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Chapter 49
The PHREG Procedure

Overview

The analysis of survival data requires special techniques because the data are almost
always incomplete, and familiar parametric assumptions may be unjustifiable. Inves-
tigators follow subjects until they reach a prespecified endpoint (for example, death).
However, subjects sometimes withdraw from a study, or the study is completed be-
fore the endpoint is reached. In these cases, the survival times (also known as failure
times) arecensored subjects survived to a certain time beyond which their status is
unknown. The noncensored survival times are referred ®vasttimes. Methods

for survival analysis must account for both censored and noncensored data.

There are many types of models that have been used for survival data. Two of the
more popular types of models are the accelerated failure time model (Kalbfleisch and
Prentice 1980) and the Cox proportional hazards model (Cox 1972). Each has its
own assumptions on the underlying distribution of the survival times. Two closely
related functions often used to describe the distribution of survival times are the sur-
vivor function and the hazard function (see the section “Failure Time Distribution”
on page 2593 for definitions).

The accelerated failure time model assumes a parametric form for the effects of the
explanatory variables and usually assumes a parametric form for the underlying sur-
vivor function. Cox’s proportional hazards model also assumes a parametric form
for the effects of the explanatory variables, but it allows an unspecified form for the
underlying survivor function.

The PHREG procedure performs regression analysis of survival data based on the
Cox proportional hazards model. Cox’s semiparametric model is widely used in the
analysis of survival data to explain the effect of explanatory variables on survival
times.

The survival time of each member of a population is assumed to follow its own hazard
function, h;(t), expressed as

hi(t) = h(t; z;) = ho(t) exp(z;8)

wherehy(t) is an arbitrary and unspecified baseline hazard func#pis, the vector

of measured explanatory variables for ikt individual, and3 is the vector of un-
known regression parameters associated with the explanatory variables. The vector
3 is assumed to be the same for all individuals.
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The survivor function can be expressed as
S(t; 2:) = [So(t)] P

whereSy(t) = exp(—fot ho(u)du) is the baseline survivor function.

To estimate3d, Cox (1972, 1975) introduced the partial likelihood function, which
eliminates the unknown baseline hazarg(t) and accounts for censored survival
times.

The partial likelihood of Cox also allows time-dependent explanatory variables. An
explanatory variable is time-dependent if its value for any given individual can change
over time. Time-dependent variables have many useful applications in survival anal-
ysis. You can use a time-dependent variable to model the effect of subjects changing
treatment groups. Or you can include time-dependent variables such as blood pres-
sure or blood chemistry measures that vary with time during the course of a study.
You can also use time-dependent variables to test the validity of the proportional
hazards model.

An alternative way to fit models with time-dependent explanatory variables is to
use the counting process style of input. The counting process formulation allows
PROC PHREG to fit a superset of the Cox model, known as the multiplicative haz-
ards model. This extension also includes multiple events per subject, time-dependent
strata, and left truncation of failure times. The theory of these models is based on
the counting process pioneered by Andersen and Gill (1982), and the model is often
referred to as the Andersen-Gill Model.

The population under study may consist of a number of subpopulations, each of
which has its own baseline hazard function. PROC PHREG performs a stratified
analysis to adjust for such subpopulation differences. Under the stratified model, the
hazard function for thgh individual in theith stratum is expressed as

hij(t) = hio(t) exp(z;jﬁ)

whereh;(t) is the baseline hazard function for title stratum, and;; is the vector of
explanatory variables for th¢h individual. The regression coefficients are assumed
to be the same for all individuals across all strata.

Ties in the failure times may arise when the time scale is genuinely discrete or when
survival times generated from the continuous-time model are grouped into coarser
units. The PHREG procedure includes four methods of handling ties.diEheete
logistic model is available for discrete time-scale data. The other three methods apply
to continuous time-scale data. Tle&actmethod computes the exact conditional
probability under the model that the set of observed tied event times occurs before all
the censored times with the same value or before larger vaBieslowand Efron
methods provide approximations to the exact method.

Variable selection is a typical exploratory exercise in multiple regression when the
investigator is interested in identifying important prognostic factors from a large

number of candidate variables. The PHREG procedure provides four model selec-
tion methods: forward selection, backward elimination, stepwise selection, and best
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subset selection. The best subset selection method is based on the likelihood score
statistic. This method identifies a specified number of best models containing one,
two, three variables and so on, up to the single model containing all of the explanatory
variables.

The PHREG procedure also enables you to

¢ include an offset variable in the model
e test linear hypotheses about the regression parameters

e perform conditional logistic regression analysis for matched case-control stud-
ies

e create a SAS data set containing survivor function estimates, residuals, and
regression diagnostics

e create a SAS data set containing survival distribution estimates and confidence
interval for the survivor function at each event time for a given realization of
the explanatory variables

The remaining sections of this chapter contain information on how to use PROC

PHREG, information on the underlying statistical methodology, and some sample

applications of the procedure. The “Getting Started” section on page 2573 introduces
PROC PHREG with two examples. The “Syntax” section on page 2577 describes the
syntax of the procedure. The “Details” section on page 2593 summarizes the statis-
tical techniques employed in PROC PHREG. The “Examples” section on page 2608
includes eight additional examples of useful applications. Experienced SAS/STAT

software users may decide to proceed to the “Syntax” section, while other users may
choose to read both the “Getting Started” and “Examples” sections before proceeding
to “Syntax” and “Details.”

Getting Started

PROC PHREG syntax is similar to that of the other regression procedures in the
SAS System. For simple uses, only the PROC PHREG and MODEL statements are
required.

Consider the following data from Kalbfleisch and Prentice (1980). Two groups of
rats received different pretreatment regimes and then were exposed to a carcinogen.
Investigators recorded the survival times of the rats from exposure to mortality from
vaginal cancer. Four rats died of other causes, so their survival times are censored.
Interest lies in whether the survival curves differ between the two groups.

The data selRats contains the variablBays (the survival time in days), the variable
Status (the censoring indicator variable: 0 if censored and 1 if not censored), and the
variableGroup (the pretreatment group indicator).

SAS OnlineDocl]: Version 8
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data Rats;
label Days ='Days from Exposure to Death’;
input Days Status Group @@;

datalines;

143 1 0 164 1 0 188 1 0 188 1 0
190 1 0 192 1 0 206 1 O 209 1 0
213 1 0 216 1 0 2201 0 227 1 0
230 1 0 234 1 0 246 1 0 26510
304 1 0 216 0 O 244 0 0O 142 1 1
156 1 1 163 1 1 198 1 1 20511
232 11 232 11 23311 23311
2331 1 2331 1 239 1 1 240 1 1
261 1 1 280 1 1 280 1 1 296 1 1
296 1 1 32311 204 0 1 344 0 1
run;

In the MODEL statement, the response variablays, is crossed with the censoring
variable,Status, with the value that indicates censoring enclosed in parentheses (0).
The values oDays are considered censored if the valueStétus is 0; otherwise,

they are considered event times.

proc phreg data=Rats;
model Days*Status(0)=Group;
run;

Results of the PROC PHREG analysis appear in Figure 49.1. Sirme takes only

two values, the null hypothesis for no difference between the two groups is identical
to the null hypothesis that the regression coefficientGooup is 0. All three tests

in the “Testing Global Null Hypothesis: BETA=0" table (see the section “Testing the
Global Null Hypothesis” on page 2597) suggest that the survival curves for the two
pretreatment groups may not be the same. In this model, the hazards ratio (or risk ra-
tio) for Group, defined as the exponentiation of the regression coefficiel@foup,

is the ratio of the hazard functions between the two groups. The estimate is 0.551,
implying that the hazard function f@roup=1 is smaller than that fa&roup=0. In

other words, rats isroup=1 lived longer than those iBroup=0.
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The PHREG Procedure
Model Information
Data Set WORK.RATS
Dependent Variable Days Days from Exposure to Death
Censoring Variable Status
Censoring Value(s) 0
Ties Handling BRESLOW
Summary of the Number of Event and Censored Values
Percent
Total Event Censored Censored
40 36 4 10.00
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 204.317 201.438
AIC 204.317 203.438
SBC 204.317 205.022
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 2.8784 1 0.0898
Score 3.0001 1 0.0833
Wald 2.9254 1 0.0872
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
Group 1 -0.59590 0.34840 2.9254 0.0872 0.551

Figure 49.1. Comparison of Two Survival Curves

In this example, the comparison of two survival curves is put in the form of a propor-
tional hazards model. This approach is essentially the same as the log-rank (Mantel-
Haenszel) test. In fact, if there are no ties in the survival times, the likelihood score
test in the Cox regression analysis is identical to the log-rank test. The advantage
of the Cox regression approach is the ability to adjust for the other variables by in-
cluding them in the model. For example, the present model could be expanded by
including a variable that contains the initial body weights of the rats.
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2576 ¢+ Chapter 49. The PHREG Procedure
Next, consider a simple test of the validity of the proportional hazards assumption.
The proportional hazards model for comparing the two pretreatment groups is given
by the following:
h(t) = ho(t) if GROUP=0
T | ho(t)ePr  if GROUP=1
The ratio of hazards ig®, which does not depend on time. If the hazard ratio changes
with time, the proportional hazards model assumption is invalid. Simple forms of
departure from the proportional hazards model can be investigated with the following
time-dependent explanatory variable= z(t):
2(t) = 0 if GROUP=0
| log(t) —5.4 if GROUP=1
Here,log(t) is used instead dfto avoid numerical instability in the computation. The
constant, 5.4, is the average of the logs of the survival times and is included to im-
prove interpretability. The hazard ratio in the two groups then beceffies-4#2¢5z,
whereg; is the regression parameter for the time-dependent varaflee terme?:
represents the hazard ratio at the geometric mean of the survival times. A nonzero
value of 3, would imply an increasing3, > 0) or decreasind3, < 0) trend in the
hazard ratio with time.
The MODEL statement in this analysis also includes the time-dependent explanatory
variableX, which is defined within the procedure by the programming statement that
follows the MODEL statement. At each event time, subjects in the risk set (those
alive just before the event time) have th¥ivalues changed accordingly.
proc phreg data=Rats;
model Days*Status(0)=Group X;
X=Group*(log(Days) - 5.4);
run;
The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error  Chi-Square Pr > ChiSq Ratio
Group 1 -0.59976 0.34837 2.9639 0.0851 0.549
X 1 -0.22952 1.82489 0.0158 0.8999 0.795

Figure 49.2. A Simple Test of Trend in the Hazard Ratio

The analysis of the parameter estimates is displayed in Figure 49.2. The Wald chi-
squared statistic for testing the null hypothesis that= 0 is 0.0158. The statistic

is not statistically significant when compared to a chi-squared distribution with one
degree of freedonp(= 0.8999). Thus, you can conclude that there is no evidence of
an increasing or decreasing trend over time in the hazard ratio. See the “Examples”
section beginning on page 2608 for additional illustrations of PROC PHREG usage.
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Syntax

The following statements are available in PROC PHREG.

PROC PHREG < options > ;

MODEL response < *censor(list) > = variables < /options > ;
< programming statements >
STRATA variable < (list) > < ...variable < (list) >>< /option > ;
< label: > TEST equationl < ,.. ., equationk >< /option > ;
FREQ variable ;
ID variables ;
OUTPUT < OUT=SAS-data-set >

< keyword=name. .. keyword=name >< /options > ;
BASELINE < OUT=SAS-data-set >

< COVARIATES= SAS-data-set >

< keyword=name. .. keyword=name >< /options > ;
BY variables ;

The PROC PHREG statement invokes the procedure. All other statements except
the MODEL statement are optional. Iltems within < > are optional, and there is no re-
quired order for the statements following the PROC PHREG statement. The MODEL
statement specifies the variables that define the survival time, the censoring variable,
and the explanatory variables. The STRATA statement specifies a variable or set of
variables defining the strata for the analysis. The TEST statement contains equations
that define linear hypotheses concerning the model parameters. The ID statement
specifies the variables with values that are used to label the observations in the OUT-
PUT data set. The OUTPUT and BASELINE statements create data sets containing
the survival estimates. DATA step programming statements can be included to create
time-dependent explanatory variables.

PROC PHREG Statement
PROC PHREG < options > ;
You can specify the following options in the PROC PHREG statement.
COvouT

adds the estimated covariance matrix of the parameter estimates to the OUTEST=
data set. The COVOUT option has no effect unless the OUTEST= option is specified.
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DATA=SA
name

hapter 49. The PHREG Procedure

S-data-set
s the SAS data set containing the data to be analyzed. If you omit the DATA=

option, the procedure uses the most recently created SAS data set.

MULTIPASS

requests that, for each Newton-Raphson iteration, PROC PHREG recompiles the risk
sets corresponding to the event times for the (start,stop) style of response and re-

comp

utes the values of the time-dependent variables defined by the programming

statements for each observation in the risk sets. If the MULTIPASS option is not
specified, PROC PHREG computes all risk sets and all the variable values and saves

them

into a utility file. The MULTIPASS option decreases required disk space at the

expense of increased execution time; however, for very large data, it may actually
save time since it is time consuming to write and read large utility files. This option
has an effect only when the (start,stop) style of response is used or when there are
time-dependent explanatory variables.

NOPRINT
suppresses all displayed output. Note that this option temporarily disables the Output
Delivery System (ODS); see Chapter 15, “Using the Output Delivery System,” for
more information.

NOSUMMARY

suppr

esses the display of the event and censored observation frequencies.

OUTEST=SAS-data-set
creates an output SAS data set that contains estimates of the regression coefficients.

If you

use the COVOUT option, the data set also contains the estimated covariance

matrix of the parameter estimates. The data set includes

SAS OnlineDocl]

any BY variables specified

_TIES_, a character variable of length 8 with four possible values: BRESLOW,
DISCRETE, EFRON, and EXACT. These are the four values of the TIES=
option in the MODEL statement.

_TYPE_, a character variable of length 8 with two possible values: PARMS
for parameter estimates or COV for covariance estimates

_STATUS_, a character variable indicating whether the estimates have con-
verged

_NAME_, a character variable containing the name of the TIME variable for
the row of parameter estimates and the name of each explanatory variable to
label the rows of covariance estimates

one variable for each explanatory variable in the MODEL statement. In a for-
ward, backward, or stepwise regression analysis, if an explanatory variable is
not included in the final model, the corresponding parameter estimate and co-
variances are set to missing.

_LNLIKE _, a numeric variable containing the last computed value of the log
likelihood

: Version 8
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SIMPLE
displays simple descriptive statistics (mean, standard deviation, minimum, and max-
imum) for each explanatory variable in the MODEL statement.

BASELINE Statement

BASELINE < OUT= SAS-data-set >< COVARIATES= SAS-data-set >
< keyword=name ... keyword=name >< /options > ;

The BASELINE statement creates a new SAS data set that contains the survivor func-
tion estimates at the event times of each stratum for every pattern of explanatory vari-
able valuesx) given in the COVARIATES= data set. By default, the data set also
contains the survivor function estimates corresponding to the means of the explana-
tory variables x = z) for each stratum. If you want only these estimates, you can
omit the COVARIATES= option. No BASELINE data set is created if the counting
process style of input is used or if the model contains a time-dependent variable.

The following list explains specifications in the BASELINE statement.

OUT=SAS-data-set
names the output BASELINE data set. If you omit the OUT= option, the data set is
created and given a default name using the DATAnvention.

COVARIATES= SAS-data-set
names the SAS data set containing the set of explanatory variable values for which
the survivor functions are estimated. There must be a corresponding variable in the
COVARIATES= data set for each explanatory variable in the final model.

keyword=name
specifies the statistics included in the BASELINE data set and assigns names to the
new variables that contain the statistics. Specify a keyword for each desired statistic
(see the following list of keywords), an equal sign, and the variable to contain the
statistic. The keywords and the corresponding statistics are

LOGLOGS log of the negative log of SURVIVAL
LOGSURV log of SURVIVAL

LOWER | L lower confidence limit for the survivor function
STDERR standard error of the survivor function estimate

STDXBETA standard error of the estimated linear predic«;;zéx’\Af(B)x

SURVIVAL survivor function estimate(t) = [S(t)] “**'B)
UPPER | U upper confidence limit for the survivor function

XBETA estimate of the linear predictor,’B

The following options can appear in the BASELINE statement after a slash (/).
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2580 ¢ Chapter 49. The PHREG Procedure

ALPHA= value
specifies the significance level of the confidence interval for the survivor function.
The value must be between 0 and 1. The default is 0.05, which results in a 95%
confidence interval.

CLTYPE=method
specifies the method used to compute the confidence limitS(fioe), the survivor
function for a subject with a fixed covariate vectat event timet. The CLTYPE=
option can take the following values:

LOG specifies that the confidence limits for 16g¢, z)) are to be com-
puted using the normal theory approximation. The confidence lim-
its for S(¢,z) are obtained by back-transforming the confidence
limits for log(S(t, z)). The default is CLTYPE=LOG.

LOGLOG specifies that the confidence limits for the log(-®@(z))) are to
be computed using normal theory approximation. The confidence
limits for S(t, z) are obtained by back-transforming the confidence
limits for log(-log(S(¢, z))).

NORMAL specifies that the confidence limits f8(t, z) are to be computed
directly using normal theory approximation.

METHOD=method
specifies the method used to compute the survivor function estimates. The two avail-
able methods are

CH | EMP specifies that the empirical cumulative hazard function estimate of
the survivor function is to be computed; that is, the survivor func-
tion is estimated by exponentiating the negative empirical cumula-
tive hazard function.

PL specifies that the product-limit estimate of the survivor function is
to be computed. The default is METHOD=PL.

NOMEAN
excludes the survivor function estimates corresponding to the sample means of the
explanatory variables.

BY Statement

BY variables ;

You can specify a BY statement with PROC PHREG to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables. The
variablesare one or more variables in the input data set.
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If your input data set is not sorted in ascending order, use one of the following alter-
natives:

e Sort the data using the SORT procedure with a similar BY statement.

e Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the PHREG procedure. The NOTSORTED option does not mean
that the data are unsorted but rather that the data are arranged in groups (ac-
cording to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

e Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

For more information on the BY statement, refer to the discussi@Ai8 Language
Reference: Contentd=or more information on the DATASETS procedure, refer to
the discussion in thEAS Procedures Guide

FREQ Statement
FREQ variable < /option > ;

Thevariablein the FREQ statement identifies a variable (in the input data set) con-
taining the frequency of occurrence of each observation. PROC PHREG treats each
observation as if it appearstimes, wheren is the value of the FREQ variable for

the observation. If not an integer, the frequency value is truncated to an integer. If
the frequency value is missing, the observation is not used in the estimation of the
regression parameters.

