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Chapter 34
The KRIGE2D Procedure

Overview

The KRIGE2D procedure performs ordinary kriging in two dimensions. PROC
KRIGE2D can handle anisotropic and nested semivariogram models. Four semi-
variogram models are supported: the Gaussian, exponential, spherical, and power
models. A single nugget effect is also supported.

You can specify the locations of kriging estimates in a GRID statement, or they can
be read from a SAS data set. The grid specification is most suitable for a regular grid;
the data set specification can handle any irregular pattern of points.

Local kriging is supported through the specification of a radius around a grid point
or the specification of the number of nearest neighbors to use in the kriging system.
When you perform local kriging, a separate kriging system is solved at each grid
point using a neighborhood of the data point established by the radius or number
specification.

The KRIGE2D procedure writes the kriging estimates and associated standard errors
for each grid to an output data set. When you perform local kriging, PROC KRIGE2D
writes the neighborhood information for each grid point to an additional, optional data
set. The KRIGE2D procedure does not produce any displayed output.

Introduction to Spatial Prediction

Spatial prediction, in general, is any prediction method that incorporates spatial de-
pendence. A simple and popular spatial prediction method is ordinary kriging.

Ordinary kriging requires a model of the spatial continuity, or dependence. This is
typically in the form of a covariance or semivariogram.

Spatial prediction, then, involves two steps. First, you model the covariance or semi-
variogram of the spatial process. This involves choosing both a mathematical form
and the values of the associated parameters. Second, you use this dependence model
in solving the kriging system at a specified set of spatial points, resulting in predicted
values and associated standard errors.

The KRIGE2D procedure performs the second of these steps using ordinary kriging
of two-dimensional data.
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Getting Started

Spatial Prediction Using Kriging, Contour Plots

After an appropriate variogram model is chosen, there are a number of choices in-
volved in producing the kriging surface. In order to illustrate these choices, the var-
iogram model in the “Getting Started” section of Chapter 70, “The VARIOGRAM
Procedure,” is used. This model is Gaussian,


z(h) = c0

�
1� exp

�
�h

2

a20

��

with a scale ofc0 = 7:5 and a range ofa0 = 30.

The first choice is whether to use local or global kriging. Local kriging uses only data
points in the neighborhood of a grid point; global kriging uses all data points.

The most important consideration in this decision is the spatial covariance structure.
Global kriging is appropriate when the correlation range� is approximately equal to
the length of the spatial domain. The correlation range� is the distancer� at which
the covariance is 5% of its value at zero. That is,

CZ(r�) = :05Cz(0)

For a Gaussian model,r� is
p
3a0 � 52 (thousand ft). The data points are scattered

uniformly throughout a100 � 100 (106 ft2) area. Hence, the linear dimension of the
data is nearly double the� range. This indicates that local kriging rather than global
kriging is appropriate.

Local kriging is performed by using only data points within a specified radius of
each grid point. In this example, a radius of 60 (thousand ft) is used. Other choices
involved in local kriging are the minimum and maximum number of data points in
each neighborhood (around a grid point). The minimum number is left at the default
value of20; the maximum number defaults to all observations in the data set.

The last step in contouring the data is to decide on the grid point locations. A con-
venient area that encompasses all the data points is a square of length 100 (thousand
ft). The spacing of the grid points depends on the use of the contouring; a spacing of
five distance units (thousand ft) is chosen for plotting purposes.

The following SAS code inputs the data and computes the kriged surface using these
parameter and grid choices. The kriged surface is plotted in Figure 34.1, and the
associated standard errors are plotted in Figure 34.2. The standard errors are smaller
where more data are available.
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Spatial Prediction Using Kriging, Contour Plots � 1711

data thick;
input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

proc krige2d data=thick outest=est;
pred var=thick r=60;
model scale=7.5 range=30 form=gauss;
coord xc=east yc=north;
grid x=0 to 100 by 5 y=0 to 100 by 5;

run;

proc g3d data=est;
title ’Surface Plot of Kriged Coal Seam Thickness’;
scatter gyc*gxc=estimate / grid;
label gyc = ’North’

gxc = ’East’
estimate = ’Thickness’
;

run;

proc g3d data=est;
title ’Surface Plot of Standard Errors of Kriging Estimates’;
scatter gyc*gxc=stderr / grid;
label gyc = ’North’

gxc = ’East’
stderr = ’Std Error’
;

run;
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Figure 34.1. Surface Plot of Kriged Coal Seam Thickness
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Syntax � 1713

Figure 34.2. Surface Plot of Standard Errors of Kriging Estimates

Syntax

The following statements are available in PROC KRIGE2D.

PROC KRIGE2D options ;
COORDINATES | COORD coordinate-variables ;
GRID grid-options ;
PREDICT | PRED | P predict-options ;
MODEL model-options ;

The PREDICT and MODEL statements are hierarchical; the PREDICT statement is
followed by one or more MODEL statements. All the MODEL statements follow-
ing a PREDICT statement use the variable and neighborhood specifications in that
PREDICT statement.

You must specify at least one PREDICT statement and one MODEL statement. You
must supply a single COORDINATES statement to identify thex andy coordinate
variables in the input data set. You must also specify a single GRID statement to
include the grid information.

SAS OnlineDoc: Version 8
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The following table outlines the options available in PROC KRIGE2D classified by
function.

Table 34.1. Options Available in the KRIGE2D Procedure

Task Statement Option

Data Set Options
specify input data set PROC KRIGE2D DATA=
specify grid data set GRID GDATA=
specify model data set MODEL MDATA=
write kriging estimates and standard errors PROC KRIGE2D OUTEST=
write neighborhood information for each grid
point

PROC KRIGE2D OUTNBHD=

Declaring the Role of Variables
specify the variables to be estimated (kriged) PREDICT VAR=
specify the x and y coordinate variables in the
DATA= data set

COORDINATES XC= YC=

specify the x and y coordinate variables in the
GDATA= data set

GRID XC= YC=

Controlling Kriging Neighborhoods
specify the radius of a neighborhood for all grid
points

PREDICT RADIUS=

specify the number of neighbors for all grid points PREDICT NUMPOINTS=
specify the maximum of neighbors for all grid
points

PREDICT MAXPOINTS=

specify the minimum of neighbors for all grid
points

PREDICT MINPOINTS=

specify action when maximum not met PREDICT NODECREMENT
specify action when minimum not met PREDICT NOINCREMENT

Controlling the Semivariogram Model
specify a nugget effect MODEL NUGGET=
specify a functional form MODEL FORM=
specify a range parameter MODEL RANGE=
specify a scale parameter MODEL SCALE=
specify an angle for an anisotropic model MODEL ANGLE=
specify a minor-major axis ratio for an anisotropic
model

MODEL RATIO=

SAS OnlineDoc: Version 8



COORDINATES Statement � 1715

PROC KRIGE2D Statement

PROC KRIGE2D options ;

You can specify the following options in the PROC KRIGE2D statement.

DATA=SAS-data-set
specifies a SAS data set containing thex andy coordinate variables and the VAR=
variables in the PREDICT statement.

OUTEST=SAS-data-set
OUTE=SAS-data-set

specifies a SAS data set in which to store the kriging estimates, standard errors and
grid location. For details, see the section “OUTEST=SAS-data-set ” on page 1737.

