
Chapter 50
The PLAN Procedure

Chapter Table of Contents

OVERVIEW .2661

GETTING STARTED .2662
Three Replications with Four Factors .2662
Randomly Assigning Subjects to Treatments2663

SYNTAX .2665
PROC PLAN Statement .2665
FACTORS Statement .2666
OUTPUT Statement .2669
TREATMENTS Statement .2672

DETAILS .2673
Using PROC PLAN Interactively .2673
Output Data Sets .2673
Specifying Factor Structures .2675
Randomizing Designs2678
Displayed Output .2678
ODS Table Names .2678

EXAMPLES .2679
Example 50.2 A Split-Plot Design .. .2679
Example 50.3 A Hierarchical Design .2680
Example 50.3 An Incomplete Block Design2681
Example 50.4 A Latin Square Design .2683
Example 50.5 A Generalized Cyclic Incomplete Block Design2684
Example 50.6 Permutations and Combinations2685

REFERENCES .2689

2660 � Chapter 50. The PLAN Procedure

SAS OnlineDoc: Version 8

Chapter 50
The PLAN Procedure

Overview

The PLAN procedure constructs designs and randomizes plans for factorial exper-
iments, especially nested and crossed experiments and randomized block designs.
PROC PLAN can also be used for generating lists of permutations and combinations
of numbers. The PLAN procedure can construct the following types of experimental
designs:

� full factorials, with and without randomization

� certain balanced and partially balanced incomplete block designs

� generalized cyclic incomplete block designs

� Latin square designs

For other kinds of experimental designs, especially fractional factorial, response sur-
face, and orthogonal array designs, refer to the FACTEX and OPTEX procedures and
the ADX Interface in SAS/QC software.

PROC PLAN generates designs by first generating a selection of the levels for the first
factor. Then, for the second factor, PROC PLAN generates a selection of its levels
for each level of the first factor. In general, for a given factor, the PLAN procedure
generates a selection of its levels for all combinations of levels for the factors that
precede it. The selection can be done in five different ways:

� randomized selection, for which the levels are returned in a random order

� ordered selection, for which the levels are returned in a standard order every
time a selection is generated

� cyclic selection, for which the levels returned are computed by cyclically per-
muting the levels of the previous selection

� permuted selection, for which the levels are a permutation of the integers
1; : : :; n

� combination selection, for which them levels are selected as a combination of
the integers1; : : :; n takenm at a time

2662 � Chapter 50. The PLAN Procedure

The randomized selection method can be used to generate randomized plans. Also,
by appropriate use of cyclic selection, any of the designs in the very wide class of
generalized cyclic block designs (Jarrett and Hall 1978) can be generated.

There is no limit to the depth to which the different factors can be nested, and any
number of randomized plans can be generated.

You can also declare a list of factors to be selected simultaneously with the lowest
(that is, the most nested) factor. The levels of the factors in this list can be seen
as constituting the treatment to be applied to the cells of the design. For this reason,
factors in this list are calledtreatments. With this list, you can generate and randomize
plans in one run of PROC PLAN.

Getting Started

Three Replications with Four Factors

Suppose you want to determine if the order in which four drugs are given affects
the response of a subject. If you have only three subjects to test, you can use the
following statements to design the experiment.

proc plan seed=27371;
factors Replicate=3 ordered Drug=4;

run;

These statements produce a design with three replicates of the four levels of the factor
Drug arranged in random order. The three levels ofReplicate are arranged in order,
as shown in Figure 50.1

The PLAN Procedure

Factor Select Levels Order

Replicate 3 3 Ordered
Drug 4 4 Random

Replicate --Drug-

1 3 2 4 1
2 1 2 4 3
3 4 1 2 3

Figure 50.1. Three Replications and Four Factors

You may also want to apply one of four different treatments to each cell of this plan
(for example, applying different amounts of each drug). The following statements
create the output shown in Figure 50.2

factors Replicate=3 ordered Drug=4;
treatments Treatment=4;

run;

SAS OnlineDoc: Version 8

Randomly Assigning Subjects to Treatments � 2663

The PLAN Procedure

Plot Factors

Factor Select Levels Order

Replicate 3 3 Ordered
Drug 4 4 Random

Treatment Factors

Factor Select Levels Order

Treatment 4 4 Random

Replicate --Drug- --Treatment--

1 3 1 2 4 2 1 3 4
2 4 3 2 1 4 1 2 3
3 3 2 4 1 1 4 2 3

Figure 50.2. Using the TREATMENTS Statement

Randomly Assigning Subjects to Treatments

You can use the PLAN procedure to design a completely randomized design. Suppose
you have 12 experimental units, and want to assign one of two treatments to each
unit. Use a DATA step to store the unrandomized design in a SAS data set, then call
PROC PLAN to randomize it by specifying one RANDOM factor of 12 levels. The
following statements produce Figure 50.3 and Figure 50.4:

title ’Completely Randomized Design’;
/* The unrandomized design */
data a;

do unit=1 to 12;
if (unit <= 6) then treat=1;
else treat=2;
output;

end;
run;

/* Randomize the design */
proc plan seed=27371;

factors unit=12;
output data=a out=b;

run;

proc sort data=b;
by unit;

proc print;
run;

Figure 50.3 shows that the 12 levels of theunit factor have been randomly reordered
and then lists the new ordering.

SAS OnlineDoc: Version 8

2664 � Chapter 50. The PLAN Procedure

Completely Randomized Design

The PLAN Procedure

Factor Select Levels Order

unit 12 12 Random

----------------unit---------------

8 5 1 4 6 2 12 7 3 9 10 11

Figure 50.3. A Completely Randomized Design for Two Treatments

After the data is sorted by theunit variable, the randomized design is displayed in
Figure 50.4.

