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Chapter 46
The NLMIXED Procedure

Overview

Introduction

The NLMIXED procedure fits nonlinear mixed models, that is, models in which both
fixed and random effects enter nonlinearly. These models have a wide variety of
applications, two of the most common being pharmacokinetics and overdispersed
binomial data. PROC NLMIXED enables you to specify a conditional distribution for
your data (given the random effects) having either a standard form (normal, binomial,
Poisson) or a general distribution that you code using SAS programming statements.

PROC NLMIXED fits nonlinear mixed models by maximizing an approximation to
the likelihood integrated over the random effects. Different integral approximations
are available, the principal ones being adaptive Gaussian quadrature and a first-order
Taylor series approximation. A variety of alternative optimization techniques are
available to carry out the maximization; the default is a dual quasi-Newton algorithm.

Successful convergence of the optimization problem results in parameter estimates
along with their approximate standard errors based on the second derivative matrix
of the likelihood function. PROC NLMIXED enables you to use the estimated model
to construct predictions of arbitrary functions using empirical Bayes estimates of the
random effects. You can also estimate arbitrary functions of the nonrandom param-
eters, and PROC NLMIXED computes their approximate standard errors using the
delta method.

Literature on Nonlinear Mixed Models

Davidian and Giltinan (1995) and Vonesh and Chinchilli (1997) provide good
overviews as well as general theoretical developments and examples of nonlinear
mixed models. Pinheiro and Bates (1995) is a primary reference for the theory and
computational techniques of PROC NLMIXED. They describe and compare several
different integrated likelihood approximations and provide evidence that adaptive
Gaussian quadrature is one of the best methods. Davidian and Gallant (1993) also
use Gaussian quadrature for nonlinear mixed models, although the smooth nonpara-
metric density they advocate for the random effects is currently not available in PROC
NLMIXED.

Traditional approaches to fitting nonlinear mixed models involve Taylor series expan-
sions, expanding around either zero or the empirical best linear unbiased predictions
of the random effects. The former is the basis for the well-known first-order method
of Beal and Sheiner (1982, 1988) and Sheiner and Beal (1985), and it is optionally
available in PROC NLMIXED. The latter is the basis for the estimation method of
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Lindstrom and Bates (1990), and it is not available in PROC NLMIXED. However,
the closely related Laplacian approximation is an option; it is equivalent to adaptive
Gaussian quadrature with only one quadrature point. The Laplacian approximation
and its relationship to the Lindstrom-Bates method are discussed by Beal and Sheiner
(1992), Wolfinger (1993), Vonesh (1992, 1996), Vonesh and Chinchilli (1997), and
Wolfinger and Lin (1997).

A parallel literature exists in the area of generalized linear mixed models, in which
random effects appear as a part of the linear predictor inside of a link function.
Taylor-series methods similar to those just described are discussed in articles such as
Harville and Mee (1984), Stiratelli, Laird, and Ware (1984), Gilmour, Anderson, and
Rae (1985), Goldstein (1991), Schall (1991), Engel and Keen (1992), Breslow and
Clayton (1993), Wolfinger and O’Connell (1993), and McGilchrist (1994), but such
methods have not been implemented in PROC NLMIXED because they can produce
biased results in certain binary data situations (Rodriguez and Goldman 1995, Lin
and Breslow 1996). Instead, a numerical quadrature approach is available in PROC
NLMIXED, as discussed in Pierce and Sands (1975), Anderson and Aitkin (1985),
Crouch and Spiegelman (1990), Hedeker and Gibbons (1994), Longford (1994), Mc-
Culloch (1994), Liu and Pierce (1994), and Diggle, Liang, and Zeger (1994).

Nonlinear mixed models have important applications in pharmacokinetics, and Roe
(1997) provides a wide-ranging comparison of many popular techniques. Yuh et al.
(1994) provide an extensive bibliography on nonlinear mixed models and their use in
pharmacokinetics.

PROC NLMIXED Compared with Other SAS Procedures and
Macros

The models fit by PROC NLMIXED can be viewed as generalizations of the ran-
dom coefficient models fit by the MIXED procedure. This generalization allows the
random coefficients to enter the model nonlinearly, whereas in PROC MIXED they
enter linearly. With PROC MIXED you can perform both maximum likelihood and
restricted maximum likelihood (REML) estimation, whereas PROC NLMIXED only
implements maximum likelihood. This is because the analog to the REML method
in PROC NLMIXED would involve a high dimensional integral over all of the fixed-
effects parameters, and this integral is typically not available in closed form. Fi-
nally, PROC MIXED assumes the data to be normally distributed, whereas PROC
NLMIXED enables you to analyze data that are normal, binomial, or Poisson or that
have any likelihood programmable with SAS statements.

PROC NLMIXED does not implement the same estimation techniques available with
the NLINMIX and GLIMMIX macros. These macros are based on the estimation
methods of Lindstrom and Bates (1990), Breslow and Clayton (1993), and Wolfinger
and O’Connell (1993), and they iteratively fit a set of generalized estimating equa-
tions (refer to Chapters 11 and 12 of Littell et al. 1996 and to Wolfinger 1997). In
contrast, PROC NLMIXED directly maximizes an approximate integrated likelihood.
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This remark also applies to the SAS/IML macros MIXNLIN (Vonesh and Chinchilli
1997) and NLMEM (Galecki 1998).

PROC NLMIXED has close ties with the NLP procedure in SAS/OR software. PROC
NLMIXED uses a subset of the optimization code underlying PROC NLP and has
many of the same optimization-based options. Also, the programming statement
functionality used by PROC NLMIXED is the same as that used by PROC NLP
and the MODEL procedure in SAS/ETS software.

Getting Started

Nonlinear Growth Curves with Gaussian Data

As an introductory example, consider the orange tree data of Draper and Smith
(1981). These data consist of seven measurements of the trunk circumference (in
millimeters) on each of five orange trees. You can input these data into a SAS data
set as follows:

data tree;
input tree day y;
datalines;

1 118 30
1 484 58
1 664 87
1 1004 115
1 1231 120
1 1372 142
1 1582 145
2 118 33
2 484 69
2 664 111
2 1004 156
2 1231 172
2 1372 203
2 1582 203
3 118 30
3 484 51
3 664 75
3 1004 108
3 1231 115
3 1372 139
3 1582 140
4 118 32
4 484 62
4 664 112
4 1004 167
4 1231 179
4 1372 209
4 1582 214
5 118 30
5 484 49
5 664 81
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5 1004 125
5 1231 142
5 1372 174
5 1582 177
;

Lindstrom and Bates (1990) and Pinheiro and Bates (1995) propose the following
logistic nonlinear mixed model for these data:

yij =
b1 + ui1

1 + exp[�(dij � b2)=b3]
+ eij

Here,yij represents thejth measurement on theith tree (i = 1; : : : ; 5; j = 1; : : : ; 7),
dij is the corresponding day,b1; b2; b3 are the fixed-effects parameters,ui1 are the
random-effect parameters assumed to be iidN(0; �2u), andeij are the residual errors
assumed to be iidN(0; �2e ) and independent of theui1. This model has a logistic
form, and the random-effect parametersui1 enter the model linearly.

The statements to fit this nonlinear mixed model are as follows:

proc nlmixed data=tree;
parms b1=190 b2=700 b3=350 s2u=1000 s2e=60;
num = b1+u1;
ex = exp(-(day-b2)/b3);
den = 1 + ex;
model y ~ normal(num/den,s2e);
random u1 ~ normal(0,s2u) subject=tree;

run;

The PROC NLMIXED statement invokes the procedure and inputs the TREE data
set. The PARMS statement identifies the unknown parameters and their starting val-
ues. Here there are three fixed-effects parameters (B1, B2, B3) and two variance
components (S2U, S2E).

The next three statements are SAS programming statements specifying the logistic
mixed model. A new variable U1 is included to identify the random effect. These
statements are evaluated for every observation in the data set when PROC NLMIXED
computes the log likelihood function and its derivatives.

The MODEL statement defines the dependent variable and its conditional distribu-
tion given the random effects. Here a normal (Gaussian) conditional distribution is
specified with mean NUM/DEN and variance S2E.

The RANDOM statement defines the single random effect to be U1, and specifies
that it follows a normal distribution with mean 0 and variance S2U. The SUBJECT=
argument defines a variable indicating when the random effect obtains new realiza-
tions; in this case, it changes according to the values of the TREE variable. PROC
NLMIXED assumes that the input data set is clustered according to the levels of the
TREE variable; that is, all observations from the same tree occur sequentially in the
input data set.

The output from this analysis is as follows.
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The NLMIXED Procedure

Specifications

Description Value

Data Set WORK.TREE
Dependent Variable y
Distribution for Dependent Variable Normal
Random Effects u1
Distribution for Random Effects Normal
Subject Variable tree
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table lists some basic information about the nonlinear mixed
model you have specified. Included are the input data set, dependent and subject
variables, random effects, relevant distributions, and type of optimization.

The NLMIXED Procedure

Dimensions

Description Value

Observations Used 35
Observations Not Used 0
Total Observations 35
Subjects 5
Max Obs Per Subject 7
Parameters 5
Quadrature Points 1

The “Dimensions” table lists various counts related to the model, including the num-
ber of observations, subjects, and parameters. These quantities are useful for check-
ing that you have specified your data set and model correctly. Also listed is the num-
ber of quadrature points that PROC NLMIXED has selected based on the evaluation
of the log likelihood at the starting values of the parameters. Here, only one quadra-
ture point is necessary because the random-effect parametersui1 enter the model
linearly.

The NLMIXED Procedure

Parameters

b1 b2 b3 s2u s2e NegLogLike

190 700 350 1000 60 132.491787
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The “Parameters” table lists the parameters to be estimated, their starting values, and
the negative log likelihood evaluated at the starting values.

The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 4 131.686742 0.805045 0.010269 -0.633
2 6 131.64466 0.042082 0.014783 -0.0182
3 8 131.614077 0.030583 0.009809 -0.02796
4 10 131.572522 0.041555 0.001186 -0.01344
5 11 131.571895 0.000627 0.0002 -0.00121
6 13 131.571889 5.549E-6 0.000092 -7.68E-6
7 15 131.571888 1.096E-6 6.097E-6 -1.29E-6

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table records the history of the minimization of the negative log like-
lihood. For each iteration of the quasi-Newton optimization, values are listed for the
number of function calls, the value of the negative log likelihood, the difference from
the previous iteration, the absolute value of the largest gradient, and the slope of the
search direction. The note at the bottom of the table indicates that the algorithm has
converged successfully according to the GCONV convergence criterion, a standard
criterion computed using a quadratic form in the gradient and inverse Hessian.

The NLMIXED Procedure

Fit Statistics

Description Value

-2 Log Likelihood 263.1
AIC (smaller is better) 273.1
BIC (smaller is better) 271.2
Log Likelihood -131.6
AIC (larger is better) -136.6
BIC (larger is better) -135.6

The“Fitting Information” table lists the final maximized value of the log likelihood as
well as the information criteria of Akaike and Schwarz in two different forms. These
statistics can be used to compare different nonlinear mixed models.
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The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

b1 192.05 15.6473 4 12.27 0.0003 0.05 148.61
b2 727.90 35.2472 4 20.65 <.0001 0.05 630.04
b3 348.07 27.0790 4 12.85 0.0002 0.05 272.88
s2u 999.88 647.44 4 1.54 0.1974 0.05 -797.70
s2e 61.5139 15.8831 4 3.87 0.0179 0.05 17.4153

Parameter Estimates

Parameter Upper Gradient

b1 235.50 1.154E-6
b2 825.76 5.289E-6
b3 423.25 -6.1E-6
s2u 2797.45 -3.84E-6
s2e 105.61 2.892E-6

The “Parameter Estimates” table lists the maximum likelihood estimates of the five
parameters and their approximate standard errors computed using the final Hessian
matrix. Approximatet-values and Wald-type confidence limits are also provided,
with degrees of freedom equal to the number of subjects minus the number of random
effects. You should interpret these statistics cautiously for variance parameters like
S2U and S2E. The final column in the output is the gradient vector at the optimization
solution. Each element appears to be sufficiently small to indicate a stationary point.

Since the random-effect parametersui1 enter the model linearly, you can obtain
equivalent results by using the first-order method (specify METHOD=FIRO in the
PROC NLMIXED statement).

Logistic-Normal Model with Binomial Data

This example analyzes the data from Beitler and Landis (1985), which represent re-
sults from a multi-center clinical trial investigating the effectiveness of two topical
cream treatments (active drug, control) in curing an infection. For each of eight clin-
ics, the number of trials and favorable cures are recorded for each treatment. The
SAS data set is as follows.

data infection;
input clinic t x n;
datalines;

1 1 11 36
1 0 10 37
2 1 16 20
2 0 22 32
3 1 14 19
3 0 7 19
4 1 2 16
4 0 1 17
5 1 6 17
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5 0 0 12
6 1 1 11
6 0 0 10
7 1 1 5
7 0 1 9
8 1 4 6
8 0 6 7
run;

Supposenij denotes the number of trials for theith clinic and thejth treatment
(i = 1; : : : ; 8 j = 0; 1), andxij denotes the corresponding number of favorable
cures. Then a reasonable model for the preceding data is the following logistic model
with random effects:

xij jui � Binomial(nij ; pij)

and

�ij = log

�
pij

(1� pij)

�
= �0 + �1tj + ui

The notationtj indicates thejth treatment, and theui are assumed to be iidN(0; �2u).

The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=infection;
parms beta0=-1 beta1=1 s2u=2;
eta = beta0 + beta1*t + u;
expeta = exp(eta);
p = expeta/(1+expeta);
model x ~ binomial(n,p);
random u ~ normal(0,s2u) subject=clinic;
predict eta out=eta;
estimate ’1/beta1’ 1/beta1;

run;

The PROC NLMIXED statement invokes the procedure, and the PARMS statement
defines the parameters and their starting values. The next three statements definepij,
and the MODEL statement defines the conditional distribution ofxij to be binomial.
The RANDOM statement defines U to be the random effect with subjects defined by
the CLINIC variable.

The PREDICT statement constructs predictions for each observation in the input data
set. For this example, predictions of�ij and approximate standard errors of prediction
are output to a SAS data set named ETA. These predictions include empirical Bayes
estimates of the random effectsui.

The ESTIMATE statement requests an estimate of the reciprocal of�1.

The output for this model is as follows.
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The NLMIXED Procedure

Specifications

Description Value

Data Set WORK.INFECTION
Dependent Variable x
Distribution for Dependent Variable Binomial
Random Effects u
Distribution for Random Effects Normal
Subject Variable clinic
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table provides basic information about the nonlinear mixed
model.

The NLMIXED Procedure

Dimensions

Description Value

Observations Used 16
Observations Not Used 0
Total Observations 16
Subjects 8
Max Obs Per Subject 2
Parameters 3
Quadrature Points 5

The “Dimensions” table provides counts of various variables. You should check
this table to make sure the data set and model have been entered properly. PROC
NLMIXED selects five quadrature points to achieve the default accuracy in the like-
lihood calculations.

The NLMIXED Procedure

Parameters

beta0 beta1 s2u NegLogLike

-1 1 2 37.5945925

The “Parameters” table lists the starting point of the optimization.

SAS OnlineDoc: Version 8
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The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 37.3622692 0.232323 2.882077 -19.3762
2 3 37.1460375 0.216232 0.921926 -0.82852
3 5 37.0300936 0.115944 0.315897 -0.59175
4 6 37.0223017 0.007792 0.01906 -0.01615
5 7 37.0222472 0.000054 0.001743 -0.00011
6 9 37.0222466 6.57E-7 0.000091 -1.28E-6
7 11 37.0222466 5.38E-10 2.078E-6 -1.1E-9

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates successful convergence in seven iterations.

The NLMIXED Procedure

Fit Statistics

Description Value

-2 Log Likelihood 74.0
AIC (smaller is better) 80.0
BIC (smaller is better) 80.3
Log Likelihood -37.0
AIC (larger is better) -40.0
BIC (larger is better) -40.1

The “Fitting Information” table lists some useful statistics based on the maximized
value of the log likelihood.

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

beta0 -1.1974 0.5561 7 -2.15 0.0683 0.05 -2.5123
beta1 0.7385 0.3004 7 2.46 0.0436 0.05 0.02806
s2u 1.9591 1.1903 7 1.65 0.1438 0.05 -0.8554

Parameter Estimates

Parameter Upper Gradient

beta0 0.1175 -3.1E-7
beta1 1.4488 -2.08E-6
s2u 4.7736 -2.48E-7

The “Parameter Estimates” table indicates marginal significance of the two fixed-
effects parameters. The positive value of the estimate of�1 indicates that the treat-
ment significantly increases the chance of a favorable cure.
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The NLMIXED Procedure

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

1/beta1 1.3542 0.5509 7 2.46 0.0436 0.05 0.05146 2.6569

The “Additional Estimates” table displays results from the ESTIMATE statement.
The estimate of1=�1 equals1=0:7385 = 1:3541 and its standard error equals
0:3004=0:73852 = 0:5509 by the delta method (Billingsley 1986). Note this par-
ticular approximation produces at-statistic identical to that for the estimate of�1.

Not shown is the ETA data set, which contains the original 16 observations and pre-
dictions of the�ij .

Syntax

The following statements can be used with the NLMIXED procedure:

PROC NLMIXED options ;
ARRAY array specification ;
BOUNDS boundary constraints ;
BY variables ;
CONTRAST ’label’ expression <,expression> ;
ESTIMATE ’label’ expression ;
ID expressions ;
MODEL model specification ;
PARMS parameters and starting values ;
PREDICT expression ;
RANDOM random effects specification ;
REPLICATE variable ;
Program statements ;

The following sections provide a detailed description of each of these statements.
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PROC NLMIXED Statement

PROC NLMIXED options ;

This statement invokes the NLMIXED procedure. A large number of options are
available in the PROC NLMIXED statement, and the following table categorizes
them according to function.

