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Chapter 33
The KDE Procedure

Overview

The KDE procedure performs either univariate or bivariate kernel density estima-
tion. Statisticaldensity estimationinvolves approximating a hypothesized probabil-
ity density function from observed data.Kernel density estimationis a nonparametric
technique for density estimation in which a known density function (thekernel) is
averaged across the observed data points to create a smooth approximation. Refer to
Silverman (1986) for a thorough review and discussion.

PROC KDE uses a Gaussian density as the kernel, and its assumed variance deter-
mines the smoothness of the resulting estimate. PROC KDE outputs the kernel den-
sity estimate into a SAS data set, which you can then use with other procedures for
plotting or analysis. PROC KDE also computes a variety of common statistics, in-
cluding estimates of the percentiles of the hypothesized probability density function.

Getting Started

The following example illustrates the basic features of PROC KDE. Assume that
1000 observations are simulated from a bivariate normal density with means(0; 0),
variances(10; 10), and covariance 9. The SAS DATA step code to accomplish this is
as follows:

data k;
seed = 1283470;
do i = 1 to 1000;

z1 = rannor(seed);
z2 = rannor(seed);
z3 = rannor(seed);
x = 3*z1 + z2;
y = 3*z1 + z3;
output;

end;
drop seed;

run;

The following PROC KDE code computes a bivariate kernel density estimate of these
data:

proc kde data=k out=o;
var x y;

run;
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The output from this analysis is as follows.

The KDE Procedure

Inputs

Description Value

Data Set WORK.K
Number of Observations Used 1000
Variable 1 x
Variable 2 y
Bandwidth Method Simple Normal

Reference

The “Inputs” table lists basic information about the density fit, including the input
data set, the number of observations, and the variables. The bandwidth method is the
technique used to select the amount of smoothing in the estimate. A simple normal
reference rule is used for bivariate smoothing.

The KDE Procedure

Controls

Description x y

Grid Points 60 60
Lower Grid Limit -11.25 -10.05
Upper Grid Limit 9.1436 9.0341
Bandwidth Multiplier 1 1

The “Controls” table lists the primary numbers controlling the kernel density fit. Here
a 60 � 60 grid is fit to the entire range of the data, and no adjustment is made to the
default bandwidth.

The KDE Procedure

Statistics

Description x y

Mean -0.075 -0.070
Variance 9.72 9.92
Standard Deviation 3.12 3.15
Range 20.39 19.09
Interquartile Range 4.46 4.51
Bandwidth 0.99 1.00

The “Statistics” table contains standard univariate statistics for each variable, as well
as statistics associated with the density estimate. Note that the estimated variances
for both X and Y are fairly close to the true values of 10.
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The KDE Procedure

Bivariate Statistics

Description Value

Covariance 8.88
Correlation 0.90

The “Bivariate Statistics” table lists the covariance and correlation between the two
variables. Note that the estimated correlation is equal to its true value to two decimal
places.

The KDE Procedure

Percentiles

Percent x y

0.5 -7.71 -8.44
1.0 -7.08 -7.46
2.5 -6.17 -6.31
5.0 -5.28 -5.23

10.0 -4.18 -4.11
25.0 -2.24 -2.30
50.0 -0.11 -0.058
75.0 2.22 2.21
90.0 3.81 3.94
95.0 4.88 5.22
97.5 6.03 5.94
99.0 6.90 6.77
99.5 7.71 7.07

The “Percentiles” table lists percentiles for each variable.

The KDE Procedure

Levels

Percent Density Lower1 Lower2 Upper1 Upper2

1 0.001181 -8.14 -8.76 8.45 8.39
5 0.003028 -7.10 -7.14 7.07 6.77

10 0.004988 -6.41 -6.49 5.69 6.12
50 0.01592 -3.64 -3.58 3.96 3.86
90 0.02389 -1.22 -1.32 1.19 0.95
95 0.02525 -0.88 -0.99 0.50 0.62
99 0.02609 -0.53 -0.67 0.16 0.30

100 0.02630 -0.19 -0.35 -0.19 -0.35

The “Levels” table lists contours of the density corresponding to percentiles of the
bivariate data, and the minimum and maximum values of each variable on those con-
tours. For example, 5 percent of the observed data have a density value less than
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0.0030. The minimum X and Y values on this contour are�7:10 and�7:14, respec-
tively (the Lower1 and Lower2 columns), and the maximum values are7:07 and6:77,
respectively (the Upper1 and Upper2 variables).