Completely Randomized Design

Obs unit treat

1 1 1
2 2 1
3 3 2
4 4 1
5 5 1
6 6 1
7 7 2
8 8 1
9 9 2

10 10 2
11 11 2
12 12 2

Figure 50.4. A Completely Randomized Design for Two Treatments

You can also generate the plan by using a TREATMENTS statement instead of a
DATA step. The following statements generate the same plan.

proc plan seed=27371;
factors unit=12;
treatments treat=12 cyclic (1 1 1 1 1 1 2 2 2 2 2 2);
output out=b;

run;

SAS OnlineDoc: Version 8

PROC PLAN Statement � 2665

Syntax

The following statements are available in PROC PLAN.

PROC PLAN < options > ;
FACTORS factor-selections < / NOPRINT > ;

OUTPUT OUT=SAS-data-set < factor-value-settings > ;
TREATMENTS factor-selections ;

To use PROC PLAN, you need to specify the PROC PLAN statement and at least one
FACTORS statement before the first RUN statement. The TREATMENTS statement,
OUTPUT statement, and additional FACTORS statements can appear either before
the first RUN statement or after it. The rest of this section gives detailed syntax
information for each of the statements, beginning with the PROC PLAN statement.
The remaining statements are described in alphabetical order.

You can use PROC PLAN interactively by specifying multiple groups of statements,
separated by RUN statements. For details, see the “Using PROC PLAN Interactively”
section on page 2673.

PROC PLAN Statement

PROC PLAN < options > ;

The PROC PLAN statement starts the PLAN procedure and, optionally, specifies a
random number seed or a default method for selecting levels of factors. By default,
the procedure uses a random number seed generated from reading the time of day
from the computer’s clock and randomly selects levels of factors. These defaults can
be modified with the SEED= and ORDERED options, respectively. Unlike many
SAS/STAT procedures, the PLAN procedure does not have a DATA= option in the
PROC statement; in this procedure, both the input and output data sets are specified
in the OUTPUT statement.

You can specify the following options in the PROC PLAN statement:

SEED=number
specifies a positive integer less than231 � 1. PROC PLAN uses the value of the
SEED= option to start the pseudo-random number generator for selecting factor levels
randomly. The default is a value generated from reading the time of day from the
computer’s clock.

ORDERED
selects the levels of the factor as the integers1; 2; : : : ;m; in order. For more de-
tail, see the “Selection-Types” section on page 2666 and see the “Specifying Factor
Structures” section on page 2675.

SAS OnlineDoc: Version 8

2666 � Chapter 50. The PLAN Procedure

FACTORS Statement

FACTORS factor-selections < / NOPRINT > ;

The FACTORS statement specifies the factors of the plan and generates the plan.
Taken together, thefactor-selectionsspecify the plan to be generated; more than one
factor-selectionrequest can be used in a FACTORS statement. The form of afactor-
selectionis

name=m < OF n > < selection-type >

where

name is a valid SAS name. This gives the name of a factor in the design.

m is a positive integer that gives the number of values to be selected. If
n is specified, the value ofm must be less than or equal ton.

n is a positive integer that gives the number of values to be selected
from.

selection-type specifies one of five methods for selectingm values. Possible val-
ues are COMB, CYCLIC, ORDERED, PERM or RANDOM. The
CYCLIC selection-typehas additional optional specifications that
enable you to specify an initial block of numbers to be cyclically per-
muted and an increment used to permute the numbers. By default,
theselection-typeis RANDOM, unless you use the ORDERED op-
tion in the PROC PLAN statement. In this case, the defaultselection-
typeis ORDERED. For details, see the following section, “Selection-
Types”; for examples, see the “Syntax Examples” section.

The following option can appear in the FACTORS statement after the slash:

NOPRINT
suppresses the display of the plan. This is particularly useful when you require only
an output data set. Note that this option temporarily disables the Output Delivery
System (ODS); see Chapter 15, “Using the Output Delivery System,” for more infor-
mation.

Selection-Types
PROC PLAN interpretsselection-typeas follows:

RANDOM selects them levels of the factor randomly without replacement from
the integers1; 2; : : : ; n. Or, if n is not specified, RANDOM selects
levels by randomly ordering the integers1; 2; : : : ;m.

ORDERED selects the levels of the factor as the integers1; 2; : : : ;m, in that order.

SAS OnlineDoc: Version 8

FACTORS Statement � 2667

PERM selects them levels of the factor as a permutation of the integers
1; : : : m according to an algorithm that cycles through allm! permu-
tations. The permutations are produced in a sorted standard order; see
Example 50.6 on page 2685.

COMB selects them levels of the factor as a combination of the integers
1; : : : ; n takenm at a time, according to an algorithm that cycles
through alln!=(m!(n � m)!) combinations. The combinations are
produced in a sorted standard order; see Example 50.6 on page 2685.

CYCLIC <(initial-block) >< increment>
selects the levels of the factor by cyclically permuting the integers
1; 2; : : : ; n. Wrapping occurs atm if n is not specified, and atn if n
is specified. Additional optional specifications are as follows:

With theselection-typeCYCLIC, you can optionally specify aninitial-
block and anincrement. The initial-block must be specified within
parentheses, and it specifies the block of numbers to permute. The first
permutation is the block you specify, the second is the block permuted
by 1 (or by theincrementyou specify), and so on. By default, the
initial-block is the integers1; 2; : : : ;m. If you specify aninitial-block,
it must havem values. Values specified in theinitial-block do not have
to be given in increasing order.

The incrementspecifies the increment by which to permute the block
of numbers. By default, theincrementis 1.

Syntax Examples
This section gives some simple syntax examples. For more complex examples and
details on how to generate various designs, see the “Specifying Factor Structures”
section on page 2675. The examples in this section assume that you use the default
random selection method and do not use the ORDERED option in the PROC PLAN
statement.

