Chapter 31 The GLMMOD Procedure

Chapter Table of Contents

OVERVIEW
GETTING STARTED
SYNTAX
FREQ and WEIGHT Statements
DETAILS 1647Displayed Output1647Missing Values1647OUTPARM= Data Set1648OUTDESIGN= Data Set1648ODS Table Names1649
EXAMPLES

Chapter 31 The GLMMOD Procedure

Overview

The GLMMOD procedure constructs the design matrix for a general linear model; it essentially constitutes the model-building front end for the GLM procedure. You can use the GLMMOD procedure in conjunction with other SAS/STAT software regression procedures or with SAS/IML software to obtain specialized analyses for general linear models that you cannot obtain with the GLM procedure.

While some of the regression procedures in SAS/STAT software provide for general linear effects modeling with classification variables and interaction or polynomial effects, many others do not. For such procedures, you must specify the model directly in terms of distinct variables. For example, if you want to use the REG procedure to fit a polynomial model, you must first create the crossproduct and power terms as new variables, usually in a DATA step. Alternatively, you can use the GLMMOD procedure to create a data set that contains the design matrix for a model as specified using the effects modeling facilities of the GLM procedure.

Note that the TRANSREG procedure provides alternative methods to construct design matrices for full-rank and less-than-full-rank models, polynomials, and splines. See Chapter 65, "The TRANSREG Procedure," for more information.

Getting Started

A One-Way Design

A one-way analysis of variance considers one treatment factor with two or more treatment levels. This example employs PROC GLMMOD together with PROC REG to perform a one-way analysis of variance to study the effect of bacteria on the nitrogen content of red clover plants. The treatment factor is bacteria strain, and it has six levels. Red clover plants are inoculated with the treatments, and nitrogen content is later measured in milligrams. The data are derived from an experiment by Erdman (1946) and are analyzed in Chapters 7 and 8 of Steel and Torrie (1980). PROC GLMMOD is used to create the design matrix. The following DATA step creates the SAS data set Clover.

```
title 'Nitrogen Content of Red Clover Plants';
data Clover;
    input Strain $ Nitrogen @@;
    datalines;
3DOK1 19.4 3DOK1 32.6 3DOK1 27.0 3DOK1 32.1 3DOK1 33.0
3DOK5 17.7 3DOK5 24.8 3DOK5 27.9 3DOK5 25.2 3DOK5 24.3
3DOK4 17.0 3DOK4 19.4 3DOK4 9.1 3DOK4 11.9 3DOK4 15.8
3DOK7 20.7 3DOK7 21.0 3DOK7 20.5 3DOK7 18.8 3DOK7 18.6
3DOK13 14.3 3DOK13 14.4 3DOK13 11.8 3DOK13 11.6 3DOK13 14.2
COMPOS 17.3 COMPOS 19.4 COMPOS 19.1 COMPOS 16.9 COMPOS 20.8
;
```

```
The variable Strain contains the treatment levels, and the variable Nitrogen contains the response. The following statements produce the design matrix:
```

```
proc glmmod data=Clover;
    class Strain;
    model Nitrogen = Strain;
run;
```

The classification variable, or treatment factor, is specified in the CLASS statement. The MODEL statement defines the response and independent variables. The design matrix produced corresponds to the model

$$Y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}$$

where i = 1, ..., 6, and j = 1, ..., 5.

Figure 31.1 and Figure 31.2 display the output produced by these statements. Figure 31.1 displays information about the data set, which is useful for checking your data.