The following option can be specified in the FREQ statement after a slash (/):

NOTRUNCATE
NOTRUNC
specifies that frequency values are not truncated to integers.

ID Statement

ID variables ;

The ID statement specifies additional variables to be placed in the OUT= data set cre-
ated by the OUTPUT statement. Only variables in the input data set can be included
in the ID statement.
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MODEL Statement

MODEL response < *censor ( list ) > = variables < /options > ;
MODEL (t1, t2) < *censor(list) > = variables < /options > ;

The MODEL statement identifies the variables to be used as the failure time variables,
the optional censoring variable, and the explanatory variables. Two forms of MODEL
syntax can be specified; the first form allows one response variable, while the second
form allows two variables for the counting process style of input (see the section
“Counting Process Style of Input” on page 2595 for more information).

In the first MODEL statement, preceding the equal sign, is the name of the failure
time variable. This can optionally be followed by an asterisk, the name of the censor-
ing variable, and a list of censoring values (separated by blanks or commas if there
is more than one) enclosed in parentheses. If the censoring variable takes on one
of these values, the corresponding failure time is considered to be censored. The
variables following the equal sign are the explanatory variables (sometimes called
independent variables or covariates) for the model.

Instead of a single failure time variable, the second MODEL statement identifies a
pair of failure time variables. Their names are enclosed in parentheses, and they
signify the endpoints of a semi-closed interyél, 2] during which the subject is at

risk. If the censoring variable takes on one of the censoring values, the2imse
considered to be censored.

The censoring variable and the explanatory variables must be numeric. The failure
time variables must contain nonnegative values. Any observation with a negative
failure time is excluded from the analysis, as is any observation with a missing value
for any of the variables listed in the MODEL statement.

You can specify the following options in the MODEL statement.

Ties-Handling Option
TIES=method

specifies how to handle ties in the failure time. The TIES= option can take the fol-
lowing values:

BRESLOW uses the approximate likelihood of Breslow (1974). This is the default
value.

DISCRETE replaces the proportional hazards model by the discrete logistic model

h(t;z) — ho(t)

1—_h(t;z)  1—hot) exp(2'3)

wherehy(t) andh(t; z) are discrete hazard functions.
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EFRON uses the approximate likelihood of Efron (1977).

EXACT computes the exact conditional probability under the proportional haz-
ards assumption that all tied event times occur before censored times
of the same value or before larger values. This is equivalent to sum-
ming all terms of the marginal likelihood fe# that are consistent with
the observed data (Kalbfleisch and Prentice 1980; DeLong, Guirguis,
and So 1994).

The EXACT method may take a considerable amount of computer resources. If ties
are not extensive, the EFRON and BRESLOW methods provide satisfactory approx-
imations to the EXACT method for the continuous time-scale model. In general,
Efron’s approximation gives results that are much closer to the EXACT method re-
sults than Breslow’s approximation does. If the time scale is genuinely discrete, you
should use the DISCRETE method. The DISCRETE method is also required in the
analysis of case-control studies when there is more than one case in a matched set.
If there are no ties, all four methods result in the same likelihood and yield identical
estimates. The default, TIES=BRESLOW, is the most efficient method when there
are no ties.

Model-Specification Options
ENTRYTIME=variable
ENTRY=variable
specifies the name of the variable that represents the left truncation time. This option
has no effect when the counting process style of input is specified. See the section
“Left Truncation of Failure Times” on page 2604 for more information.

NOFIT
performs the global score test, which tests the joint significance of all the explana-
tory variables in the MODEL statement. No parameters are estimated. If the NOFIT
option is specified along with other MODEL statement options, NOFIT takes prece-
dence, and all other options are ignored except the TIES= option.

OFFSET=name
specifies the name of an offset variable, which is an explanatory variable with a re-
gression coefficient fixed as one. This option can be used to incorporate risk weights
for the likelihood function.

SELECTION=method
specifies the method used to select the model.riiétod available are

BACKWARD | B requests backward elimination.
FORWARD | F requests forward selection.

NONE | N fits the complete model specified in the MODEL statement.
This is the default value.
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SCORE requests best subset selection. It identifies a specified number
of models with the highest score chi-squared statistic for all
possible model sizes ranging from one explanatory variable to
the total number of explanatory variables listed in the MODEL
statement.

STEPWISE | S requests stepwise selection.

For more information, see the section “Variable Selection Methods” on page 2604.

Model-Building Options
The following options enable you to provide additional specifications for the BACK-
WARD, FORWARD, SCORE, and STEPWISE model selection methods. They have
no effect when SELECTION=NONE. Only the INCLUDE=, START=, STOP=, and
BEST= options work with the SCORE method.

BEST=n
is used exclusively with the SCORE model selection method. The BE®ption
specifies thath models with the highest score chi-squared statistics are to be displayed
for each model size. If the option is omitted and there are no more than ten explana-
tory variables, then all possible models are listed for each model size. If the option is
omitted and there are more than ten explanatory variables, then the number of models
selected for each model size is, at most, equal to the number of explanatory variables
listed in the MODEL statement. See Example 49.2 on page 2616 for an illustration
of the SCORE selection method and the BEST= option.

DETAILS
produces a detailed display at each step of the model-building process. It produces
an “Analysis of Variables Not in the Model” table before displaying the variable
selected for entry for FORWARD or STEPWISE selection. For each model fitted, it
produces the “Analysis of Maximum Likelihood Estimates” table. See Example 49.1
on page 2608 for a discussion of these tables.

INCLUDE=n
includes the firsh explanatory variables listed in the MODEL statement in every
model. The value fon ranges from 1 tes, wheres is the number of explanatory
variables in the MODEL statement. The default valua &f O.

MAXSTEP=n
specifies the maximum number of times the explanatory variables can move in and
out of the model before the STEPWISE model-building process ends. The default
value forn is twice the number of explanatory variables in the MODEL statement.
The option has no effect for other model selection methods.

SEQUENTIAL
forces variables to be added to the model in the order specified in the MODEL state-
ment or to be eliminated from the model in the reverse order specified in the MODEL
statement.

SLENTRY=value

SLE=value
specifies the significance level (a value between 0 and 1) for entering an explanatory
variable into the model in the FORWARD or STEPWISE method. For all variables
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not in the model, the one with the smallgstalue is entered if th@-value is less
than or equal to the specified significance level. The default value is 0.05.

SLSTAY=value

SLS=value
specifies the significance level (a value between 0 and 1) for removing an explanatory
variable from the model in the BACKWARD or STEPWISE method. For all variables
in the model, the one with the larggsivalue is removed if th@-value exceeds the
specified significance level. The default value is 0.05.

START=n
begins the FORWARD, BACKWARD, or STEPWISE model selection process with
the firstn explanatory variables listed in the MODEL statement. The valuenfor
ranges from 0 t@, wheresis the total number of explanatory variables in the MODEL
statement. The default value ofis s for the BACKWARD method and O for the
FORWARD and STEPWISE methods. Note that STARBpecifies only that the
first n explanatory variables appear in the first model, while INCLUDEpecifies
that the firstn explanatory variables be included in every model. For the SCORE
method, START# specifies that the smallest models contaexplanatory variables,
wheren ranges from 1 t@. The default value of is 1.

STOP=n
specifies the maximum (FORWARD method) or minimum (BACKWARD method)
number of explanatory variables to be included in the final model. The value for
ranges from O te, wheres is the number of explanatory variables in the MODEL
statement. The default value ofis 0 for the BACKWARD method and for the
FORWARD method. For the SCORE method, ST@Rpecifies that the largest
models contaim explanatory variables, whemranges from 1 tes. The default
value ofniss. The STOP= option has no effect for the STEPWISE method.

STOPRES

SR
specifies that the addition and deletion of variables are to be based on the result of the
likelihood score test for testing the joint significance of variables not in the model.
This score chi-squared statistic is referred to as the residual chi-square. In the FOR-
WARD method, the STOPRES option enters the explanatory variables into the model
one at a time until the residual chi-square becomes insignificant (that is, ungi the
value of the residual chi-square exceeds the SLENTRY=value). In the BACKWARD
method, the STOPRES option removes variables from the model one at a time until
the residual chi-square becomes significant (that is, untipth@lue of the residual
chi-square becomes less than the SLSTAY= value). The STOPRES option has no
effect for the STEPWISE method.

Optimization Options
Four convergence criteria are allowed: ABSFCONV=, FCONV=, GCONV=, and
XCONV=. If you specify more than one convergence criterion, the optimization is
terminated as soon as one of the criteria is satisfied. If none of the criteria is specified,
the default is GCONV=1ES8.
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ABSFCONV=value
specifies the absolute function convergence criterion. Termination requires a small

change in the objective function (log partial likelihood function) in subsequent itera-
tions,

|lg — k1| < value

wherel,, is the value of the objective function at iteratibn

CONVERGELIKE=value
is the same as specifying the ABSFCONV= option.

CONVERGEPARM=value
is the same as specifying the XCONV= option.

FCONV=value

specifies the relative function convergence criterion. Termination requires a small rel-

ative change in the objective function (log partial likelihood function) in subsequent
iterations,

|l — lg—1]
S S ok l
Ts 1|+ 1E—6 < value

wherel,, is the value of the objective function at iteratibn

GCONV=value

specifies the relative gradient convergence criterion. Termination requires that the
normalized prediction function reduction is small,

-1
ngk gk
_ov Rk 9% I
|lk|—|—1E—6 < value
wherely, is the log partial likelihoodgy, is the gradient vector (first partial derivatives

of the log partial likelihood), and;, is the negative Hessian matrix (second partial
derivatives of the log partial likelihood), all at iteratién

MAXITER=n
specifies the maximum number of iterations allowed. The default valueia25. If
convergence is not attainedriterations, the displayed output and all data sets cre-

ated by PROC PHREG contain results that are based on the last maximum likelihood
iteration.

RIDGING=ABSOLUTE | RELATIVE | NONE
specifies the technique to improve the log-likelihood when its value is worse than
that of the previous step. For RIDGING=ABSOLUTE, the diagonal elements of
the negative (expected) Hessian are inflated by adding the ridge value. For RIDG-
ING=RELATIVE, the diagonal elements are inflated by the factor equal to 1 plus the

ridge value. For RIDGING=NONE, the crude line-search method of taking half a
step is used instead of ridging.
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SINGULAR=value
specifies the singularity criterion for determining linear dependencies in the set of
explanatory variables. The default valud @s12.

XCONV=value
specifies the relative parameter convergence criterion. Termination requires a small
relative parameter change in subsequent iterations,

max |5,(f) | < value

where
(4) (4) (4)
0 91;_ — Qkfl |0k71| < .01
6]6 = 0(1)_0(1) X
+—m%=t  otherwise
ok—l

wheree,(:) is the estimate of théth parameter at iteratiok.

Display Options
ALPHA= value
sets the significance level used for the confidence limits for the hazards ratios. The
value must be between 0 and 1. The default value is 0.05, which results in the calcula-
tion of a 95% confidence interval. This option has no effect unless the RISKLIMITS
option is specified.

CORRB
displays the estimated correlation matrix of the parameter estimates.

covB
displays the estimated covariance matrix of the parameter estimates.

ITPRINT
displays the iteration history, including the last evaluation of the gradient vector.

RISKLIMITS

RL
displays, for each explanatory variable, t#(1 — «)% confidence limits for the
hazards ratiod®). The value forx is determined by the ALPHA= option.
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OUTPUT Statement

OUTPUT <OUT= SAS-data-set >
< keyword=name ... keyword=name >< /options > ;

The OUTPUT statement creates a new SAS data set containing statistics calculated
for each observation. These can include the estimated linear precﬁff“ﬁjra(nd its
standard error, survival distribution estimates, residuals, and influence statistics. In
addition, this data set includes the time variable, the explanatory variables listed in
the MODEL statement, the censoring variable (if specified), and the BY, STRATA,
FREQ, and ID variables (if specified).

For observations with missing values in the time variable or any explanatory vari-

ables, the output statistics are set to missing. However, for observations with missing
values only in the censoring variable or the FREQ variable, survival estimates are
still computed. Therefore, by adding observations with missing values in the FREQ
variable or the censoring variable, you can compute the survivor function estimates
for new observations or for settings of explanatory variables not present in the data
without affecting the model fit.

No OUTPUT data set is created if the model contains a time-dependent variable
defined by means of programming statements. Survival distribution estimates are
set to missing for the counting process style of input.

The following list explains specifications in the OUTPUT statement.

OUT=SAS-data-set
names the output data set. If you omit the OUT= option, the OUTPUT data set is
created and given a default name using the DATAnvention.

keyword=name
specifies the statistics included in the OUTPUT data set and names the new variables
that contain the statistics. Specify a keyword for each desired statistic (see the follow-
ing list of keywords), an equal sign, and either a variable or a list of variables to con-
tain the statistic. The keywords that accept a list of variables are DFBETA, RESSCH,
RESSCO, and WTRESSCH. For these keywords, you can specify as many names
in nameas the number of explanatory variables specified in the MODEL statement.
If you specifyk names andk is less than the total number of explanatory variables,
only the changes for the firktparameter estimates are output. The keywords and the
corresponding statistics are as follows:

DFBETA approximate changes in the parameter estin(&esﬁ(j)) when
the jth observation is omitted. These variables are a weighted
transform of the score residual variables and are useful in assess-
ing local influence and in computing robust variance estimates.
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approximate likelihood displacement when the observation is left
out. This diagnostic can be used to assess the impact of each
observation on the overall fit of the model.

relative influence of observations on the overall fit of the model.
This diagnostic is useful in assessing the sensitivity of the fit of
the model to each observation.

log of the negative log of SURVIVAL
log of SURVIVAL

number of subjects at risk at the observation timéor at the
right endpoint of the at risk interval when a counting process
MODEL specification is used)

deviance residud);. This is a transform of the martingale resid-
ual to achieve a more symmetric distribution.

martingale residud/vfj. The residual at the observation timg

can be interpreted as the difference oj@rr;] in the observed
number of events minus the expected number of events given by
the model.

Schoenfeld residuals. These residuals are useful in assessing the
proportional hazards assumption.

score residuals. These residuals are a decomposition of the first
partial derivative of the log likelihood. They can be used to assess
the leverage exerted by each subject in the parameter estimation.
They are also useful in constructing robust sandwich variance es-
timators.

standard error of the estimated linear predi z;.\A/'(B)zj

survivor function estimateS; = [Sy(;)] ®**"), wherer; is
the observation time
weighted Schoenfeld residuals. These residuals are useful in in-

vestigating the nature of nonproportionality if the proportional
hazard assumption does not hold.

estimate of the linear predictoz;-fi

The following options can appear in the OUTPUT statement after a slash (/).

ORDER=sort_order

specifies the order of the observations in the OUTPUT data set. Available values for

sort_order are

DATA
set.

requests that the output observations be sorted the same as the input data

SORTED requests that the output observations be sorted by strata and descending
order of the time variable within each stratum.

The default is ORDER=DATA.
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METHOD=method

specifies the method used to compute the survivor function estimates. The two avail-
able methods are

CH | EMP specifies that the empirical cumulative hazard function estimate of
the survivor function is to be computed; that is, the survivor func-
tion is estimated by exponentiating the negative empirical cumula-
tive hazard function.

PL specifies that the product-limit estimate of the survivor function is
to be computed. The defaultis METHOD=PL.

Programming Statements

Programming statements are used to create or modify the values of the explanatory
variables in the MODEL statement. They are especially useful in fitting models with
time-dependent explanatory variables. Programming statements can also be used to
create explanatory variables that are not time dependent. For example, you can create
indicator variables from a categorical variable and incorporate them into the model.
PROC PHREG programming statements cannot be used to create or modify the val-
ues of the response variable, the censoring variable, the frequency variable, or the
strata variables.

The following DATA step statements are available in PROC PHREG:

ABORT
ARRAY
assignment statements
CALL

DO

iterative DO
DO UNTIL

DO WHILE
END

GOTO
IF-THEN/ELSE
LINK-RETURN
PUT

SELECT

SUM statement

By default, the PUT statement in PROC PHREG writes to the Output window instead
of the Log window. If you want the results of the PUT statements to go to the Log
window, add the following statement before the PUT statements:

FILE LOG;

DATA step functions are also available. Use these programming statements the same
way you use them in the DATA step. For detailed information, ref&A& Language
Reference: Dictionary
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Consider the following example of using programming statements in PROC PHREG.
Suppose blood pressure is measured at multiple times during the course of a study
investigating the effect of blood pressure on some survival time. By treating the blood
pressure as a time-dependent explanatory variable, you are able to use the value of
the most recent blood pressure at each specific point of time in the modeling process
rather than using the initial blood pressure or the final blood pressure. The values of
the following variables are recorded for each patient, if they are available. Otherwise,
the variables contain missing values.

Time survival time
Censor censoring indicator (with O as the censoring value)

BPO blood pressure on entry to the study
T1 time 1

BP1 blood pressure atl

T2 time 2

BP2 blood pressure at2

The following programming statements create a varidife At each timeT, the
value of BP is the blood pressure reading for that time, if available. Otherwise, it is
the last blood pressure reading.

proc phreg;
model Time*Censor(0)=BP;
BP = BPO;
if Time>=T1 and T1”=. then BP=BPI];
if Time>=T2 and T2”=. then BP=BP2;
run;

For other illustrations of using programming statements, see the “Getting Started”
section on page 2573 and Example 49.4 on page 2622.

STRATA Statement

STRATA variable < ( list ) >< ... variable < ( list ) >>< /option > ;

The proportional hazards assumption may not be realistic for all data. If so, it may
still be reasonable to perform a stratified analysis. The STRATA statement names
the variables that determine the stratification. Strata are formed according to the
nonmissing values of the STRATA variables unless the MISSING option is specified.
In the STRATA statementiariableis a variable with values that are used to determine
the strata levels, anist is an optional list of values for a numeric variable. Multiple
variables can appear in the STRATA statement.

The values fowariable can be formatted or unformatted. If the variable is a character
variable, or if the variable is numeric and no list appears, then the strata are defined
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by the unique values of the variable. If the variable is numeric and is followed by
a list, then the levels for that variable correspond to the intervals defined by the list.
The corresponding strata are formed by the combination of levels and unique values.
The list can include numeric values separated by commas or blealkes to value

by valuerange specifications, or combinations of these.