The following specification generates a random permutation of the numbers 1, 2, 3,
4, and 5.

factors A=5;

The following specification generates a random permutation of 5 of the integers from
1 to 8, selected without replacement.

factors A=5 of 8;

Adding the ORDEREDselection-typeto the two previous specifications generates an
ordered list of the integers 1 to 5. The following specification cyclically permutes the
integers 1, 2, 3, and 4.

factors A=4 cyclic;

SAS OnlineDoc: Version 8

2668 � Chapter 50. The PLAN Procedure

Since this simple request generates only one permutation of the numbers, the pro-
cedure generates an ordered list of the integers 1 to 4. The following specification
cyclically permutes the integers 5 to 8.

factors A=4 of 8 cyclic (5 6 7 8);

In this case, since only one permutation is performed, the procedure generates an
ordered list of the integers 5 to 8. The following specification produces an ordered
list for A, with values 1 and 2.

factors A=2 ordered B=4 of 8 cyclic (5 6 7 8) 2;

The associated factor levels forB are 5, 6, 7, 8 for level 1 ofA; and 7, 8, 1, 2 for level
2 of A.

Handling More than One Factor-Selection
For cases with more than onefactor-selectionin the same FACTORS statement,
PROC PLAN constructs the design as follows:

1. PROC PLAN first generates levels for the firstfactor-selection. These levels
are permutations of integers (1, 2, and so on) appropriate for the selection type
chosen. If you do not specify a selection type, PROC PLAN uses the default
(RANDOM); if you specify the ORDERED option in the PROC PLAN state-
ment, the procedure uses ORDERED as the default selection type.

2. For every integer generated for the firstfactor-selection, levels are generated
for the secondfactor-selection. These levels are generated according to the
specifications following the second equal sign.

3. This process is repeated until levels for allfactor-selectionshave been gener-
ated.

The following statements give an example of generating a design with two random
factors:

proc plan;
factors One=4 Two=3;

run;

The procedure first generates a random permutation of the integers 1 to 4 and then,
for each of these, generates a random permutation of the integers 1 to 3. You can
think of factor Two as being nested within factorOne, where the levels of factor
One are to be randomly assigned to 4 units.

SAS OnlineDoc: Version 8

OUTPUT Statement � 2669

As another example, six random permutations of the numbers 1, 2, 3 can be generated
by specifying

proc plan;
factors a=6 ordered b=3;

run;

OUTPUT Statement

OUTPUT OUT=SAS-data-set < DATA=SAS-data-set >
< factor-value-settings > ;

The OUTPUT statement applies only to the last plan generated. If you use PROC
PLAN interactively, the OUTPUT statement for a given plan must be immediately
preceded by the FACTORS statement (and the TREATMENTS statement, if appro-
priate) for the plan. See the “Output Data Sets” section on page 2673 for more in-
formation on how output data sets are constructed. You can specify the following
options in the OUTPUT statement:

OUT=SAS-data-set
DATA=SAS-data-set

You can use the OUTPUT statement both to output the last plan generated and to use
the last plan generated to randomize another SAS data set.

When you specify only the OUT= option in the OUTPUT statement, PROC PLAN
saves the last plan generated to the specified data set. The output data set contains
one variable for each factor in the plan and one observation for each cell in the plan.
The value of a variable in a given observation is the level of the corresponding factor
for that cell. The OUT= option is required.

When you specify both the DATA= and OUT= options in the OUTPUT statement,
then PROC PLAN uses the last plan generated to randomize the input data set
(DATA=), saving the results to the output data set (OUT=). The output data set has
the same form as the input data set but has modified values for the variables that
correspond to factors (see the “Output Data Sets” section on page 2673 for details).
Values for variables not corresponding to factors are transferred without change.

factor-value-settings
specify the values input or output for the factors in the design. The form forfactor-
value-settingsis different when only an OUT= data set is specified and when both
OUT= and DATA= data sets are specified. Both forms are discussed in the following
section.

SAS OnlineDoc: Version 8

2670 � Chapter 50. The PLAN Procedure

Factor-Value-Settings with Only an OUT= Data Set
When you specify only an OUT= data set, the form for eachfactor-value-setting
specification is one of the following:

factor-name < NVALS= list-of-n-numbers > < ORDERED | RANDOM >

or

factor-name < CVALS= list-of-n-strings > < ORDERED | RANDOM >

where

factor-name is a factor in the last FACTORS statement preceding the OUTPUT
statement.

NVALS= listsn numeric values for the factor. By default, the procedure uses
NVALS=(1 2 3 � � �n).

CVALS= lists n character strings for the factor. Each string can have up to
40 characters, and each string must be enclosed in quotes.Warn-
ing: When you use the CVALS= option, the variable created in the
output data set has a length equal to the length of the longest string
given as a value; shorter strings are padded with trailing blanks. For
example, the values output for the first level of a two-level factor
with the following two different specifications are not the same.

CVALS=(’String 1’ "String 2")

CVALS=(’String 1’ "A longer string")

The value output with the second specification is ’String 1’ fol-
lowed by seven blanks. In order to match two such values (for ex-
ample, when merging two plans), you must use the TRIM function
in the DATA step (refer toSAS Language Reference: Dictionary).

ORDERED | RANDOM specifies how values (those given with the NVALS= or
CVALS= option, or the default values) are associated with the lev-
els of a factor (the integers1; 2; : : : ; n). The default association
type is ORDERED, for which the first value specified is output for
a factor level setting of 1, the second value specified is output for
a level of 2, and so on. You can also specify an association type of
RANDOM, for which the levels are associated with the values in
a random order. Specifying RANDOM is useful for randomizing
crossed experiments (see the “Randomizing Designs” section on
page 2678).

SAS OnlineDoc: Version 8

OUTPUT Statement � 2671

The following statements give an example of using the OUTPUT statement with only
an OUT= data set and with both the NVALS= and CVALS= specifications.

proc plan;
factors a=6 ordered b=3;
output out=design a nvals=(10 to 60 by 10)

b cvals=(’HSX’ ’SB2’ ’DNY’);
run;

The DESIGN data set contains two variables,a andb. The values of the variable
a are 10 when factora equals 1, 20 when factora equals 2, and so on. Values of
the variableb are ‘HSX’ when factorb equals 1, ‘SB2’ when factorb equals 2, and
‘DNY’ when factor b equals 3.