OUTNBHD=SAS-data-set
OUTN=SAS-data-set

specifies a SAS data set in which to store the neighborhood information for each grid
point. Information is written to this data set only if one or more PREDICT statements
have options specifying local kriging. For details, see the section “OUTNBHD=SAS-
data-set ” on page 1737.

SINGULARMSG=number
SMSG=number

controls the number of warning messages displayed for a singular matrix. When
local kriging is performed, a separate kriging system is solved for each grid point.
Anytime a singular matrix is encountered, a warning message is displayed up to a
total of SINGULARMSG=n times. The default is SINGULARMSG=10.

COORDINATES Statement

COORDINATES | COORD coordinate-variables ;

The following two options specify the names of the variables in the DATA= data set
containing the values of thex andy coordinates of the data.

Only one COORDINATES statement is allowed, and it is applied to all PREDICT
statements. In other words, it is assumed that all the VAR= variables in all PREDICT
statements have the samex andy coordinates.

This is not a limitation. Since each VAR= variable is processed separately, obser-
vations for which the current VAR= variable is missing are excluded. With the next
VAR= variable, the entire data are read again, this time excluding missing values in
this next variable. Hence, a single run of PROC KRIGE2D can be used for variables
measured at different locations without overlap.

SAS OnlineDoc: Version 8
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XCOORD= (variable-name)
XC= (variable-name)

specifies the name of the variable containing thex coordinate of the data locations in
the DATA= data set.

YCOORD= (variable-name)
YC= (variable-name)

specifies the name of the variable containing they coordinate of the data locations in
the DATA= data set.

GRID Statement

GRID grid-options ;

You can use the following options to specify the grid of spatial locations for the
kriging estimates. The grid specification is applied to all PREDICT and MODEL
statements.

There are two basic methods for specifying the grid. You can specify thex andy
coordinates explicitly, or they can be read from a SAS data set. The options for the
explicit specification of grid locations are as follows.

X=number
X=x1; : : :; xm
X=x1 to xm
X=x1 to xm by �x

specifies thex coordinate of the grid locations.

Y=number
Y=y1; : : :; ym
Y=y1 to ym
Y=y1 to ym by �y

specifies they coordinate of the grid locations.

For example, the following two GRID statements are equivalent.

grid x=1,2,3,4,5 y=0,2,4,6,8,10;
grid x=1 to 5 y=0 to 10 by 2;

To specify grid locations from a SAS data set, you must give the name of the data set
and the variables containing the values of thex andy coordinates.

GRIDDATA=SAS-data-set
GDATA=SAS-data-set

specifies a SAS data set containing thex andy grid coordinates.

XCOORD= (variable-name)
XC= (variable-name)

specifies the name of the variable containing thex coordinate of the grid locations in
the GRIDDATA= data set.
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YCOORD= (variable-name)
YC= (variable-name)

specifies the name of the variable containing they coordinate of the grid locations in
the GRIDDATA= data set.

PREDICT Statement

PREDICT | PRED | P predict-options ;

You can specify the following options in a PREDICT statement.

MAXPOINTS=number
MAXPOINTS=number
MAXP=number

specifies the maximum number of data points in a neighborhood. You specify this
option in conjunction with the RADIUS= option. When the number of data points in
the neighborhood formed at a given grid point by the RADIUS= option is greater than
the MAXPOINTS= value, the RADIUS= value is decreased just enough to honor the
MAXPOINTS= value unless you specify the NODECREMENT option.

MINPOINTS=number
MINP=number
MIN=number

specifies the minimum number of data points in a neighborhood. You specify this
option in conjunction with the RADIUS= option. When the number of data points in
the neighborhood formed at a given grid point by the RADIUS= option is less than
the MINPOINTS= value, the RADIUS= value is increased just enough to honor the
MINPOINTS= value unless you specify the NOINCREMENT option. The default is
MINPOINTS=20. If enough data are available, this value should be increased to 30
to improve estimation.

NODECREMENT | NODECR
requests that the RADIUS= value not be decremented when the MAX= value is ex-
ceeded at a grid point. This option is relevant only when you specify both a RADIUS=
value and a MAXPOINTS= value. In this case, when the number of points in the
neighborhood constructed from the RADIUS= specification is greater than the MAX-
POINTS= value, the RADIUS= value is decremented enough to honor the MAX-
POINTS= value, and the kriging system is solved for this grid point. If you specify
the NODECREMENT option, no decrementing is done, estimation is skipped at this
grid point, and a message is written to the log.

NOINCREMENT | NOINCR
requests that the RADIUS= value not be incremented when the MIN= value is not
met at a grid point. This option is relevant only when you specify both a RA-
DIUS= value and a MINPOINTS= number. In this case, when the number of points
in the neighborhood constructed from the RADIUS= specification is less than the
MINPOINTS= value, the RADIUS= value is incremented enough to honor the MIN-
POINTS= value, and the kriging system is solved for this grid point. If you specify

SAS OnlineDoc: Version 8



1718 � Chapter 34. The KRIGE2D Procedure

the NOINCREMENT option, no incrementing is done, estimation is skipped at this
grid point, and a message is written to the log.

NUMPOINTS=number
NPOINTS=number
NPTS=number
NP=number

specifies the exact size of a neighborhood. This option is incompatible with all other
PREDICT statement options controlling the neighborhood; it must appear by itself.

RADIUS=number
R=number

specifies the radius to use in a local kriging regression. When you specify this option,
a separate kriging system is solved at each grid point by finding the neighborhood
of this grid point consisting of all data points within the distance specified by the
RADIUS= value. See the MAXPOINTS= and MINPOINTS= options for additional
control on the neighborhood.

VAR= variable-name
specifies the single numeric variable used in the kriging system.

MODEL Statement

MODEL model-options ;

You can use the following options to specify a semivariogram or covariance model.
The specified model is used in the kriging system defined by the most previous PRE-
DICT statement.

There are two ways to specify a semivariogram or covariance model. In the first
method, you specify the required parameters SCALE, RANGE, and FORM, and
possibly the optional parameters NUGGET, ANGLE, and RATIO, explicitly in the
MODEL statement.

In the second method, you specify an MDATA= data set. This data set contains
variables corresponding to the required SCALE, RANGE, and FORM parameters,
and, optionally, variables for the NUGGET, ANGLE, and RATIO parameters.

The two methods are exclusive; either you specify all parameters explicitly, or they
all are read from the MDATA= data set.

ANGLE=angle
ANGLE= (angle1,. . . ,anglek)

specifies the angle of the major axis for anisotropic models, measured in degrees
clockwise from the N-S axis. In the case of a nested semivariogram model, you can
specify an angle for each nesting. The default is ANGLE=0.

SAS OnlineDoc: Version 8



MODEL Statement � 1719

FORM=SPHERICAL | EXPONENTIAL | GAUSSIAN | POWER
FORM=SPH | EXP | GAUSS | PW

specifies the functional form of the semivariogram model. All the supported models
are two-parameter models (SCALE= and RANGE=). A FORM= value is required; in
the case of a nested semivariogram model, you must specify a form for each nesting.

See the section “Theoretical Semivariogram Models” beginning on page 1721 for
details on how the FORM= forms are determined.

MDATA=SAS-data-set
specifies the input data set that contains parameter values for the covariance or semi-
variogram model. The MDATA= data set must contain variables named SCALE,
RANGE, and FORM, and it can optionally contain variables NUGGET, ANGLE,
and RATIO.