For example, the specification

strata age (5, 10 to 40 by 10) sex ;

indicates that the levels fage are to be less than 5, 5 to 10, 10 to 20, 20 to 30, 30
to 40, and greater than 40. (Note that observations with exactly the cutpoint value
fall into the interval above the cutpoint.) Thus, with thex variable, this STRATA
statement specifies 12 strata altogether.

The following option can be specified in the STRATA statement after a slash (/).

MISSING
allows missing values (*." for numeric variables and blanks for character variables)
as valid STRATA variable values. Otherwise, observations with missing STRATA
variable values are deleted from the analysis.

TEST Statement

< label: > TEST equationl < , ..., equationk >< /option > ;

The TEST statement tests linear hypotheses about the regression coefficients. PROC
PHREG performs a Wald test for the joint hypothesis specified in a single TEST
statement. Each equation specifies a linear hypothesis; multiple equations (rows of
the joint hypothesis) are separated by commas. The label is used to identify the
resulting output, and it should always be included. You can submit multiple TEST
statements.

The form of an equation is as follows:
term < term...> <=< fterm< xterm...>>>

heretermis a variable or a constant or a constant times a variable. The variable is
any explanatory variable in the MODEL statement. When no equal sign appears,
the expression is set to 0. The following code illustrates possible uses of the TEST
statement:

proc phreg;
model time= al a2 a3 a4,
Testl: Test al, az;
Test2: Test al=0,a2=0;
Test3: Test al=a2=ag3;
Test4: Test al=a2,a2=a3;
run;
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Note that the first and second TEST statements are equivalent, as are the third and
fourth TEST statements.

The following option can be specified in the TEST statement after a slash (/).

PRINT
displays intermediate calculations. This incIuc’[eﬁ’(B)L’ bordered by(LB —c),
and[LV (3)L/]~! bordered byLV (8)L']~}(LS — c), whereL is a matrix of linear
coefficients and is a vector of constants. See the section “Testing Linear Hypotheses
about Regression Coefficients” on page 2598.

Details

Failure Time Distribution

LetT be a nonnegative random variable representing the failure time of an individual
from a homogeneous population. The survival distribution function (also known as
the survivor function) off" is written as

S(t) =Pr(T > t)

A mathematically equivalent way of specifying the distributionZofs through its
hazard function. The hazard functiaiit) specifies the instantaneous failure rate at
t. If T'is a continuous random variable(t) is expressed as

. Pri<T<t4+At|T>t) [f(t)
h(t) = 1 =
®) Ats0+ At S(t)

where f(t) is the probability density function df'. If T" is discrete with masses at
r1 < x2 < ..., thenh(t) is given by

h(t) = hid(t — x;)
J
where

5(u):{ 0 ifu<0

1 otherwise
P
hj:PI‘(T:fL‘j|TZ.’L‘j):

forj=1,2,...
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Partial Likelihood Function for the Cox Model

Let z; denote the vector of (possibly time-dependent) explanatory variables for the
[th individual. Lett; < t5 < ... < t; denote thek distinct, ordered event times.
Let d; denote the multiplicity of failures at; that is,d; is the size of the seb; of
individuals that fail at;. Lets; be the sum of the vectogs over the individuals who

fail at¢;; that is,s; = Zlepi z;. Using this notation, the likelihood functions used in
PROC PHREG to estimaje are described in the following sections.

Continuous Time Scale
LetR; denote the risk set just before title ordered event timg . Let R} denote the
set of individuals whose event or censored times exéeed whose censored times
are equal ta;.

The exact likelihood is

k o di exp(z;03)
L@ =114 [ 11 |1-ew TS o) | | exnl-tat
i=1 |70 j=1 IeR?

The Breslow likelihood is

exp(s!
i1 [z exp(z}0) ]
IER;
The Efron likelihood is
. exp(s;m
i-1 & -1 ,
H Z exp(z;8) — T Z exp(z;0)
j=1 | lER; Y lep;

Discrete Time Scale
Let Q; denote the set of all subsets dfindividuals from the risk seR;. For each
q € Qi, qis ad;-tuple (¢1, ¢z, . .., qq;) Of individuals who might have failed ;.

d;
Letsg = > 1% 2
The discrete logistic likelihood is

k /
I _ exp(siﬂ)
) H S exp(syB)

qeQ;

When there are no ties on the event times (thak;iss 1), all four likelihood functions
Li(B), L2(B), L3(B), and L4(3) reduce to the same expression. In a stratified
analysis, the partial likelihood is the product of the partial likelihood functions for
the individual strata.
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Counting Process Style of Input

In the counting process formulation, data for each subject are identified by a triple
{N,Y,Z} of counting, censoring, and covariate processes. H¥i(¢) indicates

the number of events that the subject experiences over the time infervglY (¢)
indicates whether the subject is at risk at tinfene if at risk and zero otherwise); and
Z(t) is a vector of explanatory variables for the subject at tiiEhe sample path of

N is a step function with jumps of size +1 at the event times, &) = 0. Unless

Z(t) changes continuously with time, the data for each subject can be represented by
multiple observations, each identifying a semiclosed time intétak2], the values

of the explanatory variables over that interval, and the event stat@s &he subject
remains at risk during the intervétl, 2], and an event may occur &t Values of

the explanatory variables for the subject remain unchanged in the interval. This style
of data input was originated by Terry M. Therneau (1994).

For example, a patient has a tumor recurrence at weeks 3, 10, and 15 and is followed
to week 23. The explanatory variables are(treatment)Z1 (initial tumor number),

and Z2 (initial tumor size), and, for this patient, the valuesTof, Z1, andZ2 are
(1,1,3). The data for this patient are represented by the following four observations:

T1 T2 Event Trt Z1 Z2
0 3 1 1 1 3

3 10 1 1 1 3
10 15 1 1 1 3
15 23 0 1 1 3

Here (T1,T2] contains the at-risk intervals. The varialitwent is a censoring vari-

able indicating whether a recurrence has occurretizata value of 1 indicates a
tumor recurrence, and a value of 0 indicates nonrecurrence. The PHREG procedure
fits the multiplicative hazards model, which is specified as follows:

proc phreg;
model (T1,T2) * Event(0) = Trt Z1 Z2;
run;

Another useful application of the counting process formulation is delayed entry of
subjects into the risk set. For example, in studying the mortality of workers exposed to
a carcinogen, the survival time is chosen to be the worker’s age at death by malignant
neoplasm. Any worker joining the workplace at a later age than a given event failure
time is not included in the corresponding risk set. The variables of a worker consist
of Entry (age at which the worker entered the workplad@e (age at death or age
censored)Status (an indicator of whether the observation time is censored, with the
value 0 identifying a censored time), akd and X2 (explanatory variables thought

to be related to survival). The specification for such an application is as follows.
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proc phreg;
model (Entry, Age) * Status(0) = X1 X2;
run;

Alternatively, you can use a time-dependent variable to control the risk set, as illus-
trated in the following specification:

proc phreg;
model Age * Status(0) = X1 X2;
if Age < Entry then X1=

run;

Here, X1 becomes a time-dependent variable. At a given death tjrttee value of

X1 is reevaluated for each subject witfge > ¢; subjects withEntry > ¢ are given

a missing value X1 and are subsequently removed from the risk set. Computa-
tionally, this approach is not as efficient as the one that uses the counting process
formulation.

The Multiplicative Hazards Model

Consider a set of. subjects such that the counting procégs= {N;(¢),t > 0}

for the ith subject represents the number of observed events experienced over time
t. The sample paths of the proceds are step functions with jumps of sizel,

with N;(0) = 0. Let 8 denote the vector of unknown regression coefficients. The
multiplicative hazards function (¢, Z;(t)) for N; is given by

Yi(t)dA(t, Zi(t)) = Yi(t) exp(B'Zi(t))dAo(t)
where

¢ Y;(t) indicates whether thih subject is at risk at time(specifically,Y;(¢t) = 1
if at risk andY;(¢) = 0 otherwise)

e Z,(t) is the vector of explanatory variables for tik subject at time
e Ay (t) is an unspecified baseline hazard function
Refer to Fleming and Harrington (1991) and Andersen and others (1992). The Cox

model is a special case of this multiplicative hazards model, whgrg¢ = 1 until
the first event or censoring, ad@l(t) = 0 thereafter.

The partial likelihood forn independent triplet$N;, Y;, Z;),7 = 1,...,n, has the
form

t)exp(B'Zi(t)) >N
HH{Z] 1 Y;(t ) exp(B' Zy(t))}

1=1t>0

whereAN;(t) = 1if N;(t) — N;(t—) = 1, andAN;(t) = 0 otherwise.
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Newton-Raphson Method

Let L(B) be one of the likelihood functions described in the previous subsections.
Leti(8) = logL(B). Finding3 such thatZ(3) is maximized is equivalent to finding
the solutiona to the likelihood equations

0l(B)

o5 "

=0 _— , , . .
With 8 = 0 as the initial solution, the iterative scheme is expressed as

Fr_g _ |PUB)| B
0B* B
The term after the minus sign is the Newton-Raphson step. If the likelihood function

~F41 . ~1 ~j+1 . .
evaluated 61)3]+ is less than that evaluated ﬂf, then BH is recomputed using
half the step size. The iterative scheme continues until convergence is obtained, that
is, until 3,, , ; is sufficiently close tg3,,,. Then the maximum likelihood estimate of

B ISIB = IBm—i—l'

The estimated covariance matrix[aﬁs given by

. 2B

Testing the Global Null Hypothesis

The following three likelihood statistics can be used to test the global null hypothesis
Hy: 8 = 0. Under mild assumptions, each statistic has an asymptotic chi-squared
distribution withp degrees of freedom given the null hypothesis. The vpligethe
dimension ofG.

Likelihood ratio test:

Wald's test:
=B [V@E)] B

Score test:
. [o10)]'[ #21(0)] 7" [ai(0)
a5 5] 5]
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Hazards Ratio Estimates and Confidence Limits

Let 5; and BZ denote theéth component of3 and B respectively. The hazards ratio
(also known as risk ratio) for the explanatory variable with regression coeffigjent
is defined asxp(/3;). The hazards ratio is estimated &yp(3;). The100(1 — )%
confidence limits for the hazards ratio are calculated as

exp <3z * 202 \7%(3))

Where\Afii(B) is theith diagonal element of/‘(B), andz, is the 100(1 — «a/2)
percentile point of the standard normal distribution.

The hazards ratio is the ratio of the hazards functions that correspond to a change of
one unit of the given variable and conditional on fixed values of all other variables.

Testing Linear Hypotheses about Regression Coefficients

Linear hypotheses fgB are expressed in matrix form as
H(): Lﬂ =cC

wherelL is a matrix of coefficients for the linear hypotheses, and a vector of
constants. The Wald chi-squared statistic for tesfifags computed as

X = (LB — c)' [L\?‘(B)L’} - (LB — c)

UnderHy, x%, has an asymptotic chi-squared distribution wittegrees of freedom,
wherer is the rank ofL.

Residuals

The cumulative baseline hazard functidg is estimated by

Ni(s)
Z/ Z“Y 5) exp(B Z;(s))

Although this formula is for the BRESLOW=TIES option, the same formula is used
for other TIES= options. The discrepancies between results obtained by using an
appropriate formula for a nondefault TIES= option and those obtained by the given
formula are minimal.

The martingale residual atis defined as

t —t R
NE() = Ni(t) — /0 Yi(s) exp(B'Zi(s))dAo(s)
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Here M;(t) estimates the difference ovéd,t] between the observed number of
events for theith subject and a conditional expected number of events. The quan-
tity M; = M;(o0) is referred to as the martingale residual for ttresubject. When

the counting process MODEL specification is used, the RESMART= variable con-
tains the componenf\{;(t5) — M;(t1)) instead of the martingale residualtat The
martingale residual for a subject can be obtained by summing up these component
residuals within the subject. For the Cox model with no time-dependent explana-
tory variables, the martingale residual for tile subject with observation timeg and

event statusg;, where

5 — 0 if t;is a censored time
Y| 1 ift;isaneventtime

Mi = 51 — AO(ti) eXp(BIZi)

The deviance residuatg are a transform of the martingale residuals:

di = sign(l\%')\/2 [—Mi — Ni(oo) log (%)]

The square root shrinks large negative martingale residuals, while the logarithmic
transformation expands martingale residuals that are close to unity. As such, the
deviance residuals are more symmetrically distributed about zero than the martingale
residuals. For the Cox model, the deviance residual reduces to the form

d; = sign(Mi)\/2[—Mi — 6; log(d; — M,)]

When the counting process MODEL specification is used, values of the RESDEV=
variable are set to missing because the deviance residuals can be calculated on a per
subject basis only.

The Schoenfeld residual vector is calculated on a per event time basis as
Ui(t) = Zi(t) — Z(¢)

wheret is an event time, and(t) is a weighted average of the covariates over the
risk set at time and is given by

~1
Z(t) — 21 Yi(t)Zi(t) exp(B Zi(t))
n ~1
211 Yi(t) exp(B Z(t))
Under the proportional hazards assumption, the Schoenfeld residuals have the sample

path of a random walk; therefore, they are useful in assessing time trend or lack of
proportionality. Harrell (1986) proposed a z-transform of the Pearson correlation
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between these residuals and the rank order of the failure time as a test statistic for
nonproportional hazards. Therneau, Grambsch, and Fleming (1990) considered a
Kolmogorov-type test using the cumulative sum of the residuals.

The score process for thith subject at time is

Li(t) = / Zi(s) — Z(s))dME (s)

The vectorL; = L;(o00) is the score residual for thigh subject. When the counting
process MODEL specification is used, the RESSCO= variables contain the compo-
nents of(L;(¢2) — L;(¢1)) instead of the score processtat The score residual for a
subject can be obtained by summing up these component residuals within the subject.

The score residuals are a decomposition of the first partial derivative of the log like-
lihood. They are useful in assessing the influence of each subject on individual pa-
rameter estimates. They also play an important role in the computation of the robust
sandwich variance estimators of Lin and Wei (1989) and Wei, Lin, and Weissfeld
(1989).

Diagnostics Based on Weighted Residuals

The vector of weighted Schoenfeld residuals,is computed as
r; = nVU;(t;)

wheren, is the total number of event¥], = V(B) IS the estimated covariance matrix
of 3, and U;(¢;) is the vector of Schoenfeld residuals at the event timeThe
components of; are output to the WTRESSCH= variables.

The weighted Schoenfeld residuals are useful in assessing the proportional hazards
assumption. The idea is that most of the common alternatives to the proportional
hazards can be cast in terms of a time-varying coefficient model

Alt,Z) = Ao(t) exp(Bi(t) Z1 + Ba(t) Z2 + .. )

where\(t,Z) and\y(t) are hazards rates. Lé; andr;; be thejth component of3

andr;, respectively. Grambsch and Therneau (1993) suggest using a smoothed plot
of (Bj + r;5) versust; to discover the functional form of the time-varying coefficient
B;(t). A zero slope indicates that the coefficient is not varying with time.

The weighted score residuals are used more often than their unscaled counterparts in
assessing local influence. L@f;) be the estimate g8 when theith subject is left out,
and letA; = 83— B(i). Thejth component ofA; can be used to assess any untoward

effect of theith subject onéj. The exact computation adA; involves refitting the
model each time a subject is omitted. Cain and Lange (1984) derived the following
approximation ofA; as weighted score residuals:
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Here,\Af = \AI(B) is the estimated covariance matrix ,éf andL; is the vector of

the score residuals for thigh subject. Values oﬂi are output to the DFBETA=
variables. Again, when the counting process MODEL specification is used, the DF-
BETA= variables contain the compondML;(¢2) — VL;(¢1)). The vectorA, for a
subject can be obtained by summing these components within the subject.

Note that these DFBETA statistics are a transform of the score residuals. In comput-
ing the robust sandwich variance estimators of Lin and Wei (1989) and Wei, Lin, and
Weissfeld (1989), it is more convenient to use the DFBETA statistics than the score
residuals (see Example 49.8 on page 2642).

Influence of Observations on Overall Fit of the Model

The LD statistic approximates the likelihood displacement, which is the amount by
which minus twice the log likelihood—+2log £(3)), under a fitted model, changes
when each subject in turn is left out. When titfe subject is omitted, the likelihood

displacement is
2log L(B) — 21log L(B;))

whereB(i) is the vector of parameter estimates obtained by fitting the model without
the ith subject. Instead of refitting the model without thie subject, Pettitt and Bin
Daud (1989) propose that the likelihood displacement forttnsubject be approxi-
mated by

LD; = LiVL;

This approximation is output to the LD= variable.

The LMAX statistic is another global influence statistic. This statistic is based on the
symmetric matrix

B = LVL/

whereL is the matrix with rows that are the score residual vecigrsThe elements

of the eigenvector associated with the largest eigenvalue of the niatiskandard-
ized to unit length, give a measure of the sensitivity of the fit of the model to each
observation in the data. The influence of itiesubject on the global fit of the model

is proportional to the magnitude ¢f, where(; is theith element of the vectaf that
satisfies

B¢ = Amax( and CIC =1

with Anax being the largest eigenvalue B. The sign of¢; is irrelevant, and its
absolute value is output to the LMAX= variable.

When the counting process MODEL specification is used, the LD=and LMAX= vari-
ables are set to missing, because these two global influence statistics can be calculated
on a per subject basis only.
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Survival Distribution Estimates for the Cox Model

Two estimators of the survivor function are available: one is the product-limit esti-
mate and the other is based on the empirical cumulative hazard function.

Product-Limit Estimates
LetC; denote the set of individuals censored in the half-open intétya}. ), where
to = 0 andt;,; = oco. Let~; denote the censoring times|i, ¢;11); | ranges over
C; . The likelihood function for all individuals is given by

L= H { TT (1So(ta)] =B — [So(t; + 0)] =) T 1So( + 0)] exp(z?ﬁ)}
1€D; 1eC;
whereD, is empty. The likelihoodC is maximized by takingsy(¢t) = So(t; + 0) for

t; < t < t;;1 and allowing the probability mass to fall only on the observed event
timesty, ..., tx. By considering a discrete model with hazard contributich o; at

t;, you takeSy(t;) = Sp(ti_1 +0) = H;;}) aj, whereay = 1. Substitution into the
likelihood function produces

H ( .exp(z}ﬂ)> H cY.exp(zg,ﬂ)}

J€ED; lER;—D

[;H{

If you replaces with ,@ estimated from the partial likelihood function and then maxi-

mize with respect tay , ... ,a; , the maximum likelihood estimatg; of o; becomes
a solution of
ex Z
> p—‘*, = 3 explefB)
jep; 1 _ 5P P e,

When only a single failure occurs &t @; can be found explicitly. Otherwise, an
iterative solution is obtained by the Newton method.