Factor-Value-Settings with OUT= and DATA= Data Sets
If you specify an input data set with DATA=, then PROC PLAN assumes that each
factor in the last plan generated corresponds to a variable in the input set. If the
variable name is different from the name of the factor to which it corresponds, the
two can be associated in the values specification by

input-variable-name = factor-name

Then, the NVALS= or CVALS= specification can be used. The values given by
NVALS= or CVALS= specify the input values as well as the output values for the
corresponding variable.

Since the procedure assumes that the collection of input factor values constitutes
a plan position description (see the “Output Data Sets” section on page 2673), the
values must correspond to integers less than or equal tom, the number of values
selected for the associated factor. If any input values do not correspond, then the
collection does not define a plan position, and the corresponding observation is output
without changing the values of any of the factor variables.

The following statements demonstrate the use of factor-value settings. The input
SAS data seta contains variablesBlock andPlot, which are renamedDay andHour,
respectively.

proc plan;
factors Day=7 Hour=6;
output data=a out=b

Block = Day cvals=(’Mon’ ’Tue’ ’Wed’ ’Thu’
’Fri’ ’Sat’ ’Sun’)

Plot = Hour;
run;

For another example of using both a DATA= and OUT= data set, see the “Randomly
Assigning Subjects to Treatments” section on page 2663.

SAS OnlineDoc: Version 8

2672 � Chapter 50. The PLAN Procedure

TREATMENTS Statement

TREATMENTS factor-selections ;

The TREATMENTS statement specifies thetreatmentsof the plan to generate, but
it does not generate a plan. If you supply several FACTORS and TREATMENTS
statements before the first RUN statement, the procedure uses only the last TREAT-
MENTS specification and applies it to the plans generated by each of the FACTORS
statements. The TREATMENTS statement has the same form as the FACTORS state-
ment. The individualfactor-selectionsalso have the same form as in the FACTORS
statement:

name=m < OF n > < selection-type >

The procedure generates eachtreatmentsimultaneously with the lowest (that is, the
most nested) factor in the last FACTORS statement. Them value for eachtreatment
must be at least as large as them for the most-nested factor.

The following statements give an example of using both a FACTORS and a TREAT-
MENTS statement. First the FACTORS statement sets up the rows and columns of
a 3 � 3 square (factorsr andc). Then, the TREATMENTS statement augments the
square with two cyclic treatments. The resulting design is a3 � 3 Graeco-Latin
square, a type of design useful in main-effects factorial experiments.

proc plan;
factors r=3 ordered c=3 ordered;
treatments a=3 cyclic

b=3 cyclic 2;
run;

The resulting Graeco-Latin square design is reproduced below. Notice how the values
of r andc are ordered (1, 2, 3) as requested.

r --c-- --a-- --b--

1 1 2 3 1 2 3 1 2 3
2 1 2 3 2 3 1 3 1 2
3 1 2 3 3 1 2 2 3 1

SAS OnlineDoc: Version 8

Output Data Sets � 2673

Details

Using PROC PLAN Interactively

After specifying a design with a FACTORS statement and running PROC PLAN with
a RUN statement, you can generate additional plans and output data sets without
reinvoking PROC PLAN.

In PROC PLAN, all statements can be used interactively. You can execute statements
singly or in groups by following the single statement or group of statements with a
RUN statement.

If you use PROC PLAN interactively, you can end the procedure with a DATA step,
another PROC step, an ENDSAS statement, or a QUIT statement. The syntax of this
statement is

quit;

When you use PROC PLAN interactively, additional RUN statements do not end the
procedure but tell PROC PLAN to execute additional statements.

Output Data Sets

To understand how PROC PLAN creates output data sets, you need to look at how
the procedure represents a plan. A plan is a list of values for all the factors, the values
being chosen according to the factor-selection requests you specify. For example,
consider the plan produced by the following statements:

proc plan seed=12345;
factors a=3 b=2;
run;

The plan as displayed by PROC PLAN is shown in Figure 50.5.

The PLAN Procedure

Factor Select Levels Order

a 3 3 Random
b 2 2 Random

a -b-

2 2 1
1 1 2
3 2 1

Figure 50.5. A Simple Plan

SAS OnlineDoc: Version 8

2674 � Chapter 50. The PLAN Procedure

The first cell of the plan hasa=2 andb=2, the seconda=2 andb=1, the thirda=1
andb=1, and so on. If you output the plan to a data set with the OUTPUT statement,
by default the output data set contains a numeric variable with that factor’s name; the
values of this numeric variable are the numbers of the successive levels selected for
the factor in the plan. For example, the following statements produce Figure 50.6.

proc plan seed=12345;
factors a=3 b=2;
output out=out;

proc print data=out;
run;

Obs a b

1 2 2
2 2 1
3 1 1
4 1 2
5 3 2
6 3 1

Figure 50.6. Output Data Set from Simple Plan

Alternatively, you can specify the values that are output for a factor with the CVALS=
or NVALS= option. Also, you can specify that the internal values be associated with
the output values in a random order with the RANDOM option. See the “OUTPUT
Statement” section on page 2669.

If you also specify an input data set (DATA=), each factor is associated with a vari-
able in the DATA= data set. This occurs either implicitly by the factor and variable
having the same name or explicitly as described in the specifications for the OUT-
PUT statement. In this case, the values of the variables corresponding to the factors
are first read and then interpreted as describing the position of a cell in the plan. Then
the respective values taken by the factors at that position are assigned to the variables
in the OUT= data set. For example, consider the data set defined by the following
statements.

data in;
input a b;
datalines;

1 1
2 1
3 1
;

SAS OnlineDoc: Version 8

Specifying Factor Structures � 2675

Suppose you specify this data set as an input data set for the OUTPUT statement.

proc plan seed=12345;
factors a=3 b=2;
output out=out data=in;

proc print data=out;
run;

PROC PLAN interprets the first observation as referring to the cell in the first row and
column of the plan, sincea=1 andb=1; likewise, the second observation is interpreted
as the cell in the second row and first column, and the third observation as the cell
in the third row and first column. In the output data seta andb have the values they
have in the plan at these positions, as shown in Figure 50.7.