	Nitrogen	Content of Red C	lover Plants	
		The GLMMOD Proce	dure	
	Cl	ass Level Inform	ation	
Cla	ss Levels	Values		
Str	rain 6	3DOK1 3DOK13	3DOK4 3DOK5 3DOK7 COMPOS	
	Numb	er of observation	ns 30	
	Nitrogen	Content of Red C	lover Plants	
		The GLMMOD Proce	dure	
	Р	arameter Definit:	ions	
		Name of		
	Colum	n Associated	CLASS Variable Values	
	Numbe		Strain	
	1	Intercept		
	2	Strain	3DOK1	
	3	Strain	3DOK13	
	4	Strain	3DOK4	
	5	Strain	3DOK5	
	6	Strain	3DOK7	
	7	Strain	COMPOS	

Figure 31.1. Class Level Information and Parameter Definitions

The design matrix, shown in Figure 31.2, consists of seven columns: one for the mean and six for the treatment levels. The vector of responses, Nitrogen, is also displayed.

Nit	rogen Conten	t of	Red C	lover	Plan	ts			
	The GL	MMOD	Proce	dure					
	Des	ign P	oints						
Observation				Colu	mn Nu	mber			
Number	Nitrogen	1	2	3	4	5	6	7	
1	19.4	1	1	0	0	0	0	0	
2	32.6	1	1	0	0	0	0	0	
3	27.0	1	1	0	0	0	0	0	
4	32.1	1	1	0	0	0	0	0	
5	33.0	1	1	0	0	0	0	0	
6	17.7	1	0	0	0	1	0	0	
7	24.8	1	0	0	0	1	0	0	
8	27.9	1	0	0	0	1	0	0	
9	25.2	1	0	0	0	1	0	0	
10	24.3	1	0	0	0	1	0	0	
11	17.0	1	0	0	1	0	0	0	
12	19.4	1	0	0	1	0	0	0	
13	9.1	1	0	0	1	0	0	0	
14	11.9	1	0	0	1	0	0	0	
15	15.8	1	0	0	1	0	0	0	
16	20.7	1	0	0	0	0	1	0	
17	21.0	1	0	0	0	0	1	0	
18	20.5	1	0	0	0	0	1	0	
19	18.8	1	0	0	0	0	1	0	
20	18.6	1	0	0	0	0	1	0	
21	14.3	1	0	1	0	0	0	0	
22	14.4	1	0	1	0	0	0	0	
23	11.8	1	0	1	0	0	0	0	
24	11.6	1	0	1	0	0	0	0	
25	14.2	1	0	1	0	0	0	0	
26	17.3	1	0	0	0	0	0	1	
27	19.4	1	0	0	0	0	0	1	
28	19.1	1	0	0	0	0	0	1	
29	16.9	1	0	0	0	0	0	1	
30	20.8	1	0	0	0	0	0	1	

Figure 31.2. Design Matrix

Usually, you will find PROC GLMMOD most useful for the data sets it can create rather than for its displayed output. For example, the following statements use PROC GLMMOD to save the design matrix for the clover study to the data set CloverDesign instead of displaying it.

```
proc glmmod data=Clover outdesign=CloverDesign noprint;
    class Strain;
    model Nitrogen = Strain;
run;
```

Now you can use the REG procedure to analyze the data, as the following statements demonstrate:

```
proc reg data=CloverDesign;
  model Nitrogen = Col2-Col7;
run;
```

The results are shown in Figure 31.3.

	Nitro	gen Co	ontent of Red	Clover Plants		
			The REG Proced	ure		
			Model: MODEL	1		
	De	epende	ent Variable:			
		A	nalysis of Var	iance		
			Sum of	Mean		
Source	1	OF	Squares	Square	F Value	Pr > F
Model		5	847.04667	169.40933	14.37	<.0001
Error	:	24	282.92800	11.78867		
Corrected	Total	29	1129.97467			
	Root MSE		3.43346	R-Square	0.7496	
	Dependent Mea	an	19.88667	Adj R-Sq	0.6975	
	Coeff Var		17.26515			
not u means NOTE: The f	is not full ran nique. Some stat that the estimation of collowing parameter r combination of	tistio ate is ters l	cs will be mis s biased. have been set	leading. A rep to 0, since th	orted DF of	E 0 or B
	Col7 = Inter	rcept	- Col2 - Col3	- Col4 - Col5	- Col6	
		Pa	arameter Estim	ates		
			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Variabie	Taber	DE	Escimate	FLIOL	c varue	FT / 6
Intercept	-	в	18.70000	1.53549	12.18	<.0001
Col2	Strain 3DOK1	в	10.12000	2.17151	4.66	<.0001
Col3	Strain 3DOK13	в	-5.44000	2.17151	-2.51	0.0194
Col4	Strain 3DOK4	в	-4.06000	2.17151	-1.87	0.0738
Col5	Strain 3DOK5	в	5.28000	2.17151	2.43	0.0229
Col6	Strain 3DOK7	в	1.22000	2.17151	0.56	0.5794
Col7	Strain COMPOS	0	0	•	•	•

