 0.9674*MS(machine*person) + 0.0326*MS(Error)

Source DF Type III SS Mean Square F Value Pr > F

machine*person 10 404.315028 40.431503 46.34 <.0001

Error: MS(Error) 26 22.686667 0.872564

Note that you can also use the MIXED procedure to analyze mixed models. The
following statements use PROC MIXED to reproduce the mixed model analysis of
variance; the relevant part of the PROC MIXED results is shown in Output 30.8.5

proc mixed data=machine method=type3;
class machine person;
model rating = machine;
random person machine*person;

run;
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Output 30.8.5. PROC MIXED Mixed Model Analysis of Variance (Partial Output)

The Mixed Procedure

Type 3 Analysis of Variance

Sum of
Source DF Squares Mean Square

machine 2 1238.197626 619.098813
person 5 1011.053834 202.210767
machine*person 10 404.315028 40.431503
Residual 26 22.686667 0.872564

Type 3 Analysis of Variance

Source Expected Mean Square

machine Var(Residual) + 2.137 Var(machine*person) + Q(machine)
person Var(Residual) + 2.2408 Var(machine*person) + 6.7224 Var(person)
machine*person Var(Residual) + 2.3162 Var(machine*person)
Residual Var(Residual)

Type 3 Analysis of Variance

Error
Source Error Term DF F Value Pr > F

machine 0.9226 MS(machine*person) 10.036 16.57 0.0007
+ 0.0774 MS(Residual)

person 0.9674 MS(machine*person) 10.015 5.17 0.0133
+ 0.0326 MS(Residual)

machine*person MS(Residual) 26 46.34 <.0001
Residual . . . .

The advantage of PROC MIXED is that it offers more versatility for mixed models;
the disadvantage is that it can be less computationally efficient for large data sets. See
Chapter 41, “The MIXED Procedure,” for more details.

Example 30.9. Analyzing a Doubly-multivariate Repeated
Measures Design

This example shows how to analyze a doubly-multivariate repeated measures design
by using PROC GLM with an IDENTITY factor in the REPEATED statement. Note
that this differs from previous releases of PROC GLM, in which you had to use a
MANOVA statement to get a doubly repeated measures analysis.

Two responses, Y1 and Y2, are each measured three times for each subject (pre-
treatment, posttreatment, and in a later follow-up). Each subject receives one of three
treatments; A, B, or the control. In PROC GLM, you use a REPEATED factor of type
IDENTITY to identify the different responses and another repeated factor to identify
the different measurement times. The repeated measures analysis includes multi-
variate tests for time and treatment main effects, as well as their interactions, across
responses. The following statements produce Output 30.9.1 through Output 30.9.3.
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data Trial;
input Treatment $ Repetition PreY1 PostY1 FollowY1

PreY2 PostY2 FollowY2;
datalines;

A 1 3 13 9 0 0 9
A 2 0 14 10 6 6 3
A 3 4 6 17 8 2 6
A 4 7 7 13 7 6 4
A 5 3 12 11 6 12 6
A 6 10 14 8 13 3 8
B 1 9 11 17 8 11 27
B 2 4 16 13 9 3 26
B 3 8 10 9 12 0 18
B 4 5 9 13 3 0 14
B 5 0 15 11 3 0 25
B 6 4 11 14 4 2 9
Control 1 10 12 15 4 3 7
Control 2 2 8 12 8 7 20
Control 3 4 9 10 2 0 10
Control 4 10 8 8 5 8 14
Control 5 11 11 11 1 0 11
Control 6 1 5 15 8 9 10
;

proc glm data=Trial;
class Treatment;
model PreY1 PostY1 FollowY1

PreY2 PostY2 FollowY2 = Treatment / nouni;
repeated Response 2 identity, Time 3;

run;

Output 30.9.1. A Doubly-multivariate Repeated Measures Design

The GLM Procedure

Class Level Information

Class Levels Values

Treatment 3 A B Control

Number of observations 18

The levels of the repeated factors are displayed in Output 30.9.2. Note that
RESPONSE is 1 for all the Y1 measurements and 2 for all the Y2 mea-
surements, while the three levels ofTime identify the pretreatment, post-
treatment, and follow-up measurements within each response. The mul-
tivariate tests for within-subject effects are displayed in Output 30.9.3.
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Output 30.9.2. Repeated Factor Levels