The FORM variable must be a character variable, assuming only the values allowed in
the explicit FORM= syntax described previously. The RANGE and SCALE variables
must be numeric. The optional variables ANGLE, RATIO, and NUGGET must also
be numeric if present.

The number of observations present in the MDATA= data set corresponds to the level
of nesting of the semivariogram model. For example, to specify a nonnested model
using a spherical covariance, an MDATA= data set might look like

data md1;
input scale range form $;
datalines;
25 10 SPH

run;

The PROC KRIGE2D statement to use the MDATA= specification is of the form

proc krige2d data=...;
pred var=....;
model mdata=md1;

run;

This is equivalent to the following explicit specification of the covariance model pa-
rameters:

proc krige2d data=...;
pred var=....;
model scale=25 range=10 form=sph;

run;

SAS OnlineDoc: Version 8
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The following MDATA= data set is an example of an anisotropic nested model:

data md1;
input scale range form $ nugget angle ratio;
datalines;
20 8 S 5 35 0.7
12 3 G 5 0 0.8
4 1 G 5 45 0.5
;

This is equivalent to the following explicit specification of the covariance model pa-
rameters:

proc krige2d data=...;
pred var=....;
model scale=(20,12,4) range=(8,3,1) form=(S,G,G)

angle=(35,0,45) ratio=(0.7,0.8,0.5) nugget=5;
run;

This example is somewhat artificial in that it is usually hard to detect different
anisotropy directions and ratios for different nestings using an experimental semi-
variogram. Note that the NUGGET value is the same for all nestings. This is always
the case; the nugget effect is a single additive term for all models. For further de-
tails, see the section “Theoretical and Computational Details of the Semivariogram”
on page 3664 in the chapter on the VARIOGRAM procedure.

NUGGET=number
specifies the nugget effect for the model. The nugget effect is due to a discontinuity
in the semivariogram as determined by plotting the sample semivariogram (see the
chapter on the VARIOGRAM procedure for details). For models without any nugget
effect, this option is left out; the default is NUGGET=0.

RANGE=range
RANGE=(range1,. . . ,rangek)

specifies the range parameter in semivariogram models. In the case of a nested semi-
variogram model, you must specify a range for each nesting.

The range parameter is the divisor in the exponent in all supported models except the
power model. It has the units of distance or distance squared for these models, and it
is related to the correlation scale for the underlying spatial process. See the section
“Theoretical Semivariogram Models” beginning on page 1721 for details on how the
RANGE= values are determined.

RATIO=ratio
RATIO=(ratio1,. . . ,ratiok)

specifies the ratio of the length of the minor axis to the length of the major axis for
anisotropic models. The value of the RATIO= option must be between 0 and 1. In
the case of a nested semivariogram model, you can specify a ratio for each nesting.
The default is RATIO=1.
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SCALE=scale
SCALE= (scale1,. . . ,scalek)

specifies the scale parameter in semivariogram models. In the case of a nested semi-
variogram model, you must specify a scale for each nesting.

The scale parameter is the multiplicative factor in all supported models; it has the
same units as the variance of the VAR= variable in the preceding PREDICT state-
ment. See the section “Theoretical Semivariogram Models” beginning on page 1721
for details on how the SCALE= values are determined.

SINGULAR=number
gives the singularity criteria for solving kriging systems. The larger the value of the
SINGULAR= option, the easier it is for a kriging system to be declared singular.
The default is SINGULAR=1E-7. See the section “Details of Ordinary Kriging”
beginning on page 1733 for more detailed information.

Details

Theoretical Semivariogram Models

PROC VARIOGRAM computes the sample, or experimental semivariogram. Pre-
diction of the spatial process at unsampled locations by techniques such as ordinary
kriging requires a theoretical semivariogram or covariance.

When you use PROC VARIOGRAM and PROC KRIGE2D to perform spatial predic-
tion, you must determine a suitable theoretical semivariogram based on the sample
semivariogram. While there are various methods of fitting semivariogram models,
such as least squares, maximum likelihood, and robust methods (Cressie 1993, sec-
tion 2.6), these techniques are not appropriate for data sets resulting in a small number
of variogram points. Instead, a visual fit of the variogram points to a few standard
models is often satisfactory. Even when there are sufficient variogram points, a visual
check against a fitted theoretical model is appropriate (Hohn 1988, p. 25ff).

In some cases, a plot of the experimental semivariogram suggests that a single the-
oretical model is inadequate. Nested models, anisotropic models, and the nugget
effect increase the scope of theoretical models available. All of these concepts are
discussed in this section. The specification of the final theoretical model is provided
by the syntax of PROC KRIGE2D.

Note the general flow of investigation. After a suitable choice is made of the
LAGDIST= and MAXLAG= options and, possibly, the NDIR= option (or a DIREC-
TIONS statement), the experimental semivariogram is computed. Potential theoret-
ical models, possibly incorporating nesting, anisotropy, and the nugget effect, are
computed by a DATA step, then they are plotted against the experimental semivar-
iogram and evaluated. A suitable theoretical model is thus found visually, and the
specification of the model is used in PROC KRIGE2D. This flow is illustrated in Fig-
ure 34.3; also see the “Getting Started” section on page 3644 in the chapter on the
VARIOGRAM procedure for an illustration in a simple case.
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Pairwise Distance Distribution

yes

PROC VARIOGRAM using

NHCLASS=, NOVAR options

Theoretical and sample

variogram plots agree ?

Sufficient number of

pairs in each lag class ?

Determine LAGDIST= and

MAXLAG= values

Use PROC VARIOGRAM to

compute and plot sample variogram

Use DATA step to plot sample Select candidate variogram forms
and parametersand theoretical variograms

no

yes

Perform ordinary kriging using

variogram form and parameters

no

Figure 34.3. Flowchart for Variogram Selection

Four theoretical models are supported by PROC KRIGE2D: the spherical, Gaussian,
exponential, and power models. For the first three types, the parametersa0 andc0,
corresponding to the RANGE= and SCALE= options in the MODEL statement in
PROC KRIGE2D, have the same dimensions and have similar affects on the shape of

z(h), as illustrated in the following paragraph.

In particular, the dimension ofc0 is the same as the dimension of the variance of the
spatial process {Z(r); r 2 D � R2}. The dimension ofa0 is length with the same
units as h.

These three model forms are now examined in more detail.
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The Spherical Semivariogram Model
The form of the spherical model is


z(h) =

(
c0

h
3
2
h
a0
� 1

2 (
h
a0
)3
i
; for h � a0

c0; for h > a0

The shape is displayed in Figure 34.4 using rangea0 = 1 and scalec0 = 4.

Figure 34.4. Spherical Semivariogram Model with Parameters a0 = 1 and c0 = 4

The vertical line ath = 1 is the “effective range” as defined by Duetsch and Journel
(1992), or the “range�” defined by Christakos (1992). This quantity, denotedr�, is
theh-value where the covariance is approximately zero. For the spherical model, it is
exactlyzero; for the Gaussian and exponential models, the definition ofr� is modified
slightly.

The horizontal line at 4.0 variance units (corresponding toc0 = 4) is called the “sill.”
In the case of the spherical model,
z(h) actually reaches this value. For the other
two model forms, the sill is a horizontal asymptote.