The output data set O from this analysis contains 3600 points containing the kernel
density estimate. You can generate surface and contour plots of this estimate using
SAS/GRAPH as follows:

proc g3d data=o;
plot y*x=density;

run;

proc gcontour data=o;
plot y*x=density;

run;

Figures 33.1 and 33.2 display these plots. Note that the correlation of0:9 in the
original data results in oval-shaped contours.

Figure 33.1. Surface plot of the bivariate kernel density estimate
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Figure 33.2. Contour plot of the bivariate kernel density estimate

Suppose, after viewing Figures 33.1 and 33.2, that you would like a slightly smoother
estimate. You could then rerun the analysis with a larger bandwidth:

proc kde data=k out=o1 bwm=2,2;
var x y;

run;

The BWM=2,2 option requests bandwidth multipliers of 2 for both X and Y. The
results of this fit and a subsequent call to PROC G3D produces Figure 33.3. Note
that the small flattish area behind the main mode in Figure 33.1 has disappeared in
Figure 33.3.
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Figure 33.3. Surface plot of the bivariate kernel density estimate with additional
smoothing

You can also use the results from the Levels table to plot specific contours corre-
sponding to percentiles of the data. For example, the Levels table from the PROC
KDE output using BWM=2,2 is as follows:

The KDE Procedure

Levels

Percent Density Lower1 Lower2 Upper1 Upper2

1 0.001238 -8.48 -8.76 8.45 8.39
5 0.003008 -7.10 -7.14 6.72 6.77

10 0.004625 -6.06 -5.85 6.03 6.12
50 0.01085 -3.30 -3.26 3.27 3.21
90 0.01430 -1.22 -1.32 1.19 0.95
95 0.01459 -0.88 -0.99 0.85 0.62
99 0.01478 -0.53 -0.67 0.50 0.30

100 0.01481 -0.19 -0.024 -0.19 -0.024

You can use the values from the Density column of this table with PROC GCON-
TOUR to plot the 1, 5, 10, 50, 90, 95, and 99 percent levels of the density:

proc gcontour data=o1;
plot y*x=density / levels=0.0012 0.0030 0.0046 0.0109

0.0143 0.0146 0.0148;
run;

This plot is displayed in Figure 33.4.
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Figure 33.4. Contour plot of the bivariate kernel density estimate with additional
smoothing and levels corresponding to percentiles

The next-to-outermost contour of Figure 33.4 represents an approximate 95 percent
ellipsoid for X and Y.

Syntax

You can use following statements with the KDE procedure.

PROC KDE < options > ;
BY variables ;
FREQ variable ;
VAR variables ;
WEIGHT variable ;

PROC KDE Statement

PROC KDE < options >;

The PROC KDE statement invokes the procedure. You can specify the following
options in the PROC KDE statement.

BWM=numlist
specifies the bandwidth multipliers for the kernel density estimate. You should spec-
ify one number for univariate smoothing and two numbers separated by a comma
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for bivariate smoothing. The default values equal 1. Larger multipliers produce a
smoother estimate, and smaller ones produce a rougher estimate.

GRIDL=numlist
specifies the lower grid limits for the kernel density estimate. You should specify
one number for univariate smoothing and two numbers separated by a comma for
bivariate smoothing. The default values equal the minimum observed values of the
variables.

GRIDU=numlist
specifies the upper grid limits for the kernel density estimate. You should specify
one number for univariate smoothing and two numbers separated by a comma for
bivariate smoothing. The default values equal the maximum observed values of the
variables.

DATA=SAS-data-set
specifies the input SAS data set to be used by PROC KDE. The default is the most
recently created data set.

LEVELS=numlist
lists percentages of data for which density contours are to be computed. The default
levels are 1, 5, 10, 50, 90, 95, 99, and 100.

METHOD=SJPI
METHOD=SNR
METHOD=SROT
METHOD=OS

specifies the method used to compute the bandwidth. Available methods are Sheather-
Jones plug in (SJPI), simple normal reference (SNR), Silverman’s rule of thumb
(SROT), and oversmoothed (OS). Refer to Jones, Marron, and Sheather (1996) for
a description of each of these methods. SJPI is the default for univariate smoothing,
and SNR is the default and only available method for bivariate smoothing.