Figure 31.3. Regression Analysis

Syntax

The following statements are available in PROC GLMMOD.

PROC GLMMOD < options > ;
BY variables ;
CLASS variables ;
FREQ variable ;
MODEL dependents=independents / < options > ;
WEIGHT variable ;

The PROC GLMMOD and MODEL statements are required. If classification effects are used, the class variables must be declared in a CLASS statement, and the CLASS statement must appear before the MODEL statement.

PROC GLMMOD Statement

PROC GLMMOD < options > ;

The PROC GLMMOD statement invokes the GLMMOD procedure. It has the following options:

DATA=SAS-data-set

specifies the SAS data set to be used by the GLMMOD procedure. If you do not specify the DATA= option, the most recently created SAS data set is used.

NAMELEN=n

specifies the maximum length for an effect name. Effect names are listed in the table of parameter definitions and stored in the EFFNAME variable in the OUTPARM= data set. By default, n = 20. You can specify $20 < n \le 200$ if 20 characters are not enough to distinguish between effects, which may be the case if the model includes a high-order interaction between variables with relatively long, similar names.

NOPRINT

suppresses the normal display of results. This option is generally useful only when one or more output data sets are being produced by the GLMMOD procedure. Note that this option temporarily disables the Output Delivery System (ODS); see Chapter 15, "Using the Output Delivery System," for more information.

ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the order in which you want the levels of the classification variables (specified in the CLASS statement) to be sorted. This ordering determines which parameters in the model correspond to each level in the data. Note that the ORDER= option applies to the levels for all classification variables. The exception is OR-DER=FORMATTED (the default) for numeric variables for which you have supplied no explicit format (that is, for which there is no corresponding FORMAT statement in the current PROC GLMMOD run or in the DATA step that created the data set). In this case, the levels are ordered by their internal (numeric) value. Note that this represents a change from previous releases for how class levels are ordered. In releases previous to Version 8, numeric class levels with no explicit format were ordered by their BEST12. formatted values, and in order to revert to the previous ordering you can specify this format explicitly for the affected classification variables. The change was implemented because the former default behavior for ORDER=FORMATTED often resulted in levels not being ordered numerically and usually required the user to intervene with an explicit format or ORDER=INTERNAL to get the more natural ordering.

The ORDER= option can take the following values.

Value of ORDER=	Levels Sorted By
DATA	order of appearance in the input data set
FORMATTED	external formatted value, except for numeric variables with no explicit format, which are sorted by their unformatted (internal) value
FREQ	descending frequency count; levels with the most observations come first in the order
INTERNAL	unformatted value

If you omit the ORDER= option, PROC GLMMOD orders by the external formatted value.

OUTPARM=SAS-data-set

names an output data set to contain the information regarding the association between model effects and design matrix columns.

OUTDESIGN=SAS-data-set

names an output data set to contain the columns of the design matrix.

PREFIX=name

specifies a prefix to use in naming the columns of the design matrix in the OUT-DESIGN= data set. The default prefix is Col and the column name is formed by appending the column number to the prefix, so that by default the columns are named Col1, Col2, and so on. If you specify the ZEROBASED option, the column numbering starts at zero, so that with the default value of PREFIX= the columns of the design matrix in the OUTDESIGN= data set are named Col0, Col1, and so on.