The Gaussian Semivariogram Model
The form of the Gaussian model is


z(h) = c0

�
1� exp

�
�h

2

a20

��

The shape is displayed in Figure 34.5 using rangea0 = 1 and scalec0 = 4.
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Figure 34.5. Gaussian Semivariogram Model with Parameters a0 = 1 and c0 = 4

The vertical line ath = r� =
p
3 is the effective range, or the range� (that is, the

h-value where the covariance is approximately 5% of its value at zero).

The horizontal line at 4.0 variance units (corresponding toc0 = 4) is the sill;
z(h)
approaches the sill asymptotically.

The Exponential Semivariogram Model
The form of the exponential model is


z(h) = c0

�
1� exp

�
� h

a0

��

The shape is displayed in Figure 34.6 using rangea0 = 1 and scalec0 = 4.
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Figure 34.6. Exponential Semivariogram Model with Parameters a0 = 1 and
c0 = 4

The vertical line ath = r� = 3 is the effective range, or the range� (that is, the
h-value where the covariance is approximately 5% of its value at zero).

The horizontal line at 4.0 variance units (corresponding toc0 = 4) is the sill, as in the
other model forms.

It is noted from Figure 34.5 and Figure 34.6 that the major distinguishing feature of
the Gaussian and exponential forms is the shape in the neighborhood of the origin
h = 0. In general, small lags are important in determining an appropriate theoretical
form based on a sample semivariogram.

The Power Semivariogram Model
The form of the power model is


z(h) = c0h
a0

For this model, the parametera0 is a dimensionless quantity, with typical values
0 < a0 < 2. Note that the value ofa0 = 1 yields a straight line. The parameterc0
has dimensions of the variance, as in the other models. There is no sill for the power
model. The shape of the power model witha0 = 0:4 and c0 = 4 is displayed in
Figure 34.7.
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Figure 34.7. Power Semivariogram Model with Parameters a0 = 0:4 and c0 = 4

Nested Models
For a given set of spatial data, a plot of an experimental semivariogram may not
seem to fit any one of the theoretical models. In such a case, the covariance structure
of the spatial process may be a sum of two or more covariances. This is common
in geologic applications where there are correlations at different length scales. At
small lag distancesh, the smaller scale correlations dominate, while the large scale
correlations dominate at larger lag distances.

As an illustration, consider two semivariogram models, an exponential and a spheri-
cal.


z;1(h) = c0;1 exp(� h

a0;1
)

and


z;2(h) =

(
c0;2

h
3
2

h
a0;2

� 1
2 (

h
a0;2

)3
i
; for h � a0;2

c0;2; for h > a0;2

)

with c0;1 = 1; a0;1 = 2:5; c0;2 = 2, anda0;2 = 1. If both of these correlation
structures are present in a spatial process {Z(r); r 2 D}, then a plot of the experi-
mental semivariogram would resemble the sum of these two semivariograms. This is
illustrated in Figure 34.8.
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Figure 34.8. Sum of Exponential and Spherical Structures at Different Scales

This sum of
1(h) and
2(h) in Figure 34.8 does not resemble anysingletheoretical
semivariogram; however, the shape ath = 1 is similar to a spherical. The asymptotic
approach to a sill at three variance units, along with the shape aroundh = 0, indicates
an exponential structure. Note that the sill value is the sum of the individual sills
c0;1 = 1 andc0;2 = 2.

Refer to Hohn (1988, p. 38ff) for further examples of nested correlation structures.

The Nugget Effect

For all the variogram models considered previously, the following property holds:


z(0) = lim
h#0


z(h) = 0

However, a plot of the experimental semivariogram may indicate a discontinuity at
h = 0; that is,
z(h)! cn > 0 ash! 0, while 
z(0) = 0. The quantitycn is called
the “nugget effect”; this term is from mining geostatistics where nuggets literally
exist, and it represents variations at a much smaller scale than any of the measured
pairwise distances, that is, at distancesh� hmin, where

hmin = min
i;j

hij = min
i;j
j ri � rj j
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There are conceptual and theoretical difficulties associated with a nonzero nugget
effect; refer to Cressie (1993, section 2.3.1) and Christakos (1992, section 7.4.3) for
details. There is nopractical difficulty however; you simply visually extrapolate the
experimental semivariogram ash ! 0. The importance of availability of data at
small lag distances is again illustrated.

As an example, an exponential semivariogram with a nugget effectcn has the form


z(h) = cn + c0

�
1� exp

�
� h

a0

��
; h > 0

and


z(0) = 0

This is illustrated in Figure 34.9 for parametersa0 = 1, c0 = 4, and nugget effect
cn = 1:5.

Figure 34.9. Exponential Semivariogram Model with a Nugget Effect cn = 1:5

You can specify the nugget effect in PROC KRIGE2D with the NUGGET= option in
the MODEL statement. It is a separate, additive term independent of direction; that
is, it is isotropic. There is a way to approximate an anisotropic nugget effect; this is
described in the following section.
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Anisotropic Models

In all the theoretical models considered previously, the lag distanceh entered as a
scalar value. This implies that the correlation between the spatial process at two
point pairsP1; P2 is dependentonly on the separation distanceh =j P1P2 j, not on
the orientation of the two points. A spatial process {Z(r); r 2 D} with this property
is called isotropic, as is the associated covariance or semivariogram.

However, real spatial phenomena often show directional effects. Particularly in ge-
ologic applications, measurements along a particular direction may be highly corre-
lated, while the perpendicular direction shows little or no correlation. Such processes
are called anisotropic. Refer to Journel and Huijbregts (1978, section III.B.4) for
more details.

There are two types of anisotropy. The simplest type occurs when the same covari-
anceformand scale parameterc0 is present in all directions but the rangea0 changes
with direction. In this case, there is a single sill, but the semivariogram reaches the
sill in a shorter lag distance along a certain direction.

This type of anisotropy is called “geometric” and is discussed in the following sec-
tion.

Geometric Anisotropy
Geometric anisotropy is illustrated in Figure 34.10, where an anisotropic Gaussian
semivariogram is plotted. The two curves displayed in this figure are generated using
a0 = 1 in the NE–SW direction anda0 = 3 in the SE–NW direction.
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Figure 34.10. Geometric Anisotropy with Major Axis along E–W Direction

As you can see from the figure, the SE–NW curve gets “close” to the sill at approx-
imatelyh = 2, while the NE–SW curve does so ath = 6. The ratio of the shorter
to longer distance is26 = 1

3 . This is the value to use in the RATIO= parameter in
the MODEL statement in PROC KRIGE2D. Since the longer, or major, axis is in
the NE–SW direction, the ANGLE= parameter in the MODEL statement in PROC
KRIGE2D should be45o (all angles are measured clockwise from north).

The terminology associated with geometric anisotropy is that of ellipses. To see how
this comes about, consider the following hypothetical set of calculations.

Let {Z(r); r 2 D} be a geometrically anisotropic process, and assume that there are
sufficient data points to calculate an experimental semivariogram at a large number
of angle classes� 2 f0; ��; 2��; � � � ; 180o}. At each of these angles�, the experi-
mental semivariogram is plotted and the effective ranger� is recorded. A diagram,
in polar coordinates, of(r�; �) yields an ellipse, with the major axis in the direction
of the largestr� and the minor axis perpendicular. Denote the largestr� by rmax

� , the
smallest byrmin

� , and their ratio by

R =
rmin
�

rmax
�
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By a rotation, a new set of axes are aligned along the major and minor axis. Then,
a rescaling elongates the minor axis so its length equals that of the major axis of the
ellipse.