The estimated baseline cumulative hazard function is
Hy(t) = —log(So(t))

where§0(t) is the estimated baseline survivor function given by
§() S[) 11+0 Ha], t; 1 <t<t;

For details, refer to Kalbfleisch and Prentice (1980). For a given realization of the
explanatory variableg, the product-limit estimate of the survival functionZt= ¢
is

3(t, €) = [So(t))=*BE)
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Empirical Cumulative Hazards Function Estimates
Let ¢ be a given realization of the explanatory variables. The empirical cumulative
hazard function estimate dt= & is

dNi(s)
At &) =
Z/ >i—1Yj(s )exp(B (z; — €))

The variance estimator (ﬁ(t, &) is given by the following (Tsiatis 1981):

var{n® (A(t, &) — A(t, £))}
g ¢ dNy(s) 1 P
— 28 +H'(t,6)V(B)H(t, €)
{Z/ [0, Yi(s) exp(B (zj — £))]2 }

whereV (83) is the estimated covariance matrix@fand

Lt Yi(s)(Zg — €) exp(B (z — €))
H(t)g) = ~I dNZ(S)
Z 0 [0, Yi(s)exp(B (z; — €)))?

The empirical cumulative hazard function (CH) estimate of the survivor function for
Z=¢is

g(ta €) = exp(—K(t, 6))

Confidence Intervals for the Survivor Function
LetS’(t, ¢) andS(t, &) correspond to the product-limit (PL) and empirical cumulative
hazard function (CH) estimates of the survivor functionZot &, respectively. Both
the standard error of Ioﬁ((t ¢)) and the standard error of lai(t, 5)) are approxi-

mated byé& (¢, £), which is the square root of the variance estlmataats) refer
to Kalbfleish and Prentice (1980, p. 116). By the delta method, the standard errors of

S(t, &) andS(t, &) are given by
G1(t,€)=S(t,€)50(t,€)  and  &1(t,€)=S(t, €)Fo(t, €)

respectively. The standard errors of log[-16g¢, ¢))] and log[-log (¢, ¢))] are given
by

o(t,§)
(t,€)

Qx

_&O(ta €)

ogSey ¢ hES

6’2 (tv 6):

>)

respectively.

Letz, /o be the uppet00(1— §) percentile point of the standard normal distribution.
A 100(1 — a)% confidence interval for the survivor functid(t, €) is given in the
following table.
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Method CLTYPE | Confidence Limits

LOG PL exp[log(é‘( €)) £ z260(t,€)]

LOG CH exp|log(S(¢, )):|:Zao'0(, )]

LOGLOG | PL exp{— expllog(— log(S(t, £))) £ zs 5 (t, €)1}
LOGLOG | CH exp{— expllog(— log(3(t, €))) + 29 5(1,€)]}
NORMAL | PL S(t,€) + 22 61(t,€)

NORMAL | CH S(t,€) £ 2a51(t, €)

Left Truncation of Failure Times

Left truncation arises when individuals come under observation only some known
time after the natural time origin of the phenomenon under study. The risk set just
prior to an event time does not include individuals whose left truncation times exceed
the given event time. Thus, any contribution to the likelihood must be conditional on
the truncation limit having been exceeded.

Although left truncation can be accommodated in PROC PHREG through the count-
ing process style of input, such specification does not allow survival estimates to be
output. Using the ENTRY= option in PROC PHREG for left truncation does not
suppress computing the survival estimates. Consider the following specifications of
PROC PHREG:

proc phreg data=one;
model t2*dead(0)=x1-x10/entry=t1;
baseline out=outl survival=s;
titte 'The ENTRY= option is Specified’;
run;

proc phreg data=one;

model (t1,t2)*dead(0)=x1-x10;

baseline out=out2 survival=s;

titte 'Counting Process Style of Input’;
run;

Both specifications yield the same model estimates; however, the baseline data set
out2 is empty, since survivor function estimates are not computed when you use the
counting process style of input.

Variable Selection Methods

Five variable selection methods are available. The simplest method (and the default)
is SELECTION=NONE, for which PROC PHREG fits the complete model as spec-
ified in the MODEL statement. The other four methods are FORWARD for forward
selection, BACKWARD for backward elimination, STEPWISE for stepwise selec-
tion, and SCORE for best subsets selection. These methods are specified with the
SELECTION= option in the MODEL statement. Intercept parameters are forced to
stay in the model unless the NOINT option is specified.
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When SELECTION=FORWARD, PROC PHREG first estimates parameters for vari-
ables forced into the model. These variables are the intercepts and the dixst
planatory variables in the MODEL statement, wherés the number specified by

the START= or INCLUDE= option in the MODEL statement is zero by default).

Next, the procedure computes the adjusted chi-square statistics for each variable not
in the model and examines the largest of these statistics. If it is significant at the
SLSENTRY= level, the corresponding variable is added to the model. Once a vari-
able is entered in the model, it is never removed from the model. The process is
repeated until none of the remaining variables meet the specified level for entry or
until the STOP= value is reached.

When SELECTION=BACKWARD, parameters for the complete model as specified
in the MODEL statement are estimated unless the START=option is specified. In that
case, only the parameters for the intercepts and thexfggplanatory variables in the
MODEL statement are estimated, wherés the number specified by the START=
option. Results of the Wald test for individual parameters are examined. The least
significant variable that does not meet the SLSSTAY= level for staying in the model
is removed. Once a variable is removed from the model, it remains excluded. The
process is repeated until no other variable in the model meets the specified level for
removal or until the STOP=value is reached.

The SELECTION=STEPWISE option is similar to the SELECTION=FORWARD
option except that variables already in the model do not necessarily remain. Vari-
ables are entered into and removed from the model in such a way that each forward
selection step can be followed by one or more backward elimination steps. The step-
wise selection process terminates if no further variable can be added to the model or if
the variable just entered into the model is the only variable removed in the subsequent
backward elimination.

For SELECTION=SCORE, PROC PHREG uses the branch and bound algorithm of
Furnival and Wilson (1974) to find a specified number of models with the highest
likelihood score (chi-square) statistic for all possible model sizes, froPn 3 vari-

ables, and so on, up to the single model containing all of the explanatory variables.
The number of models displayed for each model size is controlled by the BEST= op-
tion. You can use the START= option to impose a minimum model size, and you can
use the STOP= option to impose a maximum model size. For instance, with BEST=3,
START=2, and STOP=5, the SCORE selection method displays the best three models
(that is, the three models with the highest score chi-squares) containing 2, 3, 4, and 5
variables.

The SEQUENTIAL and STOPRES options can alter the default criteria for adding
variables to or removing variables from the model when they are used with the FOR-
WARD, BACKWARD, or STEPWISE selection methods.
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Computational Resources

Letn be the number of observations in a BY group. héte the number of explana-
tory variables. The minimum working space (in bytes) needed to process the BY
group is

max{12n, 24p> + 160p}

Extra memory is needed for certain TIES= options. kdie the maximum multi-
plicity of tied times. The TIES=DISCRETE option requires extra memory (in bytes)
of

4k(p® + 4p)
The TIES=EXACT option requires extra memory (in bytes) of
24(k?* + 5k)

If sufficient space is available, the input data set is also kept in memory. Otherwise,
the input data is reread from the utility file for each evaluation of the likelihood func-
tion and its derivatives, with the resulting execution time substantially increased.

Displayed Output

The displayed output of the PHREG procedure contains the following:

¢ the two-level name of the input data set

¢ the name and label of the failure-time variable
¢ the name and label of the censoring variable
¢ the censoring values

e the name and label of the offset variable

¢ the name and label of the frequency variable
¢ the method of handling ties in the failure time

e the “Summary of the Number of Event and Censored Values” table, which
displays, for each stratum, the breakdown of the number of events and censored
values. This table is not produced if the NOSUMMARY option is specified.

e the “Simple Statistics for Explanatory Variables” table, which displays, for
each stratum, the mean, standard deviation, and minimum and maximum for
each explanatory variable in the MODEL statement (if you specify the SIMPLE
option in the PROC PHREG statement)

¢ the “lteration History” table, which displays the iteration number, step size,
log likelihood, and parameter estimates at each iteration (if you specify the
ITPRINT option in the MODEL statement). The last evaluation of the gradient
vector is also displayed.
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the “Model Fit Statistics” table, which gives the values-e2 log likelihood
for fitting a model with no explanatory variable and for fitting a model with all
the explanatory variables. The AIC and SBC are also given in this table.

the “Testing Global Null Hypothesis: BETA=0" table, which displays results
of the likelihood ratio test, the score test, and the Wald test

the “Analysis of Maximum Likelihood Estimates” table, which contains the
following:

— the maximum likelihood estimate of the parameter

— the estimated standard error of the parameter estimate, computed as the
square root of the corresponding diagonal element of the estimated co-
variance matrix

— the Wald Chi-Square statistic, computed as the square of the parameter
estimate divided by its standard error estimate

— the degrees of freedom of the Wald chi-square statistic. It has a value of
1 unless the corresponding parameter is redundant or infinite, in which
case the value is 0.

— thep-value of the Wald chi-squared statistic with respect to a chi-squared
distribution with one degree of freedom

— the hazards ratio computed by exponentiating the parameter estimate

— the confidence limits for the hazards ratio (if you specified the option
RISKLIMITS)

the “Regression Models Selected by Score Criterion” table, which gives the
number of explanatory variables in each model, the score chi-squared statistic,
and the names of the variables included in the model (if you specify SELEC-
TION=SCORE in the MODEL statement)

the “Analysis of Variables Not in the Model” table, which gives the Score
chi-squared statistic for testing the significance of each variable not in the
model after adjusting for the variables already in the model, andpthe
value of the chi-squared statistic with respect to a chi-squared distribution
with one degree of freedom (if you specify SELECTION=FORWARD, SE-
LECTION=BACKWARD, or SELECTION=STEPWISE in the MODEL state-
ment). This table is produced before the variable selected for entry for SELEC-
TION=FORWARD or SELECTION=STEPWISE is displayed.

a summary of the model-building process, which gives the step number, the ex-
planatory variables entered or removed at each step, the chi-squared statistic,
and the correspondingrvalue on which the entry or removal is based (if you
specify SELECTION=FORWARD, SELECTION=BACKWARD, or SELEC-
TION=STEPWISE in the MODEL statement)

the estimated covariance matrix of the parameter estimates (if you use the
COVB option in the MODEL statement)

the estimated correlation matrix of the parameter estimates (if you use the
CORRB option in the MODEL statement)

the “Linear Hypothesis Testing” table, which gives the results of the Wald test
for each TEST statement (if specified)
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ODS Table Names

PROC PHREG assigns a hame to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 49.1. ODS Tables Produced in PROC PHREG

ODS Table Name Description Statement Option
BestSubsets Best subset selection MODEL SELECTION=SCORE
CensoredSummary Summary of event and censofd@®DEL default
observations
ConvergenceStatus Convergence status MODEL default
CorrB Estimated correlation matrix of MODEL CORRB
parameter estimators
CovB Estimated covariance matrix ofMODEL covB
parameter estimators
FitStatistics Model fit statistics MODEL default
GlobalScore Global chi-square test MODEL NOFIT
GlobalTests Tests of the global null MODEL default
hypothesis
IterHistory Iteration history MODEL ITPRINT
LastGradient Last evaluation of gradient MODEL ITPRINT
ModelBuildingSummary Summary of model building MODEL SELECTION=B/F/$
Modellnfo Model information PROC default
ParameterEstimates Maximum likelihood estimatédODEL default
of model parameters
ResidualChiSq Residual chi-square MODEL SELECTION=F/B
SimpleStatistics Summary statistics for explan&ROC SIMPLE
tory variables
TestPrintl L[cov(b)]L’ andLb-c TEST PRINT
TestPrint2 Ginvi_ [cov(b)]L") and TEST PRINT
Ginv(L [cov(b)]L")(Lb-c)
VariablesNotinModel Analysis of variables not in theMODEL = SELECTION=F/S
model
Examples

Example 49.1. Stepwise Regression

Krall, Uthoff, and Harley (1975) analyzed data from a study on multiple myeloma
in which researchers treated 65 patients with alkylating agents. Of those patients, 48
died during the study and 17 survived. In the dataMgtloma, the variableTime
represents the survival time in months from diagnosis. The vari&btatus consists

of two values, 0 and 1, indicating whether the patient was alive or dead, respectively,
at the end of the study. If the value dEtatus is 0, the corresponding value dime

is censored. The variables thought to be related to survivdl@8UN (log(BUN)
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at diagnosis)HGB (hemoglobin at diagnosisilatelet (platelets at diagnosis: 0=ab-
normal, 1=normal)Age (age at diagnosis in yeart)pgWBC (log(WBC) at diagno-
sis), Frac (fractures at diagnosis: 0=none, 1=presehtjgPBM (log percentage of
plasma cells in bone marrowrotein (proteinuria at diagnosis), ariCalc (serum
calcium at diagnosis). Interest lies in identifying important prognostic factors from

these nine explanatory variables.

data Myeloma;
input Time VStatus LogBUN HGB Platelet Age LogWBC Frac

LogPBM Protein SCalc;

label Time='Survival Time’
VStatus='0=Alive 1=Dead’;

datalines;
1.25 1 22175
1.25 1 1.9395
200 1 1.5185
200 1 1.7482
200 1 1.3010
3.00 1 1.5441
5,00 1 2.2355
500 1 1.6812
6.00 1 1.3617
6.00 1 2.1139
6.00 1 1.1139
6.00 1 1.4150
700 1 1.9777
7.00 1 1.0414
700 1 1.1761
9.00 1 1.7243
11.00 1 1.1139
11.00 1 1.2304
11.00 1 1.3010
11.00 1 1.5682
11.00 1 1.0792
13.00 1 0.7782
1400 1 1.3979
15.00 1 1.6021
16.00 1 1.3424
16.00 1 1.3222
17.00 1 1.2304
17.00 1 1.5911
18.00 1 1.4472
19.00 1 1.0792
19.00 1 1.2553
2400 1 1.3010
25.00 1 1.0000
26.00 1 1.2304
32.00 1 1.3222
35.00 1 1.1139
37.00 1 1.6021
41.00 1 1.0000
41.00 1 1.1461
51.00 1 1.5682

9.4
12.0
9.8
11.3
5.1
6.7
10.1
6.5
9.0
10.2
9.7
10.4
9.5
5.1
11.4
8.2
14.0
12.0
13.2
7.5
9.6
5.5
14.6
10.6
9.0
8.8
10.0
11.2
7.5
14.4
7.5
14.6
12.4
11.2
10.6
7.0
11.0
10.2
5.0
7.7

ORPFPPFPOFRPFPRPFPORPRRPPRPRPLPPPORRRPPPPRPRORPRRPRPORRPRLPOOREREPR

67
38
81
75
57
46
50
74
77
70
60
67
48
61
53
55
61
43
65
70
51
60
66
70
48
62
53
68
65
51
60
56
67
49
46
48
63
69
70
74

3.6628
3.9868
3.8751
3.8062
3.7243
4.4757
4.9542
3.7324
3.5441
3.5441
3.5185
3.9294
3.3617
3.7324
3.7243
3.7993
3.8808
3.7709
3.7993
3.8865
3.5051
3.5798
3.7243
3.6902
3.9345
3.6990
3.8808
3.4314
3.5682
3.9191
3.7924
4.0899
3.8195
3.6021
3.6990
3.6532
3.9542
3.4771
3.5185
3.4150

PRPPRPORRPRRPRRPPRLRPOORPRRRRPRPRLRRORPRRPRPRRRRRPRRPROORORRRRER

1.9542
1.9542
2.0000
1.2553
2.0000
1.9345
1.6628
1.7324
1.4624
1.3617
1.3979
1.6902
1.5682
2.0000
1.5185
1.7404
1.2788
1.1761
1.8195
1.6721
1.9031
1.3979
1.2553
1.4314
2.0000
0.6990
1.4472
1.6128
0.9031
2.0000
1.9294
0.4771
1.6435
2.0000
1.6335
1.1761
1.2041
1.4771
1.3424
1.0414

N
oN

=

ROONPAPRPNOOUITONPFRPPRANOONNOORPFPOORPRRLRUDOORRUORMNWON
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5200 1 1.0000 10.1 1 60 3.8573 1 16532 4 10
5400 1 12553 90 1 49 37243 1 16990 2 10
58.00 1 12041 121 1 42 36990 1 1.5798 22 10
66.00 1 1.4472 66 1 59 37853 1 18195 0 9
6700 1 13222 128 1 52 3.6435 1 1.0414 1 10
88.00 1 11761 106 1 47 35563 0 1.7559 21 9
89.00 1 1.3222 140 1 63 36532 1 1.6232 1 9
9200 1 1.4314 110 1 58 4.07/55 1 14150 4 11
400 O 19542 102 1 59 40453 0 0.7782 12 10
400 0 19243 100 1 49 39590 O 16232 0 13
700 O 1.1139 124 1 48 3.7993 1 18573 0 10
700 O 15315 102 1 81 35911 O 18808 O 11
800 0O 10792 99 1 57 38325 1 16532 0 8
1200 0 11461 116 1 46 36435 0 11461 O 7
11.00 0 16128 140 1 60 37324 1 18451 3 9
1200 0 13979 88 1 66 38388 1 13617 O 9
13.00 0 16628 49 0 71 36435 0 17924 0 9
16.00 0 1.1461 130 1 55 38573 0 09031 o0 9
1900 0 13222 130 1 59 37709 1 2.0000 1 10
1900 0 1.3222 108 1 69 38808 1 15185 0 10
2800 O 12304 73 1 82 37482 1 167217 0 9
4100 O 1.7559 128 1 72 3.7243 1 1.4472 1 9
53.00 0 1.1139 120 1 66 3.6128 1 2.0000 1 11
5700 0O 1.2553 125 1 66 39685 0 19542 0 11
0 10792 140 1 60 36812 0 09542 0 12

77.00

The stepwise selection process consists of a series of alternating step-up and step-
down phases. The former adds variables to the model, while the latter removes vari-
ables from the model.