ZEROBASED

specifies that the numbering for the columns of the design matrix in the OUTDE-SIGN= data set should begin at 0. By default it begins at 1, so that with the default value of PREFIX= the columns of the design matrix in the OUTDESIGN= data set are named Col1, Col2, and so on. If you use the ZEROBASED option, the column names are instead Col0, Col1, and so on.

BY Statement

BY variables;

You can specify a BY statement with the GLMMOD procedure to obtain separate designs for observations in groups defined by the BY variables. When you specify a BY statement, the procedure expects the input DATA= data set to be sorted in the order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data using the SORT procedure with a similar BY statement.
- Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for the GLMMOD procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables using the DATASETS procedure (in base SAS software).

For more information on the BY statement, refer to the discussion in *SAS Language Reference: Concepts.* For more information on the DATASETS procedure, refer to the discussion in the *SAS Procedures Guide*.

CLASS Statement

CLASS variables;

The CLASS statement names the classification variables to be used in the analysis. Typical classification variables are Treatment, Sex, Race, Group, and Replication. If you specify the CLASS statement, it must appear before the MODEL statement.

Class levels are determined from up to the first 16 characters of the formatted value of the CLASS variables. Thus, you can use formats to group values into levels. Refer to the discussion of the FORMAT procedure in the SAS Procedures Guide and the discussions for the FORMAT statement and SAS formats in SAS Language Reference: Dictionary.

FREQ and WEIGHT Statements

FREQ variable ;
WEIGHT variable ;

FREQ and WEIGHT variables are transferred to the output data sets without change.

MODEL Statement

MODEL dependents=independents / < options > ;

The MODEL statement names the dependent variables and independent effects. For the syntax of effects, see the "Specification of Effects" section on page 1517 in Chapter 30, "The GLM Procedure."

You can specify the following option in the MODEL statement after a slash (/).

NOINT

requests that the intercept parameter not be included in the model.

Details

Displayed Output

For each pass of the data (that is, for each BY group and for each pass required by the pattern of missing values for the dependent variables), the GLMMOD procedure displays the definitions of the columns of the design matrix along with the following:

- the number of the column
- the name of the associated effect
- the values that the class variables take for this level of the effect

The design matrix itself is also displayed, along with the following:

- the observation number
- the dependent variable values
- the FREQ and WEIGHT values, if any
- the columns of the design matrix

Missing Values

If some variables have missing values for some observations, then PROC GLMMOD handles missing values in the same way as PROC GLM; see the "Missing Values" section on page 1571 in Chapter 30, "The GLM Procedure," for further details.

OUTPARM= Data Set

An output data set containing information regarding the association between model effects and design matrix columns is created whenever you specify the OUTPARM= option in the PROC GLMMOD statement. The OUTPARM= data set contains an observation for each column of the design matrix with the following variables:

- a numeric variable, <u>COLNUM</u>, identifying the number of the column of the design matrix corresponding to this observation
- a character variable, EFFNAME, containing the name of the effect that generates the column of the design matrix corresponding to this observation
- the CLASS variables, with the values they have for the column corresponding to this observation, or blanks if they are not involved with the effect associated with this column

If there are BY-group variables or if the pattern of missing values for the dependent variables requires it, the single data set defines several design matrices. In this case, for each of these design matrices, the OUTPARM= data set also contains the following:

- the current values of the BY variables, if you specify a BY statement
- a numeric variable, _YPASS_, containing the current pass of the data, if the pattern of missing values for the dependent variables requires multiple passes

OUTDESIGN= Data Set

An output data set containing the design matrix is created whenever you specify the OUTDESIGN= option in the PROC GLMMOD statement. The OUTDESIGN= data set contains an observation for each observation in the DATA= data set, with the following variables:

- the dependent variables
- the FREQ variable, if any
- the WEIGHT variable, if any
- a variable for each column of the design matrix, with names COL1, COL2, and so forth

If there are BY-group variables or if the pattern of missing values for the dependent variables requires it, the single data set contains several design matrices. In this case, for each of these, the OUTDESIGN= data set also contains the following:

- the current values of the BY variables, if you specify a BY statement
- a numeric variable, _YPASS_, containing the current pass of the data, if the pattern of missing values for the dependent variables requires multiple passes

ODS Table Names

PROC GLMMOD assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table. For more information on ODS, see Chapter 15, "Using the Output Delivery System."