NGRID=numlist
NG=numlist

specifies the number of grid points associated with the variables in the VAR state-
ment. You should specify one number for univariate smoothing and two numbers
separated by a comma for bivariate smoothing. The default values are 401 when
there is a single VAR variable and 60 when there are two VAR variables.

OUT=SAS-data-set
specifies the output SAS data set containing the kernel density estimate. This output
data set contains the following variables:

� variables you specify in the VAR statement, with values corresponding to grid
coordinates

� density, with values equal to kernel density estimates at the associated grid
point

� count, containing the number of original observations contained in the bin
corresponding to a grid point
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PERCENTILES=numlist
lists percentiles to be computed for each VAR variable. The default percentiles are
0.5, 1, 2.5, 5, 10, 25, 50, 75, 90, 95, 97.5, 99, and 99.5.

SJPIMAX=number
specifies the maximum grid value in determining the Sheather-Jones plug in band-
width. The default value is 2 times the oversmoothed estimate.

SJPIMIN=number
specifies the minimum grid value in determining the Sheather-Jones plug in band-
width. The default value is the maximum value divided by 18.

SJPINUM=number
specifies the number of grid values used in determining the Sheather-Jones plug in
bandwidth. The default is 21.

SJPITOL=number
specifies the tolerance for termination of the bisection algorithm used in computing
the Sheather-Jones plug in bandwidth. The default value is1E� 3.

BY Statement

BY variables ;

You can specify a BY statement with PROC KDE to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

� Sort the data using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the KDE procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

� Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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FREQ Statement

FREQ variable ;

The FREQ statement specifies a variable that provides frequencies for each observa-
tion in the DATA= data set. Specifically, ifn is the value of the FREQ variable for
a given observation, then that observation is usedn times. If the value of the FREQ
variable is missing or is less than 1, the observation is not used in the analysis. If the
value is not an integer, only the integer portion is used.

VAR Statement

VAR variables ;

The VAR statement lists the variables in the input data set for which a kernel density
estimate is to be computed. You should specify either one or two variables. For
one variable a univariate kernel density estimate is computed, and for two variables a
bivariate density estimate is computed. If any VAR variable has a missing value for a
particular observation, then the entire observation is omitted from the analysis.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies a variable that weights the observations in comput-
ing the kernel density estimate. Observations with higher weights have more influ-
ence in the computations. If an observation has a nonpositive or missing weight, then
the entire observation is omitted from the analysis. You should be cautious in using
data sets with extreme weights, as they can produce unreliable results.

Details

Computational Overview

The two main computational tasks of PROC KDE are automatic bandwidth selection
and the construction of a kernel density estimate once a bandwidth has been selected.
The primary computational tools used to accomplish these tasks are binning, con-
volutions, and the fast Fourier transform. The following sections provide analytical
details on these topics, beginning with the density estimates themselves.

Kernel Density Estimates

A weighted univariate kernel density estimate involves a variableX and a weight
variableW . Let (Xi;Wi); i = 1; 2; : : : ; n denote a sample ofX andW of sizen.
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The weighted kernel density estimate off(x), the density ofX, is as follows:

f̂(x) =
1Pn

i=1Wi

nX
i=1

Wi'h(x�Xi)

whereh is the bandwidth and

'h(x) =
1p
2�h

exp

�
� x2

2h2

�

is the standard normal density rescaled by the bandwidth. Ifh ! 0 andnh ! 1,
then the optimal bandwidth is

hAMISE =

�
1

2
p
�n

R
(f 00)2

�1=5

This optimal value is unknown, and so approximations methods are required. For a
derivation and discussion of these results, refer to Silverman (1986, Chapter 3) and
Jones, Marron, and Sheather (1996).

For the bivariate case, letX = (X;Y ) be a bivariate random element taking values
in <2 with joint density functionf(x; y); (x; y) 2 <2, and letXi = (Xi; Yi); i =
1; 2; : : : ; n be a sample of sizen drawn from this distribution. The kernel density
estimate off(x; y) based on this sample is

f̂(x; y) =
1

n

nX
i=1

'h(x�Xi; y � Yi) =
1

nhXhY

nX
i=1

'

�
x�Xi

hX
;
y � Yi
hY

�

where(x; y) 2 <2, hX > 0 andhY > 0 are the bandwidths and'h(x; y) is the
rescaled normal density:

'h(x; y) =
1

hXhY
'