Obs a b

1 2 2
2 1 1
3 3 2

Figure 50.7. Output Form of Input Data Set from Simple Plan

When the factors are random, this has the effect of randomizing the input data set
in the same manner as the plan produced (see the “Randomizing Designs” section
on page 2678 and the “Randomly Assigning Subjects to Treatments” section on
page 2663).

Specifying Factor Structures

By appropriately combining features of the PLAN procedure, you can construct an
extensive set of designs. The basic tools are thefactor-selections, which are used
in the FACTORS and TREATMENTS statements. Table 50.1 summarizes how the
procedure interprets variousfactor-selections(assuming that the ORDERED option
is not specified in the PROC PLAN statement).

Table 50.1. Factor Selection Interpretation

Form of
Request Interpretation Example Results
name=m produce a random per-

mutation of the integers
1; 2; : : : ;m.

t=15 lists a random order-
ing of the numbers
1; 2; : : : ; 15.

name=m
cyclic

cyclically permute the
integers1; 2; : : : ;m.

t=5 cyclic selects the integers 1 to
5. On the next iter-
ation, selects 2,3,4,5,1;
then 3,4,5,1,2; and so on.

SAS OnlineDoc: Version 8

2676 � Chapter 50. The PLAN Procedure

Table 50.1. (continued)

Form of
Request Interpretation Example Results
name=m of n choose a random sample

of m integers (with-
out replacement) from
the set of integers
1; 2; : : : ; n.

t=5 of 15 lists a random selection
of 5 numbers from 1 to
15. First, the proce-
dure selects 5 numbers
and then arranges them
in random order.

name=m of n
ordered

has the same effect as
name=m ordered.

t=5 of 15

ordered

lists the integers 1 to 5 in
increasing order (same
as t=5 ordered).

name=m of n
cyclic

permute m of the n
integers.

t=5 of 30

cyclic

selects the integers 1 to
5. On the next iter-
ation, selects 2,3,4,5,6;
then 3,4,5,6,7; and so
on. The 30th iteration
30,1,2,3,4; the 31st iter-
ation produces 1,2,3,4,5;
and so on.

name=m
perm

produce a list of all per-
mutations ofm integers.

t=5 perm lists the integers
1,2,3,4,5 on the first
iteration; on the second
lists 1,2,3,5,4; and on
the 119th iteration lists
5,4,3,1,2; and on the last
(120th) lists 5,4,3,2,1.

name=m of n
comb

choose combinations
of m integers from n
integers.

t=3 of 5

comb

lists all combinations of
5 choose 3 integers. The
first iteration is 1,2,3; the
second is 1,2,4; the third
is 1,2,5; and so on until
the last iteration 3,4,5.

name=m of n
cyclic
(initial-block)

permutem of the n in-
tegers, starting with the
values specified in the
initial-block.

t=4 of 30

cyclic

(2 10 15 18)

selects the integers
2,10,15,18. On the
next iteration, se-
lects 3,11,16,19; then
4,12,17,20; and so on.
The thirteenth iteration
is 14,22,27,30; the
fourteenth iteration is
15,23,28,1; and so on.

SAS OnlineDoc: Version 8

Specifying Factor Structures � 2677

Table 50.1. (continued)

Form of
Request Interpretation Example Results
name=m of n
cyclic
(initial-block)
increment

permutem of the n in-
tegers. Start with the
values specified in the
initial-block, then add
the increment to each
value.

t=4 of 30

cyclic

(2 10 15 18)

2

selects the integers
2,10,15,18. On the
next iteration, se-
lects 4,12,17,20; then
6,14,19,22; and so on.
The wrap occurs at
the eighth iteration.
The eighth iteration is
16,24,29,2; and so on.

In Table 50.1, in order for more than one iteration to appear in the plan, another
name=jfactor selection (withj > 1) must precede the example factor selection. For
example, the following statements produce six of the iterations described in the last
entry of Table 50.1.

proc plan;
factors c=6 ordered t=4 of 30 cyclic (2 10 15 18) 2;

run;

The following statements create a randomized complete block design and output the
design to a data set.

proc plan ordered;
factors blocks=3 cell=5;
treatments t=5 random;
output out=rcdb;

run;

Table 50.2 lists other kinds of experiment designs that can be constructed by PROC
PLAN, along with section and page references for them in this chapter.

Table 50.2. Experimental Design Examples

Design Page Number
Completely randomized design page 2663
Split-plot design page 2679
Nested design page 2680
Latin square design page 2683
Generalized cyclic incomplete block designpage 2684

SAS OnlineDoc: Version 8

2678 � Chapter 50. The PLAN Procedure

Randomizing Designs

In many situations, proper randomization is crucial for the validity of any conclusions
to be drawn from an experiment. Randomization is used both to neutralize the effect
of any unknown systematic biases that may be involved in the design as well as to
provide a basis for the assumptions underlying the analysis.

You can use PROC PLAN to randomize an already-existing design: one produced by
a previous call to PROC PLAN, perhaps, or a more specialized design taken from a
standard reference such as Cochran and Cox (1957). The method is to specify the
appropriate block structure in the FACTORS statement and then to specify the data
set where the design is stored with the DATA= option in the OUTPUT statement. For
an illustration of this method, see the “Randomly Assigning Subjects to Treatments”
section on page 2663).

Two sorts of randomization are provided for, corresponding to the RANDOM fac-
tor selection and association types in the FACTORS and OUTPUT statements, re-
spectively. Designs in which factors are completely nested (for example, block de-
signs) should be randomized by specifying that the selection type of each factor is
RANDOM in the FACTORS statement, which is the default (see Example 50.3 on
page 2681). On the other hand, if the factors are crossed (for example, row-and-
column designs), they should be randomized by one random reassignment of their
values for the whole design. To do this, specify that the association type of each
factor is RANDOM in the OUTPUT statement (see Example 50.4 on page 2683).