Table 46.1. PROC NLMIXED statement options

Option Description
Basic Options
DATA= input data set
METHOD= integration method

Displayed Output Specifications
START gradient at starting values
HESS Hessian matrix
ITDETAILS iteration details
CORR correlation matrix
COV covariance matrix
ECORR corr matrix of additional estimates
ECOV cov matrix of additional estimates
EDER derivatives of additional estimates
ALPHA= alpha for confidence limits
DF= degrees of freedom forp values and confidence limits

Debugging Output
LIST model program, variables
LISTCODE compiled model program
LISTDEP model dependency listing
LISTDER model derivative
XREF model cross reference
FLOW model execution messages
TRACE detailed model execution messages

Quadrature Options
NOAD no adaptive centering
NOADSCALE no adaptive scaling
OUTQ= output data set
QFAC= search factor
QMAX= maximum points
QPOINTS= number of points
QSCALEFAC= scale factor
QTOL= tolerance

Empirical Bayes Options
EBSTEPS= number of Newton steps
EBSUBSTEPS= number of substeps
EBSSFRAC= step-shortening fraction
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Table 46.1. (continued)

Option Description

EBSSTOL= step-shortening tolerance
EBTOL= convergence tolerance
EBOPT comprehensive optimization
EBZSTART zero starting values

Optimization Specifications
TECHNIQUE= minimization technique
UPDATE= update technique
LINESEARCH= line-search method
LSPRECISION= line-search precision
HESCAL= type of Hessian scaling
INHESSIAN= start for approximated Hessian
RESTART= iteration number for update restart
OPTCHECK[=] check optimality in neighborhood

Derivatives Specifications
FD[=] finite-difference derivatives
FDHESSIAN[=] finite-difference second derivatives
DIAHES use only diagonal of Hessian

Constraint Specifications
LCEPSILON= range for active constraints
LCDEACT= LM tolerance for deactivating
LCSINGULAR= tolerance for dependent constraints

Termination Criteria Specifications
MAXFUNC= maximum number of function calls
MAXITER= maximum number of iterations
MINITER= minimum number of iterations
MAXTIME= upper limit seconds of CPU time
ABSCONV= absolute function convergence criterion
ABSFCONV= absolute function convergence criterion
ABSGCONV= absolute gradient convergence criterion
ABSXCONV= absolute parameter convergence criterion
FCONV= relative function convergence criterion
FCONV2= relative function convergence criterion
GCONV= relative gradient convergence criterion
XCONV= relative parameter convergence criterion
FDIGITS= number accurate digits in objective function
FSIZE= used in FCONV, GCONV criterion
XSIZE= used in XCONV criterion

Step Length Specifications
DAMPSTEP[=] damped steps in line search
MAXSTEP= maximum trust-region radius
INSTEP= initial trust-region radius
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Table 46.1. (continued)

Option Description

Singularity Tolerances
SINGCHOL= tolerance for Cholesky roots
SINGHESS= tolerance for Hessian
SINGSWEEP= tolerance for sweep
SINGVAR= tolerance for variances

Covariance Matrix Tolerances
ASINGULAR= absolute singularity for inertia
MSINGULAR= relative M singularity for inertia
VSINGULAR= relative V singularity for inertia
G4= threshold for Moore-Penrose inverse
COVSING= tolerance for singular COV matrix
CFACTOR= multiplication factor for COV matrix

These options are described in alphabetical order. For a description of the mathemat-
ical notation used in the following sections, see the section “Modeling Assumptions
and Notation.”

ABSCONV=r
ABSTOL= r

specifies an absolute function convergence criterion. For minimization, termination
requiresf(�(k)) � r: The default value ofr is the negative square root of the largest
double precision value, which serves only as a protection against overflows.

ABSFCONV=r[n]
ABSFTOL= r[n]

specifies an absolute function convergence criterion. For all techniques except
NMSIMP, termination requires a small change of the function value in successive
iterations:

jf(�(k�1))� f(�(k))j � r

The same formula is used for the NMSIMP technique, but�(k) is defined as the vertex
with the lowest function value, and�(k�1) is defined as the vertex with the highest
function value in the simplex. The default value isr = 0. The optional integer
valuen specifies the number of successive iterations for which the criterion must be
satisfied before the process can be terminated.

ABSGCONV=r[n]
ABSGTOL= r[n]

specifies an absolute gradient convergence criterion. Termination requires the maxi-
mum absolute gradient element to be small:

max
j
jgj(�(k))j � r

This criterion is not used by the NMSIMP technique. The default value isr = 1E�5.
The optional integer valuen specifies the number of successive iterations for which
the criterion must be satisfied before the process can be terminated.
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ABSXCONV=r[n]
ABSXTOL= r[n]

specifies an absolute parameter convergence criterion. For all techniques except
NMSIMP, termination requires a small Euclidean distance between successive pa-
rameter vectors,

k �(k) � �(k�1) k2� r

For the NMSIMP technique, termination requires either a small length�(k) of the
vertices of a restart simplex,

�(k) � r

or a small simplex size,
�(k) � r

where the simplex size�(k) is defined as the L1 distance from the simplex vertex�(k)

with the smallest function value to the othern simplex points�(k)l 6= �(k):

�(k) =
X
�l 6=y

k �(k)l � �(k) k1

The default isr = 1E � 8 for the NMSIMP technique andr = 0 otherwise. The
optional integer valuen specifies the number of successive iterations for which the
criterion must be satisfied before the process can terminate.

ALPHA=�
specifies the alpha level to be used in computing confidence limits. The default value
is 0.05.

ASINGULAR= r
ASING=r

specifies an absolute singularity criterion for the computation of the inertia (number
of positive, negative, and zero eigenvalues) of the Hessian and its projected forms.
The default value is the square root of the smallest positive double precision value.

CFACTOR=f
specifies a multiplication factorf for the estimated covariance matrix of the parame-
ter estimates.

COV
requests the approximate covariance matrix for the parameter estimates.

CORR
requests the approximate correlation matrix for the parameter estimates.

COVSING=r > 0
specifies a nonnegative threshold that determines whether the eigenvalues of a singu-
lar Hessian matrix are considered to be zero.

DAMPSTEP[= r]
DS[= r]

specifies that the initial step-size value�(0) for each line search (used by the
QUANEW, CONGRA, or NEWRAP technique) cannot be larger thanr times the
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step-size value used in the former iteration. If you specify the DAMPSTEP option
without factorr, the default value isr = 2. The DAMPSTEP=r option can pre-
vent the line-search algorithm from repeatedly stepping into regions where some ob-
jective functions are difficult to compute or where they could lead to floating point
overflows during the computation of objective functions and their derivatives. The
DAMPSTEP=r option can save time-costly function calls that result in very small
step sizes�. For more details on setting the start values of each line search, see the
section “Restricting the Step Length,” beginning on page 2471.

DATA=SAS-data-set
specifies the input data set. Observations in this data set are used to compute the log
likelihood function that you specify with PROC NLMIXED statements.

NOTE: If you are using a RANDOM statement, the input data set must be clus-
tered according to the SUBJECT= variable. One easy way to accomplish this is to
sort your data by the SUBJECT= variable prior to calling PROC NLMIXED. PROC
NLMIXED does not sort the input data set for you.

DF=d
specifies the degrees of freedom to be used in computingp values and confidence
limits. The default value is the number of subjects minus the number of random
effects for random effects models, and the number of observations otherwise.

DIAHES
specifies that only the diagonal of the Hessian is used.

EBOPT
requests that a more comprehensive optimization be carried out if the default empiri-
cal Bayes optimization fails to converge.

EBSSFRAC=r > 0
specifies the step-shortening fraction to be used while computing empirical Bayes
estimates of the random effects. The default value is 0.8.

EBSSTOL=r � 0
specifies the objective function tolerance for determining the cessation of step-
shortening while computing empirical Bayes estimates of the random effects. The
default value isr = 1E� 8.

EBSTEPS=n � 0
specifies the maximum number of Newton steps for computing empirical Bayes esti-
mates of random effects. The default value isn = 50.

EBSUBSTEPS=n � 0
specifies the maximum number of step-shortenings for computing empirical Bayes
estimates of random effects. The default value isn = 20.

EBTOL=r � 0
specifies the convergence tolerance for empirical Bayes estimation. The default value
is r = �E4, where� is the machine precision. This default value equals approximately
1E� 12 on most machines.
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EBZSTART
requests that a zero be used as starting values during empirical Bayes estimation. By
default, the starting values are set equal to the estimates from the previous iteration
(or zero for the first iteration).

ECOV
requests the approximate covariance matrix for all expressions specified in ESTI-
MATE statements.

ECORR
requests the approximate correlation matrix for all expressions specified in ESTI-
MATE statements.

EDER
requests the derivatives of all expressions specified in ESTIMATE statements with
respect to each of the model parameters.

FCONV=r[n]
FTOL=r[n]

specifies a relative function convergence criterion. For all techniques except
NMSIMP, termination requires a small relative change of the function value in suc-
cessive iterations,

jf(�(k))� f(�(k�1))j
max(jf(�(k�1))j;FSIZE)

� r

where FSIZE is defined by the FSIZE= option. The same formula is used for the
NMSIMP technique, but�(k) is defined as the vertex with the lowest function value,
and�(k�1) is defined as the vertex with the highest function value in the simplex.
The default isr=10�FDIGITSwhere FDIGITS is the value of the FDIGITS= option.
The optional integer valuen specifies the number of successive iterations for which
the criterion must be satisfied before the process can terminate.

FCONV2=r[n]
FTOL2=r[n]

specifies another function convergence criterion. For all techniques except NMSIMP,
termination requires a small predicted reduction

df (k) � f(�(k))� f(�(k) + s(k))

of the objective function. The predicted reduction

df (k) = �g(k)T s(k) � 1

2
s(k)TH(k)s(k)

= �1

2
s(k)T g(k)

� r

is computed by approximating the objective functionf by the first two terms of the
Taylor series and substituting the Newton step.

s(k) = �[H(k)]�1g(k)
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For the NMSIMP technique, termination requires a small standard deviation of the

function values of then+ 1 simplex vertices�(k)l , l = 0; : : : ; n,s
1

n+ 1

X
l

h
f(�

(k)
l )� f(�(k))

i2 � r

wheref(�(k)) = 1
n+1

P
l f(�

(k)
l ). If there arenact boundary constraints active at

�(k), the mean and standard deviation are computed only for then + 1 � nact un-
constrained vertices. The default value isr = 1E � 6 for the NMSIMP technique
andr = 0 otherwise. The optional integer valuen specifies the number of successive
iterations for which the criterion must be satisfied before the process can terminate.

FD[= FORWARD | CENTRAL | r]
specifies that all derivatives be computed using finite difference approximations. The
following specifications are permitted:

FD is equivalent to FD=100.

FD=CENTRAL uses central differences.

FD=FORWARD uses forward differences.

FD=r uses central differences for the initial and final evaluations of the
gradient, and Hessian. During iteration, start with forward dif-
ferences and switch to a corresponding central-difference formula
during the iteration process when one of the following two criteria
is satisfied:

� The absolute maximum gradient element is less than or equal
to r times the ABSGTOL threshold.

� The normalized predicted function reduction (see the
GTOL option on page 2439) is less than or equal to
max(1E� 6; r �GTOL). The 1E � 6 ensures that the
switch is done, even if you set the GTOL threshold to zero.

Note that the FD and FDHESSIAN options cannot apply at the same time. The
FDHESSIAN option is ignored when only first-order derivatives are used. See the
section “Finite Difference Approximations of Derivatives,” beginning on page 2465,
for more information.

FDHESSIAN[= FORWARD | CENTRAL]
FDHES[= FORWARD | CENTRAL]
FDH[= FORWARD | CENTRAL]

specifies that second-order derivatives be computed using finite difference approxi-
mations based on evaluations of the gradients.

FDHESSIAN=FORWARD uses forward differences.

FDHESSIAN=CENTRAL uses central differences.

FDHESSIAN uses forward differences for the Hessian except for the initial and
final output.

SAS OnlineDoc: Version 8



PROC NLMIXED Statement � 2439

Note that the FD and FDHESSIAN options cannot apply at the same time. See the
section “Finite Difference Approximations of Derivatives,” beginning on page 2465,
for more information.

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function. Frac-
tional values such as FDIGITS=4.7 are allowed. The default value isr = � log10 �,
where� is the machine precision. The value ofr is used to compute the interval size
h for the computation of finite-difference approximations of the derivatives of the
objective function and for the default value of the FCONV= option.

FLOW
displays a message for each statement in the model program as it is executed. This
debugging option is very rarely needed and produces voluminous output.

FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termina-
tion criteria. The default value isr = 0. For more details, see the FCONV= and
GCONV= options.

G4=n > 0
specifies a dimension to determine the type of generalized inverse to use when the
approximate covariance matrix of the parameter estimates is singular. The default
value ofn is 60. See the section “Covariance Matrix,” beginning on page 2475, for
more information.

GCONV=r[n]
GTOL=r[n]

specifies a relative gradient convergence criterion. For all techniques except CON-
GRA and NMSIMP, termination requires that the normalized predicted function re-
duction is small,

g(�(k))T [H(k)]�1g(�(k))

max(jf(�(k))j;FSIZE)
� r

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where
a reliable Hessian estimateH is not available), the following criterion is used:

k g(�(k)) k22 k s(�(k)) k2
k g(�(k))� g(�(k�1)) k2 max(jf(�(k))j;FSIZE)

� r

This criterion is not used by the NMSIMP technique. The default value isr =
1E�8. The optional integer valuen specifies the number of successive iterations for
which the criterion must be satisfied before the process can terminate.

HESCAL=0j1j2j3
HS=0j1j2j3

specifies the scaling version of the Hessian matrix used in NRRIDG, TRUREG,
NEWRAP, or DBLDOG optimization. If HS is not equal to 0, the first iteration

and each restart iteration sets the diagonal scaling matrixD(0) = diag(d
(0)
i ):

d
(0)
i =

q
max(jH(0)

i;i j; �)
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whereH(0)
i;i are the diagonal elements of the Hessian. In every other iteration, the

diagonal scaling matrixD(0) = diag(d
(0)
i ) is updated depending on the HS op-

tion:

HS=0 specifies that no scaling is done.

HS=1 specifies the Moré (1978) scaling update:

d
(k+1)
i = max

�
d
(k)
i ;

q
max(jH(k)

i;i j; �)
�

HS=2 specifies the Dennis, Gay, & Welsch (1981) scaling update:

d
(k+1)
i = max

�
0:6 � d(k)i ;

q
max(jH(k)

i;i j; �)
�

HS=3 specifies thatdi is reset in each iteration:

d
(k+1)
i =

q
max(jH(k)

i;i j; �)

In each scaling update,� is the relative machine precision. The default value is HS=0.
Scaling of the Hessian can be time consuming in the case where general linear con-
straints are active.

HESS
requests the display of the final Hessian matrix after optimization. If you also specify
the START option, then the Hessian at the starting values is also printed.

INHESSIAN[= r]
INHESS[= r]

specifies how the initial estimate of the approximate Hessian is defined for the quasi-
Newton techniques QUANEW and DBLDOG. There are two alternatives:

� If you do not use ther specification, the initial estimate of the approximate
Hessian is set to the Hessian at�(0).

� If you do use ther specification, the initial estimate of the approximate Hessian
is set to the multiple of the identity matrixrI.

By default, if you do not specify the option INHESSIAN=r, the initial estimate of the
approximate Hessian is set to the multiple of the identity matrixrI, where the scalar
r is computed from the magnitude of the initial gradient.

INSTEP=r
reduces the length of the first trial step during the line search of the first iterations.
For highly nonlinear objective functions, such as the EXP function, the default ini-
tial radius of the trust-region algorithm TRUREG or DBLDOG or the default step
length of the line-search algorithms can result in arithmetic overflows. If this oc-
curs, you should specify decreasing values of0 < r < 1 such as INSTEP=1E � 1,
INSTEP=1E� 2, INSTEP=1E� 4, and so on, until the iteration starts successfully.
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� For trust-region algorithms (TRUREG, DBLDOG), the INSTEP= option spec-
ifies a factorr > 0 for the initial radius�(0) of the trust region. The default
initial trust-region radius is the length of the scaled gradient. This step corre-
sponds to the default radius factor ofr = 1.

� For line-search algorithms (NEWRAP, CONGRA, QUANEW), the INSTEP=
option specifies an upper bound for the initial step length for the line search
during the first five iterations. The default initial step length isr = 1.

� For the Nelder-Mead simplex algorithm, using TECH=NMSIMP, the
INSTEP=r option defines the size of the start simplex.

For more details, see the section “Computational Problems,” beginning on
page 2472.

ITDETAILS=
requests a more complete iteration history, including the current values of the pa-
rameter estimates, their gradients, and additional optimization statistics. For further
details, see the section “Iterations” beginning on page 2479.

LCDEACT=r
LCD=r

specifies a thresholdr for the Lagrange multiplier that determines whether an active
inequality constraint remains active or can be deactivated. During minimization, an
active inequality constraint can be deactivated only if its Lagrange multiplier is less
than the threshold valuer < 0. The default value is

r = �min(0:01;max(0:1 �ABSGCONV; 0:001 � gmax(k)))

where ABSGCONV is the value of the absolute gradient criterion, andgmax(k) is
the maximum absolute element of the (projected) gradientg(k) or ZT g(k). (See the
section “Active Set Methods,” beginning on page 2468, for a definition ofZ.)

LCEPSILON=r > 0
LCEPS=r > 0
LCE=r > 0

specifies the range for active and violated boundary constraints. The default value is
r = 1E�8. During the optimization process, the introduction of rounding errors can
force PROC NLMIXED to increase the value ofr by a factor of10; 100; : : :. If this
happens, it is indicated by a message displayed in the log.