Table 31.1. ODS Tables Produced in PROC GLMMOD

ODS Table Name	Description	Statement
ClassLevels	Table of class levels	CLASS statement
DependentInfo	Simultaneously analyzed	default when there are multiple
	dependent variables	dependent variables
DesignPoints	Design matrix	default
NObs	Number of observations	default
Parameters	Parameters and associated	default
	column numbers	

Examples

Example 31.1. A Two-Way Design

The following program uses the GLMMOD procedure to produce the design matrix for a two-way design. The two classification factors have seven and three levels, respectively, so the design matrix contains 1 + 7 + 3 + 21 = 32 columns in all.

```
data Plants;
   input Type $ @;
   do Block=1 to 3;
      input StemLength @;
      output;
      end;
   datalines;
Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
         35.7 35.9 33.1
Knox
O'Neill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash
         38.2 37.8 31.9
Webster 32.5 31.1 29.7
;
proc glmmod outparm=Parm outdesign=Design;
   class Type Block;
  model StemLength = Type Block;
run;
proc print data=Parm;
run;
proc print data=Design;
run;
```

Output 31.1.1. A Two-Way Design

		The GLMMOD Procedure
		Class Level Information
Class	Levels	Values
Туре	7	Clarion Clinton Compost Knox O'Neill Wabash Webster
Block	3	1 2 3
		Number of observations 21

	The GLMMOD P	rocedure	
	Parameter Def	initions	
	Name of		
Column	Associated	CLASS Var	iable Values
Number	Effect	Type	Block
1	Tabaaaab		
2	Intercept	Clarion	
3	Type	Clinton	
-	Type		
4	Туре	Compost	
5	Туре	Knox	
6	Туре	O'Neill	
7	Туре	Wabash	
8	Туре	Webster	
9	Block		1
10	Block		2
11	Block		3
12	Type*Block	Clarion	1
13	Type*Block	Clarion	2
14	Type*Block	Clarion	3
15	Type*Block	Clinton	1
16	Type*Block	Clinton	2
17	Type*Block	Clinton	3
18	Type*Block	Compost	1
19	Type*Block	Compost	2
20	Type*Block	Compost	3
21	Type*Block	Knox	1
22	Type*Block	Knox	2
23	Type*Block	Knox	3
24	Type*Block	O'Neill	1
25	Type*Block	O'Neill	2
26	Type*Block	O'Neill	3
27	Type*Block	Wabash	1
27	Type*Block	Wabash	2
28		Wabash Wabash	3
30	Type*Block		3
	Type*Block	Webster	
31	Type*Block	Webster	2
32	Type*Block	Webster	3

					The	GL	MMO	DP	roc	edu	re							
						Des	ign	Ро	int	s								
Observation	Stem								~	'o 1		umbe	~					
Number	Length	1	2	3	4	5	6	7	8	.01u 9	10	11	12	13	14	15	16	17
Number	Deligen	-	2	5	Ŧ	5	0	'	0	2	10		12	10	11	10	10	17
1	32.7	1	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
2	32.3	1	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
3	31.5	1	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
4	32.1	1	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0
5	29.7	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0
6	29.1	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1
7	35.7	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
8	35.9	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
9	33.1	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
10	36.0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0
11	34.2	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
12	31.2	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
13	31.8	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
14	28.0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
15	29.2	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0
16	38.2	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
17	37.8	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
18	31.9	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
19	32.5	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
20	31.1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
21	29.7	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
L																		