The GLM Procedure
Repeated Measures Analysis of Variance

Repeated Measures Level Information

Dependent Variable PreY1 PostY1 FollowY1 PreY2 PostY2 FollowY2

Level of Response 1 1 1 2 2 2
Level of Time 1 2 3 1 2 3

Output 30.9.3. Within-subject Tests

The GLM Procedure
Repeated Measures Analysis of Variance

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Response Effect
H = Type III SSCP Matrix for Response

E = Error SSCP Matrix

S=1 M=0 N=6

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.02165587 316.24 2 14 <.0001
Pillai’s Trace 0.97834413 316.24 2 14 <.0001
Hotelling-Lawley Trace 45.17686368 316.24 2 14 <.0001
Roy’s Greatest Root 45.17686368 316.24 2 14 <.0001

Manova Test Criteria and F Approximations for the Hypothesis of no Response*Treatment Effect
H = Type III SSCP Matrix for Response*Treatment

E = Error SSCP Matrix

S=2 M=-0.5 N=6

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.72215797 1.24 4 28 0.3178
Pillai’s Trace 0.27937444 1.22 4 30 0.3240
Hotelling-Lawley Trace 0.38261660 1.31 4 15.818 0.3074
Roy’s Greatest Root 0.37698780 2.83 2 15 0.0908

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

Manova Test Criteria and Exact F Statistics for the Hypothesis of no Response*Time Effect
H = Type III SSCP Matrix for Response*Time

E = Error SSCP Matrix

S=1 M=1 N=5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.14071380 18.32 4 12 <.0001
Pillai’s Trace 0.85928620 18.32 4 12 <.0001
Hotelling-Lawley Trace 6.10662362 18.32 4 12 <.0001
Roy’s Greatest Root 6.10662362 18.32 4 12 <.0001

Manova Test Criteria and F Approximations for the
Hypothesis of no Response*Time*Treatment Effect

H = Type III SSCP Matrix for Response*Time*Treatment
E = Error SSCP Matrix

S=2 M=0.5 N=5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.22861451 3.27 8 24 0.0115
Pillai’s Trace 0.96538785 3.03 8 26 0.0151
Hotelling-Lawley Trace 2.52557514 3.64 8 15 0.0149
Roy’s Greatest Root 2.12651905 6.91 4 13 0.0033

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.

SAS OnlineDoc: Version 8



Example 30.9. Analyzing a Doubly-multivariate... � 1621

The table for Response*Treatment tests for an overall treatment effect
across the two responses; likewise, the tables forResponse*Time and Re-
sponse*Treatment*Time test for time and the treatment-by-time interaction,
respectively. In this case, there is a strong main effect for time and possibly for the
interaction, but not for treatment.

In previous releases (before the IDENTITY transformation was introduced), in or-
der to perform a doubly repeated measures analysis, you had to use a MANOVA
statement with a customized transformation matrix M. You might still want to use
this approach to see details of the analysis, such as the univariate ANOVA for each
transformed variate. The following statements demonstrate this approach by using
the MANOVA statement to test for the overall main effect of time and specifying the
SUMMARY option.

proc glm data=Trial;
class Treatment;
model PreY1 PostY1 FollowY1

PreY2 PostY2 FollowY2 = Treatment / nouni;
manova h=intercept m=prey1 - posty1,

prey1 - followy1,
prey2 - posty2,
prey2 - followy2 / summary;

run;

The M matrix used to perform the test for time effects is displayed in Output 30.9.4,
while the results of the multivariate test are given in Output 30.9.5. Note that the test
results are the same as for theResponse*Time effect in Output 30.9.3.

Output 30.9.4. M Matrix to Test for Time Effect (Repeated Measure)

The GLM Procedure
Multivariate Analysis of Variance

M Matrix Describing Transformed Variables

PreY1 PostY1 FollowY1 PreY2 PostY2 FollowY2

MVAR1 1 -1 0 0 0 0
MVAR2 1 0 -1 0 0 0
MVAR3 0 0 0 1 -1 0
MVAR4 0 0 0 1 0 -1
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Output 30.9.5. Tests for Time Effect (Repeated Measure)

The GLM Procedure
Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for Intercept