LCSINGULAR= r > 0
LCSING=r > 0
LCS=r > 0

specifies a criterionr, used in the update of the QR decomposition, that determines
whether an active constraint is linearly dependent on a set of other active constraints.
The default value isr = 1E�8. The largerr becomes, the more the active constraints
are recognized as being linearly dependent. If the value ofr is larger than0:1, it is
reset to0:1.
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LINESEARCH=i
LIS=i

specifies the line-search method for the CONGRA, QUANEW, and NEWRAP opti-
mization techniques. Refer to Fletcher (1987) for an introduction to line-search tech-
niques. The value ofi can be1; : : : ; 8. For CONGRA, QUANEW and NEWRAP,
the default value isi = 2.

LIS=1 specifies a line-search method that needs the same number of func-
tion and gradient calls for cubic interpolation and cubic extrapola-
tion; this method is similar to one used by the Harwell subroutine
library.

LIS=2 specifies a line-search method that needs more function than gra-
dient calls for quadratic and cubic interpolation and cubic ex-
trapolation; this method is implemented as shown in Fletcher
(1987) and can be modified to an exact line search by using the
LSPRECISION= option.

LIS=3 specifies a line-search method that needs the same number of
function and gradient calls for cubic interpolation and cubic ex-
trapolation; this method is implemented as shown in Fletcher
(1987) and can be modified to an exact line search by using the
LSPRECISION= option.

LIS=4 specifies a line-search method that needs the same number of func-
tion and gradient calls for stepwise extrapolation and cubic inter-
polation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.

LIS=6 specifies golden section line search (Polak 1971), which uses only
function values for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only func-
tion values for linear approximation.

LIS=8 specifies the Armijo line-search technique (Polak 1971), which
uses only function values for linear approximation.

LIST
displays the model program and variable lists. The LIST option is a debugging feature
and is not normally needed.

LISTCODE
displays the derivative tables and the compiled program code. The LISTCODE option
is a debugging feature and is not normally needed.

LSPRECISION=r
LSP=r

specifies the degree of accuracy that should be obtained by the line-search algorithms
LIS=2 and LIS=3. Usually an imprecise line search is inexpensive and successful.
For more difficult optimization problems, a more precise and expensive line search
may be necessary (Fletcher 1987). The second line-search method (which is the

SAS OnlineDoc: Version 8



PROC NLMIXED Statement � 2443

default for the NEWRAP, QUANEW, and CONGRA techniques) and the third line-
search method approach exact line search for small LSPRECISION= values. If you
have numerical problems, you should try to decrease the LSPRECISION= value to
obtain a more precise line search. The default values are shown in the following table.

TECH= UPDATE= LSP default
QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
CONGRA all r = 0.1
NEWRAP no update r = 0.9

For more details, refer to Fletcher (1987).

MAXFUNC=i
MAXFU=i

specifies the maximum numberi of function calls in the optimization process. The
default values are

� TRUREG, NRRIDG, NEWRAP: 125

� QUANEW, DBLDOG: 500

� CONGRA: 1000

� NMSIMP: 3000

Note that the optimization can terminate only after completing a full iteration. There-
fore, the number of function calls that is actually performed can exceed the number
that is specified by the MAXFUNC= option.

MAXITER=i
MAXIT=i

specifies the maximum numberi of iterations in the optimization process. The default
values are

� TRUREG, NRRIDG, NEWRAP: 50

� QUANEW, DBLDOG: 200

� CONGRA: 400

� NMSIMP: 1000

These default values are also valid wheni is specified as a missing value.

MAXSTEP=r[n]
specifies an upper bound for the step length of the line-search algorithms during the
firstn iterations. By default,r is the largest double precision value andn is the largest
integer available. Setting this option can improve the speed of convergence for the
CONGRA, QUANEW, and NEWRAP techniques.

MAXTIME=r
specifies an upper limit ofr seconds of CPU time for the optimization process. The
default value is the largest floating point double representation of your computer.
Note that the time specified by the MAXTIME= option is checked only once at the
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end of each iteration. Therefore, the actual running time can be much longer than
that specified by the MAXTIME= option. The actual running time includes the rest
of the time needed to finish the iteration and the time needed to generate the output
of the results.

METHOD=value
specifies the method for approximating the integral of the likelihood over the random
effects. Valid values are as follows.

� FIRO
specifies the first-order method of Beal and Sheiner (1982).

� GAUSS
specifies adaptive Gauss-Hermite quadrature (Pinheiro and Bates 1995). You

can prevent the adaptation with the NOAD option or prevent adaptive scaling
with the NOADSCALE option. This is the default integration method.

� HARDY
specifies Hardy quadrature based on an adaptive trapezoidal rule. This method
is available only for one-dimensional integrals; that is, you must specify only
one random effect.

� ISAMP
specifies adaptive importance sampling (Pinheiro and Bates 1995) . You can

prevent the adaptation with the NOAD option or prevent adaptive scaling with
the NOADSCALE option. You can use the SEED= option to specify a start-
ing seed for the random number generation used in the importance sampling;
otherwise, PROC NLMIXED uses the clock time as a seed.

MINITER=i
MINIT=i

specifies the minimum number of iterations. The default value is 0. If you request
more iterations than are actually needed for convergence to a stationary point, the
optimization algorithms can behave strangely. For example, the effect of rounding
errors can prevent the algorithm from continuing for the required number of itera-
tions.

MSINGULAR=r > 0
MSING=r > 0

specifies a relative singularity criterion for the computation of the inertia (number of
positive, negative, and zero eigenvalues) of the Hessian and its projected forms. The
default value is1E � 12 if you do not specify the SINGHESS= option; otherwise,
the default value ismax(10�; 1E � 4 � SINGHESS). See the section “Covariance
Matrix,” beginning on page 2475, for more information.

NOAD
requests that the Gaussian quadrature be nonadaptive; that is, the quadrature points
are centered at zero for each of the random effects and the current random-effects
variance matrix is used as the scale matrix.
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NOADSCALE
requests nonadaptive scaling for adaptive Gaussian quadrature; that is, the quadrature
points are centered at the empirical Bayes estimates for the the random effects, but
the current random-effects variance matrix is used as the scale matrix. By default,
the observed Hessian from the current empirical Bayes estimates is used as the scale
matrix.

OPTCHECK[= r > 0]
computes the function valuesf(�l) of a grid of points�l in a ball of radius ofr
about��. If you specify the OPTCHECK option without factorr, the default value
is r = 0:1 at the starting point andr = 0:01 at the terminating point. If a point��l is
found with a better function value thanf(��), then optimization is restarted at��l .

OUTQ=SAS-data-set
specifies an output data set containing the quadrature points used for numerical inte-
gration.

QFAC=r > 0
specifies the additive factor used to adaptively search for the number of quadrature
points. For METHOD=GAUSS, the search sequence is 1, 3, 5, 7, 9, 11, 11 +r,
11 + 2r, : : :, where the default value ofr is 10. For METHOD=ISAMP, the search
sequence is 10, 10 +r, 10 +2r, : : :, where the default value ofr is 50.

QMAX=r > 0
specifies the maximum number of quadrature points permitted before the adaptive
search is aborted. The default values are 31 for adaptive Gaussian quadrature, 61 for
non-adaptive Gaussian quadrature, 160 for adaptive importance sampling, and 310
for non-adaptive importance sampling.

QPOINTS=n > 0
specifies the number of quadrature points to be used during evaluation of integrals.
For METHOD=GAUSS,n equals the number of points used in each dimension of the
random effects, resulting in a total ofnr points, wherer is the number of dimensions.
For METHOD=ISAMP,n specifies the total number of quadrature points regardless
of the dimension of the random effects. By default, the number of quadrature points
is selected adaptively, and this option disables the adaptive search.

QSCALEFAC= r > 0
specifies a multiplier for the scale matrix used during quadrature calculations. The
default value is 1.0.

QTOL=r > 0
specifies the tolerance used to adaptively select the number of quadrature points.
When the relative difference between two successive likelihood calculations is less
thanr, then the search terminates and the lesser number of quadrature points is used
during the subsequent optimization process. The default value is1E� 4.
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RESTART=i > 0
REST=i > 0

specifies that the QUANEW or CONGRA algorithm is restarted with a steepest de-
scent/ascent search direction after, at most,i iterations. Default values are

� CONGRA: UPDATE=PB: restart is performed automatically,i is not used.

� CONGRA: UPDATE6=PB: i = min(10n; 80), wheren is the number of pa-
rameters.

� QUANEW: i is the largest integer available.

SEED=i > 0
specifies the random number seed for METHOD=ISAMP.

SINGCHOL=r > 0
specifies the singularity criterionr for Cholesky roots of the random-effects variance
matrix and scale matrix for adaptive Gaussian quadrature. The default value is1E4
times the machine epsilon; this product is approximately1E�12 on most computers.

SINGHESS=r > 0
specifies the singularity criterionr for the inversion of the Hessian matrix. The de-
fault value is1E � 8. See the ASINGULAR, MSINGULAR=, and VSINGULAR=
options for more information.

SINGSWEEP=r > 0
specifies the singularity criterionr for inverting the variance matrix in the first-order
method and the empirical Bayes Hessian matrix. The default value is1E4 times the
machine epsilon; this product is approximately1E� 12 on most computers.

SINGVAR=r > 0
specifies the singularity criterionr below which statistical variances are considered
to equal zero. The default value is1E4 times the machine epsilon; this product is
approximately1E� 12 on most computers.

START
requests that the gradient of the log likelihood at the starting values be displayed. If
you also specify the HESS option, then the starting Hessian is displayed as well.

TECHNIQUE=value
TECH=value

specifies the optimization technique. Valid values are

� CONGRA
performs a conjugate-gradient optimization, which can be more precisely spec-
ified with the UPDATE= option and modified with the LINESEARCH= option.
When you specify this option, UPDATE=PB by default.

� DBLDOG
performs a version of double dogleg optimization, which can be more pre-

cisely specified with the UPDATE= option. When you specify this option,
UPDATE=DBFGS by default.

� NMSIMP
performs a Nelder-Mead simplex optimization.
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� NONE
does not perform any optimization. This option can be used

– to perform a grid search without optimization

– to compute estimates and predictions that cannot be obtained efficiently
with any of the optimization techniques

� NEWRAP
performs a Newton-Raphson optimization combining a line-search algorithm

with ridging. The line-search algorithm LIS=2 is the default method.

� NRRIDG
performs a Newton-Raphson optimization with ridging.

� QUANEW
performs a quasi-Newton optimization, which can be defined more precisely

with the UPDATE= option and modified with the LINESEARCH= option. This
is the default estimation method.

� TRUREG
performs a trust region optimization.

TRACE
displays the result of each operation in each statement in the model program as it is
executed. This debugging option is very rarely needed, and it produces voluminous
output.

UPDATE=method
UPD=method

specifies the update method for the quasi-Newton, double dogleg, or conjugate-
gradient optimization technique. Not every update method can be used with each
optimizer. See the section “Optimization Algorithms,” beginning on page 2460, for
more information. Valid methods are

� BFGS
performs the original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update
of the inverse Hessian matrix.

� DBFGS
performs the dual BFGS update of the Cholesky factor of the Hessian matrix.
This is the default update method.

� DDFP
performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky
factor of the Hessian matrix.

� DFP
performs the original DFP update of the inverse Hessian matrix.

� PB
performs the automatic restart update method of Powell (1977) and Beale

(1972).
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� FR
performs the Fletcher-Reeves update (Fletcher 1987).

� PR
performs the Polak-Ribiere update (Fletcher 1987).

� CD
performs a conjugate-descent update of Fletcher (1987).

VSINGULAR=r > 0
VSING=r > 0

specifies a relative singularity criterion for the computation of the inertia (number
of positive, negative, and zero eigenvalues) of the Hessian and its projected forms.
The default value isr = 1E � 8 if the SINGHESS= option is not specified, and it
is the value of SINGHESS= option otherwise. See the section “Covariance Matrix,”
beginning on page 2475, for more information.

XCONV=r[n]
XTOL=r[n]

specifies the relative parameter convergence criterion. For all techniques except
NMSIMP, termination requires a small relative parameter change in subsequent it-
erations.

maxj j�(k)j � �
(k�1)
j j

max(j�(k)j j; j�(k�1)j j;XSIZE)
� r

For the NMSIMP technique, the same formula is used, but�
(k)
j is defined as the

vertex with the lowest function value and�(k�1)j is defined as the vertex with the
highest function value in the simplex. The default value isr = 1E � 8 for the
NMSIMP technique andr = 0 otherwise. The optional integer valuen specifies the
number of successive iterations for which the criterion must be satisfied before the
process can be terminated.

XSIZE=r > 0
specifies the XSIZE parameter of the relative parameter termination criterion. The
default value isr = 0. For more detail, see the XCONV= option.

ARRAY Statement

ARRAY arrayname [{ dimensions }] [$] [variables and constants] ;

The ARRAY statement is similar to, but not the same as, the ARRAY statement in
the SAS DATA step, and it is the same as the ARRAY statements in the NLIN, NLP,
and MODEL procedures. The ARRAY statement is used to associate a name (of no
more than eight characters) with a list of variables and constants. The array name
is used with subscripts in the program to refer to the array elements. The following
statements illustrate this.
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array r[8] r1-r8;

do i = 1 to 8;
r[i] = 0;

end;

The ARRAY statement does not support all the features of the ARRAY statement in
the DATA step. It cannot be used to assign initial values to array elements. Implicit
indexing of variables cannot be used; all array references must have explicit subscript
expressions. Only exact array dimensions are allowed; lower-bound specifications are
not supported. A maximum of six dimensions is allowed.

On the other hand, the ARRAY statement does allow both variables and constants to
be used as array elements. (Constant array elements cannot have values assigned to
them.) Both dimension specification and the list of elements are optional, but at least
one must be specified. When the list of elements is not specified or fewer elements
than the size of the array are listed, array variables are created by suffixing element
numbers to the array name to complete the element list.

BOUNDS Statement

BOUNDS b–con [ , b–con... ] ;

where b–con := numberoperatorparameter–list operatornumber
or b–con := numberoperatorparameter–list
or b–con := parameter–list operatornumber

and operator:= <=, <, >=, or>

Boundary constraints are specified with a BOUNDS statement. One- or two-sided
boundary constraints are allowed. The list of boundary constraints are separated by
commas. For example,

bounds 0 <= a1-a9 X <= 1, -1 <= c2-c5;
bounds b1-b10 y >= 0;

You can specify more than one BOUNDS statement. If you specify more than one
lower (upper) bound for the same parameter, the maximum (minimum) of these is
taken.

If the maximumlj of all lower bounds is larger than the minimum of all upper bounds
uj for the same variable�j , the boundary constraint is replaced by�j := lj :=
min(uj) defined by the minimum of all upper bounds specified for�j .
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BY Statement

BY variables ;

You can use a BY statement with PROC NLMIXED to obtain separate analyses on
DATA= data set observations in groups defined by the BY variables. This means
that, unless TECH=NONE, an optimization problem is solved for each BY group
separately. When a BY statement appears, the procedure expects the input DATA=
data set to be sorted in order of the BY variables. If your input data set is not sorted
in ascending order, use one of the following alternatives:

� Use the SORT procedure with a similar BY statement to sort the data.

� Use the BY statement option NOTSORTED or DESCENDING in the BY state-
ment for the NLMIXED procedure. As a cautionary note, the NOTSORTED
option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these
groups are not necessarily in alphabetical or increasing numeric order.

� Use the DATASETS procedure (in Base SAS software) to create an index on
the BY variables.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

CONTRAST Statement

CONTRAST ’label’ expression <, expression> <options> ;

The CONTRAST statement enables you to conduct a statistical test that several ex-
pressions simultaneously equal zero. The expressions are typically contrasts, that is,
differences whose expected values equal zero under the hypothesis of interest.

In the CONTRAST statement you must provide a quoted string to identify the con-
trast and then a list of valid SAS expressions separated by commas. Multiple CON-
TRAST statements are permitted, and results from all statements are listed in a com-
mon table. PROC NLMIXED constructs approximateF tests for each statement
using the delta method (Billingsley 1986) to approximate the variance-covariance
matrix of the constituent expressions.

The following option is available in the CONTRAST statement.
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DF=d
specifies the denominator degrees of freedom to be used in computingp values for
the F statistics. The default value corresponds to the DF= option in the PROC
NLMIXED statement.

ESTIMATE Statement

ESTIMATE ’label’ expression <options> ;

The ESTIMATE statement enables you to compute an additional estimate that is
a function of the parameter values. You must provide a quoted string to identify
the estimate and then a valid SAS expression. Multiple ESTIMATE statements are
permitted, and results from all statements are listed in a common table. PROC
NLMIXED computes approximate standard errors for the estimates using the delta
method (Billingsley 1986). It uses these standard errors to compute correspondingt
statistics,p-values, and confidence limits.

The ECOV option in the PROC NLMIXED statement produces a table containing
the approximate covariance matix of all of the additional estimates you specify. The
ECORR option produces the corresponding correlation matrix. The EDER option
produces a table of the derivatives of the additional estimates with respect to each of
the model parameters.

The following options are available in the ESTIMATE statement:

ALPHA=�
specifies the alpha level to be used in computing confidence limits. The default value
corresponds to the ALPHA= option in the PROC NLMIXED statement.

DF=d
specifies the degrees of freedom to be used in computingp-values and confidence
limits. The default value corresponds to the DF= option in the PROC NLMIXED
statement.

ID Statement

ID expressions ;

The ID statement identifies additional quantities to be included in the OUT= data set
of the PREDICT statement. These can be any symbols you have defined with SAS
programming statements.
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MODEL Statement

MODEL dependent-variable � distribution ;

The MODEL statement is the mechanism for specifying the conditional distribution
of the data given the random effects. You must specify a single dependent variable
from the input data set, a tilde (�), and then a distribution with its parameters. Valid
distributions are as follows.

� normal(m,v)specifies a normal (Gaussian) distribution with meanm and vari-
ancev.

� binary(p)specifies a binary (Bernouilli) distribution with probabilityp.

� binomial(n,p)specifies a binomial distribution with countn and probabilityp.

� poisson(m)specifies a Poisson distribution with meanm.