First, the angle� of the major axis of the ellipse (measured clockwise from north) is
transformed to standard Cartesian orientation or counter-clockwise from the x-axis
(east). Let' = 90o � � denote the transformed angle. The matrix to transform the
distanceh is in terms of' and the ratioR and it is given by

H =

�
cos(') sin(')

� sin(')=R cos(')=R

�

For a given point pairP1P2, with coordinates(x1; y1); (x2; y2), the transformed in-
terpair distance is computed by first transforming the components�x = x1 � x2 and
�y = y1 � y2 by

�
�x0

�y0

�
= H

�
�x
�y

�

The transformed interpair distance is then

h0 =
p

(�x0)2 + (�y0)2

The original semivariogram, a function ofboth h and �, is then transformed to a
function only ofh0:


̂(h0) = 
(h; �)

This single semivariogram is then used for kriging purposes.

The interpretation of the major/minor axis in the case of geometric anisotropy is
that the direction of the major axis is the direction in which the spatial process
{Z(r); r 2 D} is most highly correlated; the process is least correlated in the per-
pendicular direction.

In some cases, these directions are known a priori. This can occur in mining appli-
cations where the geology of a region is known in advance. In most cases, however,
nothing is known about possible anisotropy. Depending on the amount of data avail-
able, using four to six directions is usually sufficient to determine the presence of
anisotropy and find the approximate major/minor axis directions.
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The most convenient way of performing this is to use the NDIR= option in the
COMPUTE statement in PROC VARIOGRAM to obtain a separate experimental
semivariogram for each direction. After determining the direction of the major axis,
use a DIRECTIONS statement on a subsequent run of PROC VARIOGRAM with
this direction and its perpendicular direction. For example, if the initial run of PROC
VARIOGRAM with NDIR=6 in the COMPUTE statement indicates that� = 45o is
the major axis (has the largestr�), then rerun PROC VARIOGRAM with

DIRECTIONS 45,135;

Then, determine the ratio ofr� for the minor and major axis for the RATIO= parame-
ter in the COMPUTE statement of PROC KRIGE2D. This ratio is� 1 for modeling
geometric anisotropy. In the other type of anisotropy,zonalanisotropy, the RATIO=
parameter is set to a large number for reasons explained in the following section.

Zonal Anisotropy
In zonal anisotropy, either theformcovariance structure or the parameterc0 (or both)
is different in different directions. In particular, the sill is different for different direc-
tions. In geologic applications, this is the more common type of anisotropy. It is not
possible to transform such a structure into an isotropic semivariogram.

Instead, nesting and geometric anisotropy are used together to approximate zonal
anisotropy. For example, suppose the spatial process has a correlation structure in
the N–S direction described by
z;1, a spherical model with sill atc0 = 6 and range
a0 = 2, while in the E–W direction the correlation structure, described by
z;2, is
again a spherical model but with sill atc0 = 3 and rangea0 = 1.

You can approximate this structure in PROC KRIGE2D by specifying two nested
models with large RATIO= values. In particular, the appropriate MODEL statement
is

MODEL FORM=(S,S) ANGLE=(0,90) SCALE=(6,3)
RANGE=(2,1) RATIO=(1E8,1E8);

The large values of the RATIO= parameter for each nested structure have the effect
of an “infinite” range parameter in the direction of the minor axis. Hence, there is no
variation in
z;1 in the E–W direction and no variation in
z;2 in the N–S direction.

Anisotropic Nugget Effect
Note that an isotropic nugget effect can be approximated by using nested models,
with one of the nested models having a small range. Applying a geometric anisotropy
specification to this nested structure results in an anisotropic nugget effect.
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Details of Ordinary Kriging

Introduction
There are three common characteristics often observed with spatial data (that is, data
indexed by their spatial locations).

(i) slowly varying, large-scale variations in the measured values

(ii) irregular, small-scale variations

(iii) similarity of measurements at locations close together

As an illustration, consider a hypothetical example in which an organic solvent leaks
from an industrial site and spreads over a large area. Assume the solvent is absorbed
and immobilized into the subsoil above any ground-water level, so you can ignore
any time dependence.

For you to find the areal extent and the concentration values of the solvent, measure-
ments are required. Although the problem is inherently three-dimensional, if you
measure total concentration in a column of soil or take a depth-averaged concentra-
tion, it can be handled reasonably well with two-dimensional techniques.

You usually assume that measured concentrations are higher closer to the source and
decrease at larger distances from the source. On top of this smooth variation, there
are small-scale variations in the measured concentrations, due perhaps to the inherent
variability of soil properties.

You also tend to suspect that measurements made close together yield similar con-
centration values, while measurements made far apart can have very different values.

These physically reasonable qualitative statements have no explicit probabilistic con-
tent, and there are a number of numerical smoothing techniques, such as inverse
distance weighting and splines, that make use of large-scale variations and “close
distance-close value” characteristics of spatial data to interpolate the measured con-
centrations for contouring purposes.

While characteristics (i) and (iii) are handled by such smoothing methods, character-
istic (ii), the small-scale residual variation in the concentration field, is not accounted
for.

There may be situations, due to the use of the prediction map or due to the relative
magnitude of the irregular fluctuations, where you cannot ignore these small-scale
irregular fluctuations. In other words, the smoothed or estimated values of the con-
centration field alone are not a sufficient characterization; you also need the possible
spread around these contoured values.
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Spatial Random Fields
One method of incorporating characteristic (ii) into the construction of a contour map
is to model the concentration field as a spatial random field (SRF). The mathematical
details of SRF models are given in a number of texts, for example, Cressie (1993)
and Christakos (1992). The mathematics of SRFs are formidable. However, under
certain simplifying assumptions, they produce classical linear estimators with very
simple properties, allowing easy implementation for prediction purposes. These esti-
mators, primarily ordinary kriging (OK), give both a prediction and a standard error
of prediction at unsampled locations. This allows the construction of a map of both
predicted values and level of uncertainty about the predicted values.

The key assumption in applying the SRF formalism is that the measurements come
from a single realization of the SRF. However, in most geostatistical applications, the
focus is on a single, unique realization. This is unlike most other situations in stochas-
tic modeling in which there will be future experiments or observational activities (at
least conceptually) under similar circumstances. This renders many traditional ideas
of statistical inference ambiguous and somewhat counterintuitive.

There are additional logical and methodological problems in applying a stochastic
model to a unique but partly unknown natural process; refer to the introduction in
Matheron (1971) and Cressie (1993, section 2.3). These difficulties have resulted in
attempts to frame the estimation problem in a completely deterministic way (Isaaks
and Srivastava 1988; Journel 1985).

Additional problems with kriging, and with spatial estimation methods in general,
are related to the necessary assumption of ergodicity of the spatial process. This
assumption is required to estimate the covariance or semivariogram from sample data.
Details are provided in Cressie (1993, pp. 52–58).

Despite these difficulties, ordinary kriging remains a popular and widely used tool in
modeling spatial data, especially in generating surface plots and contour maps. An
abbreviated derivation of the OK estimator for point estimation and the associated
standard error is discussed in the following section. Full details are given in Journel
and Huijbregts (1978), Christakos (1992), and Cressie (1993).