E = Error SSCP Matrix

Variables have been transformed by the M Matrix

Characteristic Characteristic Vector V’EV=1
Root Percent MVAR1 MVAR2 MVAR3 MVAR4

6.10662362 100.00 -0.00157729 0.04081620 -0.04210209 0.03519437
0.00000000 0.00 0.00796367 0.00493217 0.05185236 0.00377940
0.00000000 0.00 -0.03534089 -0.01502146 -0.00283074 0.04259372
0.00000000 0.00 -0.05672137 0.04500208 0.00000000 0.00000000

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall Intercept Effect
on the Variables Defined by the M Matrix Transformation

H = Type III SSCP Matrix for Intercept
E = Error SSCP Matrix

S=1 M=1 N=5

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.14071380 18.32 4 12 <.0001
Pillai’s Trace 0.85928620 18.32 4 12 <.0001
Hotelling-Lawley Trace 6.10662362 18.32 4 12 <.0001
Roy’s Greatest Root 6.10662362 18.32 4 12 <.0001

The SUMMARY option in the MANOVA statement creates an ANOVA table for
each transformed variable as defined by the M matrix. MVAR1 and MVAR2 contrast
the pretreatment measurement for Y1 with the posttreatment and follow-up measure-
ments for Y1, respectively; MVAR3 and MVAR4 are the same contrasts for Y2.
Output 30.9.6 displays these univariate ANOVA tables and shows that the contrasts
are all strongly significant except for the pre-versus-post difference for Y2.
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Output 30.9.6. Summary Output for the Test for Time Effect

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR1

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 512.0000000 512.0000000 22.65 0.0003
Error 15 339.0000000 22.6000000

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR2

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 813.3888889 813.3888889 32.87 <.0001
Error 15 371.1666667 24.7444444

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR3

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 68.0555556 68.0555556 3.49 0.0814
Error 15 292.5000000 19.5000000

The GLM Procedure
Multivariate Analysis of Variance

Dependent Variable: MVAR4

Source DF Type III SS Mean Square F Value Pr > F

Intercept 1 800.0000000 800.0000000 26.43 0.0001
Error 15 454.0000000 30.2666667

Example 30.10. Testing for Equal Group Variances

This example demonstrates how you can test for equal group variances in a one-way
design. The data come from the University of Pennsylvania Smell Identification Test
(UPSIT), reported in O’Brien and Heft (1995). The study is undertaken to explore
how age and gender are related to sense of smell. A total of 180 subjects 20 to 89
years old are exposed to 40 different odors: for each odor, subjects are asked to choose
which of four words best describes the odor. The Freeman-Tukey modified arcsine
transformation (Bishop, Feinberg, and Holland 1975) is applied to the proportion of
correctly identified odors to arrive at an olfactory index. For the following analysis,
subjects are divided into five age groups:

agegroup =

8>>>><
>>>>:

1 if age � 25
2 if 25 < age � 40
3 if 40 < age � 55
4 if 55 < age � 70
5 if 70 < age
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The following statements create a data set namedupsit, containing the age group and
olfactory index for each subject.

data upsit;
input agegroup smell @@;
datalines;