Displayed Output

The PLAN procedure displays

� them value for each factor, which is the number of values to be selected

� then value for each factor, which is the number of values to be selected from

� the selection type for each factor, as specified in the FACTORS statement

� the initial block and increment number for cyclic factors

� the factor value selections making up each plan

In addition, notes are written to the log giving the starting and ending values of the
random number seed for each call to PROC PLAN.

ODS Table Names

PROC PLAN assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 15, “Using the Output Delivery System.”

SAS OnlineDoc: Version 8

Example 50.2. A Hierarchical Design � 2679

Table 50.3. ODS Tables Produced by PROC PLAN

ODS Table Name Description Statement
FInfo General factor information FACTOR & no TREATMENT
PFInfo Plot factor information FACTOR & TREATMENT
Plan Computed plan default
TFInfo Treatment factor information FACTOR & TREATMENT

Examples

Example 50.1. A Split-Plot Design

This plan is appropriate for a split-plot design with main plots forming a randomized
complete block design. In this example, there are three blocks, four main plots per
block, and two subplots per main plot. First, three random permutations (one for each
of theblocks) of the integers 1, 2, 3, and 4 are produced. The four integers correspond
to the four levels of the main plot factora; the permutation determines how the levels
of a are assigned to the main plots within a block. For each of these twelve numbers
(four numbers per block for three blocks), a random permutation of the integers 1 and
2 is produced. Each two-integer permutation determines the assignment of the two
levels of the subplot factorb within a main plot. The following statements produce
Output 50.1.1:

title ’Split Plot Design’;
proc plan seed=37277;

factors block=3 ordered a=4 b=2;
run;

Output 50.1.1. A Split-Plot Design

Split Plot Design

The PLAN Procedure

Factor Select Levels Order

block 3 3 Ordered
a 4 4 Random
b 2 2 Random

block a -b-

1 4 2 1
3 2 1
1 2 1
2 2 1

2 4 1 2
3 1 2
1 2 1
2 1 2

3 4 2 1
2 2 1
3 2 1
1 2 1

SAS OnlineDoc: Version 8

2680 � Chapter 50. The PLAN Procedure

Example 50.2. A Hierarchical Design

In this example, three plants are nested within four pots, which are nested within three
houses. The FACTORS statement requests a random permutation of the numbers 1,
2, and 3 to chooseHouses randomly. The second step requests a random permuta-
tion of the numbers 1, 2, 3, and 4 for each of those first three numbers to randomly
assignPots to Houses. Finally, the FACTORS statement requests a random permu-
tation of 1, 2, and 3 for each of the twelve integers in the second set of permutations.
This last step randomly assignsPlants to Pots. The following statements produce
Output 50.2.1:

title ’Hierarchical Design’;
proc plan seed=17431;

factors Houses=3 Pots=4 Plants=3 / noprint;
output out=nested;

run;

proc print data=nested;
run;

Output 50.2.1. A Hierarchical Design

Hierarchical Design

Obs Houses Pots Plants

1 1 3 2
2 1 3 3
3 1 3 1
4 1 1 3
5 1 1 1
6 1 1 2
7 1 2 2
8 1 2 3
9 1 2 1

10 1 4 3
11 1 4 2
12 1 4 1
13 2 4 1
14 2 4 3
15 2 4 2
16 2 2 2
17 2 2 1
18 2 2 3
19 2 3 2
20 2 3 3
21 2 3 1
22 2 1 2
23 2 1 3
24 2 1 1
25 3 4 1
26 3 4 3
27 3 4 2
28 3 1 3
29 3 1 2
30 3 1 1
31 3 2 1
32 3 2 2
33 3 2 3
34 3 3 3
35 3 3 2
36 3 3 1

SAS OnlineDoc: Version 8

Example 50.3. An Incomplete Block Design � 2681

Example 50.3. An Incomplete Block Design

Jarrett and Hall (1978) give an example of a generalized cyclic design with good
efficiency characteristics. The design consists of two replicates of 52 treatments in
13 blocks of size 8. The following statements use the PLAN procedure to generate
this design in an appropriately randomized form and store it in a SAS data set. Then,
the TABULATE procedure is used to display the randomized plan. The following
statements produce Output 50.3.1 and Output 50.3.2:

title ’Generalized Cyclic Block Design’;
proc plan seed=33373;

treatments trtmts=8 of 52 cyclic (1 2 3 4 32 43 46 49) 4;
factors blocks=13 plots=8;
output out=c;

quit;

proc tabulate;
class blocks plots;
var trtmts;
table blocks, plots*(trtmts*f=8.) / rts=8;

run;

Output 50.3.1. A Generalized Cyclic Block Design

Generalized Cyclic Block Design

The PLAN Procedure

Plot Factors

Factor Select Levels Order

blocks 13 13 Random
plots 8 8 Random

Treatment Factors

Factor Select Levels Order Initial Block / Increment

trtmts 8 52 Cyclic (1 2 3 4 32 43 46 49) / 4

blocks -----plots----- ---------trtmts--------

10 7 4 8 1 2 3 5 6 1 2 3 4 32 43 46 49
8 1 2 4 3 8 6 5 7 5 6 7 8 36 47 50 1
9 2 5 4 7 3 1 8 6 9 10 11 12 40 51 2 5
6 4 2 6 8 3 7 1 5 13 14 15 16 44 3 6 9
7 4 7 6 3 1 2 8 5 17 18 19 20 48 7 10 13
4 4 8 1 5 3 6 7 2 21 22 23 24 52 11 14 17
2 6 2 3 8 7 5 1 4 25 26 27 28 4 15 18 21
3 6 2 3 1 7 4 5 8 29 30 31 32 8 19 22 25
1 1 2 7 8 5 6 3 4 33 34 35 36 12 23 26 29
5 5 7 6 8 4 3 1 2 37 38 39 40 16 27 30 33

12 5 8 1 4 7 3 6 2 41 42 43 44 20 31 34 37
13 3 5 1 8 4 2 6 7 45 46 47 48 24 35 38 41
11 4 1 5 2 3 8 6 7 49 50 51 52 28 39 42 45

