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Chapter 58
The SIM2D Procedure

Overview

The SIM2D procedure produces a spatial simulation for a Gaussian random field with
a specified mean and covariance structure in two dimensions using an LU decompo-
sition technique.

The simulation can be conditional or unconditional. If it is conditional, a set of co-
ordinates and associated field values are read from a SAS data set. The resulting
simulation honors these data values.

You can specify the mean structure as a quadratic in the coordinates. You can specify
the covariance by naming the form and supplying the associated parameters.

PROC SIM2D can handle anisotropic and nested semivariogram models. Three co-
variance models are supported: Gaussian, exponential, and spherical. A single nugget
effect is also supported.

You can specify the locations of simulation points in a GRID statement or they can
be read from a SAS data set. The grid specification is most suitable for a regular grid;
the data set specification can handle any irregular pattern of points.

The SIM2D procedure writes the simulated values for each grid point to an output
data set. The SIM2D procedure does not produce any displayed output.

Introduction to Spatial Simulation

The purpose of spatial simulation is to produce a set of partial realizations of a spatial
random field (SRF)Z(s); s 2 D � R2 in a way that preserves a specified mean
�(s) = E [Z(s)] and covariance structureCz(s1 � s2) = cov (Z(s1); Z(s2)).

The realizations are partial in the sense that they occur only at a finite set of loca-
tions(s1; s2; � � � ; sn). These locations are typically on a regular grid, but they can be
arbitrary locations in the plane.

There are a number of different types of spatial simulation and associated computa-
tional methods. PROC SIM2D produces simulations for continuous processes in two
dimensions. This means that the possible values of the measured quantityZ(s0) at
locations0 = (x0; y0) can vary continuously over a certain range.

An additional assumption, needed for computational purposes, is that the spatial ran-
dom fieldZ(s) is Gaussian.
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Spatial simulation is different from spatial prediction, where the emphasis is on pro-
ducing a point estimate at a given grid location. In this sense, spatial prediction is
local. In contrast, spatial simulation is global; the emphasis is on the entire realiza-
tion (Z(s1); Z(s2); � � � ; Z(sn)).

Given the correct mean�(s) and covariance structureCz(s1 � s2), SRF quantities
that are difficult or impossible to calculate in a spatial prediction context can easily
be approximated by repeated simulations.

Getting Started

Spatial simulation, just like spatial prediction, requires a model of spatial dependence,
usually in terms of the covarianceCz(h). For a given set of spatial dataZ(si); i =
1; � � � ; n, the covariance structure (both the form and parameter values) can be found
by the VARIOGRAM procedure. This example uses the coal seam thickness data
that is also used in the “Getting Started” section of Chapter 70, “The VARIOGRAM
Procedure.”

Preliminary Spatial Data Analysis

In this example, the data consist of coal seam thickness measurements (in feet) taken
over an approximately square area. The coordinates are offsets from a point in the
southwest corner of the measurement area, with the north and east distances in units
of thousands of feet.

It is instructive to see the locations of the measured points in the area where you
want to perform spatial simulations. It is generally desirable to have these locations
scattered evenly around the simulation area.

First, the data are input and the sample locations plotted.

data thick;
input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
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70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

proc gplot data=thick;
title ’Locations of Measured Samples’;
plot north*east / frame cframe=ligr haxis=axis1

vaxis=axis2;
symbol1 v=dot color=blue;
axis1 minor=none;
axis2 minor=none label=(angle=90 rotate=0);
label east = ’East’

north = ’North’
;

run;

Figure 58.1. Locations of Measured Samples
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proc g3d data=thick;
title ’Surface Plot of Coal Seam Thickness’;
scatter east*north=thick / xticknum=5 yticknum=5

grid zmin=20 zmax=65;
label east = ’East’

north = ’North’
thick = ’Thickness’

;
run;

Figure 58.2. Surface Plot of Coal Seam Thickness
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Figure 58.2 shows the small scale variation typical of spatial data, but there does not
appear to be any surface trend. Hence, you can work with the original thickness data
rather than residuals from a trend surface fit. In fact, a reasonable approximation of
the spatial process generating the coal seam data is given by

Z(s) = �+ "(s)

where the"(s) is a Gaussian SRF with Gaussian covariance structure

Cz(h) = c0 exp

�
�
h2

a2
0

�

Note that the term “Gaussian” is used in two ways in this description. For a set of
locationss1; s2; � � � ; sn, the random vector

Z(s) =

2
6664

Z(s1)
Z(s2)

...
Z(sn)

3
7775

has a multivariate Gaussian or normal distributionNn (�;�). The (i,j)th element of
� is computed byCz(si�sj), which happens to be a Gaussian functional form. Any
functional form forCz(h) yielding a valid covariance matrix� can be used. Both
the functional form ofCz(h) and the parameter values

� = 40:14

c0 = 7:5

a0 = 30:0

are visually estimated using PROC VARIOGRAM, a DATA step, and the GPLOT
procedure. Refer to the “Getting Started” section beginning on page 3644 in the
chapter on the VARIOGRAM procedure for details on how these parameter values
are obtained.