1 1.381 1 1.322 1 1.162 1 1.275 1 1.381 1 1.275 1 1.322
1 1.492 1 1.322 1 1.381 1 1.162 1 1.013 1 1.322 1 1.322
1 1.275 1 1.492 1 1.322 1 1.322 1 1.492 1 1.322 1 1.381
1 1.234 1 1.162 1 1.381 1 1.381 1 1.381 1 1.322 1 1.381
1 1.322 1 1.381 1 1.275 1 1.492 1 1.275 1 1.322 1 1.275
1 1.381 1 1.234 1 1.105
2 1.234 2 1.234 2 1.381 2 1.322 2 1.492 2 1.234 2 1.381
2 1.381 2 1.492 2 1.492 2 1.275 2 1.492 2 1.381 2 1.492
2 1.322 2 1.275 2 1.275 2 1.275 2 1.322 2 1.492 2 1.381
2 1.322 2 1.492 2 1.196 2 1.322 2 1.275 2 1.234 2 1.322
2 1.098 2 1.322 2 1.381 2 1.275 2 1.492 2 1.492 2 1.381
2 1.196
3 1.381 3 1.381 3 1.492 3 1.492 3 1.492 3 1.098 3 1.492
3 1.381 3 1.234 3 1.234 3 1.129 3 1.069 3 1.234 3 1.322
3 1.275 3 1.230 3 1.234 3 1.234 3 1.322 3 1.322 3 1.381
4 1.322 4 1.381 4 1.381 4 1.322 4 1.234 4 1.234 4 1.234
4 1.381 4 1.322 4 1.275 4 1.275 4 1.492 4 1.234 4 1.098
4 1.322 4 1.129 4 0.687 4 1.322 4 1.322 4 1.234 4 1.129
4 1.492 4 0.810 4 1.234 4 1.381 4 1.040 4 1.381 4 1.381
4 1.129 4 1.492 4 1.129 4 1.098 4 1.275 4 1.322 4 1.234
4 1.196 4 1.234 4 0.585 4 0.785 4 1.275 4 1.322 4 0.712
4 0.810
5 1.322 5 1.234 5 1.381 5 1.275 5 1.275 5 1.322 5 1.162
5 0.909 5 0.502 5 1.234 5 1.322 5 1.196 5 0.859 5 1.196
5 1.381 5 1.322 5 1.234 5 1.275 5 1.162 5 1.162 5 0.585
5 1.013 5 0.960 5 0.662 5 1.129 5 0.531 5 1.162 5 0.737
5 1.098 5 1.162 5 1.040 5 0.558 5 0.960 5 1.098 5 0.884
5 1.162 5 1.098 5 0.859 5 1.275 5 1.162 5 0.785 5 0.859
;

Older people are more at risk for problems with their sense of smell, and this should
be reflected in significant differences in the mean of the olfactory index across the
different age groups. However, many older people also have an excellent sense of
smell, which implies that the older age groups should have greater variability. In
order to test this hypothesis and to compute a one-way ANOVA for the olfactory
index that is robust to the possibility of unequal group variances, you can use the
HOVTEST and WELCH options in the MEANS statement for the GLM procedure,
as shown in the following code.

proc glm data=upsit;
class agegroup;
model smell = agegroup;
means agegroup / hovtest welch;

run;
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Output 30.10.1, Output 30.10.2, and Output 30.10.3 display the usual ANOVA test
for equal age group means, Levene’s test for equal age group variances, and Welch’s
test for equal age group means, respectively. The hypotheses of age effects for mean
and variance of the olfactory index are both confirmed.

Output 30.10.1. Usual ANOVA Test for Age Group Differences in Mean Olfactory
Index

The GLM Procedure

Dependent Variable: smell

Source DF Type I SS Mean Square F Value Pr > F

agegroup 4 2.13878141 0.53469535 16.65 <.0001

Output 30.10.2. Levene’s Test for Age Group Differences in Olfactory Variability

The GLM Procedure

Levene’s Test for Homogeneity of smell Variance
ANOVA of Squared Deviations from Group Means

Sum of Mean
Source DF Squares Square F Value Pr > F

agegroup 4 0.0799 0.0200 6.35 <.0001
Error 175 0.5503 0.00314

Output 30.10.3. Welch’s Test for Age Group Differences in Mean Olfactory Index

The GLM Procedure

Welch’s ANOVA for smell

Source DF F Value Pr > F

agegroup 4.0000 13.72 <.0001
Error 78.7489
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Example 30.11. Analysis of a Screening Design

Yin and Jillie (1987) describe an experiment on a nitride etch process for a sin-
gle wafer plasma etcher. The experiment is run using four factors: cathode power
(power), gas flow (flow), reactor chamber pressure (pressure), and electrode gap
(gap). Of interest are the main effects and interaction effects of the factors on the
nitride etch rate (rate). The following statements create a SAS data set namedHalf-
Fraction, containing the factor settings and the observed etch rate for each of eight
experimental runs.

data HalfFraction;
input power flow pressure gap rate;
datalines;

0.8 4.5 125 275 550
0.8 4.5 200 325 650
0.8 550.0 125 325 642
0.8 550.0 200 275 601
1.2 4.5 125 325 749
1.2 4.5 200 275 1052
1.2 550.0 125 275 1075
1.2 550.0 200 325 729
;

Notice that each of the factors has just two values. This is a common experimental
design when the intent is to screen from the many factors thatmight affect the re-
sponse the few that actuallydo. Since there are24 = 16 different possible settings
of four two-level factors, this design with only eight runs is called a “half fraction.”
The eight runs are chosen specifically to provide unambiguous information on main
effects at the cost of confounding interaction effects with each other.