SAS OnlineDoc: Version 8

2682 � Chapter 50. The PLAN Procedure

Output 50.3.2. A Generalized Cyclic Block Design

Generalized Cyclic Block Design

--
	plots							

	1	2	3	4	5	6	7	8
	--------+--------+--------+--------+--------+--------+--------+--------							
	trtmts	trtmts	trtmts	trtmts	trtmts	trtmts	trtmts	trtmts
	--------+--------+--------+--------+--------+--------+--------+--------							
	Sum	Sum	Sum	Sum	Sum	Sum	Sum	Sum
------+--------+--------+--------+--------+--------+--------+--------+--------								
blocks								

1	33	34	26	29	12	23	35	36
------+--------+--------+--------+--------+--------+--------+--------+--------								
2	18	26	27	21	15	25	4	28
------+--------+--------+--------+--------+--------+--------+--------+--------								
3	32	30	31	19	22	29	8	25
------+--------+--------+--------+--------+--------+--------+--------+--------								
4	23	17	52	21	24	11	14	22
------+--------+--------+--------+--------+--------+--------+--------+--------								
5	30	33	27	16	37	39	38	40
------+--------+--------+--------+--------+--------+--------+--------+--------								
6	6	14	44	13	9	15	3	16
------+--------+--------+--------+--------+--------+--------+--------+--------								
7	48	7	20	17	13	19	18	10
------+--------+--------+--------+--------+--------+--------+--------+--------								
8	5	6	8	7	50	47	1	36
------+--------+--------+--------+--------+--------+--------+--------+--------								
9	51	9	40	11	10	5	12	2
------+--------+--------+--------+--------+--------+--------+--------+--------								
10	4	32	43	2	46	49	1	3
------+--------+--------+--------+--------+--------+--------+--------+--------								
11	50	52	28	49	51	42	45	39
------+--------+--------+--------+--------+--------+--------+--------+--------								
12	43	37	31	44	41	34	20	42
------+--------+--------+--------+--------+--------+--------+--------+--------								
13	47	35	45	24	46	38	41	48
--

SAS OnlineDoc: Version 8

Example 50.4. A Latin Square Design � 2683

Example 50.4. A Latin Square Design

All of the preceding examples involve designs with completely nested block struc-
tures, for which PROC PLAN was especially designed. However, by appropriate
coordination of its facilities, a much wider class of designs can be accommodated.
A Latin square design is based on experimental units that have a row-and-column
block structure. The following example uses the CYCLIC option for a treatment fac-
tor tmts to generate a simple4� 4 Latin square. Randomizing a Latin square design
involves randomly permuting the row, column, and treatment values independently.
In order to do this, use the RANDOM option in the OUTPUT statement of PROC
PLAN. The example also usesfactor-value-settingsin the OUTPUT statement. The
following statements produce Output 50.4.1:

title ’Latin Square Design’;
proc plan seed=37430;

factors rows=4 ordered cols=4 ordered / noprint;
treatments tmts=4 cyclic;
output out=g

rows cvals=(’Day 1’ ’Day 2’ ’Day 3’ ’Day 4’) random
cols cvals=(’Lab 1’ ’Lab 2’ ’Lab 3’ ’Lab 4’) random
tmts nvals=(0 100 250 450) random;

quit;

proc tabulate;
class rows cols;
var tmts;
table rows, cols*(tmts*f=6.) / rts=8;

run;

Output 50.4.1. A Randomized Latin Square Design

Latin Square Design

	cols			

	Lab 1	Lab 2	Lab 3	Lab 4
	------+------+------+------			
	tmts	tmts	tmts	tmts
	------+------+------+------			
	Sum	Sum	Sum	Sum
------+------+------+------+------				
rows				

Day 1	0	250	100	450
------+------+------+------+------				
Day 2	250	450	0	100
------+------+------+------+------				
Day 3	100	0	450	250
------+------+------+------+------				
Day 4	450	100	250	0

SAS OnlineDoc: Version 8

2684 � Chapter 50. The PLAN Procedure

Example 50.5. A Generalized Cyclic Incomplete Block Design

The following statements depict how to create an appropriately randomized gener-
alized cyclic incomplete block design forv treatments (given by the value oft) in b
blocks (given by the value ofb) of sizek (with values ofp indexing the cells within
a block) with initial block(e1 e2 � � � ek) and increment numberi.

factors b= b p=k ;

treatments t= k of v cyclic (e1 e2 � � � ek) i ;

For example, the specification

proc plan seed=37430;
factors b=10 p=4;
treatments t=4 of 30 cyclic (1 3 4 26) 2;

run;

generates the generalized cyclic incomplete block design given in Example 1 of Jar-
rett and Hall (1978), which is given by the rows and columns of the plan associated
with the treatment factort in Output 50.5.1.

Output 50.5.1. A Generalized Cyclic Incomplete Block Design

The PLAN Procedure

Plot Factors

Factor Select Levels Order

b 10 10 Random
p 4 4 Random

Treatment Factors

Initial Block
Factor Select Levels Order / Increment

t 4 30 Cyclic (1 3 4 26) / 2

b ---p--- -----t-----

2 2 3 1 4 1 3 4 26
1 3 2 4 1 3 5 6 28
3 2 3 4 1 5 7 8 30

10 4 2 3 1 7 9 10 2
9 4 1 2 3 9 11 12 4
4 1 3 2 4 11 13 14 6
5 1 2 4 3 13 15 16 8
8 3 2 4 1 15 17 18 10
7 2 4 1 3 17 19 20 12
6 2 1 4 3 19 21 22 14

SAS OnlineDoc: Version 8

Example 50.6. Permutations and Combinations � 2685

Example 50.6. Permutations and Combinations

Occasionally, you may need to generate all possible permutations ofn things, or all
possible combinations ofn things takenm at a time.