Stepwise regression analysis is requested by specifying the SELECTION=STEPWISE
option in the MODEL statement. The option SLENTRY=0.25 specifies that a vari-
able has to be significant at the 0.25 level before it can be entered into the model,
while the option SLSTAY=0.15 specifies that a variable in the model has to be sig-
nificant at the 0.15 level for it to remain in the model. The DETAILS option requests
detailed results for the variable selection process.

proc phreg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC
Frac LogPBM Protein SCalc
| selection=stepwise slentry=0.25
slstay=0.15 details;
run;

Results of the stepwise regression analysis are displayed in Output 49.1.1 through
Output 49.1.7.

SAS OnlineDocll : Version 8



Output 49.1.1.

Example 49.1.  Stepwise Regression

Individual Score Test Results for all Variables
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The PHREG Procedure

Model Information

Data Set WORK.MYELOMA

Dependent Variable Time Survival Time
Censoring Variable VStatus O=Alive 1=Dead
Censoring Value(s) 0

Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent

Total Event Censored Censored

65 48 17 26.15
Analysis of Variables Not in the Model

Score

Variable Chi-Square Pr > ChiSq
LogBUN 8.5164 0.0035
HGB 5.0664 0.0244
Platelet 3.1816 0.0745
Age 0.0183 0.8924
LogWBC 0.5658 0.4519
Frac 0.9151 0.3388
LogPBM 0.5846 0.4445
Protein 0.1466 0.7018
SCalc 1.1109 0.2919

Residual Chi-Square Test
Chi-Square DF Pr > ChiSq

18.4550 9 0.0302
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Output 49.1.2.  First Model in the Stepwise Selection Process

The PHREG Procedure
Step 1. Variable LogBUN is entered. The model contains the following
explanatory variables:
LogBUN
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 309.716 301.959
AIC 309.716 303.959
SBC 309.716 305.830
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 7.7572 1 0.0053
Score 8.5164 1 0.0035
Wald 8.3392 1 0.0039
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error  Chi-Square Pr > ChiSq Ratio
LogBUN 1 1.74595 0.60460 8.3392 0.0039 5.731

Individual score tests are used to determine which of the nine explanatory variables is
first selected into the model. In this case, the score test for each variable is the global
score test for the model containing that variable as the only explanatory variable.
The chi-squared statistic is compared to a chi-squared distribution with one degree
of freedom. Output 49.1.1 displays the chi-squared statistics and the corresponding
p-values. The variableogBUN has the largest chi-squared value (8.5164), and it is
significant p = 0.0035) at the SLENTRY=0.25 level. The variabl®gBUN is thus
entered into the model. Output 49.1.2 displays the model results. Since the Wald
chi-squared statistic is significant £ 0.0039) at the SLSTAY=0.15 level.ogBUN

stays in the model.
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Output 49.1.3.  Score Tests Adjusted for the Variable LogBUN

¢

Analysis of Variables Not in the Model

Score
Variable Chi-Square Pr > ChiSq

HGB 4.3468 0.0371
Platelet 2.0183 0.1554
Age 0.7159 0.3975
LogWBC 0.0704 0.7908
Frac 1.0354 0.3089
LogPBM 1.0334 0.3094
Protein 0.5214 0.4703
SCalc 1.4150 0.2342

Residual Chi-Square Test
Chi-Square DF Pr > ChiSq

9.3164 8 0.3163

Output 49.1.4. Second Model in the Stepwise Selection Process

Step 2. Variable HGB is entered. The model contains the following explanatory
variables:

LogBUN HGB

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 309.716 297.767
AIC 309.716 301.767
SBC 309.716 305.509

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 11.9493 2 0.0025

Score 12.7252 2 0.0017
Wald 12.1900 2 0.0023

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error  Chi-Square Pr > ChiSq Ratio
LogBUN 1 1.67440 0.61209 7.4833 0.0062 5.336
HGB 1 -0.11899 0.05751 42811 0.0385 0.888

2613
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The next step consists of selecting another variable to add to the model. Output 49.1.3
displays the chi-squared statistics andalues of individual score tests (adjusted for
LogBUN) for the remaining eight variables. The score chi-square for a given variable
is the value of the likelihood score test for testing the significance of the variable in
the presence dfogBUN. The variableHGB is selected because it has the highest
chi-squared value (4.3468), and it is significgnt{ 0.0371) at the SLENTRY=0.25

level. Output 49.1.4 displays the fitted model containing haigBUN andHGB.

Based on the Wald statistics, neithexgBUN nor HGB is removed from the model.

Output 49.1.5.  Third Model in the Stepwise Regression

Step 3. Variable SCalc is entered. The model contains the following

Parameter Standard Hazard
Variable DF Estimate Error  Chi-Square Pr > ChiSq Ratio
LogBUN 1 1.63593 0.62359 6.8822 0.0087 5.134
HGB 1 -0.12643 0.05868 4.6419 0.0312 0.881
SCalc 1 0.13286 0.09868 1.8127 0.1782 1.142

explanatory variables:

LogBUN HGB SCalc

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 309.716 296.078
AlIC 309.716 302.078
SBC 309.716 307.692

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 13.6377 3 0.0034

Score 15.3053 3 0.0016
Wald 14.4542 3 0.0023

Analysis of Maximum Likelihood Estimates

Output 49.1.5 shows Step 3 of the selection process, in which the va8&llk is
added, resulting in the model wiltngBUN, HGB, and SCalc as the explanatory
variables. Note thaSCalc has the smallest Wald chi-squared statistic, and it is not
significant p = 0.1782) at the SLSTAY=0.15 level. The variabCalc is then
removed from the model in a step-down phase in Step 4 (Output 49.1.6). The removal
of SCalc brings the stepwise selection process to a stop in order to avoid repeatedly
entering and removing the same variable.

The procedure also displays a summary table of the steps in the stepwise selection
process, as shown in Output 49.1.7.
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The stepwise selection process results in a model with two explanatory variables,

LogBUN andHGB.
Output 49.1.6.  Final Model in the Stepwise Regression

Step 4. Variable SCalc is removed. The model contains the following
explanatory variables:

LogBUN HGB

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 309.716 297.767
AIC 309.716 301.767
SBC 309.716 305.509

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 11.9493 2 0.0025

Score 12.7252 2 0.0017
Wald 12.1900 2 0.0023

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
LogBUN 1 1.67440 0.61209 7.4833 0.0062 5.336
HGB 1 -0.11899 0.05751 4.2811 0.0385 0.888

NOTE: Model building terminates because the variable to be entered is the
variable that was removed in the last step.

Output 49.1.7. Model Selection Summary

Summary of Stepwise Selection

Variable Number Score Wald
Step Entered Removed In Chi-Square Chi-Square Pr > ChiSq
1 LogBUN 1 8.5164 . 0.0035
2 HGB 2 4.3468 . 0.0371
3 SCalc 3 1.8225 . 0.1770
4 SCalc 2 . 1.8127 0.1782
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Example 49.2. Best Subset Selection

An alternative to stepwise selection of variables is best subset selection. The proce-
dure uses the branch and bound algorithm of Furnival and Wilson (1974) to find a
specified number of best models containing one, two, three variables and so on, up
to the single model containing all of the explanatory variables. The criterion used to
determine “best” is based on the global score chi-squared statistic. For two models A
and B, each having the same number of explanatory variables, model A is considered
to be better than model B if the global score chi-squared statistic for A exceeds that
for B.

Best subset selection analysis is requested by specifying the SELECTION=SCORE
option in the MODEL statement. The BEST=3 option requests the procedure to
identify only the three best models for each size. In other words, PROC PHREG will
list the three models having the highest score statistics of all the models possible for
a given number of covariates.

proc phreg data=Myeloma;
model Time*VStatus(0)=LogBUN HGB Platelet Age LogWBC
Frac LogPBM Protein SCalc
/ selection=score best=3;
run;

Output 49.2.1 displays the results of this analysis. The number of explanatory vari-
ables in the model is given in the first column, and the names of the variables are
listed on the right. The models are listed in descending order of their score chi-
squared values within each model size. For example, among all models containing
two explanatory variables, the model that contains the varidldg8UN andHGB

has the largest score value (12.7252), the model that contains the vatiagRIN
andPlatelet has the second largest score value (11.1842), and the model that contains
the variabled. ogBUN andSCalc has the third largest score value (9.9962).
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Output 49.2.1.  Best Variable Combinations

The PHREG Procedure
Regression Models Selected by Score Criterion

Number of Score
Variables Chi-Square Variables Included in Model

1 8.5164 LogBUN

1 5.0664 HGB

1 3.1816 Platelet

2 12.7252 LogBUN HGB

2 11.1842 LogBUN Platelet

2 9.9962 LogBUN ScCalc

3 15.3053 LogBUN HGB ScCalc

3 13.9911 LogBUN HGB Age

3 13.5788 LogBUN HGB Frac

4 16.9873 LogBUN HGB Age ScCalc

4 16.0457 LogBUN HGB Frac SCalc

4 15.7619 LogBUN HGB LogPBM ScCalc

5 17.6291 LogBUN HGB Age Frac SCalc

5 17.3519 LogBUN HGB Age LogPBM ScCalc

5 17.1922 LogBUN HGB Age LogWBC SCalc

6 17.9120 LogBUN HGB Age Frac LogPBM SCalc

6 17.7947 LogBUN HGB Age LogWBC Frac SCalc

6 17.7744 LogBUN HGB Platelet Age Frac SCalc

7 18.1517 LogBUN HGB Platelet Age Frac LogPBM SCalc

7 18.0568 LogBUN HGB Age LogWBC Frac LogPBM SCalc

7 18.0223 LogBUN HGB Platelet Age LogWBC Frac SCalc

8 18.3925 LogBUN HGB Platelet Age LogWBC Frac LogPBM ScCalc
8 18.1636 LogBUN HGB Platelet Age Frac LogPBM Protein SCalc
8 18.1309 LogBUN HGB Platelet Age LogWBC Frac Protein SCalc
9 18.4550 LogBUN HGB Platelet Age LogWBC Frac LogPBM Protein SCalc

Example 49.3. Conditional Logistic Regression for m:n
Matching

Conditional logistic regression is used to investigate the relationship between an out-
come and a set of prognostic factors in matched case-control studies. The outcome is
whether the subject is a case or a control. If there is only one case and one control,
the matching is 1:1. Thea:nmatching refers to the situation in which there is a vary-

ing number of cases and controls in the matched sets. You can perform conditional
logistic regression with the PHREG procedure by using the discrete logistic model
and forming a stratum for each matched set. In addition, you need to create dummy
survival times so that all the cases in a matched set have the same event time value,
and the corresponding controls are censored at later times.

Consider the following set of low infant birth-weight data extracted from Appendix 1
of Hosmer and Lemeshow (1989). These data represent 189 women, of whom 59 had
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low birth-weight babies and 130 had normal weight babies. Under investigation are
the following risk factors: weight in pounds at the last menstrual peti@dT), pres-

ence of hypertensiorHT), smoking status during pregnan@mnioke), and presence

of uterine irritability Ul). ForHT, Smoke, andUI, a value of 1 indicates a “yes” and

a value of 0 indicates a “no.” The woman’s age@é) is used as the matching vari-
able. The SAS data s€BW contains a subset of the data corresponding to women
between the ages of 16 and 32.

data LBW;
input id Age Low LWT Smoke HT Ul @@;
Time=2-Low;
datalines;

25 16 1 130 0 0 O 143 16 0 110 0 0 O
166 16 0 112 0 0 O 167 16 0 135 1 0 O
189 16 0 135 1 0 O 206 16 0 170 0 0 O
216 16 0 95 0 0 O 37 17 1 130 1 0 1

45 17 1 110 1 0 O 68 17 1 120 1 0 O

71 17 1 120 0 0 O 83 17 1 142 0 1 O

93 17 0 103 0 0 O 113 17 0 122 1 0 O
116 17 0 113 0O 0 O 117 17 0 113 0 0 O
147 17 0 119 0O 0 O 148 17 0 119 0 0 O
180 17 0 120 1 0 O 49 18 1 148 0 0 O

50 18 1 110 1 0 O 89 18 0 107 1 0 1
100 18 0 100 1 0 O 101 18 0 100 1 0 O
132 18 0 90 1 0 1 133 18 0 90 1 0 1
168 18 0 229 0 0 O 205 18 0 120 1 0 O
208 18 0 120 0 0 O 23 19 1 91 1 0 1

33 19 1 102 0 0 O 34 19 1 112 1 0 1

85 19 0 182 0 0 1 96 19 0 95 0 0 O

97 19 0 150 0 0 O 124 19 0 138 1 0 O
129 19 0 189 0 0 O 135 19 0 132 0 0 O
142 19 0 115 0 0 O 181 19 0 105 0 0 O
187 19 0 235 1 1 0 192 19 0 147 1 0 O
193 19 0 147 1 0 O 197 19 0 184 1 1 0
224 19 0 120 1 0 O 27 20 1 150 1 0 O

31 20 1 125 0 0 1 40 20 1 120 1 0 O

44 20 1 80 1 0 1 47 20 1 109 0 0 O

51 20 1 121 1 0 1 60 20 1 122 1 0 O

76 20 1 105 0 0 O 87 20 0 105 1 0 O
104 20 0 120 0 0 1 146 20 0 103 0 0 O
155 20 0 169 0 0 1 160 20 0 141 0 0 1
172 20 0 121 1 0 O 177 20 0 127 0 0 O
201 20 0 120 0O 0 O 211 20 0 170 1 0 O
217 20 0 158 0O 0 O 20 21 1 165 1 1 0

28 21 1 200 0 0 1 30 21 1 103 0 0 O

52 21 1 100 0 0 O 84 21 1 130 1 1 0

88 21 0 108 1 0 1 91 21 0 124 0 0 O
128 21 0 185 1 0 O 131 21 0 160 0 0 O
144 21 0 110 1 0 1 186 21 0 134 0 0 O
219 21 0 115 0O 0 O 42 22 1 130 1 0 1

67 22 1 130 1 0 O 92 22 0 118 0 0 O

98 22 0 95 0 1 0 137 22 0 85 1 0 O
138 22 0 120 0 1 0 140 22 0 130 1 0 O
161 22 0 158 0O 0 O 162 22 0 112 1 0 O
174 22 0 131 0 0 O 184 22 0 125 0 0 O
204 22 0 169 0 0 O 220 22 0 129 0 0 O

17 23 1 97 0 0 1 59 23 1 187 1 0 O
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63 23 1 120 0 0 O 69 23 1 110 1 0 O
82 23 1 94 1 0 O 130 23 O 130 0 0 O
139 23 0 128 0 O O 149 23 0 119 0 0 O
164 23 0 115 1 0 O 173 23 0 190 0 0 O
179 23 0 123 0 0 O 182 23 0 130 O O O
200 23 0 110 O O O 18 24 1 128 0 0 O
19 24 1 132 0 1 0 29 24 1 155 1 0 O
36 24 1 138 0 0 O 61 24 1 105 1 0 O
118 24 O 90 1 0 O 136 24 0 115 0 O O
150 24 0 110 O O O 156 24 0 115 0 O O
185 24 0 133 0 0 O 196 24 0 110 O O O
199 24 0 110 O O O 225 24 0 116 O O O
13 25 1 105 0 1 0 15 25 1 8 0 0 1
24 25 1 115 0 0 O 26 25 1 92 1 0 O
32 25 1 89 0 0 O 46 25 1 105 0 0 O
103 25 O 118 1 0 O 1117 25 0 120 O O 1
120 25 0 155 0 0 O 1212 25 0 125 0 O O
169 25 0 140 0 O O 188 25 O 9%5 1 0 1
202 25 0 241 0 1 O 215 25 0 120 O O O
221 25 O 180 O O O 35 26 1 1177 1 0 O
54 26 1 9% 0 0 O 75 26 1 154 0 1 O
77 26 1 190 1 0 O 95 26 O 113 1 0 O
115 26 0 168 1 0 O 154 26 0 133 1 0 O
218 26 0 160 O O O 16 27 1 150 0 0 O
43 27 1 130 0 0 1 125 27 0 124 1 0 O
4 28 1 120 1 0 1 79 28 1 9% 1 0 O
105 28 0 120 1 0 O 109 28 0 120 O O O
112 28 0 167 O O O 151 28 0 140 O O O
159 28 0 250 1 0 O 212 28 0O 134 0 O O
214 28 0 180 O O O 10 29 1 130 0 0 1
94 29 O 123 1 0 O 114 29 0 150 O O O
123 29 0 140 1 0 O 190 29 0 135 O O O
191 29 O 154 0 O O 200 29 0 130 1 0 O
65 30 1 142 1 0 O 99 30 O 107 0 0 1
141 30 O 9% 1 0 O 145 30 0 153 0 0 O
176 30 0 110 O O O 195 30 O 137 0 0 O
208 30 O 112 O O O 56 31 1 102 1 0 O
107 31 0 100 O O 1 126 31 0 215 1 0 O
163 31 0 150 1 0 O 222 31 0 120 0 0 O
22 32 1 105 1 0 O 106 32 0 122 0 O O
134 32 0 132 0 0 O 170 32 0 134 1 0 O
0O 170 0 0 O 201 32 0 186 0 O O

175 32

1

The variableLow is used to determine whether the subject is a chsav£1, low
birth-weight baby) or a controlLow=0, normal weight baby). The dummy time
variableTime takes the value 1 for cases and 2 for controls.

The following SAS statements produce a conditional logistic regression analysis of
the data. The variabl&ime is the response, anidow is the censoring variable.

Note that the data set is created so that all the cases have the same event time, and
the controls have later censored times. The matching variapéeis used in the
STRATA statement so each unique age value defines a stratum. The vaklbles
Smoke, HT, andUI are specified as explanatory variables. The TIES=DISCRETE
option requests the discrete logistic model.
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proc phreg data=LBW;
model Time*Low(0)= LWT Smoke HT Ul / ties=discrete;
strata Age;

run;

The procedure displays a summary of the number of event and censored observations
for each stratum. These are the number of cases and controls for each matched set
shown in Output 49.3.1. Results of the conditional logistic regression analysis are
shown in Output 49.3.2. Based on the Wald test for individual variables, the variables
LWT, Smoke, andHT are statistically significant whilell is marginal.