The choice of a Gaussian functional form forCz(h) is simply based on the data,
and it is not at all crucial to the simulation. However, itis crucial to the simulation
method used in PROC SIM2D thatZ(s) be a Gaussian SRF. For details, see the
section “Computational and Theoretical Details of Spatial Simulation” beginning on
page 3103.
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Investigating Variability by Simulation

The variability ofZ(s), modeled by

Z(s) = �+ "(s)

with the Gaussian covariance structureCz(h) found previously is not obvious from
the covariance model form and parameters. The variation around the mean of the
surface is relatively small, making it difficult visually to pick up differences in surface
plots of simulated realizations. Instead, you investigate variations at selected grid
points.

To do this investigation, this example uses PROC SIM2D and specifies the Gaussian
model with the parameters found previously. Five thousand simulations (iterations)
are performed on two points: the extreme south-west point of the region and a point
towards the north-east corner of the region. Because of the irregular nature of these
points, a GDATA= data set is produced with the coordinates of the selected points.

Summary statistics are computed for each of these grid points by using a BY state-
ment in PROC UNIVARIATE.

data grid;
input xc yc;
datalines;
0 0
75 75

run;

proc sim2d data=thick outsim=sim1;
simulate var=thick numreal=5000 seed=79931

scale=7.5 range=30.0 form=gauss;
mean 40.14;
coordinates xc=east yc=north;
grid gdata=grid xc=xc yc=yc;

run;

proc sort data=sim1;
by gxc gyc;

run;

proc univariate data=sim1;
var svalue;
by gxc gyc;
title ’Simulation Statistics at Selected Grid Points’;

run;
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Simulation Statistics at Selected Grid Points

------ X-coordinate of the grid point=0 Y-coordinate of the grid point=0 -------

The UNIVARIATE Procedure
Variable: SVALUE (Simulated Value at Grid Point)

Moments

N 5000 Sum Weights 5000
Mean 40.1387121 Sum Observations 200693.561
Std Deviation 0.54603592 Variance 0.29815523
Skewness -0.0217334 Kurtosis -0.0519914
Uncorrected SS 8057071.54 Corrected SS 1490.478
Coeff Variation 1.36037231 Std Error Mean 0.00772211

Basic Statistical Measures

Location Variability

Mean 40.13871 Std Deviation 0.54604
Median 40.14620 Variance 0.29816
Mode . Range 3.81973

Interquartile Range 0.76236

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 5197.892 Pr > |t| <.0001
Sign M 2500 Pr >= |M| <.0001
Signed Rank S 6251250 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 41.9369
99% 41.4002
95% 41.0273
90% 40.8334
75% Q3 40.5168
50% Median 40.1462
25% Q1 39.7544
10% 39.4509
5% 39.2384
1% 38.8656
0% Min 38.1172

Extreme Observations

------Lowest----- -----Highest-----

Value Obs Value Obs

38.1172 2691 41.8085 1149
38.2959 1817 41.8251 3612
38.3370 3026 41.8446 3757
38.3834 2275 41.9338 135
38.4198 3100 41.9369 4536

Figure 58.3. Simulation Statistics at Grid Point (XC=0, YC=0)
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Simulation Statistics at Selected Grid Points

----- X-coordinate of the grid point=75 Y-coordinate of the grid point=75 ------

The UNIVARIATE Procedure
Variable: SVALUE (Simulated Value at Grid Point)

Moments

N 5000 Sum Weights 5000
Mean 40.1386868 Sum Observations 200693.434
Std Deviation 0.00250643 Variance 6.2822E-6
Skewness 0.00937779 Kurtosis -0.0088601
Uncorrected SS 8055570.91 Corrected SS 0.03140472
Coeff Variation 0.00624443 Std Error Mean 0.00003545

Basic Statistical Measures

Location Variability

Mean 40.13869 Std Deviation 0.00251
Median 40.13870 Variance 6.2822E-6
Mode . Range 0.01756

Interquartile Range 0.00346

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 1132380 Pr > |t| <.0001
Sign M 2500 Pr >= |M| <.0001
Signed Rank S 6251250 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 40.1468
99% 40.1445
95% 40.1428
90% 40.1419
75% Q3 40.1404
50% Median 40.1387
25% Q1 40.1369
10% 40.1355
5% 40.1346
1% 40.1328
0% Min 40.1293

Extreme Observations

------Lowest----- -----Highest-----

Value Obs Value Obs

40.1293 2176 40.1465 1278
40.1299 1262 40.1465 3980
40.1302 2383 40.1468 676
40.1306 2156 40.1468 1514
40.1308 643 40.1468 329

Figure 58.4. Simulation Statistics at Grid Point (XC=75, YC=75)
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Syntax

The following statements are available in PROC SIM2D.

PROC SIM2D options ;
COORDINATES coordinate-variables ;
GRID grid-options ;
SIMULATE simulate-options ;
MEAN mean-options ;

The SIMULATE and MEAN statements are hierarchical; you can specify any number
of SIMULATE statements, but you must specify at least one. If you specify a MEAN
statement, it refers to the preceding SIMULATE statement. If you do not specify a
MEAN statement, a zero mean model is simulated.