For example, suppose you are planning an experiment in cognitive psychology where
you want to present four successive stimuli to each subject. You want to observe each
permutation of the four stimuli. The following statements use PROC PLAN to create
a data set containing all possible permutations of 4 numbers in random order.

title ’All Permutations of 1,2,3,4’;
proc plan seed=60359;

factors Subject = 24
Order = 4 ordered;

treatments Stimulus = 4 perm;
output out=Psych;

proc sort data=Psych out=Psych;
by Subject Order;

proc tabulate formchar=’ ’ noseps;
class Subject Order;
var Stimulus;
table Subject, Order*(Stimulus*f=8.)*sum=’ ’ / rts=9;

run;

The variableSubject is set at 24 levels because there are4! = 24 total permutations
to be listed. IfSubject> 24, the list repeats. Output 50.6.1 displays the PROC PLAN
output. Note that the variableSubject is listed in random order.

Output 50.6.1. List of Permutations

All Permutations of 1,2,3,4

The PLAN Procedure

Plot Factors

Factor Select Levels Order

Subject 24 24 Random
Order 4 4 Ordered

Treatment Factors

Factor Select Levels Order

Stimulus 4 4 Perm

SAS OnlineDoc: Version 8

2686 � Chapter 50. The PLAN Procedure

All Permutations of 1,2,3,4

The PLAN Procedure

Subject -Order- -Stimulus-

4 1 2 3 4 1 2 3 4
15 1 2 3 4 1 2 4 3
24 1 2 3 4 1 3 2 4

1 1 2 3 4 1 3 4 2
5 1 2 3 4 1 4 2 3

17 1 2 3 4 1 4 3 2
19 1 2 3 4 2 1 3 4
14 1 2 3 4 2 1 4 3

6 1 2 3 4 2 3 1 4
23 1 2 3 4 2 3 4 1

8 1 2 3 4 2 4 1 3
2 1 2 3 4 2 4 3 1

13 1 2 3 4 3 1 2 4
16 1 2 3 4 3 1 4 2
12 1 2 3 4 3 2 1 4
18 1 2 3 4 3 2 4 1
21 1 2 3 4 3 4 1 2

9 1 2 3 4 3 4 2 1
22 1 2 3 4 4 1 2 3
10 1 2 3 4 4 1 3 2

7 1 2 3 4 4 2 1 3
11 1 2 3 4 4 2 3 1

3 1 2 3 4 4 3 1 2
20 1 2 3 4 4 3 2 1

The output data setPsych contains 96 observations of the 3 variables (Subject,
Order, andStimulus). Sorting the output data set bySubject and byOrder within
Subject results in all possible permutations ofStimulus in random order. PROC
TABULATE displays these permutations in Output 50.6.2.

SAS OnlineDoc: Version 8

Example 50.6. Permutations and Combinations � 2687

Output 50.6.2. Randomized Permutations

All Permutations of 1,2,3,4

Order

1 2 3 4

Stimulus Stimulus Stimulus Stimulus

Subject
1 1 3 4 2
2 2 4 3 1
3 4 3 1 2
4 1 2 3 4
5 1 4 2 3
6 2 3 1 4
7 4 2 1 3
8 2 4 1 3
9 3 4 2 1
10 4 1 3 2
11 4 2 3 1
12 3 2 1 4
13 3 1 2 4
14 2 1 4 3
15 1 2 4 3
16 3 1 4 2
17 1 4 3 2
18 3 2 4 1
19 2 1 3 4
20 4 3 2 1
21 3 4 1 2
22 4 1 2 3
23 2 3 4 1
24 1 3 2 4

As another example, suppose you have six alternative treatments, any four of which
can occur together in a block (in no particular order). The following statements use
PROC PLAN to create a data set containing all possible combinations of six numbers
taken four at a time. In this case, you use ODS to create the data set.

title ’All Combinations of (6 Choose 4) Integers’;
ods output Plan=Combinations;
proc plan;

factors Block=15 ordered
Treat= 4 of 6 comb;

run;
proc print data=Combinations noobs;
run;

The variableBlock has 15 levels since there are a total of6!=(4!2!) = 15 combina-
tions of four integers chosen from six integers. The data set formed by ODS from the
displayed plan has one row for each block, with the four values ofTreat correspond-
ing to four different variables, as shown in Output 50.6.3.

SAS OnlineDoc: Version 8

2688 � Chapter 50. The PLAN Procedure

Output 50.6.3. List of Combinations

All Combinations of (6 Choose 4) Integers

The PLAN Procedure

Factor Select Levels Order

Block 15 15 Ordered
Treat 4 6 Comb

Block -Treat-

1 1 2 3 4
2 1 2 3 5
3 1 2 3 6
4 1 2 4 5
5 1 2 4 6
6 1 2 5 6
7 1 3 4 5
8 1 3 4 6
9 1 3 5 6

10 1 4 5 6
11 2 3 4 5
12 2 3 4 6
13 2 3 5 6
14 2 4 5 6
15 3 4 5 6

Output 50.6.4. Combinations Data Set Created by ODS

All Combinations of (6 Choose 4) Integers

Block Treat1 Treat2 Treat3 Treat4

1 1 2 3 4
2 1 2 3 5
3 1 2 3 6
4 1 2 4 5
5 1 2 4 6
6 1 2 5 6
7 1 3 4 5
8 1 3 4 6
9 1 3 5 6

10 1 4 5 6
11 2 3 4 5
12 2 3 4 6
13 2 3 5 6
14 2 4 5 6
15 3 4 5 6

SAS OnlineDoc: Version 8

References � 2689

References

Cochran, W.G. and Cox, G.M. (1957),Experimental Designs, Second Edition, New
York: John Wiley & Sons, Inc.

Fishman, G.S. and Moore, L.R. (1982), “A Statistical Evaluation of Multiplicative
Congruential Generators with Modulus(231 � 1),” Journal of the American Sta-
tistical Association, 77, 129–136.

Jarrett, R.G. and Hall, W.B. (1978), “Generalized Cyclic Incomplete Block Designs,”
Biometrika, 65, 397–401.

SAS OnlineDoc: Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/STAT ® User’s Guide, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS/STAT® User’s Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–494–2
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