�
x

hX
;
y

hY

�

where'(x; y) is the standard normal density function:

'(x; y) =
1

2�
exp

�
�x

2 + y2

2

�

SAS OnlineDoc: Version 8



1700 � Chapter 33. The KDE Procedure

Under mild regularity assumptions aboutf(x; y), the mean integrated squared error
of f̂(x; y) is

MISE(hX ; hY ) = E

Z
(f̂ � f)2

=
1

4�nhXhY
+
h4X
4

Z �
@2f

@X2

�2

dxdy

+
h4Y
4

Z �
@2f

@Y 2

�2

dxdy +O

�
h4X + h4Y +

1

nhXhY

�

ashX ! 0, hY ! 0 andnhXhY !1.

Now set

AMISE(hX ; hY ) =
1

4�nhXhY

+
h4X
4

Z �
@2f

@X2

�2

dxdy

+
h4Y
4

Z �
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�2

dxdy

which is the asymptotic mean integrated squared error. For fixedn, this has minimum
at (hAMISE–X ; hAMISE–Y ) defined as

hAMISE–X =

"R
( @

2f
@X2 )

2

4n�

#1=6 "R
( @

2f
@X2 )

2R
( @

2f
@Y 2 )2

#2=3

and

hAMISE–Y =

"R
( @

2f
@Y 2 )

2

4n�

#1=6 "R
( @

2f
@Y 2 )

2R
( @

2f
@X2 )2

#2=3

These are the optimal asymptotic bandwidths in the sense that they minimize MISE.
However, as in the univariate case, these expressions contain the second derivatives
of the unknown densityf being estimated, and so approximations are required. Refer
to Wand and Jones (1993) for further details.

Binning

Binning, or assigning data to discrete categories, is an effective and fast method for
large data sets (Fan and Marron 1994). When the sample sizen is large, direct evalua-
tion of the kernel estimatêf at any point would involven kernel evaluations as shown
in the preceding formulas. To evaluate the estimate at each point of a grid of sizeg
would thus requireng kernel evaluations. When you useg = 401 in the univariate
case org = 60� 60 = 3600 in the bivariate case andn � 1000, the amount of com-
putation can be prohibitively large. With binning, however, the computational order
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is reduced tog, resulting in a much quicker algorithm that is practically as accurate
as direct evaluation.

To bin a set of weighted univariate dataX1;X2; : : : ;Xn to a gridx1; x2; : : : ; xg,
simply assign each sampleXi, together with its weightWi, to the nearest grid point
xj (also called the bin center). When binning is completed, each grid pointxi has
an associated numberci, which is the sum total of all the weights that correspond to
sample points that have been assigned toxi. Thesecis are known as the “bin counts.”

This procedure replaces the data(Xi;Wi); i = 1; 2; : : : ; n with the smaller set
(xi; ci); i = 1; 2; : : : ; g, and the estimation is carried out with this new data. This
is so-called “simple binning,” as versus the finer “linear binning” described in Wand
(1993). PROC KDE uses simple binning for the sake of faster and easier implementa-
tion. Also, it is assumed that the bin centersx1; x2; : : : ; xg are equally spaced and in
increasing order. In addition, assume for notational convenience that

Pn
i=1Wi = n

and, therefore,
Pg

i=1 ci = n.

If you replace the data(Xi;Wi); i = 1; 2; : : : ; n with (xi; ci); i = 1; 2; : : : ; g, the
weighted estimator̂f then becomes

f̂(x) =
1

n

gX
i=1

ci'h(x� xi)

with the same notation as used previously. To evaluate this estimator at theg points
of the same grid vectorgrid = (x1; x2; : : : ; xg)

0 is to calculate

f̂(xi) =
1

n

gX
j=1

cj'h(xi � xj)

for i = 1; 2; : : : ; g. This can be rewritten as

f̂(xi) =
1

n

gX
j=1

cj'h(ji� jj�)

where� = x2 � x1 is the increment of the grid.

The same idea of binning works similarly with bivariate data, where you estimatef̂
over the grid matrixgrid = gridX � gridY as follows.
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grid =

2
6664

x1;1 x1;2 : : : x1;gY

x2;1 x2;2 : : : x2;gY
...

xgX ;1 xgX ;2 : : : xgX ;gY

3
7775

wherexi;j = (xi; yi); i = 1; 2; : : : ; gX ; j = 1; 2; : : : ; gY , and the estimates are

f̂(xi;j) =
1

n

gXX
k=1

gYX
l=1

ck;l'h(ji� kj�X ; jj � lj�Y )

where�X = x2 � x1 and�Y = y2 � y1 are the increments of the grid.