Ordinary Kriging
Denote the SRF byZ(r); r 2 D � R2. Following the notation in Cressie (1993), the
following model forZ(r) is assumed:

Z(r) = �+ "(r)

Here,� is the fixed, unknown mean of the process, and"(r) is a zero mean SRF
representing the variation around the mean.

In most practical applications, an additional assumption is required in order to esti-
mate the covarianceCz of theZ(r) process. This assumption is second-order station-
arity:

Cz(r1; r2) = E["(r1)"(r2)] = Cz(r1 � r2)
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This requirement can be relaxed slightly when you are using the semivariogram in-
stead of the covariance. In this case, second-order stationarity is required of the
differences"(r1)� "(r2) rather than"(r):


Z(r1; r2) =
1

2
E["(r1)� "(r2)]

2 = 
Z(r1 � r2)

By performing local kriging, the spatial processes represented by the previous equa-
tion for Z(r) are more general than they appear. In local kriging, at an unsampled
locationr0, a separate model is fit using only data in a neighborhood ofr0. This has
the effect of fitting a separate mean� at each point, and it is similar to the “kriging
with trend” (KT) method discussed in Journel and Rossi (1989).

Given theN measurementsZ(r1); : : :; Z(rN ) at known locationsr1; : : :; rN , you
want to obtain an estimatêZ of Z at an unsampled locationr0. When the following
three requirements are imposed on the estimatorẐ, the OK estimator is obtained.

(i) Ẑ is linear inZ(r1); � � � ; Z(rN ).

(ii) Ẑ is unbiased.

(ii) Ẑ minimizes the mean-square prediction errorE(Z(r0)� Ẑ(r0))
2.

Linearity requires the following form for̂Z(r0):

Ẑ(r0) =

NX
i=1

�iZ(ri)

Applying the unbiasedness condition to the preceding equation yields

EẐ(r0) = �) � =

NX
i=1

�iEZ(ri))

NX
i=1

�i� = �)
NX
i=1

�i = 1

Finally, the third condition requires a constrained linear optimization involving
�1; � � � ; �N and a Lagrange parameter2m. This constrained linear optimization can
be expressed in terms of the functionL(�1; � � � ; �N ;m) given by

L = E

 
Z(r0)�

NX
i=1

�iZ(ri)

!2

� 2m

 
NX
i=1

�i � 1

!
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Define theN � 1 column vector� by

� = (�1; � � � ; �N )T

and the(N + 1)� 1 column vector�0 by

�0 = (�1; � � � ; �N ;m)T =

�
�

m

�

The optimization is performed by solving

@L

@�0
= 0

in terms of�1; � � � ; �N andm.

The resulting matrix equation can be expressed in terms of either the covariance
Cz(r) or semivariogram
z(r). In terms of the covariance, the preceding equation
results in the following matrix equation:

C�0 = C0

where

C =

0
BBBBB@

Cz(0) Cz(r1 � r2) � � � Cz(r1 � rN ) 1
Cz(r2 � r1) Cz(0) � � � Cz(r2 � rN ) 1

. . .
Cz(rN � r1) Cz(rN � r2) � � � Cz(0) 1

1 1 � � � 1 0

1
CCCCCA

and

C0 =

0
BBBBB@

Cz(r0 � r1)
Cz(r0 � r2)

...
Cz(r0 � rN )

1

1
CCCCCA

The solution to the previous matrix equation is

�̂0 = C
�1
C0
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Using this solution for� andm, the ordinary kriging estimate atr0 is

Ẑ(r0) = �1Z(r1) + � � � + �NZ(rN )

with associated prediction error

�z(r0) = Cz(0)� �0
c0 +m

wherec0 isC0 with the1 in the last row removed, making it anN � 1 vector.

These formulas are used in the best linear unbiased prediction (BLUP) of ran-
dom variables (Robinson 1991). Further details are provided in Cressie (1993, pp.
119–123).

Because of possible numeric problems when solving the previous matrix equation,
Duetsch and Journel (1992) suggest replacing the last row and column of1s in the
preceding matrixC by Cz(0), keeping the0 in the (N + 1; N + 1) position and
similarly replacing the last element in the preceding right-hand vectorC0 withCz(0).
This results in an equivalent system but avoids numeric problems whenCz(0) is large
or small relative to1.

Output Data Sets

The KRIGE2D procedure produces two data sets: the OUTEST=SAS-data-set and
the OUTNBHD=SAS-data-set. These data sets are described as follows.

OUTEST=SAS-data-set
The OUTEST= data set contains the kriging estimates and the associated standard
errors. The OUTEST= data set contains the following variables:

� ESTIMATE, which is the kriging estimate for the current variable

� GXC, which is the x-coordinate of the grid point at which the kriging estimate
is made

� GYC, which is the y-coordinate of the grid point at which the kriging estimate
is made

� LABEL, which is the label for the current PREDICT/MODEL combination
producing the kriging estimate. If you do not specify a label, default labels of
the form Predj.Modelk are used.

� NPOINTS, which is the number of points used in the estimation. This number
varies for each grid point if local kriging is performed.

� STDERR, which is the standard error of the kriging estimate

� VARNAME, which is the variable name

OUTNBHD=SAS-data-set
When you specify the RADIUS= option or the NUMPOINTS= option in the PRE-
DICT statement, local kriging is performed. Local kriging is simply ordinary kriging
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at a given grid location using only those data points in a neighborhood defined by the
RADIUS= value or the NUMPOINTS= value.

The OUTNBHD= data set contains one observation for each data point in each neigh-
borhood. Hence, this data set can be large. For example, if the grid specification
results in 1,000 grid points and each grid point has a neighborhood of 100 points, the
resulting OUTNBHD= data set contains 100,000 points.

The OUTNBHD= data set contains the following variables:

� GXC, which is the x-coordinate of the grid point

� GYC, which is the y-coordinate of the grid point

� LABEL, which is the label for the current PREDICT/MODEL combination. If
you do not specify a label, default labels of the form Predj.Modelk are used.

� NPOINTS, which is the number of points used in the estimation

� RADIUS, which is the radius used for each neighborhood

� VALUE, which is the value of the variable at the current data point

� VARNAME, which is the variable name of the current variable

� XC, which is the x-coordinate of the current data point

� YC, which is the y-coordinate of the current data point

Computational Resources

To generate a predicted value at a single grid point usingN data points, PROC
KRIGE2D must solve the following kriging system:

C�0 = C0

whereC is (N + 1)� (N + 1), and the right-hand side vectorC0 is (N + 1)� 1.

Holding the matrix and vector associated with this system in core requires approx-
imately N2

2 doubles (with typically eight bytes per double). The CPU time used in
solving the system is proportional toN3. For largeN , this time dominates the time
to compute the(N+1)(N+2)

2 elements of the covariance matrixC from the specified
covariance or variogram model. This latter computation is proportional toN2.

For local kriging, the kriging system is set up and solved for each grid point. Part
of the set up process involves determining the neighborhood of each grid point. A
fast K-D tree algorithm is used to determine neighborhoods. ForG grid points, the
dominant CPU time factor is setting up and solving theG kriging systems. TheN in
the preceding algorithm is the number of data points in a given neighborhood, and it
can differ for each grid point.