One way to analyze this data is simply to use PROC GLM to compute an analysis of
variance, including both main effects and interactions in the model. The following
statements demonstrate this approach.

proc glm data=HalfFraction;
class power flow pressure gap;
model rate=power|flow|pressure|gap@2;

run;

The ‘@2’ notation on the model statement includes all main effects and two-factor
interactions between the factors. The output is shown in Output 30.11.1.
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Output 30.11.1. Analysis of Variance for Nitride Etch Process Half Fraction

The GLM Procedure

Class Level Information

Class Levels Values

power 2 0.8 1.2

flow 2 4.5 550

pressure 2 125 200

gap 2 275 325

Number of observations 8

The GLM Procedure

Dependent Variable: rate

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 7 280848.0000 40121.1429 . .

Error 0 0.0000 .

Corrected Total 7 280848.0000

R-Square Coeff Var Root MSE rate Mean

1.000000 . . 756.0000

Source DF Type I SS Mean Square F Value Pr > F

power 1 168780.5000 168780.5000 . .
flow 1 264.5000 264.5000 . .
power*flow 1 200.0000 200.0000 . .
pressure 1 32.0000 32.0000 . .
power*pressure 1 1300.5000 1300.5000 . .
flow*pressure 1 78012.5000 78012.5000 . .
gap 1 32258.0000 32258.0000 . .
power*gap 0 0.0000 . . .
flow*gap 0 0.0000 . . .
pressure*gap 0 0.0000 . . .

Source DF Type III SS Mean Square F Value Pr > F

power 1 168780.5000 168780.5000 . .
flow 1 264.5000 264.5000 . .
power*flow 0 0.0000 . . .
pressure 1 32.0000 32.0000 . .
power*pressure 0 0.0000 . . .
flow*pressure 0 0.0000 . . .
gap 1 32258.0000 32258.0000 . .
power*gap 0 0.0000 . . .
flow*gap 0 0.0000 . . .
pressure*gap 0 0.0000 . . .
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Notice that there are no error degrees of freedom. This is because there are 10 effects
in the model (4 main effects plus 6 interactions) but only 8 observations in the data
set. This is another cost of using a fractional design: not only is it impossible to
estimate all the main effects and interactions, but there is also no information left to
estimate the underlying error rate in order to measure the significance of the effects
that are estimable.

Another thing to notice in Output 30.11.1 is the difference between the Type I and
Type III ANOVA tables. The rows corresponding to main effects in each are the same,
but no Type III interaction tests are estimable, while some Type I interaction tests are
estimable. This indicates that there isaliasing in the design: some interactions are
completely confounded with each other.

In order to analyze this confounding, you should examine the aliasing structure of
the design using the ALIASING option in the MODEL statement. Before doing so,
however, it is advisable tocode the design, replacing low and high levels of each
factor with the values -1 and +1, respectively. This puts each factor on an equal
footing in the model and makes the aliasing structure much more interpretable. The
following statements code the data, creating a new data set namedCoded.

data Coded; set HalfFraction;
power = -1*(power =0.80) + 1*(power =1.20);
flow = -1*(flow =4.50) + 1*(flow =550 );
pressure = -1*(pressure=125 ) + 1*(pressure=200 );
gap = -1*(gap =275 ) + 1*(gap =325 );

run;

The following statements use the GLM procedure to reanalyze the coded design,
displaying the parameter estimates as well as the functions of the parameters that
they each estimate.

proc glm data=Coded;
model rate=power|flow|pressure|gap@2 / solution aliasing;

run;

The parameter estimates table is shown in Output 30.11.2.
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Output 30.11.2. Parameter Estimates and Aliases for Nitride Etch Process Half
Fraction

The GLM Procedure

Dependent Variable: rate

Standard
Parameter Estimate Error t Value Pr > |t| Expected Value

Intercept 756.0000000 . . . Intercept
power 145.2500000 . . . power
flow 5.7500000 . . . flow
power*flow -5.0000000 B . . . power*flow + pressure*gap
pressure 2.0000000 . . . pressure
power*pressure -12.7500000 B . . . power*pressure + flow*gap
flow*pressure -98.7500000 B . . . flow*pressure + power*gap
gap -63.5000000 . . . gap
power*gap 0.0000000 B . . .
flow*gap 0.0000000 B . . .
pressure*gap 0.0000000 B . . .