The hazards ratios, computed by exponentiating the parameter estimates, are useful
in interpreting the results of the analysis. If the hazards ratio of a prognostic factor is
larger than 1, an increment in the factor increases the hazard rate. If the hazards ratio
is less than 1, an increment in the factor decreases the hazard rate. Results indicate
that women were more likely to have low birth-weight babies if they were under-
weight in the last menstrual cycle, were hypertensive, smoked during pregnancy, or
suffered uterine irritability.

For matched case-control studies with one case per matchedrsetdfiching), the
likelihood function for the conditional logistic regression reduces to that of the Cox
model for the continuous time scale. For this situation, you can use the default
TIES=BRESLOW.
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Output 49.3.1.  Summary of Number of Case and Controls

The PHREG Procedure

Model Information

Data Set WORK.LBW
Dependent Variable Time
Censoring Variable Low
Censoring Value(s) 0

Ties Handling DISCRETE

Summary of the Number of Event and Censored Values

Percent
Stratum Age Total Event Censored Censored

1 16 7 1 6 85.71

2 17 12 5 7 58.33

3 18 10 2 8 80.00

4 19 16 3 13 81.25

5 20 18 8 10 55.56

6 21 12 5 7 58.33

7 22 13 2 11 84.62

8 23 13 5 8 61.54

9 24 13 5 8 61.54

10 25 15 6 9 60.00

11 26 8 4 4 50.00

12 27 3 2 1 33.33

13 28 9 2 7 77.78

14 29 7 1 6 85.71

15 30 7 1 6 85.71

16 31 5 1 4 80.00

17 32 6 1 5 83.33

Total 174 54 120 68.97
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Study

Chapter 49. The PHREG Procedure

Conditional Logistic Regression Analysis for the Low Birth-Weight

The PHREG Procedure

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 159.069 141.108
AIC 159.069 149.108
SBC 159.069 157.064

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 17.9613 4 0.0013
Score 17.3152 0.0017
Wald 15.5577 0.0037
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error  Chi-Square Pr > ChiSq Ratio
LWT 1 -0.01498 0.00706 4.5001 0.0339 0.985
Smoke 1 0.80805 0.36797 4.8221 0.0281 2.244
HT 1 1.75143 0.73932 5.6120 0.0178 5.763
ul 1 0.88341 0.48032 3.3827 0.0659 2.419

Example 49.4. Model Using Time-Dependent Explanatory

Variables

Time-dependent variables can be used to model the effects of subjects transferring
from one treatment group to another. One example of the need for such strategies
is the Stanford heart transplant program. Patients are accepted if physicians judge
them suitable for heart transplant. Then, when a donor becomes available, physicians
choose transplant recipients according to various medical criteria. A patient’s status
can be changed during the study from waiting for a transplant to transplant recipient.

Transplant status can be defined by the time-dependent covariate functio(t)

as

/0

11
The Stanford heart transplant data that appear in Crowley and Hu (1977) consist of
103 patients, 69 of whom received transplants. The data are saved in a SAS data set

calledHeart. For each patient in the program, there is a birth dBie_Date), a
date of acceptancé\¢c_Date), and a date last seelgf_Date). The survival time

if the patient has not received the transplant at ttme
if the patient has received the transplant at time

2(t)
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(Time) in days is defined asime = Ter_Date — Acc_Date. The survival time
is said to be uncensore&tatus=1) or censoredStatus=0), depending on whether
Ter_Date is the date of death or the closing date of the study. The age in years at
acceptance into the programAsc_Age = (Acc_Date — Bir_Date) / 365. Previ-
ous open-heart surgery for each patient is indicated by the vafabieSurg. For
each transplant recipient, there is a date of transpldpt_Date) and three mea-
sures NMismatch, Antigen, Mismatch) of tissue-type mismatching. The waiting
period {aitTime) in days for a transplant recipient is calculatedvégitTime =
Xpl_Date — Acc_Date, and the age in years at transplanXfg_Age = (Xpl_Date

— Bir_Date) / 365. For those who do not receive heart transplantsy\agTime,
Xpl_Age, NMismatch, Antigen, andMismatch variables contain missing values.

The input data contains dates that have a two-digit year representation. The SAS
option YEARCUTOFF=1900 is specified to ensure that a two-digit year xx is year
19xx.

The code is as follows:

options yearcutoff=1900;

data Heart;
input 1D
@5 Bir_Date mmddyys8.
@14 Acc_Date mmddyys8.
@23 Xpl_Date mmddyy8.
@32 Ter_Date mmddyys8.
@41 Status 1.
@43 PrevSurg 1.
@45 NMismatch 1.
@47 Antigen 1.
@49 Mismatch 4.
@54 Reject 1.
@56 NotTyped $1.;
label Bir_Date ='Date of birth’
Acc_Date ='Date of acceptance’
Xpl_Date ='Date of transplant’
Ter_Date ='Date last seen’
Status = ’'Dead=1 Alive=0’
PrevSurg ='Previous surgery’
NMismatch= 'No of mismatches’
Antigen = 'HLA-A2 antigen’
Mismatch ='Mismatch score’
NotTyped = 'y=not tissue-typed’;
Time= Ter_Date - Acc_Date;
Acc_Age=int( (Acc_Date - Bir_Date)/365 );
if ( Xpl_Date ne .) then do;
WaitTime= Xpl_Date - Acc_Date;
Xpl_Age= int( (Xpl_Date - Bir_Date)/365 );

end;

datalines;

101 10 37 11 15 67 01 036810

2 03 02 16 01 02 68 01 076810

309 19 13 01 06 68 01 06 68 01 21 68 1 0 2 0 1.11 O
4 12 23 27 03 28 68 05 02 68 05 0568 1 0 3 0 1.66 0
5 07 28 47 05 10 68 05 276810

6 11 18 13 06 13 68 06 1568 10
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7 08 29 17 07 12 68 08 31 68 05 17 70 1 0 4 0 1.32
8 03 27 23 08 01 68 09 09 68 10
9 06 11 21 08 09 68 11 0168 10
10 02 09 26 08 11 68 08 22 68 10 07 68 1 0 2 0 0.61
11 08 22 20 08 15 68 09 09 68 01 14 69 1 0 1 0 0.36
12 07 09 15 09 17 68 09 246810
13 02 22 14 09 19 68 10 05 68 12 08 68 1 0 3 0 1.89
14 09 16 14 09 20 68 10 26 68 07 07 72 1 0 1 O 0.87
15 12 04 14 09 27 68 09 2768 11
16 05 16 19 10 26 68 11 22 68 08 29 69 1 0 2 0 1.12
17 06 29 48 10 28 68 12 02 68 1 0O
18 12 27 11 11 01 68 11 20 68 12 13 68 1 0 3 0 2.05
19 10 04 09 11 18 68 12 24 68 1 0
20 10 19 13 01 29 69 02 15 69 02 25 69 1 0 3 1 2.76
21 09 29 25 02 01 69 02 08 69 11 29 71 1 0 2 0 1.13
22 06 05 26 03 18 69 03 29 69 05 07 69 1 0 3 0 1.38
23 12 02 10 04 11 69 04 13 69 04 13 71 1 0 3 0 0.96
24 07 07 17 04 25 69 07 16 69 11 29 69 1 0 3 1 1.62
25 02 06 36 04 28 69 05 22 69 04 01 74 0 0 2 O 1.06
26 10 18 38 05 01 69 03017300
27 07 21 60 05 04 69 01217010
28 05 30 15 06 07 69 08 16 69 08 17 69 1 0 2 0 0.47
29 02 06 19 07 14 69 08 1769 10
30 09 20 24 08 19 69 09 03 69 12 18 71 1 0 4 0 1.58
31 10 04 14 08 23 69 09 0769 10
32 04 02 05 08 29 69 09 14 69 11 13 69 1 0 4 0 0.69
33 01 01 21 11 27 69 01 16 70 04 01 74 0 0 3 0 0.91
34 05 24 29 12 12 69 01 03 70 04 01 74 0 0 2 O 0.38
35 08 04 26 01 21 70 02017010
36 05 01 21 04 04 70 05 19 70 07 12 70 1 0 2 O 2.09
37 10 24 08 04 25 70 05 13 70 06 29 70 1 0 3 1 0.87
38 11 14 28 05 05 70 05 09 70 05 09 70 1 O 3 O 0.87
39 11 12 19 05 20 70 05 21 70 07 11 70 1 O
40 11 30 21 05 25 70 07 04 70 04 01 74 0 1 4 0 0.75
41 04 30 25 08 19 70 10 15 70 04 01 74 0 1 2 O 0.98
42 03 13 34 08 21 70 08 2370 10
43 06 01 27 10 22 70 1023 7011
44 05 02 28 11 30 70 01087111
45 10 30 34 01 05 71 01 05 71 02 18 71 1 0 1 0 0.0
46 06 01 22 01 10 71 01 11 71 1001 73112 0 0.81
47 12 28 23 02 02 71 02 22 71 04 14 71 1 0 3 0 1.38
48 01 23 15 02 05 71 02137110
49 06 21 34 02 15 71 03 22 71 04 01 74 01 4 0 1.35
50 03 28 25 02 15 71 05 08 71 10 21 73 1 1
51 06 29 22 03 24 71 04 24 71 01 02 72 1 0 4 1 1.08
52 01 24 30 04 25 71 08047110
53 02 27 24 07 02 71 08 11 71 01 05 72 1 0
54 09 16 23 07 02 71 07047110
55 02 24 19 08 09 71 08 18 71 10 08 71 1 0 2 0 151
56 12 05 32 09 03 71 11 08 71 04 01 74 0 0 4 0 0.98
57 06 08 30 09 13 71 02 087210
58 09 17 23 09 23 71 10 13 71 08 30 72 1 1 2 1 1.82
59 05 12 30 09 29 71 12 15 71 04 01 74 01 2 0 0.19
60 10 29 22 11 18 71 11 20 71 01 09 72 1 0 3 O 0.66
61 05 12 19 12 04 71 12 057110
62 08 01 32 12 09 71 02157210
63 04 15 39 12 12 71 01 07 72 04 01 74 0 0 3 1 1.93
64 04 09 23 02 01 72 03 04 72 09 06 73 1 1 1 0 0.12
65 11 19 20 03 06 72 03 17 72 05 22 72 1 0 2 0 1.12
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Example 49.4.  Time-Dependent Explanatory Variables ¢+ 2625

66 01 02 19 03 20 72 04 20 7210
67 09 03 52 03 23 72 05 18 72 01 01 73 1 0 3 0 1.02 0
68 01 10 27 04 07 72 04 09 72 06 13 721 0 3 1168 1
69 06 05 24 06 01 72 06 10 72 04 01 74 00 2 0 1.20 O
70 06 17 19 06 17 72 06 21 72 07 16 72 1 0 3 1 168 1
71 02 22 25 07 21 72 08 20 72 04 01 74 0 0 3 0 0.97 O
72 11 22 45 08 14 72 08 17 72 04 01 74 0 0 3 1 1.46 O
73 05 13 16 09 11 72 10 07 72 12 09 72 1 0 3 1 216 1
74 07 20 43 09 18 72 09 22 72 10 04 721 01 0 061 O
75 07 25 20 09 29 72 09 30 7210
76 09 03 20 10 04 72 11 18 72 04 01 7401 3 1 1.70 O
77 08 27 31 10 06 72 10 26 72 1 0
78 02 20 24 11 03 72 05 31 73 04 01 74 00 3 0 0.81 O
79 02 18 19 11 30 72 02 04 73 03 05 73 1 0 2 0 1.08 1
80 06 27 26 12 06 72 12 31 72 04 01 74 01 3 0 141 0
81 02 21 20 01 12 73 01 17 73 04 01 74 00 4 1 194 0
82 09 19 42 11 01 71 01017300
83 10 04 19 01 24 73 02 24 73 04 13 73 1040 3050
84 05 13 30 01 30 73 03 07 73 12 29 73 1 0 4 0 0.60 1
85 02 13 25 02 06 73 02 10 7310
86 03 30 24 03 01 73 03 08 73 04 01 74 0 0 3 1 144 0
87 12 19 26 03 21 73 05 19 73 07 08 73 1 0 2 0 225 1
88 11 16 18 03 28 73 04 27 73 04 01 74 0 0 3 0 0.68 O
89 03 19 22 04 05 73 08 21 73 10 28 73 1 04 11331
90 03 25 21 04 06 73 09 12 73 10 08 73 1 1 3 1 0.82 0
91 09 08 25 04 13 73 03187410
92 05 03 28 04 27 73 03 02 74 04 01 74001 0 0.16 O
93 10 10 25 07 11 73 08 07 73 04 01 74 0 0 2 0 0.33 O
94 11 11 29 09 14 73 09 17 73 02 2574113 0 120 1
95 06 11 33 09 22 73 09 23 73 10 07 73 1 0 y
96 02 09 47 10 04 73 10 16 73 04 01 74 0 0 2 0 0.46 O
97 04 11 50 11 22 73 12 12 73 04 01 74 00 3 1 1.78 0
98 04 28 45 12 14 73 03 19 74 04 01 7400 4 1 0.77 O
99 02 24 24 12 25 73 01147410
100 01 31 39 02 22 74 03 31 74 04 01 7401 3 0 067 O
101 08 25 24 03 02 74 04017400
102 10 30 33 03 22 74 04 017400

710

103 05 20 28 09 13 67 09 18 6

)

Crowley and Hu (1977) have presented a number of analyses to assess the effects of
various explanatory variables on the survival of patients. This example fits two of the
models that they have considered.

The first model consists of two explanatory variables—the transplant status and the
age at acceptance. The transplant staXi&tgtus) is a time-dependent variable de-
fined by the programming statements between the MODEL statement and the RUN
statement. Th&Status variable takes the value 1 or 0 at time(measured from

the date of acceptance), depending on whether or not the patient has received a trans-
plant at that time. Note that the valueX$tatus changes for subjects in each risk set
(subjects still alive just before each distinct event time); therefore, the variable cannot
be created in the DATA step. The varialfdec_Age, which is not time-dependent,
accounts for the possibility that pretransplant risks vary with age.
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proc phreg data= Heart;
model Time*Status(0)= XStatus Acc_Age;
if (WaitTime = . or Time < WaitTime) then XStatus=0.;
else XStatus= 1.0;

run;

Output 49.4.1.  Heart Transplant Study Analysis |

The PHREG Procedure
Model Information
Data Set WORK.HEART
Dependent Variable Time
Censoring Variable Status Dead=1 Alive=0
Censoring Value(s) 0
Ties Handling BRESLOW
Summary of the Number of Event and Censored Values
Percent
Total Event Censored Censored
103 75 28 27.18
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 596.649 591.312
AlC 596.649 595.312
SBC 596.649 599.947
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 5.3370 2 0.0694
Score 4.7900 2 0.0912
Wald 4.7812 2 0.0916
The PHREG Procedure
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error  Chi-Square Pr > ChiSq Ratio
XStatus 1 -0.06046 0.30572 0.0391 0.8432 0.941
Acc_Age 1 0.03147 0.01445 4.7443 0.0294 1.032
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Results of this analysis are shown in Output 49.4.1. Transplantation appears to be
associated with a slight decrease in risk, although the effect is not signifijcaat (
0.8432). The age at acceptance as a pretransplant risk factor adds significantly to the
model p = 0.0294). The risk increases significantly with age at acceptance.

The second model consists of three explanatory variables—the transplant status, the
transplant age, and the mismatch score. Four transplant recipients who were not
typed have ndMismatch values; they are excluded from the analysis by the use of

a WHERE clause. The transplant aggAge) and the mismatch scorX$core) are

also time-dependent and are defined in a fashion similar to théStdtus. While

the patient is waiting for a transplaiXAge andXScore have a value of 0. After the
patient has migrated to the recipient populati¥Age takes on the value ofpl_Age
(transplant age for the recipient), aX&core takes on the value dflismatch (a
measure of the degree of dissimilarity between donor and recipient).

proc phreg data= Heart;
model Time*Status(0)= XStatus XAge XScore;
where NotTyped "= 'y’;
if (WaitTime = . or Time < WaitTime) then do;
XStatus=0.;
XAge=0.;
XScore= 0.
end,;
else do;
XStatus= 1.0;
XAge= Xpl_Age;
XScore= Mismatch;
end,;
run;
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Output 49.4.2.  Heart Transplant Study Analysis Il

The PHREG Procedure
Model Information
Data Set WORK.HEART
Dependent Variable Time
Censoring Variable Status Dead=1 Alive=0
Censoring Value(s) 0
Ties Handling BRESLOW
Summary of the Number of Event and Censored Values
Percent
Total Event Censored Censored
99 71 28 28.28
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 561.646 551.911
AIC 561.646 557.911
SBC 561.646 564.699
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 9.7350 3 0.0210
Score 9.0127 3 0.0291
Wald 9.0156 3 0.0291
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error  Chi-Square Pr > ChiSq Ratio
XStatus 1 -3.17799 1.18612 7.1787 0.0074 0.042
XAge 1 0.05517 0.02259 5.9649 0.0146 1.057
XScore 1 0.44424 0.28026 2.5125 0.1129 1.559

Results of the analysis are shown in Output 49.4.2. Note that only 99 patients are
included in this analysis, instead of 103 patients as in the previous analysis, since
four transplant recipients who were not typed are excluded. The vaikdde is
statistically significantf = 0.0146) with a hazards ratio exceeding 1. Therefore,
patients who had a transplant at younger ages lived longer than those who received
a transplant later in their lives. The variat{&core has only minimal effect on the
survival (p = 0.1129).
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Example 49.5. Time-Dependent Repeated Measurements

Repeated determinations may be made during the course of a study of variables
thought to be related to survival. Consider an experiment to study the dosing ef-

fect of a tumor-promoting agent. Forty-five rodents initially exposed to a carcinogen

were randomly assigned to three dose groups. After the first death of an animal,
the rodents were examined every week for the number of papillomas. Investigators
were interested in determining the effects of dose on the carcinoma incidence after
adjusting for the number of papillomas.

The input data set TUMOR consists of the following 19 variables:

¢ ID (subject identification)

Time (survival time of the subject)

Dose (dose of the tumor-promoting agent)

Dead (censoring status where 1=dead and O=censored)

P1-P15 (number of papillomas at the 15 times that animals died. These 15

death times are weeks 27, 34, 37, 41, 43, 45, 46, 47, 49, 50, 51, 53, 65, 67, and
71. For instance, subject 1 died at week 47; it had no papilloma at week 27,
five papillomas at week 34, six at week 37, eight at week 41, and 10 at weeks
43, 45, 46, and 47. For an animal that died before week 71, the number of
papillomas is missing for those times beyond its death.)