� general(ll) specifies a general log likelihood function that you construct using
SAS programming statements.

PARMS Statement

PARMS <name–list [=numbers] [ , name–list [=numbers] ... ]>
</ options> ;

The PARMS statement lists names of parameters and specifies initial values, possibly
over a grid. You can specify the parameters and values either directly in a list or
provide the name of a SAS data set that contains them using the DATA= option.

While the PARMS statement is not required, you are encouraged to use it to provide
PROC NLMIXED with accurate starting values. Parameters not listed in the PARMS
statement are assigned an initial value of 1. PROC NLMIXED considers all symbols
not assigned values to be parameters, so you should specify your modeling statements
carefully and check the output from the “Parameters” table to make sure the proper
parameters are identified.

A list of parameter names in the PARMS statement is not separated by commas and
is followed by an equal sign and a list of numbers. If the number list consists of only
one number, this number defines the initial value for all the parameters listed to the
left of the equal sign.

If the number list consists of more than one number, these numbers specify the grid
locations for each of the parameters listed to the left of the equal sign. You can use the
TO and BY keywords to specify a number list for a grid search. If you specify a grid
of points in a PARMS statement, PROC NLMIXED computes the objective function
value at each grid point and chooses the best (feasible) grid point as an initial point
for the optimization process. You can use the BEST= option to save memory for the
storing and sorting of all grid point information.
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The following options are available in the PARMS statement after a slash (/):

BEST=i > 0
specifies the maximum number of points displayed in the “Parameters” table, selected
as the points with the maximum likelihood values. By default, all grid values are
displayed.

DATA=SAS-data-set
specifies a SAS data set containing parameter names and starting values. The data set
should be in one of two forms: narrow or wide. The narrow-form data set contains
the variables PARAMETER and ESTIMATE, with parameters and values listed as
distinct observations. The wide-form data set has the parameters themselves as vari-
ables, and each observation provides a different set of starting values. BY groups are
ignored in this data set, so the same starting grid is evaluated for each BY group.

PREDICT Statement

PREDICT expression OUT=SAS-data-set <options> ;

The PREDICT statement enables you to construct predictions of an expression across
all of the observations in the input data set. Any valid SAS programming expres-
sion involving the input data set variables, parameters, and random effects is valid.
Predicted values are computed using the parameter estimates and empirical Bayes
estimates of the random effects. Standard errors of prediction are computed using
the delta method (Billingsley 1986). Results are placed in an output data set that
you specify with the OUT= option. Besides all variables from the input data set, the
OUT= data set contains the following variables: Pred, StdErrPred, DF, tValue, Probt,
Alpha, Lower, Upper. You can also add other computed quantities to this data set
with the ID statement.

The following options are available in the PREDICT statement:

ALPHA=�
specifies the alpha level to be used in computingt statistics and intervals. The default
value corresponds to the ALPHA= option in the PROC NLMIXED statement.

DER
requests that derivatives of the predicted expression with respect to all parameters be
included in the OUT= data set. The variable names for the derivatives are the same
as the parameter names with the prefix “Der–” appended. All of the derivatives are
evaluated at the final estimates of the parameters and the empirical Bayes estimates
of the random effects.
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DF=d
specifies the degrees of freedom to be used in computingt statistics and intervals in
the OUT= data set. The default value corresponds to the DF= option in the PROC
NLMIXED statement.

RANDOM Statement

RANDOM random-effects � distribution SUBJECT=variable <options> ;

The RANDOM statement defines the random effects and their distribution. The ran-
dom effects must be represented by symbols that appear in your SAS programming
statements. They typically influence the mean value of the distribution specified in
the MODEL statement. The RANDOM statement consists of a list of the random
effects (usually just one or two symbols), a tilde (�), the distribution for the random
effects, and then a SUBJECT= variable.

NOTE: The input data set must be clustered according to the SUBJECT= variable.
One easy way to accomplish this is to sort your data by the SUBJECT= variable
prior to calling PROC NLMIXED. PROC NLMIXED does not sort the input data set
for you; rather, it processes the data sequentially and considers an observation to be
from a new subject whenever the value of its SUBJECT= changes from the previous
observation.

The only distribution currently available for the random effects is normal(m,v) with
meanm and variancev. This syntax is illustrated as follows for one effect:

random u ~ normal(0,s2u) subject=clinic;

For multiple effects, you should specify bracketed vectors form andv, the latter con-
sisting of the lower triangle of the random-effects variance matrix. This is illustrated
for two random effects as follows.

random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=person;

The SUBJECT= variable determines when new realizations of the random effects are
assumed to occur. PROC NLMIXED assumes that a new realization occurs whenever
the SUBJECT= variable changes from the previous observation, so your input data
set should be clustered according to this variable. One easy way to accomplish this is
to run PROC SORT prior to calling PROC NLMIXED using the SUBJECT= variable
as the BY variable.

Only one RANDOM statement is permitted, so multilevel nonlinear mixed models
are not currently accommodated.

The following options are available in the RANDOM statement:

ALPHA=�
specifies the alpha level to be used in computingt statistics and intervals. The default
value corresponds to the ALPHA= option in the PROC NLMIXED statement.
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DF=d
specifies the degrees of freedom to be used in computingt statistics and intervals in
the OUT= data set. The default value corresponds to the DF= option in the PROC
NLMIXED statement.

OUT=SAS-data-set
requests an output data set containing empirical Bayes estimates of the random effects
and their approximate standard errors of prediction.

REPLICATE Statement

REPLICATE variable ;

The REPLICATE statement provides a way to accommodate models in which dif-
ferent subjects have identical data. This occurs most commonly when the dependent
variable is binary. When you specify a REPLICATE variable, PROC NLMIXED as-
sumes that its value indicates the number of subjects having data identical to those for
the current value of the SUBJECT= variable (specified in the RANDOM statement).
Only the last observation of the REPLICATE variable for each subject is used, and
the replicate variable must have only positive integer values.

Programming Statements

This section lists the programming statements used to code the log likelihood func-
tion in PROC NLMIXED. It also documents the differences between programming
statements in PROC NLMIXED and programming statements in the DATA step. The
syntax of programming statements used in PROC NLMIXED is identical to that used
in the CALIS and GENMOD procedures (see Chapter 19 and Chapter 29, respec-
tively), and the MODEL procedure (refer to theSAS/ETS User’s Guide). Most of the
programming statements that can be used in the SAS DATA step can also be used
in the NLMIXED procedure. Refer toSAS Language Reference: Dictionaryfor a
description of SAS programming statements. The following are valid statements:

ABORT;
CALL name [ ( expression [, expression ... ] ) ];
DELETE;
DO [ variable = expression

[ TO expression ] [BY expression ]
[, expression [TO expression ] [BY expression ] ... ]

]
[ WHILE expression ] [UNTIL expression ];

END;
GOTO statement–label;
IF expression;
IF expressionTHEN program–statement;

ELSE program–statement;
variable= expression;
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variable+ expression;
LINK statement–label;
PUT [ variable] [ =] [...] ;
RETURN;
SELECT [( expression)];
STOP;
SUBSTR( variable, index, length ) = expression;
WHEN ( expression) program–statement;

OTHERWISE program–statement;

For the most part, the SAS programming statements work the same as they do in the
SAS DATA step, as documented inSAS Language Reference: Concepts; however,
there are several differences.

� The ABORT statement does not allow any arguments.

� The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported; however, the following statement is not supported.

do i = ’A’,’B’,’C’;

� The PUT statement, used mostly for program debugging in PROC NLMIXED,
supports only some of the features of the DATA step PUT statement, and it has
some new features that the DATA step PUT statement does not.

– The PROC NLMIXED PUT statement does not support line pointers, fac-
tored lists, iteration factors, overprinting,–INFILE–, the colon (:) format
modifier, or “$”.

– The PROC NLMIXED PUT statement does support expressions, but the
expression must be enclosed in parentheses. For example, the following
statement displays the square root of x:

put (sqrt(x));

– The PROC NLMIXED PUT statement supports the item–PDV– to dis-
play a formatted listing of all variables in the program. For example, the
following statement displays a much more readable listing of the vari-
ables than the–ALL – print item:

put - pdv - ;

� The WHEN and OTHERWISE statements enable you to specify more than
one target statement. That is, DO/END groups are not necessary for multiple
statement WHENs. For example, the following syntax is valid.
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select;
when ( exp1) stmt1;

stmt2;
when ( exp2) stmt3;

stmt4;
end;

When coding your programming statements, you should avoid defining variables that
begin with an underscore (–), as they may conflict with internal variables created by
PROC NLMIXED.

Details

This section contains details about the underlying theory and computations of PROC
NLMIXED.

Modeling Assumptions and Notation

PROC NLMIXED operates under the following general framework for nonlinear
mixed models. Assume that you have an observed data vectoryi for each ofi sub-
jects,i = 1; : : : ; s. Theyi are assumed to be independent acrossi, but within-subject
covariance is likely to exist because each of the elements ofyi are measured on the
same subject. As a statistical mechanism for modeling this within-subject covariance,
assume that there exist latent random-effect vectorsui of small dimension (typically
one or two) that are also independent acrossi. Assume also that an appropriate model
linking yi andui exists, leading to the joint probability density function

p(yijXi; �; ui)q(uij�)

whereXi is a matrix of observed explanatory variables and� and� are vectors of
unknown parameters.

Let � = (�; �) and assume that it is of dimensionn. Then inferences about� are
based on the marginal likelihood function

m(�) =
sY

i=1

Z
p(yijXi; �; ui)q(uij�)dui

In particular, the function
f(�) = � logm(�)

is minimized over� numerically in order to estimate�, and the inverse Hessian (sec-
ond derivative) matrix at the estimates provides an approximate variance-covariance
matrix for the estimate of�. The functionf(�) is referred to both as the negative log
likelihood function and as the objective function for optimization.
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As an example of the preceding general framework, consider the nonlinear growth
curve example in the “Getting Started” section. Here, the conditional distribution
p(yijXi; �; ui) is normal with mean

b1 + ui1
1 + exp[�(dij � b2)=b3]

and variance�2e ; thus� = (b1; b2; b3; �
2
e). Also, ui is a scalar andq(uij�) is normal

with mean 0 and variance�2u; thus� = �2u.

The following additional notation is also found in this chapter. The quantity�(k)

refers to the parameter vector at thekth iteration, the functiong(�) refers to the
gradient vectorrf(�), and the matrixH(�) refers to the Hessianr2f(�). Other
symbols are used to denote various constants or option values.

Integral Approximations

An important part of the marginal maximum likelihood method described previously
is the computation of the integral over the random effects. The default method in
PROC NLMIXED for computing this integral is adaptive Gaussian quadrature as
described in Pinheiro and Bates (1995). Another approximation method is the first-
order method of Beal and Sheiner (1982, 1988). A description of these two methods
follows.

Adaptive Gaussian Quadrature
A quadrature method approximates a given integral by a weighted sum over prede-
fined abscissas for the random effects. A good approximation can usually be obtained
with an adequate number of quadrature points as well as appropriate centering and
scaling of the abscissas. Adaptive Gaussian quadrature for the integral overui cen-
ters the integral at the empirical Bayes estimate ofui, defined as the vector̂ui that
minimizes

� log [p(yijXi; �; ui)q(uij�)]
with � and� set equal to their current estimates. The final Hessian matrix from this
optimization can be used to scale the quadrature abscissas.

Suppose(zj ; wj ; j = 1; : : : ; p) denote the standard Gauss-Hermite abscissas and
weights (Golub and Welsch 1969, or Table 25.10 of Abramowitz and Stegun 1972).
The adaptive Gaussian quadrature integral approximation is as follows.Z

p(yijXi; �; ui)q(uij�)dui �

2r=2 j�(Xi; �)j�1=2
pX

j1=1

� � �
pX

jr=1

"
p(yijXi; �; aj1;:::;jr)q(aj1;:::;jr j�)

rY
k=1

wjk exp z
2
jk

#

wherer is the dimension ofui, �(Xi; �) is the Hessian matrix from the empirical
Bayes minimization,zj1;:::;jr is a vector with elements(zj1 ; : : : ; zjr), and

aj1;:::;jr = ûi + 21=2�(Xi; �)
�1=2zj1;:::;jr
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PROC NLMIXED selects the number of quadrature points adaptively by evaluating
the log likelihood function at the starting values of the parameters until two successive
evaluations have a relative difference less than the value of the QTOL= option. The
specific search sequence is described under the QFAC= option. Using the QPOINTS=
option, you can adjust the number of quadrature pointsp to obtain different levels of
accuracy. Settingp = 1 results in the Laplacian approximation as described in Beal
and Sheiner (1992), Wolfinger (1993), Vonesh (1992, 1996), Vonesh and Chinchilli
(1997), and Wolfinger and Lin (1997).

The NOAD option in the PROC NLMIXED statement requests nonadaptive Gaussian
quadrature. Here all̂ui are set equal to zero, and the Cholesky root of the estimated
variance matrix of the random effects is substituted for�(Xi; �)

�1=2 in the preceding
expression foraj1;:::;jr . The NOADSCALE option requests the same scaling substi-
tution but with the empirical Bayeŝui.

PROC NLMIXED computes the derivatives of the adaptive Gaussian quadrature ap-
proximation when carrying out the default dual quasi-Newton optimization.

First-Order Method
Another integral approximation available in PROC NLMIXED is the first-order
method of Beal and Sheiner (1982, 1988) and Sheiner and Beal (1985). This ap-
proximation is used only in the case wherep(yijXi; �; ui) is normal, that is,

p(yijXi; �; ui) = (2�)�ni=2 jRi(Xi; �)j�1=2

exp
n
�(1=2) [yi �mi(Xi; �; ui)]

T Ri(Xi; �)
�1 [yi �mi(Xi; �; ui)]

o

whereni is the dimension ofyi, Ri is a diagonal variance matrix, andmi is the
conditional mean vector ofyi.

The first-order approximation is obtained by expandingm(Xi; �; ui) with a one-term
Taylor series expansion aboutui = 0, resulting in the approximation

p(yijXi; �; ui) � (2�)�ni=2 jRi(Xi; �)j�1=2

exp
�
�(1=2) [yi �mi(Xi; �; 0) � Zi(Xi; �)ui]

T Ri(Xi; �)
�1

[yi �mi(Xi; �; 0) � Zi(Xi; �)ui])

whereZi(Xi; �) is the Jacobian matrix@mi(Xi; �; ui)=@ui evaluated atui = 0.

Assuming thatq(uij�) is normal with mean0 and variance matrixG(�), the first-order
integral approximation is computable in closed form after completing the square:Z

p(yijXi; �; ui)q(uij�)dui � (2�)�ni=2 jVi(Xi; �)j�1=2

exp
�
�(1=2) [yi �mi(Xi; �; 0)]

T Vi(Xi; �)
�1 [yi �mi(Xi; �; 0)]

�

whereVi(Xi; �) = Zi(Xi; �)G(�)Zi(Xi; �)
T + Ri(Xi; �). The resulting approxi-

mation forf(�) is then minimized over� = (�; �) to obtain the first-order estimates.
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PROC NLMIXED uses finite-difference derivatives of the first-order integral approx-
imation when carrying out the default dual quasi-Newton optimization.

Optimization Algorithms

There are several optimization techniques available in PROC NLMIXED. You can
choose a particular optimizer with the TECH=name option in the PROC NLMIXED
statement.

Algorithm TECH=
trust region Method TRUREG
Newton-Raphson method with line search NEWRAP
Newton-Raphson method with ridging NRRIDG
quasi-Newton methods (DBFGS, DDFP, BFGS, DFP)QUANEW
double-dogleg method (DBFGS, DDFP) DBLDOG
conjugate gradient methods (PB, FR, PR, CD) CONGRA
Nelder-Mead simplex method NMSIMP

No algorithm for optimizing general nonlinear functions exists that always finds the
global optimum for a general nonlinear minimization problem in a reasonable amount
of time. Since no single optimization technique is invariably superior to others, PROC
NLMIXED provides a variety of optimization techniques that work well in various
circumstances. However, you can devise problems for which none of the techniques
in PROC NLMIXED can find the correct solution. Moreover, nonlinear optimization
can be computationally expensive in terms of time and memory, so you must be
careful when matching an algorithm to a problem.

All optimization techniques in PROC NLMIXED useO(n2) memory except the con-
jugate gradient methods, which use onlyO(n) of memory and are designed to opti-
mize problems with many parameters. Since the techniques are iterative, they require
the repeated computation of

� the function value (optimization criterion)

� the gradient vector (first-order partial derivatives)

� for some techniques, the (approximate) Hessian matrix (second-order partial
derivatives)

However, since each of the optimizers requires different derivatives, some computa-
tional efficiencies can be gained. The following table shows, for each optimization
technique, which derivatives are required (FOD: first-order derivatives; SOD: second-
order derivatives).
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Algorithm FOD SOD
TRUREG x x
NEWRAP x x
NRRIDG x x
QUANEW x -
DBLDOG x -
CONGRA x -
NMSIMP - -

Each optimization method employs one or more convergence criteria that determine
when it has converged. The various termination criteria are listed and described in
the “PROC NLMIXED Statement” section. An algorithm is considered to have con-
verged when any one of the convergence criterion is satisfied. For example, under the
default settings, the QUANEW algorithm will converge ifABSGCONV < 1E�5,
FCONV < 10�FDIGITS, orGCONV < 1E� 8.

Choosing an Optimization Algorithm
The factors that go into choosing a particular optimization technique for a particular
problem are complex and may involve trial and error.

For many optimization problems, computing the gradient takes more computer time
than computing the function value, and computing the Hessian sometimes takesmuch
more computer time and memory than computing the gradient, especially when there
are many decision variables. Unfortunately, optimization techniques that do not use
some kind of Hessian approximation usually require many more iterations than tech-
niques that do use a Hessian matrix, and as a result the total run time of these tech-
niques is often longer. Techniques that do not use the Hessian also tend to be less
reliable. For example, they can more easily terminate at stationary points rather than
at global optima.

A few general remarks about the various optimization techniques are as follows.