In global kriging, the entire input data set and all grid points are used to set up and
solve the single system

C�0 = C0
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AgainC is (N+1)� (N +1), but�0 is now(N +1)�G, whereG is the number of
grid points, andN is the number of nonmissing observations in the input data set. The
right-hand side matrixC0 is (N +1)�G. Memory requirements are approximately
N2

2 + GN doubles. The CPU time used in solving the system is still dominated by
theN3 factorization of the left-hand side.

Example

Example 34.1. Investigating the Effect of Model Specification
on Prediction

In the “Getting Started” section of the chapter on the VARIOGRAM procedure, a
particular variogram is chosen for the coal seam thickness data. The chosen vari-
ogram is Gaussian with a scale (sill) ofc0 = 7:5, and a range ofa0 = 30. This choice
of the variogram is based on a visual fit—a comparison of the plots of the regular
and robust sample variograms and the Gaussian variogram for various scale (sill) and
range values.

Another possible choice of model is the spherical variogram with the same scale (sill)
of c0 = 7:5 but with a range ofa0 = 60. This choice of range is again based on a
visual fit; while not as good as the Gaussian model, the fit is reasonable.

It is generally held that spatial prediction is robust against model specification, while
the standard error computation is not so robust.

This example investigates the effect of using these different models on the prediction
and associated standard errors.

data thick;
input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
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86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

/*- Run KRIGE2D on original Gaussian model ------------*/
proc krige2d data=thick outest=est1;

pred var=thick r=60;
model scale=7.5 range=30 form=gauss;
coord xc=east yc=north;
grid x=0 to 100 by 10 y=0 to 100 by 10;

run;

/*- Run KRIGE2D using Spherical Model, modified range -*/
proc krige2d data=thick outest=est2;

pred var=thick r=60;
model scale=7.5 range=60 form=spherical;
coord xc=east yc=north;
grid x=0 to 100 by 10 y=0 to 100 by 10;

run;

data compare ;
merge est1(rename=(estimate=g_est stderr=g_std))

est2(rename=(estimate=s_est stderr=s_std));
est_dif=g_est-s_est;
std_dif=g_std-s_std;

run;

proc print data=compare;
title ’Comparison of Gaussian and Spherical Models’;
title2 ’Differences of Estimates and Standard Errors’;
var gxc gyc npoints g_est s_est est_dif g_std s_std

std_dif;
run;
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Output 34.1.1. Comparison of Gaussian and Spherical Models

Comparison of Gaussian and Spherical Models
Differences of Estimates and Standard Errors

Obs GXC GYC NPOINTS g_est s_est est_dif g_std s_std std_dif

1 0 0 23 43.9408 42.6700 1.27087 0.68260 2.05947 -1.37687
2 0 10 28 41.6828 41.6780 0.00483 0.55909 2.03464 -1.47554
3 0 20 31 38.9601 39.7285 -0.76843 0.30185 1.93478 -1.63293
4 0 30 32 36.1701 37.3275 -1.15739 0.12705 1.54844 -1.42139
5 0 40 39 33.8376 35.4320 -1.59440 0.04872 1.37821 -1.32949
6 0 50 38 32.8375 34.3930 -1.55550 0.02983 1.22584 -1.19602
7 0 60 35 33.9576 34.3155 -0.35785 0.00195 0.54122 -0.53927
8 0 70 30 36.9502 37.6669 -0.71673 0.04006 1.20451 -1.16444
9 0 80 31 41.1097 41.1016 0.00812 0.04705 0.99544 -0.94839