The following SAS statements create the data set TUMOR:

data Tumor;
infile datalines missover;
input ID Time Dead Dose P1-P15;
label ID="Subject ID’;

datalines;
1471 1.0
2711 1.0
380 1.0
4810 1.0
5810 1.0
6 651 1.0
7710 1.0
8690 1.0
9671 1.0
10 81 0 1.0
11 37 1 1.0
1281 0 1.0
13 770 1.0
14 81 0 1.0
15810 1.0
16 54 0 25
17 53 0 2.5
18 38 0 25
19 54 0 25
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

The number of papillomad\(Pap) for each animal in the study was measured re-
peatedly over time. One way of handling time-dependent repeated measurements
in the PHREG procedure is to use programming statements to capture the appro-
priate covariate values of the subjects in each risk set. In this exaMphp is a
time-dependent explanatory variable with values that are calculated by means of the
programming statements shown in the following SAS statements:

51
47
27
41
49
53
50
37
49
46
48
54
37
53
45
53
49
39
27
49
43
28
34
45
37
43

PP PRPPRPORRPRRPRORPRORPRRPRPOORRRLRRORRERRERER

2.5
25
25
2.5
2.5
2.5
25
25
25
2.5
2.5
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0

15
13
22

ANWOOOO

15
12
12

= =
oho~NNOO® A~

11
10

15
20

18
12

19

15
20

16

19

proc phreg data=Tumor;
model Time*Dead(0)=Dose NPap;
array pp{*} P1-P14;
array tt{*} t1-t15;

t1
t2
t3

27;
34;
37,
41,
43;
45;
46;
47,
49;
50;
51,
53;
65;
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tl4= 67;

t15= 71,

if Time < tt[1] then NPap=0;

else if time >= tt{[15] then NPap=P15;

else do i=1 to dim(pp);

if ttfi] <= Time < tt[i+1] then NPap= ppli;
end;
run;

At each death time, thePap value of each subject in the risk set is recalculated to
reflect the actual number of papillomas at the given death time. For instance, subject
one in the data séfumor was in the risk sets at weeks 27 and 34; at week 27, the
animal had no papilloma, while at week 34, it had five papillomas. Results of the
analysis are shown in Output 49.5.1.
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Output 49.5.1. Cox Regression Analysis on the Survival of Rodents

The PHREG Procedure
Model Information
Data Set WORK.TUMOR
Dependent Variable Time
Censoring Variable Dead
Censoring Value(s) 0

Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent

Total Event Censored Censored

45 25 20 44.44

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Test

Score
Wald

Variable DF

Dose 1
NPap 1

Likelihood Ratio

Without
Criterion Covariates
166.793
166.793
166.793

-2 LOG L
AIC
SBC

With

Covariates

143.269

147.269

149.707

Testing Global Null Hypothesis: BETA=0

Chi-Square

23.5243 2
28.0498
21.1646

DF

Pr > ChiSq

<.0001

Analysis of Maximum Likelihood Estimates

Standard
Error

Parameter
Estimate

0.06885
0.11714

0.05620
0.02998

Chi-Square

1.5010
15.2705

Pr > ChiSq

<.0001
<.0001

Hazard
Ratio

0.2205
<.0001

1.071
1.124

After the number of papillomas is adjusted for, the dose effect of the tumor-promoting
agent is not statistically significant.

Another way to handle time-dependent repeated measurements in the PHREG pro-
cedure is to use the counting process style of input. Multiple records are created
for each subject, one record for each distinct pattern of the time-dependent measure-
ments. Each record containsTa value and & 2 value representing the time inter-

val (T1,T2] during which the values of the explanatory variables remain unchanged.
Each record also contains the censoring statdi®at
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One advantage of using the counting process formulation is that you can easily obtain
various residuals and influence statistics that are not available when programming
statements are used to compute the values of the time-dependent variables. On the
other hand, creating multiple records for the counting process formulation requires
extra effort in data manipulation.

Consider a counting process style of input data set namgtbrl. It contains mul-
tiple observations for each subject in the datalsetor. In addition to variable$D,
Time, Dead, andDose, four new variables are generated:

T1 (left endpoint of the risk interval)

T2 (right endpoint of the risk interval)

NPap (number of papillomas in the time interval,T2])

Status (censoring status dt2)

For example, five observations are generated for the rodent that died at week 47 and
that had no papilloma at week 27, five papillomas at week 34, six at week 37, eight
at week 41, and 10 at weeks 43, 45, 46, and 47. The valu€&,of2, NPap, and

Status for these five observations are (0,27,0,0), (27,34,5,0), (34,37,6,0), (37,41,8,0),
and (41,47,10,1). Note that the variabl®s Time, andDead are not needed for the
estimation of the regression parameters, but they are useful for plotting the residuals.

The following SAS statements create the datalsetorl:

data Tumorl(keep=ID Time Dead Dose T1l T2 NPap Status);
array pp{*} P1-P14;
array qq{*} P2-P15;
array tt{1:15} _temporary
(27 34 37 41 43 45 46 47 49 50 51 53 65 67 71);
set Tumor;
T1 = 0;
T2 = 0;
Status = 0;
if ( Time = tt[1] ) then do;
T2 = tt[1];
NPap = pi,
Status = Dead;
output;
end;
else do _i =1 to dim(pp);
if (tt[.i] = Time ) then do;

T2= Time;
NPap = pp[i] ;
Status = Dead,;
output;

end;

else if (tt[ i ] < Time ) then do;
if (ppi_] "= qqg[i_] ) then do;
if qq[_Li_] = . then T2= Time;
else T2=tt[ i ] ;
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NPap= pp[i_] ;
Status= 0;
output;
Tl = T2;
end;
end;
end;
if ( Time >= tt[15] ) then do;
T2 = Time;
NPap = P15;
Status = Dead,;
output;
end;
run;

In the following SAS statements, the counting process MODEL specification is used.
The DFBETA statistics are output to a SAS data set na@etl. Note thatOutl
contains multiple observations for each subject, that is, one observation for each risk
interval (T1,T2].

proc phreg data=Tumorl;
model (T1,T2)*Status(0)=Dose NPap;
output out=Outl resmart=mart dfbeta=dbl-db2/order=data;
id ID Time Dead;

run;

The output from PROC PHREG (not shown) is identical to Output 49.8.1 except for
the “Summary of the Number of Event and Censored Values” table. The number
of event observations remains unchanged between the two specifications of PROC
PHREG, but the number of censored observations differs due to the splitting of each
subject’s data into multiple observations for the counting process style of input.

Next, the MEANS procedure sums up the component statistics for each subject and
outputs the results to a SAS data set naedt?.

proc means data=Outl noprint;

by ID Time Dead;

var mart dbl-db2;

output out=Out2 sum=mart db_dose db_npap;
run;
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Finally, DFBETA statistics are plotted against subject ID for easy identification of

influential points.

symboll v=dot h=0.8 c=blue;

axisl label = (angle=-90 rotate=90 'DFBETA for Dose’)
minor = none
order = (-.04 to .04 by .01);

axis2 label = (angle=-90 rotate=90 'DFBETA for NPap’)
minor = none
order = (-.030 to .020 by .005);

title 'Plot of DFBETA’;

proc gplot data=Out2;

plot db_dose * ID / frame hminor=0 vaxis=axisl cframe=ligr;
plot db_npap * ID / frame hminor=0 vaxis=axis2 cframe=ligr;

run;

The plots of the DFBETA statistics are shown in Output 49.5.2 and Output 49.5.3.
Subject 30 appears to have a large influence on bottbtse and NPap coeffi-
cients. Subjects 31 and 35 have considerable influences on the DOSE coefficient,
while subjects 22 and 44 have rather large influences oNHBap coefficient.

Output 49.5.2.

Plot of DFBETA Statistic for DOSE versus Subject Number

> mwTno

—h

Plot of DFBETA

0.04 —
0.03
0.02 —

0.01 4 .

Subject ID

40

50
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Output 49.5.3.  Plot of DFBETA Statistic for NPAP versus Subject Number

Plot of DFBETA
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0.010 °

0.005 .

®o00000 o og0000 o ® o L] ° .
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> mw o

O —

¢ —0.010
—0.015
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—0.025

—0.030

Subject ID

Example 49.6. Survivor Function Estimates for Specific
Covariate Values

You may want to use your regression analysis results to generate predicted survival
curves for subjects not in the study. This example illustrates how to use the BASE-
LINE statement to obtain the survivor function for a new set of explanatory variable
values. The various sets of explanatory variable values must be contained in a SAS
data set.

In previous example4,0gBUN andHGB were identified as the most important prog-
nostic factors for the myeloma data. Suppose you are interested in obtaining the sur-
vivor function estimates for the following two realizations laddgBUN and HGB,

which are saved in a SAS data set calledsks.

data Inrisks;
input LogBUN HGB;
datalines;

1.00 10.0

1.80 12.0

In the BASELINE statement, you specify the name of the data set (COVARI-
ATE=Inrisk) that contains the various sets of explanatory variable values and the
name of the output SAS data set (OUT=Pred1) that contains the survivor function es-
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timates. The option SURVIVAL=S puts the variat#econtaining the survivor func-

tion estimates in the output data §#ed1. Similarly, the options LOWER=Sower

and UPPER=Supper put the variableS_lower andS_upper in Pred1; these vari-
ables contain, respectively, the lower and upper 95% confidence limits for the sur-
vival. The NOPRINT option in the PROC PHREG statement suppresses the dis-
played output (the analysis results are shown in Example 49.1). The PRINT proce-
dure displays the observations in the dataFset1.

proc phreg data=Myeloma noprint;
model Time*VStatus(0)=LogBUN HGB;
baseline covariates=Inrisks out=Predl survival=S
lower=S_lower upper=S_upper;
run;
proc print data=Pred1;
run;

Output 49.6.1.  Survivor Function Estimates for LogBUN=1.0 and HGB=10.0

Obs LogBUN HGB Time S S_lower S_upper

1 1.0000 10.0000 0.00 1.00000 . .

2 1.0000 10.0000 1.25 0.98622 0.96600 1.00000
3 1.0000 10.0000 2.00 0.96438 0.92775 1.00000
4 1.0000 10.0000 3.00 0.95687 0.91513 1.00000
5 1.0000 10.0000 5.00 0.93966 0.88745 0.99494
6 1.0000 10.0000 6.00 0.90211 0.83101 0.97929
7 1.0000 10.0000 7.00 0.87192 0.78793 0.96487
8 1.0000 10.0000 9.00 0.86073 0.77215 0.95947
9 1.0000 10.0000 11.00 0.80252 0.69458 0.92725

10 1.0000 10.0000 13.00 0.78969 0.67751 0.92044
11 1.0000 10.0000 14.00 0.77554 0.65896 0.91274
12 1.0000 10.0000 15.00 0.76116 0.64048 0.90458
13 1.0000 10.0000 16.00 0.73142 0.60343 0.88654
14 1.0000 10.0000 17.00 0.69988 0.56494 0.86706
15 1.0000 10.0000 18.00 0.68345 0.54525 0.85667
16 1.0000 10.0000 19.00 0.64951 0.50561 0.83438
17 1.0000 10.0000 24.00 0.63105 0.48401 0.82278
18 1.0000 10.0000 25.00 0.61267 0.46287 0.81096
19 1.0000 10.0000 26.00 0.59428 0.44209 0.79887
20 1.0000 10.0000 32.00 0.57437 0.41972 0.78601
21 1.0000 10.0000 35.00 0.55400 0.39725 0.77258
22 1.0000 10.0000 37.00 0.53276 0.37421 0.75849
23 1.0000 10.0000 41.00 0.48783 0.32796 0.72564
24 1.0000 10.0000 51.00 0.45964 0.29978 0.70476
25 1.0000 10.0000 52.00 0.42933 0.27013 0.68234
26 1.0000 10.0000 54.00 0.39588 0.23828 0.65773
27 1.0000 10.0000 58.00 0.35744 0.20219 0.63191
28 1.0000 10.0000 66.00 0.31314 0.16511 0.59386
29 1.0000 10.0000 67.00 0.26060 0.12215 0.55597
30 1.0000 10.0000 88.00 0.19554 0.07520 0.50849
31 1.0000 10.0000 89.00 0.12708 0.03552 0.45460
32 1.0000 10.0000 92.00 0.00000

The first 32 observations of the data 8gedl are shown in Output 49.6.1. They
represent the survivor function for the realizatibogBUN=1.00 andHGB=10.0.

The first observation has survival time 0 and survivor function estimate 1.0. Each of
the remaining 31 observations represents each unique event time in the input data set
Myeloma. These observations are presented in ascending order of the event times.
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Likewise, the next 32 observations of the data Bexdl (starting from the 33rd
observation) represent the survivor function for the realizatiogBUN=1.80 and
HGB=12.0.

By default, the procedure also outputs the set of survivor function estimatesder
BUN=1.3929 andHGB=10.2015, which are the sample meank@jBUN andHGB

for the input data ifMyeloma. (Note that in a stratified analysis, the sample means
are calculated within each stratum.) The estimated survivor function estimates for
these sample means are the last 32 observations in the d&eedét You can sup-
press this set of survival estimates by using the NOMEAN option in the BASELINE
statement.

proc phreg data=Myeloma noprint;
model Time*VStatus(0)=LogBUN HGB,;
baseline covariates=Inrisks out=Pred2 survival=S
lower=S_lower upper=S_upper / nomean;
run;

The data sePred2 consists of the first 64 observationsifedl. If you are inter-
ested only in the survivor function estimates for the sample means of the explanatory
variables, you can omit the COVARIATES= option in the BASELINE statement.

proc phreg data=Myeloma noprint;

model Time*VStatus(0)=LogBUN HGB,;

baseline out=Pred3 survival=S lower=S_lower upper=S_upper;
run;

The data sePred3 contains the last 32 observationsRyed1.

The following SAS statements are used to plot the survival curvesddl. For con-
venience, the variablBattern is added to the data sBredl to identify the various
patterns of explanatory variables.

data Predl,
set Predi;
if LogBUN= 1.0 and HGB=10.0 then Pattern=1;
else if LogBUN= 1.8 and HGB=12.0 then Pattern=2;
else Pattern=3;

legendl label=none shape=symbol(3, .8)
value=(f=swiss h=.8 'LogBUN=1.00 HGB=10.0’
'LogBUN=1.80 HGB=12.0' 'LogBUN=1.39 HGB=10.2’);
axisl label=(h=1 f=swiss a=90) minor=(n=1);
axis2 label=(h=1 f=swiss 'Survival Time in Months’) minor=(n=4);
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proc gplot data=Pred1;

plot S*Time=Pattern / legend=legendl vaxis=axisl

haxis=axis2 cframe=ligr;

symboll interpol=stepLJ h=1 v=square c=blue;

symbol2 interpol=stepLJ h=1 v=diamond c=yellow;

symbol3 interpol=stepLJ h=1 v=circle c=red;

note f=swiss h=1.5 j=c 'Myeloma Study’;

footnote h=.8 f=duplex

'LogBUN=1.39 and HGB=10.2 correspond to the sample means’,

run;

The survivor function estimates for these three patterns of explanatory variables are
displayed in Output 49.6.2. Note that these survivor functions are portrayed as right-
continuous functions.

Output 49.6.2.  Survival Curves for Specific Covariate Patterns
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LogBUN=1.39 and HGB=10.2 correspond to the sample means

SAS OnlineDocl]: Version 8



2640

¢+ Chapter 49. The PHREG Procedure

Example 49.7. Analysis of Residuals

Residuals are used to investigate the lack of fit of a model to a given subject. You can

obtain martingale and deviance residuals for the Cox proportional hazards regression
analysis by requesting that they be included in the OUTPUT data set. You can plot

these statistics and look for outliers.

Consider the stepwise regression analysis performed in Example 49.1. The final
model included variablekogBUN and HGB. You can generate residual statistics
for this analysis by refitting the model containing those variables and including an
OUTPUT statement. The keywords XBETA, RESMART, and RESDEYV identify new
variables that contain the linear predictor scm%@, martingale residuals, and de-
viance residuals. These variables @pemart, anddev, respectively.

proc phreg data=Myeloma noprint;

model Time*Vstatus(0)=LogBUN HGB;

output out=Outp xbeta=xb resmart=mart resdev=dev;
run;

The following statements plot the residuals against the linear predictor scores:

proc gplot data=Outp;
plot (mart dev)*xb / vref=0 cframe=ligr;
symboll value=circle c=blue;

run;

The resulting plots are shown in Output 49.7.1 and Output 49.7.2. The martingale
residuals are skewed because of the single event setting of the Cox model. The mar-
tingale residual plot shows an isolation point (with linear predictor score 1.09 and
martingale residual-3.37), but this observation is no longer distinguishable in the
deviance residual plot. In conclusion, there is no indication of a lack of fit of the
model to individual observations.
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Output 49.7.1.  Martingale Residual Plot
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Output 49.7.2.  Deviance Residual Plot
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Example 49.8. Multiple Failure Outcomes

For survival data with multiple failure outcomes for each subject, the failures may be
repetitions of the same kind of event or they may be events of different nature.

The Andersen-Gill (AG) model and the Prentice, Williams, and Peterson (1981) mod-
els, also referred to as the PWP models, can be used in the analysis of repeated failure
outcomes of the same kind, while the marginal analysis approach of Wei, Lin, and
Weissfeld (1989), also referred to as the WLW analysis, can be applied to both mul-
tiple events of the same types and multiple events of different types. The bladder
cancer data listed in Wei, Lin, and Weissfeld (1989) are used to illustrate these meth-
ods of analyses.

The data consist of 86 patients with superficial bladder tumors, which were removed
when they entered the study. Of these patients, 48 were randomized into the placebo
group, and 38 were randomized into the thiotepa group. Many patients had multiple
recurrences of tumors during the study, and new tumors were removed at each visit.
The data set contains the first four recurrences of the tumor for each patient, and each
recurrence time was measured from the patient’s entry time into the study.

The input data consist of the following eight variables:

e Trt (treatment group, where 1=placebo and 2=thiotepa)

Time (follow-up time)
Number (number of initial tumors)

Size (initial tumor size)

T1, T2, T3, andT4 (times of the four possible recurrences of the bladder
tumor. A patient with only two recurrences has missing valués3iandT4.)