� The second-derivative methods TRUREG, NEWRAP, and NRRIDG are best
for small problems where the Hessian matrix is not expensive to compute.
Sometimes the NRRIDG algorithm can be faster than the TRUREG algorithm,
but TRUREG can be more stable. The NRRIDG algorithm requires only one
matrix with n(n + 1)=2 double words; TRUREG and NEWRAP require two
such matrices.

� The first-derivative methods QUANEW and DBLDOG are best for medium-
sized problems where the objective function and the gradient are much faster
to evaluate than the Hessian. The QUANEW and DBLDOG algorithms, in
general, require more iterations than TRUREG, NRRIDG, and NEWRAP, but
each iteration can be much faster. The QUANEW and DBLDOG algorithms
require only the gradient to update an approximate Hessian, and they require
slightly less memory than TRUREG or NEWRAP (essentially one matrix with
n(n+ 1)=2 double words). QUANEW is the default optimization method.

� The first-derivative method CONGRA is best for large problems where the ob-
jective function and the gradient can be computed much faster than the Hessian
and where too much memory is required to store the (approximate) Hessian.
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The CONGRA algorithm, in general, requires more iterations than QUANEW
or DBLDOG, but each iteration can be much faster. Since CONGRA requires
only a factor ofn double-word memory, many large applications of PROC
NLMIXED can be solved only by CONGRA.

� The no-derivative method NMSIMP is best for small problems where deriva-
tives are not continuous or are very difficult to compute.

Algorithm Descriptions
Some details about the optimization techniques are as follows.

Trust Region Optimization (TRUREG)
The trust region method uses the gradientg(�(k)) and the Hessian matrixH(�(k));
thus, it requires that the objective functionf(�) have continuous first- and second-
order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlin-
ear objective function within a hyperelliptic trust region with radius� that constrains
the step size corresponding to the quality of the quadratic approximation. The trust
region method is implemented using Dennis, Gay, and Welsch (1981), Gay (1983),
and Moré and Sorensen (1983).

The trust region method performs well for small- to medium-sized problems, and it
does not need many function, gradient, and Hessian calls. However, if the compu-
tation of the Hessian matrix is computationally expensive, one of the (dual) quasi-
Newton or conjugate gradient algorithms may be more efficient.

Newton-Raphson Optimization with Line Search (NEWRAP)
The NEWRAP technique uses the gradientg(�(k)) and the Hessian matrixH(�(k));
thus, it requires that the objective function have continuous first- and second-order
derivatives inside the feasible region. If second-order derivatives are computed effi-
ciently and precisely, the NEWRAP method may perform well for medium-sized to
large problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully. Oth-
erwise, a combination of ridging and line search is performed to compute successful
steps. If the Hessian is not positive definite, a multiple of the identity matrix is added
to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is performed along the search direction to find an
approximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation (LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)
The NRRIDG technique uses the gradientg(�(k)) and the Hessian matrixH(�(k));
thus, it requires that the objective function have continuous first- and second-order
derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully. If at
least one of these two conditions is not satisfied, a multiple of the identity matrix is
added to the Hessian matrix.
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The NRRIDG method performs well for small- to medium-sized problems, and it
does not require many function, gradient, and Hessian calls. However, if the com-
putation of the Hessian matrix is computationally expensive, one of the (dual) quasi-
Newton or conjugate gradient algorithms may be more efficient.

Since the NRRIDG technique uses an orthogonal decomposition of the approximate
Hessian, each iteration of NRRIDG can be slower than that of the NEWRAP tech-
nique, which works with Cholesky decomposition. Usually, however, NRRIDG re-
quires fewer iterations than NEWRAP.

Quasi-Newton Optimization (QUANEW)
The (dual) quasi-Newton method uses the gradientg(�(k)), and it does not need to
compute second-order derivatives since they are approximated. It works well for
medium to moderately large optimization problems where the objective function and
the gradient are much faster to compute than the Hessian; but, in general, it requires
more iterations than the TRUREG, NEWRAP, and NRRIDG techniques, which com-
pute second-order derivatives. QUANEW is the default optimization algorithm be-
cause it provides an appropriate balance between the speed and stability required for
most nonlinear mixed model applications.

The QUANEW technique is one of the following, depending upon the value of the
UPDATE= option.

� the original quasi-Newton algorithm, which updates an approximation of the
inverse Hessian

� the dual quasi-Newton algorithm, which updates the Cholesky factor of an ap-
proximate Hessian (default)

You can specify four update formulas with the UPDATE= option:

� DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
update of the Cholesky factor of the Hessian matrix. This is the default.

� DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the
Cholesky factor of the Hessian matrix.

� BFGS performs the original BFGS update of the inverse Hessian matrix.

� DFP performs the original DFP update of the inverse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an
approximate optimum. The default line-search method uses quadratic interpolation
and cubic extrapolation to obtain a step size� satisfying the Goldstein conditions.
One of the Goldstein conditions can be violated if the feasible region defines an upper
limit of the step size. Violating the left-side Goldstein condition can affect the positive
definiteness of the quasi-Newton update. In that case, either the update is skipped or
the iterations are restarted with an identity matrix, resulting in the steepest descent or
ascent search direction. You can specify line-search algorithms other than the default
with the LIS= option.

The QUANEW algorithm performs its own line-search technique. All options and
parameters (except the INSTEP= option) controlling the line search in the other algo-
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rithms do not apply here. In several applications, large steps in the first iterations are
troublesome. You can use the INSTEP= option to impose an upper bound for the step
size� during the first five iterations. You can also use the INHESSIAN[=r] option
to specify a different starting approximation for the Hessian. If you specify only the
INHESSIAN option, the Cholesky factor of a (possibly ridged) finite difference ap-
proximation of the Hessian is used to initialize the quasi-Newton update process. The
values of the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which con-
trol the processing of linear and boundary constraints, are valid only for the quadratic
programming subroutine used in each iteration of the QUANEW algorithm.

Double Dogleg Optimization (DBLDOG)
The double dogleg optimization method combines the ideas of the quasi-Newton and
trust region methods. In each iteration, the double dogleg algorithm computes the
steps(k) as the linear combination of the steepest descent or ascent search direction

s
(k)
1 and a quasi-Newton search directions(k)2 .

s(k) = �1s
(k)
1 + �2s

(k)
2

The step is requested to remain within a prespecified trust region radius; refer to
Fletcher (1987, p. 107). Thus, the DBLDOG subroutine uses the dual quasi-Newton
update but does not perform a line search. You can specify two update formulas with
the UPDATE= option:

� DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno update of
the Cholesky factor of the Hessian matrix. This is the default.

� DDFP performs the dual Davidon, Fletcher, and Powell update of the Cholesky
factor of the Hessian matrix.

The double dogleg optimization technique works well for medium to moderately
large optimization problems where the objective function and the gradient are much
faster to compute than the Hessian. The implementation is based on Dennis and
Mei (1979) and Gay (1983), but it is extended for dealing with boundary and lin-
ear constraints. The DBLDOG technique generally requires more iterations than the
TRUREG, NEWRAP, or NRRIDG technique, which requires second-order deriva-
tives; however, each of the DBLDOG iterations is computationally cheap. Further-
more, the DBLDOG technique requires only gradient calls for the update of the
Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)
Second-order derivatives are not required by the CONGRA algorithm and are not
even approximated. The CONGRA algorithm can be expensive in function and gra-
dient calls, but it requires onlyO(n) memory for unconstrained optimization. In
general, many iterations are required to obtain a precise solution, but each of the
CONGRA iterations is computationally cheap. You can specify four different update
formulas for generating the conjugate directions by using the UPDATE= option:

� PB performs the automatic restart update method of Powell (1977) and Beale
(1972). This is the default.
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� FR performs the Fletcher-Reeves update (Fletcher 1987).

� PR performs the Polak-Ribiere update (Fletcher 1987).

� CD performs a conjugate-descent update of Fletcher (1987).

The default, UPDATE=PB, behaved best in most test examples. You are advised to
avoid the option UPDATE=CD, which behaved worst in most test examples.

The CONGRA subroutine should be used for optimization problems with largen. For
the unconstrained or boundary constrained case, CONGRA requires onlyO(n) bytes
of working memory, whereas all other optimization methods require orderO(n2)
bytes of working memory. Duringn successive iterations, uninterrupted by restarts
or changes in the working set, the conjugate gradient algorithm computes a cycle
of n conjugate search directions. In each iteration, a line search is performed along
the search direction to find an approximate optimum of the objective function. The
default line-search method uses quadratic interpolation and cubic extrapolation to ob-
tain a step size� satisfying the Goldstein conditions. One of the Goldstein conditions
can be violated if the feasible region defines an upper limit for the step size. Other
line-search algorithms can be specified with the LIS= option.

Nelder-Mead Simplex Optimization (NMSIMP)
The Nelder-Mead simplex method does not use any derivatives and does not assume
that the objective function has continuous derivatives. The objective function itself
needs to be continuous. This technique is quite expensive in the number of function
calls, and it may be unable to generate precise results forn� 40.

The original Nelder-Mead simplex algorithm is implemented and extended to bound-
ary constraints. This algorithm does not compute the objective for infeasible points,
but it changes the shape of the simplex adapting to the nonlinearities of the objective
function, which contributes to an increased speed of convergence. It uses a special
termination criteria.

Finite Difference Approximations of Derivatives

The FD= and FDHESSIAN= options specify the use of finite difference approx-
imations of the derivatives. The FD= option specifies that all derivatives are ap-
proximated using function evaluations, and the FDHESSIAN= option specifies that
second-order derivatives are approximated using gradient evaluations.

Computing derivatives by finite difference approximations can be very time consum-
ing, especially for second-order derivatives based only on values of the objective
function (FD= option). If analytical derivatives are difficult to obtain (for example, if
a function is computed by an iterative process), you might consider one of the opti-
mization techniques that uses first-order derivatives only (QUANEW, DBLDOG, or
CONGRA).

Forward Difference Approximations
The forward difference derivative approximations consume less computer time, but
they are usually not as precise as approximations that use central difference formulas.
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� For first-order derivatives,n additional function calls are required:

gi =
@f

@�i
� f(� + hiei)� f(�)

hi

� For second-order derivatives based on function calls only (Dennis and Schnabel
1983, p. 80),n+n2=2 additional function calls are required for dense Hessian:

@2f

@�i@�j
� f(� + hiei + hjej)� f(� + hiei)� f(� + hjej) + f(�)

hihj

� For second-order derivatives based on gradient calls (Dennis and Schnabel
1983, p. 103),n additional gradient calls are required:

@2f

@�i@�j
� gi(� + hjej)� gi(�)

2hj
+
gj(� + hiei)� gj(�)

2hi

Central Difference Approximations
Central difference approximations are usually more precise, but they consume more
computer time than approximations that use forward difference derivative formulas.

� For first-order derivatives,2n additional function calls are required:

gi =
@f

@�i
� f(� + hiei)� f(� � hiei)

2hi

� For second-order derivatives based on function calls only (Abramowitz and
Stegun 1972, p. 884),2n+ 4n2=2 additional function calls are required.

@2f

@�2i
� �f(�+ 2hiei) + 16f(� + hiei)� 30f(�) + 16f(� � hiei)� f(� � 2hiei)

12h2i

@2f

@�i@�j
� f(� + hiei + hjej)� f(� + hiei � hjej)� f(� � hiei + hjej) + f(� � hiei � hjej)

4hihj

� For second-order derivatives based on gradient calls,2n additional gradient
calls are required:

@2f

@�i@�j
� gi(� + hjej)� gi(� � hjej)

4hj
+
gj(� + hiei)� gj(� � hiei)

4hi

You can use the FDIGITS== option to specify the number of accurate digits in the
evaluation of the objective function. This specification is helpful in determining an
appropriate interval sizeh to be used in the finite difference formulas.
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The step sizeshj , j = 1; : : : ; n are defined as follows.

� For the forward difference approximation of first-order derivatives using func-
tion calls and second-order derivatives using gradient calls,hj = 2

p
�(1+ j�j j).

� For the forward difference approximation of second-order derivatives using
only function calls and all central difference formulas,hj = 3

p
�(1 + j�j j).

The value of� is defined by the FDIGITS= option:

� If you specify the number of accurate digits using FDIGITS=r, � is set to10�r.

� If you do not specify the FDIGITS= option,� is set to the machine precision�.

Hessian Scaling

The rows and columns of the Hessian matrix can be scaled when you use the trust
region, Newton-Raphson, and double dogleg optimization techniques. Each element
Hi;j, i; j = 1; : : : ; n is divided by the scaling factordidj , where the scaling vector
d = (d1; : : : ; dn) is iteratively updated in a way specified by the HESCAL=i option,
as follows.

i = 0 : No scaling is done (equivalent todi = 1).

i 6= 0 : First iteration and each restart iteration sets:

d
(0)
i =

q
max(jH(0)

i;i j; �)

i = 1 : Refer to Moré (1978):

d
(k+1)
i = max

�
d
(k)
i ;

q
max(jH(k)

i;i j; �)
�

i = 2 : Refer to Dennis, Gay, and Welsch (1981):

d
(k+1)
i = max

�
:6d

(k)
i ;

q
max(jH(k)

i;i j; �)
�

i = 3 : di is reset in each iteration:

d
(k+1)
i =

q
max(jH(k)

i;i j; �)

In the preceding equations,� is the relative machine precision or, equivalently, the
largest double precision value that, when added to 1, results in 1.
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Active Set Methods

The parameter vector� 2 Rn can be subject to a set ofm linear equality and inequal-
ity constraints:

nX
j=1

aij�j = bi i = 1; : : : ;me

nX
j=1

aij�j � bi i = me + 1; : : : ;m

The coefficientsaij and right-hand sidesbi of the equality and inequality constraints
are collected in them� n matrixA and them vectorb.

Them linear constraints define a feasible regionG in Rn that must contain the point
�� that minimizes the problem. If the feasible regionG is empty, no solution to the
optimization problem exists.

In PROC NLMIXED, all optimization techniques useactive set methods. The itera-
tion starts with a feasible point�(0), which you can provide or which can be computed
by the Schittkowski and Stoer (1979) algorithm implemented in PROC NLMIXED.
The algorithm then moves from one feasible point�(k�1) to a better feasible point

�(k) along a feasible search directions(k),

�(k) = �(k�1) + �(k)s(k) ; �(k) > 0

Theoretically, the path of points�(k) never leaves the feasible regionG of the opti-

mization problem, but it can reach its boundaries. The active setA(k) of point �(k)
is defined as the index set of all linear equality constraints and those inequality con-
straints that are satisfied at�(k). If no constraint is active�(k), the point is located in

the interior ofG, and the active setA(k) = ; is empty. If the point�(k) in iteration
k hits the boundary of inequality constrainti, this constrainti becomes active and is
added toA(k). Each equality constraint and each active inequality constraint reduce
the dimension (degrees of freedom) of the optimization problem.

In practice, the active constraints can be satisfied only with finite precision. The
LCEPSILON=r option specifies the range for active and violated linear constraints.
If the point�(k) satisfies the condition

������
nX

j=1

aij�
(k)
j � bi

������ � t

wheret = r(jbij+1), the constrainti is recognized as an active constraint. Otherwise,
the constrainti is either an inactive inequality or a violated inequality or equality
constraint. Due to rounding errors in computing the projected search direction, error
can be accumulated so that an iterate�(k) steps out of the feasible region.
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In those cases, PROC NLMIXED may try to pull the iterate�(k) back into the feasible
region. However, in some cases the algorithm needs to increase the feasible region
by increasing the LCEPSILON=r value. If this happens, a message is displayed in
the log output.

If the algorithm cannot improve the value of the objective function by moving from
an active constraint back into the interior of the feasible region, it makes this inequal-
ity constraint an equality constraint in the next iteration. This means that the active
setA(k+1) still contains the constrainti. Otherwise, it releases the active inequal-
ity constraint and increases the dimension of the optimization problem in the next
iteration.

A serious numerical problem can arise when some of the active constraints become
(nearly) linearly dependent. PROC NLMIXED removes linearly dependent equality
constraints before starting optimization. You can use the LCSINGULAR= option
to specify a criterionr used in the update of the QR decomposition that determines
whether an active constraint is linearly dependent relative to a set of other active
constraints.

If the solution�� is subjected tonact linear equality or active inequality constraints,
the QR decomposition of then�nact matrix ÂT of the linear constraints is computed
by ÂT = QR, whereQ is ann � n orthogonal matrix andR is ann � nact upper
triangular matrix. Then columns of matrixQ can be separated into two matrices,
Q = [Y;Z], whereY contains the firstnact orthogonal columns ofQ andZ contains
the lastn � nact orthogonal columns ofQ. Then� (n � nact) column-orthogonal
matrixZ is also called thenullspace matrixof the active linear constraintŝAT . The
n�nact columns of then� (n�nact) matrixZ form a basis orthogonal to the rows
of thenact � n matrix Â.

At the end of the iterating, PROC NLMIXED computes theprojected gradientgZ ,

gZ = ZT g

In the case of boundary-constrained optimization, the elements of the projected gradi-
ent correspond to the gradient elements of the free parameters. A necessary condition
for �� to be a local minimum of the optimization problem is

gZ(��) = ZT g(��) = 0

The symmetricnact � nact matrixGZ ,

GZ = ZTGZ

is called aprojected Hessian matrix. A second-order necessary condition for�� to be
a local minimizer requires that the projected Hessian matrix is positive semidefinite.
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Those elements of thenact vector of first-order estimates ofLagrange multipliers,

� = (ÂÂT )�1ÂZZT g

that correspond to active inequality constraints indicate whether an improvement of
the objective function can be obtained by releasing this active constraint. For mini-
mization, a significant negative Lagrange multiplier indicates that a possible reduc-
tion of the objective function can be achieved by releasing this active linear constraint.
The LCDEACT=r option specifies a thresholdr for the Lagrange multiplier that de-
termines whether an active inequality constraint remains active or can be deactivated.
(In the case of boundary-constrained optimization, the Lagrange multipliers for active
lower (upper) constraints are the negative (positive) gradient elements corresponding
to the active parameters.)