					Des	ign	Poin	ts							
Observation						c	lolum	n Nu	mber						
Number	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
13	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Obs	_COLNUM_	EFFNAME	Туре	Block
1	1	Intercept		
2	2	Туре	Clarion	
3	3	Туре	Clinton	
4	4	Туре	Compost	
- 5	5	Туре	Knox	
6	6	Туре	O'Neill	
7	7	Туре	Wabash	
8	8	Туре	Webster	
9	9	Block		1
10	10	Block		2
11	11	Block		3
12	12	Type*Block	Clarion	1
13	13	Type*Block	Clarion	2
14	14	Type*Block	Clarion	3
15	15	Type*Block	Clinton	1
16	16	Type*Block	Clinton	2
17	17	Type*Block	Clinton	3
18	18	Type*Block	Compost	1
19	19	Type*Block	Compost	2
20	20	Type*Block	Compost	3
21	21	Type*Block	Knox	1
22	22	Type*Block	Knox	2
23	23	Type*Block	Knox	3
24	24	Type*Block	O'Neill	1
25	25	Type*Block	O'Neill	2
26	26	Type*Block	O'Neill	3
27	27	Type*Block	Wabash	1
28	28	Type*Block	Wabash	2
29	29	Type*Block	Wabash	3
30	30	Type*Block	Webster	1
31	31	Type*Block	Webster	2
32	32	Type*Block	Webster	3

Output 31.1.2. The OUTPARM= Data Set

Output 31.1.3. The (OUTDESIGN= Data Set
----------------------	---------------------

	S																																	
	t																																	
	е																																	
	m																																	
	L																																	
	е										C	С	C	С	C	C	C	C	C	C	C	C	C	C	C	C	C	С	C	C	C	С	C	
	n	C	C	C	C	C	C	С	C	C	o	0	0	0	0	o	0	0	0	о	о	0	0	0	о	0	о	0	о	0	0	0	0	
0	g	0	0	о	0	о	o	o	o	o	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
b	t	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	3	3	3	
s	h	1	2	3	4	5	б	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	
1	32.7	1	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	32.3	1	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	31.5	1	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4	32.1	1	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5	29.7	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6	29.1	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7	35.7	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
	35.9																																	
9	33.1	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
10	36.0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
	34.2																																	
	31.2																																	
	31.8	_	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
14	28.0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
15	29.2	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
	38.2																																	
	37.8																																	
18	31.9	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
19	32.5	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
20	31.1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
21	29.7	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	

Example 31.2. Factorial Screening

Screening experiments are undertaken to select from among the many possible factors that might affect a response the few that actually do, either simply (main effects) or in conjunction with other factors (interactions). One method of selecting significant factors is forward model selection, in which the model is built by successively adding the most statistically significant effects. Forward selection is an option in the REG procedure, but the REG procedure does not allow you to specify interactions directly (as the GLM procedure does, for example). You can use the GLMMOD procedure to create the screening model for a design and then use the REG procedure on the results to perform the screening.

The following statements create the SAS data set Screening, which contains the results of a screening experiment:

```
title 'PROC GLMMOD and PROC REG for Forward Selection Screening';
data Screening;
    input a b c d e y;
    datalines;
-1 -1 -1 -1 1 -6.688
-1 -1 -1 1 -1 -1 0.664
-1 -1 1 -1 -1 -1.459
-1 -1 1 1 1 2.042
```

-1	1	-1	-1	-1	-8.561
-1	1	-1	1	1	-7.095
-1	1	1	-1	1	0.553
-1	1	1	1	-1	-2.352
1	-1	-1	-1	-1	-4.802
1	-1	-1	1	1	5.705
1	-1	1	-1	1	14.639
1	-1	1	1	-1	2.151
1	1	-1	-1	1	5.884
1	1	-1	1	-1	-3.317
1	1	1	-1	-1	4.048
1	1	1	1	1	15.248
;					
rur	1;				

The data set contains a single dependent variable (y) and five independent factors (a, b, c, d, and e). The design is a half-fraction of the full 2^5 factorial, the precise half-fraction having been chosen to provide uncorrelated estimates of all main effects and two-factor interactions.