Convolutions

The formulas for the binned estimatorf̂ in the previous subsection are in the form of
a convolution product between two matrices, one of which contains the bin counts,
the other of which contains the rescaled kernels evaluated at multiples of grid incre-
ments. This section defines these two matrices explicitly, and shows thatf̂ is their
convolution.

Beginning with the weighted univariate case, define the following matrices:

K =
1

n
('h(0); 'h(�); : : : ; 'h((g � 1)�))0

C = (c1; c2; : : : ; cg)
0

The first thing to note is that many terms inK can practically be ignored. The term
'h(i�) is taken to be0 whenj i�h j � 5, so you can define

l = min(g � 1; f loor(5h=�))

as the maximum integer multiple of the grid increment to get nonzero evaluations of
the rescaled kernel. Herefloor(x) denotes the largest integer less than or equal tox.
.

Next, letp be the smallest power of2 that is greater thang + l + 1,

p = 2ceil(log2(g+l+1))

whereceil(x) denotes the smallest integer greater than or equal tox.

Modify K as follows:

K =
1

n
('h(0); 'h(�); : : : ; 'h(l�); 0; : : : ; 0| {z }

p�2l�1

; 'h(l�); : : : ; 'h(�))
0

Essentially, the negligible terms ofK are omitted, and the rest are “symmetrized”
(except for one term). The whole matrix is then padded to sizep�1 with zeros in the
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middle. The dimensionp is a highly composite number, that is, one that decomposes
into many factors, leading to the fastest Fast Fourier Transform operation (refer to
Wand 1993).

The third operation is to pad the bin count matrixC with zeros to the same size asK:

C = (c1; c2; : : : ; cg; 0; : : : ; 0| {z }
p�g

)0

The convolutionK � C is then ap� 1 matrix, and the preceding formulas show that
its firstg entries are exactly the estimatesf̂(xi); i = 1; 2; : : : ; g.

For bivariate smoothing, the matrixK is defined similarly as

K =

2
6666666666664

�0;0 �0;1 : : : �0;lY 0 �0;lY : : : �0;1
�1;0 �1;1 : : : �1;lY 0 �1;lY : : : �1;1

...
�lX ;0 �lX ;1 : : : �lX ;lY 0 �lX ;lY : : : �lX ;1
0 0 : : : 0 0 0 : : : 0

�lX ;0 �lX ;1 : : : �lX ;lY 0 �lX ;lY : : : �lX ;1
...

�1;0 �1;1 : : : �1;lY 0 �1;lY : : : �1;1

3
7777777777775
pX�pY

wherelX = min(gX � 1; f loor(5hX=�X )), pX = 2ceil(log2(gX+lX+1)), and so forth,
and�i;j = 1

n'h(i�X ; j�Y ); i = 0; 1; : : : ; lX ; j = 0; 1; : : : ; lY .

The bin count matrixC is defined as

C =

2
66666666664

c1;1 c1;2 : : : c1;gY 0 : : : 0
c2;1 c2;2 : : : c2;gY 0 : : : 0

...
cgX ;1 cgX ;2 : : : cgX ;gY 0 : : : 0
0 0 : : : 0 0 : : : 0
...
0 0 : : : 0 0 : : : 0

3
77777777775
pX�pY

As with the univariate case, thegX � gY upper-left corner of the convolutionK � C
is the matrix of the estimateŝf(grid).

Most of the results in this subsection are found in Wand (1993).

Fast Fourier Transform

As shown in the last subsection, kernel density estimates can be expressed as a sub-
matrix of a certain convolution. The fast Fourier transform (FFT) is a computationally
effective method for computing such convolutions. For a reference on this material,
refer to Press et al. (1988).
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Thediscrete Fourier transformof a complex vectorz = (z0; : : : ; zN�1) is the vector
Z = (Z0; : : : ; ZN�1) where