Line-Search Methods

In each iterationk, the (dual) quasi-Newton, conjugate gradient, and Newton-
Raphson minimization techniques use iterative line-search algorithms that try to opti-
mize a linear, quadratic, or cubic approximation off along a feasible descent search
directions(k)

�(k+1) = �(k) + �(k)s(k); �(k) > 0

by computing an approximately optimal scalar�(k).

Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear
functionf(�) of one parameter (�) within each iterationk of the optimization tech-
nique. Since the outside iteration process is based only on the approximation of the
objective function, the inside iteration of the line-search algorithm does not have to be
perfect. Usually, it is satisfactory that the choice of� significantly reduces (in a min-
imization) the objective function. Criteria often used for termination of line-search
algorithms are the Goldstein conditions (refer to Fletcher 1987).

You can select various line-search algorithms by specifying the LIS= option. The
line-search method LIS=2 seems to be superior when function evaluation consumes
significantly less computation time than gradient evaluation. Therefore, LIS=2 is the
default method for Newton-Raphson, (dual) quasi-Newton, and conjugate gradient
optimizations.

You can modify the line-search methods LIS=2 and LIS=3 to be exact line searches
by using the LSPRECISION= option and specifying the� parameter described in
Fletcher (1987). The line-search methods LIS=1, LIS=2, and LIS=3 satisfy the left-
hand side and right-hand side Goldstein conditions (refer to Fletcher 1987). When
derivatives are available, the line-search methods LIS=6, LIS=7, and LIS=8 try to
satisfy the right-hand side Goldstein condition; if derivatives are not available, these
line-search algorithms use only function calls.
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Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques that can eas-
ily lead them to (feasible) points where the objective functionf is no longer defined
or difficult to compute. Therefore, PROC NLMIXED provides options restricting the
step length� or trust region radius�, especially during the first main iterations.

The inner productgT s of the gradientg and the search directions is the slope of
f(�) = f(� + �s) along the search directions. The default starting value�(0) =
�(k;0) in each line-search algorithm (min�>0 f(� + �s)) during the main iterationk
is computed in three steps:

1. The first step uses either the differencedf = jf (k) � f (k�1)j of the function
values during the last two consecutive iterations or the final step-size value�–

of the last iterationk � 1 to compute a first value of�(0)1 .

� If the DAMPSTEP option is not used,

�
(0)
1 =

8<
:

step if 0:1 � step � 10
10 if step > 10
0:1 if step < 0:1

with

step =

�
df=jgT sj if jgT sj � �max(100df; 1)
1 otherwise

This value of�(0)1 can be too large and can lead to a difficult or impossible
function evaluation, especially for highly nonlinear functions such as the
EXP function.

� If the DAMPSTEP[=r] option is used,

�
(0)
1 = min(1; r�–)

The initial value for the new step length can be no larger thanr times the
final step length�– of the former iteration. The default value isr = 2.

2. During the first five iterations, the second step enables you to reduce�
(0)
1 to a

smaller starting value�(0)2 using the INSTEP=r option:

�
(0)
2 = min(�

(0)
1 ; r)

After more than five iterations,�(0)2 is set to�(0)1 .

3. The third step can further reduce the step length by

�
(0)
3 = min(�

(0)
2 ;min(10; u))

whereu is the maximum length of a step inside the feasible region.

The INSTEP=r option enables you to specify a smaller or larger radius� of the trust
region used in the first iteration of the trust region and double dogleg algorithms.
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The default initial trust region radius�(0) is the length of the scaled gradient (Moré
1978). This step corresponds to the default radius factor ofr = 1. In most practi-
cal applications of the TRUREG and DBLDOG algorithms, this choice is successful.
However, for bad initial values and highly nonlinear objective functions (such as the
EXP function), the default start radius can result in arithmetic overflows. If this hap-
pens, you can try decreasing values of INSTEP=r, 0 < r < 1, until the iteration
starts successfully. A small factorr also affects the trust region radius�(k+1) of the
next steps because the radius is changed in each iteration by a factor0 < c � 4, de-
pending on the ratio� expressing the goodness of quadratic function approximation.
Reducing the radius� corresponds to increasing the ridge parameter�, producing
smaller steps directed more closely toward the (negative) gradient direction.

Computational Problems

Floating Point Errors and Overflows
Numerical optimization of a numerically integrated function is a difficult task, and
the computation of the objective function and its derivatives can lead to arithmetic ex-
ceptions and overflows. A typical cause of these problems is parameters with widely
varying scales. If the scaling of your parameters varies by more than a few orders
of magnitude, the numerical stability of the optimization problem can be seriously
reduced and result in computational difficulties. A simple remedy is to rescale each
parameter so that its final estimated value has a magnitude near 1.

If parameter rescaling does not help, consider the following actions:

� Specify the ITDETAILS option in the PROC NLMIXED statement to obtain
more detailed information about when and where the problem is occurring.

� Provide different initial values or try a grid search of values.

� Use boundary constraints to avoid the region where overflows may happen.

� Delete outlying observations or subjects from the input data, if this is reason-
able.

� Change the algorithm (specified in programming statements) that computes the
objective function.

The line-search algorithms that work with cubic extrapolation are especially sensitive
to arithmetic overflows. If an overflow occurs during a line search, you can use
the INSTEP= option to reduce the length of the first trial step during the first five
iterations, or you can use the DAMPSTEP or MAXSTEP option to restrict the step
length of the initial� in subsequent iterations. If an arithmetic overflow occurs in
the first iteration of the trust region or double dogleg algorithms, you can use the
INSTEP= option to reduce the default trust region radius of the first iteration. You
can also change the optimization technique or the line-search method.

Long Run Times
PROC NLMIXED can take a long time to run for problems with complex models,
many parameters, or large input data sets. Although the optimization techniques used
by PROC NLMIXED are some of the best ones available, they are not guaranteed
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to converge quickly for all problems. Ill-posed or misspecified models can cause the
algorithms to use more extensive calculations designed to achieve convergence, and
this can result in longer run times. So first make sure that your model is specified
correctly, that your parameters are scaled to be of the same order of magnitude, and
that your data reasonably match the model you are contemplating.

If you are using the default adaptive Gaussian quadrature algorithm and no iteration
history is printing at all, then PROC NLMIXED may be bogged down trying to deter-
mine the number of quadrature points at the first set of starting values. Specifying the
QPOINTS= option will bypass this stage and proceed directly to iterations; however,
be aware that the likelihood approximation may not be accurate if there are too few
quadrature points.

PROC NLMIXED may also have difficulty determining the number of quadrature
points if the intitial starting values are far from the optimum values. To obtain more
accurate starting values for the model parameters, one easy method is to fit a model
with no RANDOM statement. You can then use these estimates as starting values,
although you will still need to specify values for the random-effects distribution. For
normal-normal models, another strategy is to use METHOD=FIRO. If you can obtain
estimates using this approximate method, then they can be used as starting values for
more accurate likelihood approximations.

If you are running PROC NLMIXED multiple times, you will probably want to in-
clude a statement like the following in your program:

ods output ParameterEstimates=pe;

This statement creates a SAS data set named PE upon completion of the run. In your
next invocation of PROC NLMIXED, you can then specify

parms / data=pe;

to read in the previous estimates as starting values.

To speed general computations, you should check over your programming statements
to minimize the number of floating point operations. Using auxilliary variables and
factorizing amenable expressions can be useful changes in this regard.

Problems Evaluating Code for Objective Function
The starting point�(0) must be a point for which the programming statements can
be evaluated. However, during optimization, the optimizer may iterate to a point
�(k) where the objective function or its derivatives cannot be evaluated. In some
cases, the specification of boundary for parameters can avoid such situations. In many
other cases, you can indicate that the point�(0) is a bad point simply by returning an
extremely large value for the objective function. In these cases, the optimization
algorithm reduces the step length and stays closer to the point that has been evaluated
successfully in the former iteration.
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No Convergence
There are a number of things to try if the optimizer fails to converge.

� Change the initial values by using a grid search specification to obtain a set of
good feasible starting values.

� Change or modify the update technique or the line-search algorithm.

This method applies only to TECH=QUANEW and TECH=CONGRA. For
example, if you use the default update formula and the default line-search al-
gorithm, you can

– change the update formula with the UPDATE= option

– change the line-search algorithm with the LIS= option

– specify a more precise line search with the LSPRECISION= option, if
you use LIS=2 or LIS=3

� Change the optimization technique.

For example, if you use the default option, TECH=QUANEW, you can try
one of the second-derivative methods if your problem is small or the conjugate
gradient method if it is large.

� Adjust finite difference derivatives.

The forward difference derivatives specified with the FD[=] or FDHES-
SIAN[=] option may not be precise enough to satisfy strong gradient termi-
nation criteria. You may need to specify the more expensive central difference
formulas. The finite difference intervals may be too small or too big, and the
finite difference derivatives may be erroneous.

� Double-check the data entry and program specification.

Convergence to Stationary Point
The gradient at a stationary point is the null vector, which always leads to a zero
search direction. This point satisfies the first-order termination criterion. Search
directions that are based on the gradient are zero, so the algorithm terminates. There
are two ways to avoid this situation:

� Use the PARMS statement to specify a grid of feasible initial points.

� Use the OPTCHECK[=r] option to avoid terminating at the stationary point.

The signs of the eigenvalues of the (reduced) Hessian matrix contain information
regarding a stationary point.

� If all of the eigenvalues are positive, the Hessian matrix is positive definite, and
the point is a minimum point.

� If some of the eigenvalues are positive and all remaining eigenvalues are zero,
the Hessian matrix is positive semidefinite, and the point is a minimum or
saddle point.
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� If all of the eigenvalues are negative, the Hessian matrix is negative definite,
and the point is a maximum point.

� If some of the eigenvalues are negative and all of the remaining eigenvalues are
zero, the Hessian matrix is negative semidefinite, and the point is a maximum
or saddle point.

� If all of the eigenvalues are zero, the point can be a minimum, maximum, or
saddle point.

Precision of Solution
In some applications, PROC NLMIXED may result in parameter values that are not
precise enough. Usually, this means that the procedure terminated at a point too far
from the optimal point. The termination criteria define the size of the termination
region around the optimal point. Any point inside this region can be accepted for ter-
minating the optimization process. The default values of the termination criteria are
set to satisfy a reasonable compromise between the computational effort (computer
time) and the precision of the computed estimates for the most common applications.
However, there are a number of circumstances in which the default values of the
termination criteria specify a region that is either too large or too small.

If the termination region is too large, then it can contain points with low precision. In
such cases, you should determine which termination criterion stopped the optimiza-
tion process. In many applications, you can obtain a solution with higher precision
simply by using the old parameter estimates as starting values in a subsequent run in
which you specify a smaller value for the termination criterion that was satisfied at
the former run.

If the termination region is too small, the optimization process may take longer to
find a point inside such a region, or it may not even find such a point due to round-
ing errors in function values and derivatives. This can easily happen in applications
in which finite difference approximations of derivatives are used and the GCONV
and ABSGCONV termination criteria are too small to respect rounding errors in the
gradient values.

Covariance Matrix

The estimated covariance matrix of the parameter estimates is computed as the in-
verse Hessian matrix, and for unconstrained problems it should be positive definite.
If the final parameter estimates are subjected tonact > 0 active linear inequality
constraints, the formulas of the covariance matrices are modified similar to Gallant
(1987) and Cramer (1986, p. 38) and additionally generalized for applications with
singular matrices.

There are several steps available that enable you to tune the rank calculations of the
covariance matrix.

1. You can use the ASINGULAR=, MSINGULAR=, and VSINGULAR= options
to set three singularity criteria for the inversion of the Hessian matrixH. The
singularity criterion used for the inversion is

jdj;j j � max(ASING;VSING � jHj;jj;MSING �max(jH1;1j; : : : ; jHn;nj))
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wheredj;j is the diagonal pivot of the matrixH, and ASING, VSING, and
MSING are the specified values of the ASINGULAR=, VSINGULAR=, and
MSINGULAR= options. The default values are

� ASING: the square root of the smallest positive double precision value

� MSING: 1E � 12 if you do not specify the SINGHESS= option and
max(10�;1E-4�SINGHESS) otherwise, where� is the machine precision

� VSING: 1E � 8 if you do not specify the SINGHESS= option and the
value of SINGHESS otherwise

Note that, in many cases, a normalized matrixD�1AD�1 is decomposed, and
the singularity criteria are modified correspondingly.

2. If the matrixH is found to be singular in the first step, a generalized inverse
is computed. Depending on the G4= option, either a generalized inverse satis-
fying all four Moore-Penrose conditions is computed or a generalized inverse
satisfying only two Moore-Penrose conditions is computed. If the number of
parametersn of the application is less than or equal to G4=i, a G4 inverse is
computed; otherwise, only a G2 inverse is computed. The G4 inverse is com-
puted by the (computationally very expensive but numerically stable) eigen-
value decomposition, and the G2 inverse is computed by Gauss transformation.
The G4 inverse is computed using the eigenvalue decompositionA = Z�ZT ,
whereZ is the orthogonal matrix of eigenvectors and� is the diagonal matrix
of eigenvalues,� = diag(�1; :::; �n). The G4 inverse ofH is set to

A� = Z��ZT

where the diagonal matrix�� = diag(��1 ; :::; �
�
n ) is defined using the COVS-

ING= option.

��i =

�
1=�i if |�i| > COVSING
0 if |�i|� COVSING

If you do not specify the COVSING= option, thenr smallest eigenvalues are
set to zero, wherenr is the number of rank deficiencies found in the first step.

For optimization techniques that do not use second-order derivatives, the covariance
matrix is computed using finite difference approximations of the derivatives.

Prediction

The nonlinear mixed model is a useful tool for statistical prediction. Assuming a pre-
diction is to be made regarding theith subject, suppose thatf(�; ui) is a differentiable
function predicting some quantity of interest. Recall that� denotes the vector of un-
known parameters andui denotes the vector of random effects for theith subject.
A natural point prediction isf(�̂; ûi), where�̂ is the maximum likelihood estimate
of � and ûi is the empirical Bayes estimate ofui described previously in “Integral
Approximations.”
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An approximate prediction variance matrix for(�̂; ûi) is

P =

2
64 Ĥ�1 Ĥ�1

�
@ûi
@�

�T
�
@ûi
@�

�
Ĥ�1 �̂�1 +

�
@ûi
@�

�
Ĥ�1

�
@ûi
@�

�T
3
75

whereĤ is the approximate Hessian matrix from the optimization for�̂, �̂ is the ap-
proximate Hessian matrix from the optimization forûi, and(@ûi=@�) is the derivative
of ûi with respect to�, evaluated at(�̂; ûi). The approximate variance matrix for�̂ is
the standard one discussed in the previous section, and that forûi is an approximation
to the conditional mean squared error of prediction described by Booth and Hobert
(1998).

The prediction variance forf(�̂; ûi) is computed as follows using the delta method
(Billingsley, 1986). The derivative off(�; ui) is computed with respect to each ele-
ment of(�; ui) and evaluated at(�̂; ûi). If ai is the resulting vector, then the prediction
variance isaTi Pai.

Computational Resources

Since nonlinear optimization is an iterative process that depends on many factors,
it is difficult to estimate how much computer time is necessary to find an optimal
solution satisfying one of the termination criteria. You can use the MAXTIME=,
MAXITER=, and MAXFU= options to restrict the amount of CPU time, the number
of iterations, and the number of function calls in a single run of PROC NLMIXED.

In each iterationk, the NRRIDG technique uses a symmetric Householder transfor-
mation to decompose then� n Hessian matrixH

H = V 0TV; V : orthogonal; T : tridiagonal

to compute the (Newton) search directions

s(k) = �[H(k)]�1g(k) k = 1; 2; 3; : : :

The TRUREG and NEWRAP techniques use the Cholesky decomposition to solve
the same linear system while computing the search direction. The QUANEW,
DBLDOG, CONGRA, and NMSIMP techniques do not need to invert or decom-
pose a Hessian matrix; thus, they require less computational resources than the other
techniques.

The larger the problem, the more time is needed to compute function values and
derivatives. Therefore, you may want to compare optimization techniques by count-
ing and comparing the respective numbers of function, gradient, and Hessian evalua-
tions.
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Finite difference approximations of the derivatives are expensive because they require
additional function or gradient calls:

� forward difference formulas

– For first-order derivatives,n additional function calls are required.

– For second-order derivatives based on function calls only, for a dense
Hessian,n+ n2=2 additional function calls are required.

– For second-order derivatives based on gradient calls,n additional gradi-
ent calls are required.

� central difference formulas

– For first-order derivatives,2n additional function calls are required.

– For second-order derivatives based on function calls only, for a dense
Hessian,2n+ 2n2 additional function calls are required.

– For second-order derivatives based on gradient calls,2n additional gradi-
ent calls are required.

Many applications need considerably more time for computing second-order deriva-
tives (Hessian matrix) than for computing first-order derivatives (gradient). In such
cases, a dual quasi-Newton technique is recommended, which does not require
second-order derivatives.

Displayed Output

This section describes the displayed output from PROC NLMIXED. See the section
“ODS Table Names” on page 2481 for details about how this output interfaces with
the Output Delivery System.

Specifications
The NLMIXED procedure first displays the “Specifications” table, listing basic in-
formation about the nonlinear mixed model that you have specified. It includes the
principal variables and estimation methods.

Dimensions
The “Dimensions” table lists counts of important quantities in your nonlinear mixed
model, including the number of observations, subjects, parameters, and quadrature
points.

Parameters
The “Parameters” table displays the information you provided with the PARMS state-
ment and the value of the negative log likelihood function evaluated at the starting
values.