10 0 90 28 43.6671 42.5216 1.14546 0.10236 1.57357 -1.47121
11 0 100 23 41.9443 42.6511 -0.70681 0.53646 2.20792 -1.67146
12 10 0 25 44.6795 44.1959 0.48355 0.07833 1.09743 -1.01910
13 10 10 31 42.8397 42.7496 0.09008 0.10982 1.46686 -1.35703
14 10 20 34 40.3120 40.3634 -0.05140 0.05315 1.54889 -1.49574
15 10 30 39 37.7593 37.7648 -0.00544 0.00889 0.94136 -0.93247
16 10 40 44 35.6365 35.5471 0.08940 0.00595 0.75920 -0.75325
17 10 50 44 35.0603 34.7042 0.35612 0.01564 1.05033 -1.03469
18 10 60 41 36.0716 35.4737 0.59794 0.01321 1.18277 -1.16957
19 10 70 36 38.1196 38.1040 0.01565 0.00315 0.89157 -0.88842
20 10 80 33 41.2799 41.0734 0.20644 0.02446 1.22772 -1.20326
21 10 90 30 43.2193 42.8904 0.32890 0.05988 1.49438 -1.43450
22 10 100 26 41.0358 43.1350 -2.09918 0.19050 1.93434 -1.74384
23 20 0 29 44.4890 44.4359 0.05317 0.06179 1.23618 -1.17439
24 20 10 35 43.3391 43.2938 0.04531 0.00526 0.95512 -0.94986
25 20 20 39 41.1293 40.9885 0.14079 0.00675 1.18544 -1.17870
26 20 30 43 38.6060 38.5300 0.07598 0.00898 1.08973 -1.08075
27 20 40 49 36.5013 36.5275 -0.02623 0.03037 1.33620 -1.30583
28 20 50 49 36.1158 35.7959 0.31990 0.02535 1.31986 -1.29451
29 20 60 49 36.8115 36.5397 0.27182 0.00835 1.11490 -1.10656
30 20 70 39 38.4308 38.5182 -0.08746 0.00257 0.89419 -0.89162
31 20 80 36 41.0601 41.0449 0.01511 0.00766 1.18548 -1.17781
32 20 90 33 43.1788 43.1073 0.07144 0.00613 0.94924 -0.94311
33 20 100 27 42.7757 43.4689 -0.69313 0.06770 1.52094 -1.45324
34 30 0 35 43.3601 43.9579 -0.59779 0.04662 1.32306 -1.27644
35 30 10 39 43.1539 43.1448 0.00912 0.00245 0.72413 -0.72167
36 30 20 44 41.2400 41.2166 0.02336 0.00528 1.10234 -1.09706
37 30 30 52 38.9296 39.0178 -0.08816 0.00489 1.04501 -1.04012
38 30 40 57 37.2813 37.3412 -0.05992 0.00804 0.89242 -0.88438
39 30 50 57 36.7198 36.7558 -0.03597 0.00652 0.83517 -0.82865
40 30 60 55 37.2047 37.3407 -0.13597 0.00682 1.00330 -0.99648
41 30 70 48 38.8856 38.8919 -0.00628 0.00285 1.01430 -1.01145
42 30 80 43 41.0627 41.0663 -0.00359 0.00260 0.97336 -0.97077
43 30 90 36 43.0969 43.0465 0.05038 0.00194 0.51312 -0.51118
44 30 100 29 44.5840 43.3474 1.23663 0.13593 1.57267 -1.43674
45 40 0 36 42.8186 43.5157 -0.69706 0.01976 1.25689 -1.23713
46 40 10 40 42.8970 42.9168 -0.01984 0.00301 0.95163 -0.94862
47 40 20 52 41.1025 41.1824 -0.07989 0.00193 0.96204 -0.96012
48 40 30 60 39.3288 39.2992 0.02960 0.00451 1.05561 -1.05111
49 40 40 67 38.2096 37.9680 0.24161 0.01791 1.29139 -1.27349
50 40 50 68 37.3139 37.5055 -0.19150 0.04039 1.51095 -1.47056
51 40 60 64 37.3353 37.9400 -0.60462 0.02973 1.45391 -1.42418
52 40 70 58 39.2288 39.2541 -0.02528 0.00271 0.93775 -0.93503
53 40 80 53 41.0334 41.0063 0.02715 0.00081 0.72274 -0.72193
54 40 90 43 42.6291 42.4154 0.21372 0.02307 1.25552 -1.23246
55 40 100 33 44.1642 42.7534 1.41071 0.27397 1.76406 -1.49010
56 50 0 35 42.5825 43.0164 -0.43392 0.02145 1.19943 -1.17798
57 50 10 43 42.5996 42.5198 0.07972 0.00374 0.95597 -0.95223
58 50 20 52 41.0230 41.0736 -0.05060 0.00190 0.80091 -0.79901
59 50 30 64 39.5184 39.5140 0.00449 0.00460 0.99050 -0.98590
60 50 40 71 38.3804 38.4002 -0.01977 0.02814 1.41467 -1.38654
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61 50 50 72 37.1603 38.0278 -0.86749 0.07057 1.69401 -1.62344
62 50 60 68 37.6008 38.3635 -0.76274 0.04500 1.50710 -1.46210
63 50 70 58 39.4703 39.4391 0.03119 0.00467 0.94172 -0.93705
64 50 80 52 40.9501 40.8713 0.07884 0.00418 1.11901 -1.11483
65 50 90 44 42.2058 42.1254 0.08044 0.01048 0.71614 -0.70566
66 50 100 35 43.5303 42.4478 1.08245 0.25062 1.62033 -1.36971
67 60 0 35 42.2662 42.4700 -0.20384 0.02755 1.15384 -1.12629
68 60 10 42 42.2378 42.1038 0.13400 0.00956 1.01338 -1.00382
69 60 20 51 40.9834 40.9730 0.01036 0.00760 1.13076 -1.12316
70 60 30 61 39.5977 39.6665 -0.06880 0.00558 0.99476 -0.98918
71 60 40 66 37.9681 38.6875 -0.71935 0.02987 1.48938 -1.45951
72 60 50 70 37.1422 38.2826 -1.14040 0.06112 1.70395 -1.64284
73 60 60 68 37.9842 38.5250 -0.54087 0.03955 1.57370 -1.53415
74 60 70 54 39.5706 39.5196 0.05102 0.01233 1.10246 -1.09013
75 60 80 46 40.5708 40.7059 -0.13513 0.01457 1.09420 -1.07963
76 60 90 42 41.6046 41.7339 -0.12934 0.03151 1.16079 -1.12929
77 60 100 35 41.4345 42.0550 -0.62052 0.09857 1.60124 -1.50267
78 70 0 35 41.7605 42.1236 -0.36312 0.08049 1.52418 -1.44368
79 70 10 38 41.7842 41.7844 -0.00018 0.00461 0.66583 -0.66122
80 70 20 47 40.7629 40.8773 -0.11440 0.01291 1.15745 -1.14454
81 70 30 52 39.7303 39.7416 -0.01127 0.00205 0.71282 -0.71077
82 70 40 57 38.5335 38.8522 -0.31867 0.01477 1.37830 -1.36353
83 70 50 62 37.9375 38.4673 -0.52985 0.02498 1.45962 -1.43464
84 70 60 56 38.6802 38.7377 -0.05750 0.02250 1.50287 -1.48037
85 70 70 47 39.6669 39.5180 0.14887 0.01535 1.21800 -1.20265
86 70 80 42 40.5276 40.5466 -0.01904 0.00726 0.87303 -0.86577
87 70 90 37 41.2246 41.3097 -0.08508 0.04701 1.30379 -1.25678
88 70 100 33 39.9290 41.6639 -1.73498 0.20448 1.77135 -1.56686
89 80 0 31 41.6827 41.8330 -0.15024 0.05229 1.32478 -1.27249
90 80 10 35 41.6503 41.6131 0.03723 0.00202 0.70805 -0.70604
91 80 20 43 40.8009 40.7935 0.00746 0.00375 0.72766 -0.72391
92 80 30 47 40.0556 39.8526 0.20295 0.01814 1.34578 -1.32764
93 80 40 52 39.2875 39.0467 0.24085 0.01159 1.22214 -1.21055
94 80 50 50 38.5870 38.5990 -0.01203 0.00074 0.65595 -0.65521
95 80 60 49 38.9292 38.8683 0.06096 0.00258 1.03199 -1.02941
96 80 70 45 39.6483 39.5615 0.08682 0.00349 1.12472 -1.12123
97 80 80 37 40.6906 40.3853 0.30529 0.01635 1.22567 -1.20932
98 80 90 33 41.1603 41.0230 0.13723 0.06477 1.39154 -1.32678
99 80 100 31 39.9106 41.3872 -1.47665 0.21764 1.51630 -1.29866

100 90 0 28 41.6452 41.5506 0.09467 0.01214 0.79513 -0.78299
101 90 10 31 41.3929 41.3776 0.01531 0.00213 0.73545 -0.73333
102 90 20 36 40.4533 40.7600 -0.30663 0.02865 1.43345 -1.40480
103 90 30 41 40.0628 39.9885 0.07429 0.04942 1.67601 -1.62659
104 90 40 41 39.4289 39.2936 0.13531 0.02642 1.37536 -1.34895
105 90 50 44 38.8618 38.8703 -0.00850 0.00042 0.51538 -0.51496
106 90 60 39 39.1550 39.0936 0.06138 0.00418 0.98673 -0.98255
107 90 70 32 39.6165 39.6119 0.00467 0.00080 0.79697 -0.79618
108 90 80 27 40.1824 40.2622 -0.07974 0.01010 0.89490 -0.88480
109 90 90 26 41.0182 40.7950 0.22323 0.03405 1.18818 -1.15413
110 90 100 25 41.6405 41.1315 0.50896 0.05499 0.77000 -0.71500
111 100 0 26 43.4372 41.2850 2.15225 0.16375 1.82802 -1.66427
112 100 10 27 42.6488 41.1598 1.48896 0.09281 1.74294 -1.65013
113 100 20 31 41.5685 40.7558 0.81271 0.21441 1.93836 -1.72394
114 100 30 33 41.7093 40.1598 1.54955 0.20921 1.99653 -1.78732
115 100 40 34 39.9971 39.6565 0.34063 0.08372 1.71559 -1.63187
116 100 50 34 39.3376 39.4252 -0.08764 0.05489 1.33611 -1.28122
117 100 60 34 39.5622 39.5883 -0.02604 0.01056 0.92205 -0.91149
118 100 70 27 39.4602 39.7773 -0.31713 0.03231 1.24455 -1.21223
119 100 80 24 39.3618 40.1209 -0.75906 0.03926 1.24930 -1.21005
120 100 90 23 41.4052 40.4980 0.90718 0.12795 1.43988 -1.31192
121 100 100 23 44.5381 40.7383 3.79975 0.41616 1.80688 -1.39072

The predicted values at each of the grid locations do not differ greatly for the two
variogram models. However, the standard error of prediction for the spherical model
is substantially larger than the Gaussian model.
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