The following statements use the GLMMOD procedure to create a design matrix data set containing all the main effects and two factor interactions for the preceding screening design.

```
ods output DesignPoints = DesignMatrix;
proc glmmod data=Screening;
  model y = a|b|c|d|e@2;
run;
```

Notice that the preceding statements use ODS to create the design matrix data set, instead of the OUTDESIGN= option in the PROC GLMMOD statement. The results are equivalent, but the columns of the data set produced by ODS have names that are directly related to the names of their corresponding effects.

Finally, the following statements use the REG procedure to perform forward model selection for the screening design. Two MODEL statements are used, one without the selection options (which produces the regression analysis for the full model) and one with the selection options.

1	PROC GLMMOD	and PR	OC REG for Forw	ard Selection	Screening	
			The REG Proced	ure		
			Model: MODEL	1		
		D	ependent Variab	le: y		
			Analysis of Var	iance		
			Sum of	Mean		
Source		DF	Squares	Square	F Value	e Pr > F
Model		15	861.48436	57.43229		
Error		0	0	•		
Corrected To	otal	15	861.48436			
	Root MSE			R-Square	1.0000	
	Dependent	Moan	0.33325	Adj R-Sq	1.0000	
	Coeff Var	Mean	0.33323	Mal K-2d	•	
	00011 101		•			
			Parameter Estim	ates		
			Parameter	Standard		
Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	0.33325			•
a		1	4.61125	•		•
b		1	0.21775	•		•
a_b	a*b	1	0.30350	•		•
c		1	4.02550			•
a_c	a*c	1	0.05150			•
b_c	b*c	1	-0.20225	•	•	•
d		1	-0.11850	•	•	•
a_d	a*d	1	0.12075	•	•	•
b_d	b*d	1	0.18850	•	•	•
c_d	c*d	1	0.03200	•	•	•
e		1	3.45275	•	•	•
a_e	a*e	1	1.97175	•	•	•
b_e	b*e	1	-0.35625			
c_e	c*e	1	0.30900		•	•
d_e	d*e	1	0.30750	•	•	•
·						

Output 31.2.1. PROC REG Full Model Fit

Output 31.2.2. PROC REG Screening Results

	PROC	GLMMOD	and PROC REG	for For	ward Selec	tion S	creening	
			Mod	REG Proced del: MODE ent Varial	L2			
			Summary of	Forward a	Selection			
	Variable		Number	Partial	Model			
Step	Entered	Label	Vars In	R-Square	R-Square	C(p)	F Value	Pr > F
1	a		1	0.3949	0.3949		9.14	0.0091
2	c		2	0.3010	0.6959	•	12.87	0.0033
3	e		3	0.2214	0.9173		32.13	0.0001
4	a e	a*e	4	0 0722	0,9895		75 66	<.0001

1656 • Chapter 31. The GLMMOD Procedure

Output 31.2.1 and Output 31.2.2 contain the results of the REG analysis. The full model has 16 parameters (the intercept + 5 main effects + 10 interactions). These are all estimable, but since there are only 16 observations in the design, there are no degrees of freedom left to estimate error; consequently, there is no way to use the full model to test for the statistical significance of effects. However, the forward selection method chooses only four effects for the model: the main effects of factors a, c, and e, and the interaction between a and e. Using this reduced model enables you to estimate the underlying level of noise, although note that the selection method biases this estimate somewhat.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS/STAT[®] User's Guide, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/STAT[®] User's Guide, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-494-2

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

 SAS^{\circledast} and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.[®] indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

The Institute is a private company devoted to the support and further development of its software and related services.