Starting Gradient and Hessian
The START option in the PROC NLMIXED statement displays the gradient of the
negative log likelihood function at the starting values of the parameters. If you also
specify the HESS option, then the starting Hessian is displayed as well.
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Iterations
The iteration history consists of one line of output for each iteration in the optimiza-
tion process. The iteration history is displayed by default because it is important that
you check for possible convergence problems. The default iteration history includes
the following variables:

� Iter, the iteration number

� Calls, the number of function calls

� NegLogLike, the value of the objective function

� Diff, the difference between adjacent function values

� MaxGrad, the maximum of the absolute (projected) gradient components (ex-
cept NMSIMP)

� Slope, the slopegT s of the search directions at the current parameter iterate
�(k) (QUANEW only)

� Rho, the ratio between the achieved and predicted value of Diff (NRRIDG
only)

� Radius, the radius of the trust region (TRUREG only)

� StdDev, the standard deviation of the simplex values (NMSIMP only)

� Delta, the vertex length of the simplex (NMSIMP only)

� Size, the size of the simplex (NMSIMP only)

For the QUANEW method, the value of Slope should be significantly negative. Oth-
erwise, the line-search algorithm has difficulty reducing the function value suffi-
ciently. If this difficulty is encountered, an asterisk (*) appears after the iteration
number. If there is a tilde (�) after the iteration number, the BFGS update is skipped,
and very high values of the Lagrange function are produced. A backslash (n ) after
the iteration number indicates that Powell’s correction for the BFGS update is used.

For methods using second derivatives, an asterisk (*) after the iteration number means
that the computed Hessian approximation was singular and had to be ridged with a
positive value.

For the NMSIMP method, only one line is displayed for several internal iterations.
This technique skips the output for some iterations because some of the termination
tests (StdDev and Size) are rather time consuming compared to the simplex opera-
tions, and they are performed only every five simplex operations.

The ITDETAILS option in the PROC NLMIXED statement provides a more detailed
iteration history. Besides listing the current values of the parameters and their gradi-
ents, the following values are provided in addition to the default output:

� Restart, the number of iteration restarts

� Active, the number of active constraints

� Lambda, the value of the Lagrange multiplier (TRUREG and DBLDOG only)
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� Ridge, the ridge value (NRRIDG only)

� Alpha, the line-search step size (QUANEW only)

An apostrophe (’) trailing the number of active constraints indicates that at least one
of the active constraints was released from the active set due to a significant Lagrange
multiplier.

Fitting Information
The “Fitting Information” table lists the final maximized value of the log likelihood
as well as the information criteria of Akaike and Schwarz in two different forms. The
smaller-is-better forms are as follows.

AIC = 2f(�̂) + 2n

BIC = 2f(�̂) + n log(s)

where�̂ is the vector of parameter estimates ands is the number of subjects. The
larger-is-better forms for AIC and BIC multiply the preceding values by�0:5.

Parameter Estimates
The “Parameter Estimates” table lists the estimates of the parameter values after suc-
cessful convergence of the optimization problem or the final values of the parameters
under nonconvergence. If the problem did converge, standard errors are computed
from the final Hessian matrix. The ratio of the estimate with its standard error pro-
duces at value, with approximate degrees of freedom computed as the number of
subjects minus the number of random effects. Ap-value and confidence limits based
on thist distribution are also provided. Finally, the gradient of the negative log like-
lihood function is displayed for each parameter, and you should verify that they each
are sufficiently small for non-constrained parameters.

Covariance and Correlation Matrices
Following standard maximum likelihood theory (for example, Serfling 1980), the
asymptotic variance-covariance matrix of the parameter estimates equals the inverse
of the Hessian matrix. You can display this matrix with the COV option in the
PROC NLMIXED statement. The corresponding correlation form is available with
the CORR option.

Additional Estimates
The “Additional Estimates” table displays the results of all ESTIMATE statements
that you specify, with the same columns as the “Parameter Estimates” table. The
ECOV and ECORR options in the PROC NLMIXED statement produce tables dis-
playing the approximate covariance and correlation matrices of the additional esti-
mates. They are computed using the delta method (Billingsley 1986). The EDER
option in the PROC NLMIXED statement produces a table displaying the derivatives
of the additional estimates with respect to the model parameters evaluated at their
final estimated values.
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ODS Table Names

PROC NLMIXED assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 46.2. ODS Tables Produced in PROC NLMIXED

ODS Table Name Description Statement or Option
AdditionalEstimates Results from ESTIMATE statements ESTIMATE
ConvergenceStatus Convergence status default
CorrMatAddEst Correlation matrix of additional estimates ECORR
CorrMatParmEst Correlation matrix of parameter estimates CORR
CovMatAddEst Covariance matrix of additional estimates ECOV
CovMatParmEst Covariance matrix of parameter estimates COV
DerAddEst Derivatives of additional estimates EDER
Dimensions Dimensions of the problem default
FitStatistics Fit statistics default
Hessian Second derivative matrix HESS
IterHistory Iteration history default
Parameters Parameters default
ParameterEstimates Parameter estimates default
Specifications Model specifications default
StartingHessian Starting hessian matrix START HESS
StartingValues Starting values and gradient START

Examples

Example 46.1. One-Compartment Model with
Pharmacokinetic Data

A popular application of nonlinear mixed models is in the field of pharmacokinetics,
which studies how a drug disperses through a living individual. This example con-
siders the theophylline data from Pinheiro and Bates (1995). Serum concentrations
of the drug theophylline are measured in 12 subjects over a 25-hour period after oral
administration. The data are as follows.

data theoph;
input subject time conc dose wt;
datalines;

1 0.00 0.74 4.02 79.6
1 0.25 2.84 4.02 79.6
1 0.57 6.57 4.02 79.6
1 1.12 10.50 4.02 79.6
1 2.02 9.66 4.02 79.6
1 3.82 8.58 4.02 79.6
1 5.10 8.36 4.02 79.6
1 7.03 7.47 4.02 79.6
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1 9.05 6.89 4.02 79.6
1 12.12 5.94 4.02 79.6
1 24.37 3.28 4.02 79.6
2 0.00 0.00 4.40 72.4
2 0.27 1.72 4.40 72.4
2 0.52 7.91 4.40 72.4
2 1.00 8.31 4.40 72.4
2 1.92 8.33 4.40 72.4
2 3.50 6.85 4.40 72.4
2 5.02 6.08 4.40 72.4
2 7.03 5.40 4.40 72.4
2 9.00 4.55 4.40 72.4
2 12.00 3.01 4.40 72.4
2 24.30 0.90 4.40 72.4
3 0.00 0.00 4.53 70.5
3 0.27 4.40 4.53 70.5
3 0.58 6.90 4.53 70.5
3 1.02 8.20 4.53 70.5
3 2.02 7.80 4.53 70.5
3 3.62 7.50 4.53 70.5
3 5.08 6.20 4.53 70.5
3 7.07 5.30 4.53 70.5
3 9.00 4.90 4.53 70.5
3 12.15 3.70 4.53 70.5
3 24.17 1.05 4.53 70.5
4 0.00 0.00 4.40 72.7
4 0.35 1.89 4.40 72.7
4 0.60 4.60 4.40 72.7
4 1.07 8.60 4.40 72.7
4 2.13 8.38 4.40 72.7
4 3.50 7.54 4.40 72.7
4 5.02 6.88 4.40 72.7
4 7.02 5.78 4.40 72.7
4 9.02 5.33 4.40 72.7
4 11.98 4.19 4.40 72.7
4 24.65 1.15 4.40 72.7
5 0.00 0.00 5.86 54.6
5 0.30 2.02 5.86 54.6
5 0.52 5.63 5.86 54.6
5 1.00 11.40 5.86 54.6
5 2.02 9.33 5.86 54.6
5 3.50 8.74 5.86 54.6
5 5.02 7.56 5.86 54.6
5 7.02 7.09 5.86 54.6
5 9.10 5.90 5.86 54.6
5 12.00 4.37 5.86 54.6
5 24.35 1.57 5.86 54.6
6 0.00 0.00 4.00 80.0
6 0.27 1.29 4.00 80.0
6 0.58 3.08 4.00 80.0
6 1.15 6.44 4.00 80.0
6 2.03 6.32 4.00 80.0
6 3.57 5.53 4.00 80.0
6 5.00 4.94 4.00 80.0
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6 7.00 4.02 4.00 80.0
6 9.22 3.46 4.00 80.0
6 12.10 2.78 4.00 80.0
6 23.85 0.92 4.00 80.0
7 0.00 0.15 4.95 64.6
7 0.25 0.85 4.95 64.6
7 0.50 2.35 4.95 64.6
7 1.02 5.02 4.95 64.6
7 2.02 6.58 4.95 64.6
7 3.48 7.09 4.95 64.6
7 5.00 6.66 4.95 64.6
7 6.98 5.25 4.95 64.6
7 9.00 4.39 4.95 64.6
7 12.05 3.53 4.95 64.6
7 24.22 1.15 4.95 64.6
8 0.00 0.00 4.53 70.5
8 0.25 3.05 4.53 70.5
8 0.52 3.05 4.53 70.5
8 0.98 7.31 4.53 70.5
8 2.02 7.56 4.53 70.5
8 3.53 6.59 4.53 70.5
8 5.05 5.88 4.53 70.5
8 7.15 4.73 4.53 70.5
8 9.07 4.57 4.53 70.5
8 12.10 3.00 4.53 70.5
8 24.12 1.25 4.53 70.5
9 0.00 0.00 3.10 86.4
9 0.30 7.37 3.10 86.4
9 0.63 9.03 3.10 86.4
9 1.05 7.14 3.10 86.4
9 2.02 6.33 3.10 86.4
9 3.53 5.66 3.10 86.4
9 5.02 5.67 3.10 86.4
9 7.17 4.24 3.10 86.4
9 8.80 4.11 3.10 86.4
9 11.60 3.16 3.10 86.4
9 24.43 1.12 3.10 86.4

10 0.00 0.24 5.50 58.2
10 0.37 2.89 5.50 58.2
10 0.77 5.22 5.50 58.2
10 1.02 6.41 5.50 58.2
10 2.05 7.83 5.50 58.2
10 3.55 10.21 5.50 58.2
10 5.05 9.18 5.50 58.2
10 7.08 8.02 5.50 58.2
10 9.38 7.14 5.50 58.2
10 12.10 5.68 5.50 58.2
10 23.70 2.42 5.50 58.2
11 0.00 0.00 4.92 65.0
11 0.25 4.86 4.92 65.0
11 0.50 7.24 4.92 65.0
11 0.98 8.00 4.92 65.0
11 1.98 6.81 4.92 65.0
11 3.60 5.87 4.92 65.0
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11 5.02 5.22 4.92 65.0
11 7.03 4.45 4.92 65.0
11 9.03 3.62 4.92 65.0
11 12.12 2.69 4.92 65.0
11 24.08 0.86 4.92 65.0
12 0.00 0.00 5.30 60.5
12 0.25 1.25 5.30 60.5
12 0.50 3.96 5.30 60.5
12 1.00 7.82 5.30 60.5
12 2.00 9.72 5.30 60.5
12 3.52 9.75 5.30 60.5
12 5.07 8.57 5.30 60.5
12 7.07 6.59 5.30 60.5
12 9.03 6.11 5.30 60.5
12 12.05 4.57 5.30 60.5
12 24.15 1.17 5.30 60.5
run;

Pinheiro and Bates (1995) consider the following first-order compartment model for
these data:

Cit =
Dkeikai

Cli(kai � kei)
[exp(�keit)� exp(�kai t)] + eit

whereCit is the observed concentration of theith subject at timet, D is the dose of
theophylline,kei is the elimination rate constant for subjecti, kai is the absorption
rate constant for subjecti,Cli is the clearance for subjecti, andeit are normal errors.
To allow for random variability between subjects, they assume

Cli = exp(�1 + bi1)

kai = exp(�2 + bi2)

kei = exp(�3)

where the�s denote fixed-effects parameters and thebis denote random-effects pa-
rameters with an unknown covariance matrix.

The PROC NLMIXED statements to fit this model are as follows.

proc nlmixed data=theoph;
parms beta1=-3.22 beta2=0.47 beta3=-2.45

s2b1=0.03 cb12=0 s2b2=0.4 s2=0.5;
cl = exp(beta1 + b1);
ka = exp(beta2 + b2);
ke = exp(beta3);
pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc ~ normal(pred,s2);
random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=subject;

run;

The PARMS statement specifies starting values for the three�s and four variance-
covariance parameters. The clearance and rate constants are defined using SAS pro-
gramming statements, and the conditional model for the data is defined to be normal
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with mean PRED and variance S2. The two random effects are B1 and B2, and their
joint distribution is defined in the RANDOM statement. Brackets are used in defin-
ing their mean vector (two zeroes) and the lower triangle of their variance-covariance
matrix (a general2� 2 matrix). The SUBJECT= variable is SUBJECT.

The results from this analysis are as follows.

The NLMIXED Procedure

Specifications

Description Value

Data Set WORK.THEOPH
Dependent Variable conc
Distribution for Dependent Variable Normal
Random Effects b1 b2
Distribution for Random Effects Normal
Subject Variable subject
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table lists the set up of the model.

The NLMIXED Procedure

Dimensions

Description Value

Observations Used 132
Observations Not Used 0
Total Observations 132
Subjects 12
Max Obs Per Subject 11
Parameters 7
Quadrature Points 5

The “Dimensions” table indicates that there are 132 observations, 12 subjects, and
7 parameters. PROC NLMIXED selects 5 quadrature points for each random effect,
producing a total grid of 25 points over which quadrature is performed.

The NLMIXED Procedure

Parameters

beta1 beta2 beta3 s2b1 cb12 s2b2 s2 NegLogLike

-3.22 0.47 -2.45 0.03 0 0.4 0.5 177.789945

The “Parameters” table lists the 7 parameters, their starting values, and the initial
evaluation of the negative log likelihood using adaptive Gaussian quadrature.
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The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 5 177.776248 0.013697 2.873367 -63.0744
2 8 177.7643 0.011948 1.698144 -4.75239
3 10 177.757264 0.007036 1.297439 -1.97311
4 12 177.755688 0.001576 1.441408 -0.49772
5 14 177.7467 0.008988 1.132279 -0.8223
6 17 177.746401 0.000299 0.831293 -0.00244
7 19 177.746318 0.000083 0.724198 -0.00789
8 21 177.74574 0.000578 0.180018 -0.00583
9 23 177.745736 3.88E-6 0.017958 -8.25E-6

10 25 177.745736 3.222E-8 0.000143 -6.51E-8

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates that 10 steps are required for the dual quasi-Newton
algorithm to achieve convergence.

The NLMIXED Procedure

Fit Statistics

Description Value

-2 Log Likelihood 355.5
AIC (smaller is better) 369.5
BIC (smaller is better) 372.9
Log Likelihood -177.7
AIC (larger is better) -184.7
BIC (larger is better) -186.4

The “Fitting Information” table lists the final optimized values of the log likelihood
function and two information criteria in two different forms.

SAS OnlineDoc: Version 8



Example 46.2. Probit-Normal Model with Binomial Data � 2487

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

beta1 -3.2268 0.05950 10 -54.23 <.0001 0.05 -3.3594
beta2 0.4806 0.1989 10 2.42 0.0363 0.05 0.03745
beta3 -2.4592 0.05126 10 -47.97 <.0001 0.05 -2.5734
s2b1 0.02803 0.01221 10 2.30 0.0445 0.05 0.000833
cb12 -0.00127 0.03404 10 -0.04 0.9710 0.05 -0.07712
s2b2 0.4331 0.2005 10 2.16 0.0560 0.05 -0.01353
s2 0.5016 0.06837 10 7.34 <.0001 0.05 0.3493

Parameter Estimates

Parameter Upper Gradient

beta1 -3.0942 -0.00009
beta2 0.9238 3.645E-7
beta3 -2.3449 0.000039
s2b1 0.05523 -0.00014
cb12 0.07458 -0.00007
s2b2 0.8798 -6.98E-6
s2 0.6540 6.133E-6

The “Parameter Estimates” table contains the maximum likelihood estimates of the
parameters. Both S2B1 and S2B2 are marginally significant, indicating between-
subject variability in the clearances and absorption rate constants, respectively. There
does not appear to be a significant covariance between them, as seen by the estimate
of CB12.

The estimates of�1, �2, and�3 are close to the adaptive quadrature estimates listed in
Table 3 of Pinheiro and Bates (1995). However, Pinheiro and Bates use a Cholesky-
root parameterization for the random-effects variance matrix and a logarithmic pa-
rameterization for the residual variance. The PROC NLMIXED statements using
their parameterization are as follows, and results are similar.

proc nlmixed data=theoph;
parms ll1=-1.5 l2=0 ll3=-0.1 beta1=-3 beta2=0.5 beta3=-2.5

ls2=-0.7;
s2 = exp(ls2);
l1 = exp(ll1);
l3 = exp(ll3);
s2b1 = l1*l1*s2;
cb12 = l2*l1*s2;
s2b2 = (l2*l2 + l3*l3)*s2;
cl = exp(beta1 + b1);
ka = exp(beta2 + b2);
ke = exp(beta3);
pred = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc ~ normal(pred,s2);
random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=subject;

run;

SAS OnlineDoc: Version 8



2488 � Chapter 46. The NLMIXED Procedure

Example 46.2. Probit-Normal Model with Binomial Data

For this example, consider the data from Weil (1970), also studied by Williams
(1975), Ochi and Prentice (1984), and McCulloch (1994). In this experiment 16
pregnant rats receive a control diet and 16 receive a chemically treated diet, and the
litter size for each rat is recorded after 4 and 21 days. The SAS data set is a follows.

data rats;
input trt$ m x;
if (trt=’c’) then do;

x1 = 1;
x2 = 0;

end;
else do;

x1 = 0;
x2 = 1;

end;
litter = _n_;
datalines;

c 13 13
c 12 12
c 9 9
c 9 9
c 8 8
c 8 8
c 13 12
c 12 11
c 10 9
c 10 9
c 9 8
c 13 11
c 5 4
c 7 5
c 10 7
c 10 7
t 12 12
t 11 11
t 10 10
t 9 9
t 11 10
t 10 9
t 10 9
t 9 8
t 9 8
t 5 4
t 9 7
t 7 4
t 10 5
t 6 3
t 10 3
t 7 0
run;
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Here, M represents the size of the litter after 4 days, and X represents the size of the
litter after 21 days. Also, indicator variables X1 and X2 are constructed for the two
treatment levels.