In the data seBladder, four observations are created for each patient, each corre-
sponding to one of the four tumor recurrences. In addition to valués,dflumber,
andSize for the patient, each observation contains the following variables:

¢ ID (patient’s identification, which is the sequence number of the input data)

¢ Visit (event number, where 1=first recurrence, 2= second recurrence, and so
on)

e TStart (time of the(k—1) recurrence iVisit=k, or the entry time O if VISIT=1)

e TStop (time of thekth recurrence iVisit=k)

e Status (event status, where 1=recurrence and O=censored)

For instance, a patient with only one recurrence time at month 6, who was followed
until month 10, will have values fovisit, TStart, TStop, andStatus of (1,0,6,1),
(2,6,10,0), (3,10,10,0), and (4,10,10,0). If the follow-up time of a patient is beyond
the time of the fourth tumor recurrence, an extra observation is created to represent
this last follow-up period. For instance, a patient with recurrences at months 2, 15,
34, and 50, who was followed until month 61, will have five observations with values
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for Visit, TStart, TStop, andStatus of (1,0,2,1), (2,2,15,1), (3,15,34,1), (4,34,50,1),
and (5,50,61,0). In the former situation, the last two observations are redundant for
the AG model, but they are important for the WLW analysis. In the latter situation,
the fifth observation is not needed for the WLW model, but it is indispensable to the
AG analysis.

The following SAS statements create the dataBiatider:

data Bladder;

RPRRPRRPRRPRRPRRPRPRPRPRPREPRPREPRPREPRRERRRR

keep ID TStart TStop Status Trt Number Size Visit;

retain ID TStart O;
array tt T1-T4;
infile datalines missover;

input Trt Time Number Size T1-T4,

ID + 1;
TStart=0;
do over ftt;
Visit=_i_;
if tt = . then do;
TStop=Time;
Status=0;
end;
else do;
TStop=tt;
Status=1;
end;
output;
TStart=TStop;
end;
if (TStart < Time) then do;
TStop= Time;
Status=0;
Visit=5;
output;
end;
datalines;
0
1
4
7
10
10
14
18
18
18
23
23
23
23
24
25
26
26
26
28
29
29

PR RPRPRORRPNWRRPWORRPRPREPARNRPR
NANBARPRNRPORRPOWRWORRPRRERPRPL®EPR

16

15
16

10
15

26

23
21
16
25

24
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1 29 4 1

1 30 1 6 28
1 30 1 5 2
1 30 2 1 3
1 31 1 3 12
1 32 1 2

1 34 2 1

1 36 2 1

1 36 3 1 29
1 37 1 2

1 40 4 1 9
1 40 5 1 16
1 41 1 2

1 43 1 1 3
1 43 2 6 6
1 44 2 1 3
1 45 1 1 9
1 48 1 1 18
1 49 1 3

1 51 3 1 35
1 53 1 7 17
1 53 3 1 3
1 59 1 1

1 61 3 2 2
1 64 1 3 5
1 64 2 3 2
2 1 1 3

2 1 1 1

2 5 8 1 5
2 9 1 2

2 10 1 1

2 13 1 1

2 14 2 6 3
2 17 5 3 1
2 18 5 1

2 18 1 3 17
2 19 5 1 2
2 21 1 1 17
2 22 1 1

2 25 1 3

2 25 1 5

2 25 1 1

2 26 1 1 6
2 27 1 1 6
2 29 2 1 2
2 36 8 3 26
2 38 1 1

2 39 1 1 22
2 39 6 1 4
2 40 3 1 24
2 41 3 2

2 41 1 1

2 43 1 1 1
2 44 1 1

2 44 6 1 2
2 45 1 2

2 46 1 4 2
2 46 1 4

2 49 3 3
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2 50 1 1

2 50 4 1 4 24 47
2 54 3 4

2 54 2 1 38

2 59 1 3

The counting process MODEL specification is used to carry out the analysis of the
AG model. Note that some of the observations in the dat8Isetder have a degen-
erated interval of risk. The presence of these observations does not affect the results
of the analysis since none of these observations are included in any of the risk sets.
However, the procedure will run more efficiently without these observations; conse-
guently, in the following SAS statements, the WHERE clause is used to eliminate
these redundant observations.

*title 'Andersen-Gill Multiplicative Hazards Model’;

proc phreg data=Bladder;
model (TStart, TStop) * Status(0) = Trt Number Size;
where TStart < TStop;

run;

Results of fitting the AG model are shown in Output 49.8.1.
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Fitting Andersen-Gill Multiplicative Hazards Model

The PHREG Procedure
Model Information
Data Set WORK.BLADDER
Dependent Variable TStart
Dependent Variable TStop
Censoring Variable Status
Censoring Value(s) 0
Ties Handling BRESLOW
Summary of the Number of Event and Censored Values
Percent
Total Event Censored Censored
190 112 78 41.05
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 934.210 920.159
AlC 934.210 926.159
SBC 934.210 934.315
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 14.0509 3 0.0028
Score 15.4173 3 0.0015
Wald 15.1736 3 0.0017
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio
Trt 1 -0.40710 0.20007 4.1402 0.0419 0.666
Number 1 0.16065 0.04801 11.1980 0.0008 1.174
Size 1 -0.04009 0.07026 0.3256 0.5683 0.961
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The WLW analysis regards the recurrence times as multivariate failure times, and it
models the marginal distribution of each component time with the Cox proportional
hazards model. No specific correlation structure is imposed on the multiple failure
times. For thekth marginal model, lef3;, denote the row vector of regression pa-
rameters, IeB,c denote the maximum likelihood estimate @f, let Ak denote the
covariance matrix obtained by inverting the information matrix, an®lgtienote the
matrix of score residuals. Wei, Lin, and Weissfeld (1989) showed that the joint dis-
tribution of (Bl, .. .,34)’ can be approximated by a multivariate normal distribution
with mean vectof3,, . .., 3,)" and robust covariance matrix

Vii Vi Vi3 Vyy
Va1 Vo Va3 Vo
Vi1 V32 Vi3 Vg
Vg Vg Vi3 Vy

with the submatrixV;; given by
Vij = Ai(RiR))A;

The PHREG procedure computes the DFBETA statistics, which are precisely the
productsR, A ;. By outputting the DFBETA statistics into an OUTPUT data set, you
can subsequently use SAS/IML software to compute the robust covariance matrix in
a straightforward manner.

In this example, there are four marginal proportional hazards models, one for each
recurrence time. Instead of fitting one model at a time, you can fit all four marginal
models in one analysis by using the STRATA statement. A new input data set (named
Bladder?) is created from the data SBtadder by eliminating observations that have
aVisit value of 5. These observations contain the follow-up information beyond the
fourth recurrence time and are irrelevant in the fitting of the four marginal models.
In addition, four treatment variable3rtl, Trt2, Trt3, and Trt4, are created from
variablesTrt and Visit, representing the treatment group for each of the four values
of Visit. For instanceTrt1=Trt when theVisit value is 1, andrt1=0 when theVisit

value is not 1. Likewise, variablddumberl, Number2, Number3, andNumber4

are created from the variabléumber and Visit; variablesSizel, Size2, Size3,
andSize4 are created from the variabl&ze andVisit.

The following SAS statements create the dateBdatider2:

data Bladder2;
set Bladder;
if Visit < 5;
Trtl= Trt * (Visit=1);
Trt2= Trt * (Visit=2);
Trt3= Trt * (Visit=3);
Trtd= Trt * (Visit=4);
Numberl= Number * (Visit=1);
Number2= Number * (Visit=2);
Number3= Number * (Visit=3);
Number4d= Number * (Visit=4);
Sizel= Size * (Visit=1);
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Size2= Size * (Visit=2);

Size3= Size * (Visit=3);

Sized= Size * (Visit=4);
run;

The following SAS statements fit the marginal models. The parameter estimates are
output to a data set namétstl; the DFBETA statistics for the treatment variables
are output to a data set namedt1.

*itle 'Fitting Marginal Proportional Hazards Models’;
proc phreg data=Bladder2 outest=Estl;
model TStop*Status(0)=Trt1l-Trt4 Numberl-Number4 Sizel-Size4;
output out=Outl dfbeta=dtl-dt4 / order=data;
strata Visit;
id ID;
run;

The output of this analysis is shown in Output 49.8.2
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The PHREG Procedure
Model Information
Data Set WORK.BLADDER?2
Dependent Variable TStop
Censoring Variable Status
Censoring Value(s) 0
Ties Handling BRESLOW
Summary of the Number of Event and Censored Values
Percent
Stratum Visit Total Event Censored Censored
1 1 86 47 39 45.35
2 2 86 29 57 66.28
3 3 86 22 64 74.42
4 4 86 14 72 83.72
Total 344 112 232 67.44
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 880.828 851.435
AIC 880.828 875.435
SBC 880.828 908.057
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 29.3932 12 0.0034
Score 33.0747 12 0.0009
Wald 31.0544 12 0.0019
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error  Chi-Square Pr > ChiSq Ratio
Trtl 1 -0.51762 0.31576 2.6873 0.1012 0.596
Trt2 1 -0.61944 0.39318 2.4821 0.1151 0.538
Trt3 1 -0.69988 0.45994 2.3155 0.1281 0.497
Trt4 1 -0.65079 0.57744 1.2702 0.2597 0.522
Numberl 1 0.23599 0.07608 9.6231 0.0019 1.266
Number2 1 0.13756 0.09190 2.2403 0.1345 1.147
Number3 1 0.16984 0.10521 2.6061 0.1065 1.185
Number4 1 0.32880 0.12528 6.8880 0.0087 1.389
Sizel 1 0.06789 0.10125 0.4496 0.5025 1.070
Size2 1 -0.07612 0.13406 0.3224 0.5702 0.927
Size3 1 -0.21131 0.18240 1.3421 0.2467 0.810
Sized 1 -0.20317 0.23018 0.7791 0.3774 0.816
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The following SAS statements calculate the robust covariance matrix for the treat-
ment coefficients. The MEANS procedure sums up the DFBETA statistics for each
subject and outputs the results to a SAS data set n@ug2l. The IML procedure

then reads the DFBETA statistics from the data®at2 and computes the robust
variance, which is output to a SAS data set called RCov.

proc means data=Outl noprint;
by ID;
var dtl-dt4;
output out=0ut2 sum=dtl-dt4;

proc iml;

use Out2;

read all var{dtl dt2 dt3 dt4} into x;

v=x' * X;

reset noname;

vname={"Trt1","Trt2","Trt3","Trt4"};

print,"Estimated Covariance Matrix",, v[colname=vname
rowname=vname format=10.5];

create RCov from v[colname=vname rowname=vname];

append from v[rowname=vname];

The estimated robust covariance matrix is displayed in Output 49.8.3.

Output 49.8.3. Robust Covariance Matrix for the Treatment Coefficients

Estimated Covariance Matrix

Trtl Trt2 Trt3 Trt4

Trtl 0.09456 0.06018 0.05677 0.04378
Trt2 0.06018 0.13243 0.13012 0.11604
Trt3 0.05677 0.13012 0.17236 0.15909
Trt4 0.04378 0.11604 0.15909 0.23981

The approximate multivariate normal distribution of the parameter estimators pro-
vides a basis for simultaneous inferences about the parameters. For example, you can
test jointly the null hypothesis of no treatment effect for each tumor recurrence, or
you can estimate the coefficient for the common treatment effect. A detailed IML pro-
gram for the analysis is given by the following SAS statements (results not shown):

proc iml;
use Esti;
read all var{Trtl Trt2 Trt3 Trt4} into Trt;
b= Trt;
use Out2;
read all var{dtl dt2 dt3 dt4} into Xx;
v=x' * x;
nparm=nrow(b);
se=sqrt(vecdiag(v));
reset noname;
stitle={"Estimate", " Std Error'};
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vname={"Trt1","Trt2","Trt3","Trt4"};
tmpprt= b || se;
print,tmpprt[colname=stitle rowname=vname format=10.5];
print,"Estimated Covariance Matrix",,
v[colname=vname rowname=vname format=10.5];

/* HO: betall=betal2=betal3=betald=0 */

chisgq= b* * inv(v) * b;

df= nrow(b);

p= 1-probchi(chisq,df);

print ,,"Testing HO: no treatment effects”, ,
"Wald Chi-Square = " chisq, "DF = " df,
"p-value = "p[format=5.4],;

/* Assume betall=betal2=betal3=betal4 and
estimate the common value */
c={1000,0100,0010, 000 1}

cb=c¢c * b;

si= ¢ * v * t(c);

e= j(4,1,1);

isi=inv(si);

h= inv(e' * isi * e) * isi * g;
bl= t(h) * cb;

se= sqrt(t(h) * si * h);

zscore= bl / se;

p= 1- probchi( zscore # zscore, 1);

print ,"Estimation of the Common Parameter for Treatment",,
"Optimal Weights = "h,

"Estimate = " bl,

"Standard Error = " se,

"z-score =" zscore,

"2-sided p-value = " p[format=5.4];

quit;

The PHREG procedure can also be used to fit the PWP model. In the PWP model, the
risk set for the(k + 1) recurrence is restricted to those patients who have experienced
the firstk recurrences. For example, a patient who experienced only one recurrence is
an event observation for the first recurrence; this patient is a censored observation for
the second recurrence and should not be included in the risk set for the third or fourth
recurrence. The following DATA step eliminates those observations that should not
be in the risk sets, forming a new input data set (namkxdider3) for fitting the

PWP models. The gap times between successive recurrences are also calculated.

The following SAS statements create the dateBiatider3:

data Bladder3(drop=Istatus);
retain Istatus;
set Bladderz;
by ID;
if first.ID then Istatus=1,;
if (Status=0 and Istatus=0) then delete;
Istatus=Status;
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GapTime=TStop-TStart;
run;

The following statements fit the PWP total time model with noncommon effects:

*title2 'PWP Total Time Model with Noncommon Effects’;
proc phreg data=Bladder3;
model TStop*Status(0)=Trt1l-Trt4 Numberl-Number4
Sizel-Size4;
strata Visit;
run;

The following statements fit the PWP gap time model with noncommon effects:

*title2 'PWP Gap Time Model with Noncommon Effects’;
proc phreg data=Bladder3;
model GapTime*Status(0)=Trt1-Trt4 Numberl-Number4
Sizel-Size4;
strata Visit;
run;

Results of these two analyses are shown in Output 49.8.4 and Output 49.8.5, respec-
tively.
Output 49.8.4.  Fitting PWP Total Time Model with Noncommon Effects

The PHREG Procedure

Model Information

Data Set WORK.BLADDER3
Dependent Variable TStop

Censoring Variable Status

Censoring Value(s) 0

Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent
Stratum Visit Total Event Censored Censored
1 1 86 a7 39 45.35
2 2 47 29 18 38.30
3 3 29 22 7 24.14
4 4 22 14 8 36.36
Total 184 112 72 39.13

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Variable

Trtl

Trt2

Trt3

Trt4
Numberl
Number2
Number3
Number4
Sizel
Size2
Size3
Sized

The PHREG Procedure

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 743.098 725.677
AIC 743.098 749.677
SBC 743.098 782.299
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 17.4211 12 0.1344
Score 18.5546 12 0.0999
Wald 17.7388 12 0.1239
Analysis of Maximum Likelihood Estimates
Parameter Standard
DF Estimate Error  Chi-Square Pr > ChiSq
1 -0.51757 0.31576 2.6868 0.1012
1 -0.42584 0.40227 1.1206 0.2898
1 -0.89894 0.53956 2.7757 0.0957
1 -0.23739 0.68274 0.1209 0.7281
1 0.23605 0.07607 9.6287 0.0019
1 0.00117 0.09372 0.0002 0.9900
1 0.01468 0.13253 0.0123 0.9118
1 0.29306 0.22067 1.7637 0.1842
1 0.06790 0.10125 0.4498 0.5024
1 -0.12515 0.11708 1.1425 0.2851
1 -0.21520 0.17801 1.4615 0.2267
1 0.25135 0.29077 0.7472 0.3874

Hazard
Ratio

0.596
0.653
0.407
0.789
1.266
1.001
1.015
1.341
1.070
0.882
0.806
1.286
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Output 49.8.5.  Fitting PWP Gap Time Model with Noncommon Effects

The PHREG Procedure

Model Information

Data Set WORK.BLADDERS3
Dependent Variable GapTime

Censoring Variable Status

Censoring Value(s) 0

Ties Handling BRESLOW

Summary of the Number of Event and Censored Values

Percent
Stratum Visit Total Event Censored Censored
1 1 86 47 39 45.35
2 2 a7 29 18 38.30
3 3 29 22 7 24.14
4 4 22 14 8 36.36
Total 184 112 72 39.13

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 735.076 717.268
AlIC 735.076 741.268
SBC 735.076 773.890
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The PHREG Procedure
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 17.8089 12 0.1216
Score 19.6097 12 0.0748
Wald 18.4759 12 0.1020
Analysis of Maximum Likelihood Estimates
Parameter Standard Hazard
Variable DF Estimate Error  Chi-Square Pr > ChiSq Ratio
Trtl 1 -0.51757 0.31576 2.6868 0.1012 0.596
Trt2 1 -0.25911 0.40511 0.4091 0.5224 0.772
Trt3 1 0.22105 0.54909 0.1621 0.6873 1.247
Trt4 1 -0.19498 0.64184 0.0923 0.7613 0.823
Numberl 1 0.23605 0.07607 9.6287 0.0019 1.266
Number2 1 -0.00571 0.09667 0.0035 0.9529 0.994
Number3 1 0.12935 0.15970 0.6561 0.4180 1.138
Number4 1 0.42079 0.19816 4.5091 0.0337 1.523
Sizel 1 0.06790 0.10125 0.4498 0.5024 1.070
Size2 1 -0.11636 0.11924 0.9524 0.3291 0.890
Size3 1 0.24995 0.23113 1.1695 0.2795 1.284
Size4 1 0.03557 0.29043 0.0150 0.9025 1.036

The following statements fit the PWP total time model with common effects:

*title2 'PWP Total Time Model with Common Effects’;
proc phreg data=Bladder3;

model TStop*Status(0)=Trt Number Size;

strata Visit;
run;

The following statements fit the PWP gap time model with common effects:

*title2 'PWP Gap Time Model with Common Effects’;
proc phreg data=Bladder3;
model GapTime*Status(0)=Trt Number Size;;
strata Visit;
run;

Results of these two analyses are not shown in this document.
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