Zj =

N�1X
l=0

zle
2�ilj=N j = 0; : : : ; N � 1

andi is the square root of�1. The vectorz can be recovered fromZ by applying the
inverse discrete Fourier transformformula

zl = N�1
N�1X
j=0

Zje
�2�ilj=N l = 0; : : : ; N � 1

Discrete Fourier transforms and their inverses can be computed quickly using the FFT
algorithm, especially whenN is highly composite; that is, it can be decomposed into
many factors, such as a power of2. By theDiscrete Convolution Theorem, the con-
volution of two vectors is the inverse Fourier transform of the element-by-element
product of their Fourier transforms. This, however, requires certain periodicity as-
sumptions, which explains why the vectorsK andC require zero-padding. This is
to avoid “wrap-around” effects (refer to Press et al. 1988, pp. 410–411). The vector
K is actually mirror-imaged so that the convolution ofC andK will be the vector of
binned estimates. Thus, ifS denotes the inverse Fourier transform of the element-by-
element product of the Fourier transforms ofK andC, then the firstg elements ofS
are the estimates.

The bivariate Fourier transform of anN1�N2 complex matrix having(l1+1; l2+1)
entry equal tozl1l2 is theN1 �N2 matrix with (j1 + 1; j2 + 1) entry given by

Zj1j2 =

N1�1X
l1=0

N2�1X
l2=0

zl1l2e
2�i(l1j1=N1+l2j2=N2)

and the formula of the inverse is

zl1l2 = (N1N2)
�1

N1�1X
j1=0

N2�1X
j2=0

Zj1j2e
�2�i(l1j1=N1+l2j2=N2)

The same Discrete Convolution Theorem applies, and zero-padding is needed for
matricesC andK. In the case ofK, the matrix is mirror-imaged twice. Thus, if
S denotes the inverse Fourier transform of the element-by-element product of the
Fourier transforms ofK andC, then the upper-leftgX � gY corner ofS contains the
estimates.

Bandwidth Selection

Several different bandwidth selection methods are available in PROC KDE in the
univariate case. Following the recommendations of Jones, Marron, and Sheather
(1996), the default method follows a plug-in formula of Sheather and Jones.
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This method solves the fixed-point equation

h =

"
R(')

nR(f̂
00

g(h))(
R
x2'(x)dx)2

#1=5

whereR(') =
R
'2(x)dx.

PROC KDE solves this equation by first evaluating it on a grid of values spaced
equally on a log scale. The largest two values from this grid that bound a solution are
then used as starting values for a bisection algorithm.

The simple normal reference rule works by assumingf̂ is Gaussian in the preceding
fixed-point equation. This results in

h = �̂[4=(3n)]1=5

where�̂ is the sample standard deviation.

Silverman’s rule of thumb (1986, §3.4.2) is computed as

h = 0:9min[�̂; (Q3 �Q1)=1:34]n
�1=5

whereQ3 andQ1 are the third and first sample quartiles, respectively.

The oversmoothed bandwidth is computed as

h = 3�̂[1=(70
p
�n)]1=5

When you specify a WEIGHT variable, PROC KDE uses weighted versions ofQ3,
Q1, and �̂ in the preceding expressions. The weighted quartiles are computed as
weighted order statistics, and the weighted variance takes the form

�̂2 =

Pn
i=1Wi(Xi �X)2Pn

i=1Wi

whereX = (
Pn

i=1WiXi)=(
Pn

i=1Wi) is the weighted sample mean.

For the bivariate case, Wand and Jones (1993) note that automatic bandwidth selec-
tion is both difficult and computationally expensive. Their study of various ways of
specifying a bandwidth matrix also shows that using two bandwidths, one in each
coordinate’s direction, is often adequate. PROC KDE enables you to adjust the two
bandwidths by specifying a multiplier for the default bandwidths recommended by
Bowman and Foster (1992):

hX = �̂Xn
�1=6

hY = �̂Y n
�1=6

Here�̂X and�̂Y are the sample standard deviations ofX andY , respectively. These
are the optimal bandwidths for two independent normal variables that have the same
variances asX andY . They are, therefore, conservative in the sense that they tend to
oversmooth the surface.

You can specify the BWM= option to adjust the aforementioned bandwidths to pro-
vide the appropriate amount of smoothing for your application.
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ODS Table Names

PROC KDE assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 33.1. ODS Tables Produced in PROC KDE

ODS Table Name Description Statement
BivariateStatistics Bivariate statistics default for two variables
Controls Control variables default
Inputs Input information default
Levels Levels of density estimate default
Percentiles Percentiles of data default
Statistics Basic statistics default
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