NOTE: The X’X matrix has been found to be singular, and a generalized inverse was used to solve
the normal equations. Terms whose estimates are followed by the letter ’B’ are not
uniquely estimable.

Looking at the “Expected Value” column, notice that, while each of the main effects
is unambiguously estimated by its associated term in the model, the expected values
of the interaction estimates are more complicated. For example, the relatively large
effect (-98.75) corresponding toflow*pressure actually estimates the combined ef-
fect of flow*pressure andpower*gap. Without further information, it is impossi-
ble to disentangle these aliased interactions; however, since the main effects of both
power andgap are large and those forflow andpressure are small, it is reasonable
to suspect thatpower*gap is the more “active” of the two interactions.

Fortunately, eight more runs are available for this experiment (the other half fraction.)
The following statements create a data set containing these extra runs and add it to the
previous eight, resulting in a full24 = 16 run replicate. Then PROC GLM displays
the analysis of variance again.

data OtherHalf;
input power flow pressure gap rate;
datalines;

0.8 4.5 125 325 669
0.8 4.5 200 275 604
0.8 550.0 125 275 633
0.8 550.0 200 325 635
1.2 4.5 125 275 1037
1.2 4.5 200 325 868
1.2 550.0 125 325 860
1.2 550.0 200 275 1063
;
data FullRep;

set HalfFraction OtherHalf;
run;

proc glm data=FullRep;
class power flow pressure gap;
model rate=power|flow|pressure|gap@2;

run;

The results are displayed in Output 30.11.3.
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Output 30.11.3. Analysis of Variance for Nitride Etch Process Full Replicate

The GLM Procedure

Class Level Information

Class Levels Values

power 2 0.8 1.2

flow 2 4.5 550

pressure 2 125 200

gap 2 275 325

Number of observations 16

The GLM Procedure

Dependent Variable: rate

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 10 521234.1250 52123.4125 25.58 0.0011

Error 5 10186.8125 2037.3625

Corrected Total 15 531420.9375

R-Square Coeff Var Root MSE rate Mean

0.980831 5.816175 45.13715 776.0625

Source DF Type I SS Mean Square F Value Pr > F

power 1 374850.0625 374850.0625 183.99 <.0001
flow 1 217.5625 217.5625 0.11 0.7571
power*flow 1 18.0625 18.0625 0.01 0.9286
pressure 1 10.5625 10.5625 0.01 0.9454
power*pressure 1 1.5625 1.5625 0.00 0.9790
flow*pressure 1 7700.0625 7700.0625 3.78 0.1095
gap 1 41310.5625 41310.5625 20.28 0.0064
power*gap 1 94402.5625 94402.5625 46.34 0.0010
flow*gap 1 2475.0625 2475.0625 1.21 0.3206
pressure*gap 1 248.0625 248.0625 0.12 0.7414

Source DF Type III SS Mean Square F Value Pr > F

power 1 374850.0625 374850.0625 183.99 <.0001
flow 1 217.5625 217.5625 0.11 0.7571
power*flow 1 18.0625 18.0625 0.01 0.9286
pressure 1 10.5625 10.5625 0.01 0.9454
power*pressure 1 1.5625 1.5625 0.00 0.9790
flow*pressure 1 7700.0625 7700.0625 3.78 0.1095
gap 1 41310.5625 41310.5625 20.28 0.0064
power*gap 1 94402.5625 94402.5625 46.34 0.0010
flow*gap 1 2475.0625 2475.0625 1.21 0.3206
pressure*gap 1 248.0625 248.0625 0.12 0.7414
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With sixteen runs, the analysis of variance tells the whole story: all effects are es-
timable and there are five degrees of freedom left over to estimate the underlying
error. The main effects ofpower andgap and their interaction are all significant, and
no other effects are. Notice that the Type I and Type III ANOVA tables are the same;
this is because the design is orthogonal and all effects are estimable.

This example illustrates the use of the GLM procedure for the model analysis of
a screening experiment. Typically, there is much more involved in performing an
experiment of this type, from selecting the design points to be studied to graphically
assessing significant effects, optimizing the final model, and performing subsequent
experimentation. Specialized tools for this are available in SAS/QC software, in
particular the ADX Interface and the FACTEX and OPTEX procedures. Refer to
SAS/QC User’s Guidefor more information.
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