Following McCulloch (1994), assume a latent survival model of the form

yijk = ti + �ij + eijk

wherei indexes treatment,j indexes litter, andk indexes newborn rats within a litter.
The ti represent treatment means, the�ij represent random litter effects assumed to
be iidN(0; s2i ), and theeijk represent iid residual errors, all on the latent scale.

Instead of observing the survival timesyijk, assume that only the binary variable
indicating whetheryijk exceeds 0 is observed. Ifxij denotes the sum of these binary
variables for theith treatment and thejth litter, then the preceding assumptions lead
to the following generalized linear mixed model:

xijj�ij � Binomial(mij; pij)

wheremij is the size of each litter after 4 days and

pij = �(ti + �ij)

The PROC NLMIXED statements to fit this model are as follows.

proc nlmixed data=rats;
parms t1=1 t2=1 s1=.05 s2=1;
eta = x1*t1 + x2*t2 + alpha;
p = probnorm(eta);
model x ~ binomial(m,p);
random alpha ~ normal(0,x1*s1*s1+x2*s2*s2) subject=litter;
estimate ’gamma2’ t2/sqrt(1+s2*s2);
predict p out=p;

run;

As in the previous example, the PROC NLMIXED statement invokes the procedure
and the PARMS statement defines the parameters. The parameters for this example
are the two treatment means, T1 and T2, and the two random-effect standard devia-
tions, S1 and S2.

The indicator variables X1 and X2 are used in the program to assign the proper mean
to each observation in the input data set as well as the proper variance to the random
effects. Note that programming expressions are permitted inside the distributional
specifications, as illustrated by the random-effects variance specified here.

The ESTIMATE statement requests an estimate of2 = t2=
p
1 + s22, which is a

location-scale parameter from Ochi and Prentice (1984).

The PREDICT statement constructs predictions for each observation in the input data
set. For this example, predictions of P and approximate standard errors of prediction
are output to a SAS data set named P. These predictions are functions of the parameter
estimates and the empirical Bayes estimates of the random effects�i.

The output for this model is as follows.
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The NLMIXED Procedure

Specifications

Description Value

Data Set WORK.RATS
Dependent Variable x
Distribution for Dependent Variable Binomial
Random Effects alpha
Distribution for Random Effects Normal
Subject Variable litter
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table provides basic information about this nonlinear mixed
model.

The NLMIXED Procedure

Dimensions

Description Value

Observations Used 32
Observations Not Used 0
Total Observations 32
Subjects 32
Max Obs Per Subject 1
Parameters 4
Quadrature Points 7

The “Dimensions” table provides counts of various variables.

The NLMIXED Procedure

Parameters

t1 t2 s1 s2 NegLogLike

1 1 0.05 1 54.9362323

The “Parameters” table lists the starting point of the optimization.
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The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 53.9933934 0.942839 11.03261 -81.9428
2 3 52.875353 1.11804 2.148952 -2.86277
3 5 52.6350386 0.240314 0.329957 -1.05049
4 6 52.6319939 0.003045 0.122926 -0.00672
5 8 52.6313583 0.000636 0.028246 -0.00352
6 11 52.6313174 0.000041 0.013551 -0.00023
7 13 52.6313115 5.839E-6 0.000603 -0.00001
8 15 52.6313115 9.45E-9 0.000022 -1.68E-8

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates successful convergence in 8 iterations.

The NLMIXED Procedure

Fit Statistics

Description Value

-2 Log Likelihood 105.3
AIC (smaller is better) 113.3
BIC (smaller is better) 119.1
Log Likelihood -52.6
AIC (larger is better) -56.6
BIC (larger is better) -59.6

The “Fitting Information” table lists some useful statistics based on the maximized
value of the log likelihood.

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

t1 1.3063 0.1685 31 7.75 <.0001 0.05 0.9626
t2 0.9475 0.3055 31 3.10 0.0041 0.05 0.3244
s1 0.2403 0.3015 31 0.80 0.4315 0.05 -0.3746
s2 1.0292 0.2988 31 3.44 0.0017 0.05 0.4198

Parameter Estimates

Parameter Upper Gradient

t1 1.6499 -0.00002
t2 1.5705 9.283E-6
s1 0.8552 0.000014
s2 1.6385 -3.16E-6
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The “Parameter Estimates” table indicates significance of all of the parameters except
S1.

The NLMIXED Procedure

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

gamma2 0.6603 0.2165 31 3.05 0.0047 0.05 0.2186 1.1019

The “Additional Estimates” table displays results from the ESTIMATE statement.
The estimate of2 equals0:6602, agreeing with that obtained by McCulloch (1994).
The standard error0:2166 is computed using the delta method (Billingsley 1986).

Not shown is the P data set, which contains the original 32 observations and predic-
tions of thepij.

Example 46.3. Probit-Normal Model with Ordinal Data

The data for this example are from Ezzet and Whitehead (1991), who describe a
crossover experiment on two groups of patients using two different inhaler devices
(A and B). Patients from group 1 used device A for one week and then device B
for another week. Patients from group 2 used the devices in reverse order. The data
entered as a SAS data set are as follows.

data inhaler;
input clarity group time freq;
gt = group*time;
sub = floor((_n_+1)/2);
datalines;

1 0 0 59
1 0 1 59
1 0 0 35
2 0 1 35
1 0 0 3
3 0 1 3
1 0 0 2
4 0 1 2
2 0 0 11
1 0 1 11
2 0 0 27
2 0 1 27
2 0 0 2
3 0 1 2
2 0 0 1
4 0 1 1
4 0 0 1
1 0 1 1
4 0 0 1
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2 0 1 1
1 1 0 63
1 1 1 63
1 1 0 13
2 1 1 13
2 1 0 40
1 1 1 40
2 1 0 15
2 1 1 15
3 1 0 7
1 1 1 7
3 1 0 2
2 1 1 2
3 1 0 1
3 1 1 1
4 1 0 2
1 1 1 2
4 1 0 1
3 1 1 1
run;

The response measurement, CLARITY, is the patients’ assessment on the clarity of
the leaflet instructions for the devices. The CLARITY variable is on an ordinal scale,
with 1=easy, 2=only clear after rereading, 3=not very clear, and 4=confusing. The
GROUP variable indicates the treatment group and the TIME variable indicates the
time of measurement. The FREQ variable indicates the number of patients with ex-
actly the same responses. A variable GT is created to indicate a group by time inter-
action, and a variable SUB is created to indicate patients.

As in the previous example and in Hedeker and Gibbons (1994), assume an underly-
ing latent continuous variable, here with the form

yij = �0 + �1gi + �2tj + �3gitj + ui + eij

wherei indexes patient andj indexes the time period,gi indicates groups,tj indicates
time,ui is a patient-level normal random effect, andeij are iid normal errors. The�s
are unknown coefficients to be estimated.

Instead of observingyij, though, you observe only whether it falls in one of the four
intervals:(�1; 0), (0; I1), (I1; I1+I2), or (I1+I2;1), whereI1 andI2 are both
positive. The resulting category is the value assigned to the CLARITY variable.

The following code sets up and fits this ordinal probit model:

proc nlmixed data=inhaler corr ecorr;
parms b0=0 b1=0 b2=0 b3=0 sd=1 i1=1 i2=1;
bounds i1 > 0, i2 > 0;
eta = b0 + b1*group + b2*time + b3*gt + u;
if (clarity=1) then z = probnorm(-eta);
else if (clarity=2) then

z = probnorm(i1-eta) - probnorm(-eta);
else if (clarity=3) then
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z = probnorm(i1+i2-eta) - probnorm(i1-eta);
else z = 1 - probnorm(i1+i2-eta);
if (z > 1e-8) then ll = log(z);
else ll = -1e100;
model clarity ~ general(ll);
random u ~ normal(0,sd*sd) subject=sub;
replicate freq;
estimate ’thresh2’ i1;
estimate ’thresh3’ i1 + i2;
estimate ’icc’ sd*sd/(1+sd*sd);

run;

The PROC statement specifies the input data set and requests correlations both for
the parameter estimates (CORR option) and the additional estimates specified with
ESTIMATE statements (ECORR option).

The parameters as defined in the PARMS statement are as follows. B0 (overall inter-
cept), B1 (group main effect), B2 (time main effect), B3 (group by time interaction),
SD (standard deviation of the random effect), I1 (increment between first and second
thresholds), and I2 (increment between second and third thresholds). The BOUNDS
statement restricts I1 and I2 to be positive.

The SAS programming statements begin by defining the linear predictor ETA, which
is a linear combination of the B parameters and a single random effect U. The next
statements define the ordinal likelihood according to the CLARITY variable, ETA,
and the increment variables. An error trap is included in case the likelihood becomes
too small.

A general log likelihood specification is used in the MODEL statement, and the RAN-
DOM statement defines the random effect U to have standard deviation SD and sub-
ject variable SUB. The REPLICATE statement indicates that data for each subject
should be replicated according to the FREQ variable.

The ESTIMATE statements specify the second and third thresholds in terms of the
increment variables (the first threshold is assumed to equal zero for model identifia-
bility). Also computed is the intraclass correlation.

The output is as follows.

The NLMIXED Procedure

Specifications

Description Value

Data Set WORK.INHALER
Dependent Variable clarity
Distribution for Dependent Variable General
Random Effects u
Distribution for Random Effects Normal
Subject Variable sub
Replicate Variable freq
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature
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The “Specifications” table echoes some primary information specified for this non-
linear mixed model.

The NLMIXED Procedure

Dimensions

Description Value

Observations Used 38
Observations Not Used 0
Total Observations 38
Subjects 286
Max Obs Per Subject 2
Parameters 7
Quadrature Points 5

The “Dimensions” table reveals a total of 286 subjects, which is the sum of the values
of the FREQ variable. Five quadrature points are selected for log likelihood evalua-
tion.

The NLMIXED Procedure

Parameters

b0 b1 b2 b3 sd i1 i2 NegLogLike

0 0 0 0 1 1 1 538.484276

The “Parameters” table lists the simple starting values for this problem.

The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 476.382511 62.10176 43.75062 -1431.4
2 4 463.228197 13.15431 14.24648 -106.753
3 5 458.528118 4.70008 48.31316 -33.0389
4 6 450.975735 7.552383 22.60098 -40.9954
5 8 448.012701 2.963033 14.86877 -16.7453
6 10 447.245153 0.767549 7.774189 -2.26743
7 11 446.72767 0.517483 3.793533 -1.59278
8 13 446.518273 0.209396 0.868638 -0.37801
9 16 446.514528 0.003745 0.328568 -0.02356

10 18 446.513341 0.001187 0.056778 -0.00183
11 20 446.513314 0.000027 0.010785 -0.00004
12 22 446.51331 3.956E-6 0.004922 -5.41E-6
13 24 446.51331 1.989E-7 0.00047 -4E-7

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates successful convergence in 13 iterations.
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The NLMIXED Procedure

Fit Statistics

Description Value

-2 Log Likelihood 893.0
AIC (smaller is better) 907.0
BIC (smaller is better) 932.6
Log Likelihood -446.5
AIC (larger is better) -453.5
BIC (larger is better) -466.3

The “Fitting Information” table lists the log likelihood and information criteria.

The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

b0 -0.6364 0.1342 285 -4.74 <.0001 0.05 -0.9006
b1 0.6007 0.1770 285 3.39 0.0008 0.05 0.2523
b2 0.6015 0.1582 285 3.80 0.0002 0.05 0.2900
b3 -1.4817 0.2385 285 -6.21 <.0001 0.05 -1.9512
sd 0.6599 0.1312 285 5.03 <.0001 0.05 0.4017
i1 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548
i2 0.5985 0.1427 285 4.19 <.0001 0.05 0.3177

Parameter Estimates

Parameter Upper Gradient

b0 -0.3722 0.00047
b1 0.9491 0.000265
b2 0.9129 0.00008
b3 -1.0122 0.000102
sd 0.9181 -0.00009
i1 2.0352 0.000202
i2 0.8794 0.000087

The “Parameter Estimates” table indicates significance of all of the parameters.

The NLMIXED Procedure

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper

thresh2 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548 2.0352
thresh3 2.3435 0.2073 285 11.31 <.0001 0.05 1.9355 2.7515
icc 0.3034 0.08402 285 3.61 0.0004 0.05 0.1380 0.4687

The “Additional Estimates” table displays results from the ESTIMATE statements.
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Example 46.4. Poisson-Normal Model with Count Data

This example uses the pump failure data of Gaver and O’Muircheartaigh (1987). The
number of failures and the time of operation are recorded for 10 pumps. Each of
the pumps is classified into one of two groups corresponding to either continuous or
intermittent operation. The data are as follows.

data pump;
input y t group;
pump = _n_;
logtstd = log(t) - 2.4564900;
datalines;

5 94.320 1
1 15.720 2
5 62.880 1

14 125.760 1
3 5.240 2

19 31.440 1
1 1.048 2
1 1.048 2
4 2.096 2

22 10.480 2
run;

Each row denotes data for a single pump, and the variable LOGTSTD contains the
centered operation times.

Letting yij denote the number of failures for thejth pump in theith group, Draper
(1996) considers the following hierarchical model for these data:

yij j�ij � Poisson(�ij)

log �ij = �i + �i(log tij � log t) + eij

eij j�2 � Normal(0; �2)

The model specifies different intercepts and slopes for each group, and the random
effect is a mechanism for accounting for overdispersion.

The corresponding PROC NLMIXED statements are as follows.

proc nlmixed data=pump;
parms logsig 0 beta1 1 beta2 1 alpha1 1 alpha2 1;
if (group = 1) then eta = alpha1 + beta1*logtstd + e;
else eta = alpha2 + beta2*logtstd + e;
lambda = exp(eta);
model y ~ poisson(lambda);
random e ~ normal(0,exp(2*logsig)) subject=pump;
estimate ’alpha1-alpha2’ alpha1-alpha2;
estimate ’beta1-beta2’ beta1-beta2;

run;

The output is as follows.
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The NLMIXED Procedure

Specifications

Description Value

Data Set WORK.PUMP
Dependent Variable y
Distribution for Dependent Variable Poisson
Random Effects e
Distribution for Random Effects Normal
Subject Variable pump
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

The “Specifications” table displays some details for this Poisson-Normal model.

The NLMIXED Procedure

Dimensions

Description Value

Observations Used 10
Observations Not Used 0
Total Observations 10
Subjects 10
Max Obs Per Subject 1
Parameters 5
Quadrature Points 5

The “Dimensions” table indicates that data for 10 pumps are used with one observa-
tion for each.

The NLMIXED Procedure

Parameters

logsig beta1 beta2 alpha1 alpha2 NegLogLike

0 1 1 1 1 32.8614614

The “Parameters” table lists the simple starting values for this problem and the initial
evaluation of the negative log likelihood.
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The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 2 30.6986932 2.162768 5.107253 -91.602
2 5 30.0255468 0.673146 2.761738 -11.0489
3 7 29.726325 0.299222 2.990401 -2.36048
4 9 28.7390263 0.987299 2.074431 -3.93678
5 10 28.3161933 0.422833 0.612531 -0.63084
6 12 28.09564 0.220553 0.462162 -0.52684
7 14 28.0438024 0.051838 0.405047 -0.10018
8 16 28.0357134 0.008089 0.135059 -0.01875
9 18 28.033925 0.001788 0.026279 -0.00514

10 20 28.0338744 0.000051 0.00402 -0.00012
11 22 28.0338727 1.681E-6 0.002864 -5.09E-6
12 24 28.0338724 3.199E-7 0.000147 -6.87E-7
13 26 28.0338724 2.532E-9 0.000017 -5.75E-9

NOTE: GCONV convergence criterion satisfied.

The “Iterations” table indicates successful convergence in 13 iterations.

The NLMIXED Procedure

Fit Statistics

Description Value

-2 Log Likelihood 56.1
AIC (smaller is better) 66.1
BIC (smaller is better) 67.6
Log Likelihood -28.0
AIC (larger is better) -33.0
BIC (larger is better) -33.8

The “Fitting Information” table lists the final log likelihood and associated informa-
tion criteria.
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The NLMIXED Procedure

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower

logsig -0.3161 0.3213 9 -0.98 0.3508 0.05 -1.0429
beta1 -0.4256 0.7473 9 -0.57 0.5829 0.05 -2.1162
beta2 0.6097 0.3814 9 1.60 0.1443 0.05 -0.2530
alpha1 2.9644 1.3826 9 2.14 0.0606 0.05 -0.1632
alpha2 1.7992 0.5492 9 3.28 0.0096 0.05 0.5568

Parameter Estimates

Parameter Upper Gradient

logsig 0.4107 -0.00002
beta1 1.2649 -0.00002
beta2 1.4724 -1.61E-6
alpha1 6.0921 -5.25E-6
alpha2 3.0415 -5.73E-6

The NLMIXED Procedure

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t| Alpha Lower

alpha1-alpha2 1.1653 1.4855 9 0.78 0.4529 0.05 -2.1952
beta1-beta2 -1.0354 0.8389 9 -1.23 0.2484 0.05 -2.9331

Additional Estimates

Label Upper

alpha1-alpha2 4.5257
beta1-beta2 0.8623

The “Parameter Estimates” and “Additional Estimates” tables list the maximum like-
lihood estimates for each of the parameters and two differences. The point estimates
for the mean parameters agree fairly closely with the Bayesian posterior means re-
ported by Draper (1996); however, the likelihood-based standard errors are roughly
half the Bayesian posterior standard deviations. This is most likely due to the fact
that the Bayesian standard deviations account for the uncertainty in estimating�2,
whereas the likelihood values plug in its estimated value. This downward bias can be
corrected somewhat by using thet9 distribution shown here.
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