You must specify a single COORDINATES statement to identify thex andy coordi-
nate variables in the input data set when you perform a conditional simulation. You
must also specify a single GRID statement to specify the grid information.

The following table outlines the options available in PROC SIM2D classified by func-
tion.

Table 58.1. Options Available in the SIM2D Procedure

Task Statement Option
Data Set Options
specify input data set PROC SIM2D DATA=
specify grid data set GRID GDATA=
specify quadratic form data set MEAN QDATA=
write simulated values PROC SIM2D OUTSIM=

Declaring the Role of Variables
specify the conditioning variable SIMULATE VAR=
specify the x and y coordinate variables in
the DATA= data set

COORDINATES XC= YC=

specify the x and y coordinate variables in
the GDATA= data set

GRID XC= YC=

specify the constant coefficient variable in
the QDATA= data set

MEAN CONST=

specify the linear x coefficient variable in the
QDATA= data set

MEAN CX=

specify the linear y coefficient variable in the
QDATA= data set

MEAN CY=

specify the quadratic x coefficient variable in
the QDATA= data set

MEAN CXX=

specify the quadratic y coefficient variable in
the QDATA= data set

MEAN CYY=

specify the quadratic xy coefficient variable
in the QDATA= data set

MEAN CXY=
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Table 58.1. (continued)

Task Statement Option
Controlling the Simulation
specify the number of realizations SIMULATE NUMREAL=
specify the seed value for the random
generator

SIMULATE SEED=

Controlling the Mean Quadratic Surface
specify the CONST term MEAN CONST=
specify the linear x term MEAN CX=
specify the linear y term MEAN CY=
specify the quadratic x term MEAN CXX=
specify the quadratic y term MEAN CYY=
specify the quadratic cross term MEAN CXY=

Controlling the Semivariogram Model
specify a nugget effect SIMULATE NUGGET=
specify a functional form SIMULATE FORM=
specify nested functional forms SIMULATE FORM=(f1; � � � ; fk)
specify a range parameter SIMULATE RANGE=
specify nested range parameters SIMULATE RANGE=(r1; � � � ; rk)
specify a scale parameter SIMULATE SCALE=
specify nested scale parameters SIMULATE SCALE=(s1; � � � ; sk)
specify an angle for an anisotropic model SIMULATE ANGLE=
specify nested angles SIMULATE ANGLE=(a1; � � � ; ak)
specify a minor-major axis ratio for an
anisotropic model

SIMULATE RATIO=

specify nested minor-major axis ratios SIMULATE RATIO=(ra1; � � � ; rak)

PROC SIM2D Statement

PROC SIM2D options ;

You can specify the following options with the PROC SIM2D statement.

DATA=SAS-data-set
specifies a SAS data set containing thex andy coordinate variables and the SIMU-
LATE VAR= variables. This data set is required if any of the SIMULATE statements
are conditional, that is, if you specify the VAR= option. If none of the SIMULATE
statements are conditional then you do not need the DATA= option, and this option is
ignored if you specify it.

NARROW
restricts the variables included in the OUTSIM= data set. When you specify the
NARROW option, only four variables are included. This option is useful when a
large number of simulations are produced. Including only four variables reduces
the memory required for the OUTSIM= data set. For details on the variables that are
excluded with the NARROW option, see the section “Output Data Set” on page 3107.
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OUTSIM=SAS-data-set
specifies a SAS data set to store the simulation values, iteration number, simulate
statement label, variable name, and grid location. For details, see the section “Output
Data Set” on page 3107.

COORDINATES Statement

COORDINATES coordinate-variables ;

The following two options give the name of the variables in the DATA= data set
containing the values of thex andy coordinates of the conditioning data.

Only one COORDINATES statement is allowed, and it is applied to all SIMULATE
statements that have a VAR= specification. In other words, it is assumed that all the
VAR= variables in all SIMULATE statements have the samex andy coordinates.

You can abbreviate the COORDINATES statement as COORD.

XCOORD=(variable-name)
XC=(variable-name)

gives the name of the variable containing thex coordinate of the data in the DATA=
data set.

YCOORD=(variable-name)
YC=(variable-name)

gives the name of the variable containing they coordinate of the data locations in the
DATA= data set.

GRID Statement

GRID grid-options ;

The following options can be used to specify the grid of spatial locations at which to
perform the simulations. A single GRID statement is required and is applied to all
SIMULATE statements.

There are two basic methods for specifying the grid. You can specify thex andy
coordinates explicitly, or they can be read from a SAS data set. The options for the
explicit specification of grid locations are as follows.

X=number
X=x1; : : :; xm
X=x1 to xm
X=x1 to xm by �x

specifies thex coordinate of the grid locations.
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Y=number
Y=y1; : : :; ym
Y=y1 to ym
Y=y1 to ym by �y

specifies they coordinate of the grid locations.

For example, the following two GRID statements are equivalent:

grid x=1,2,3,4,5 y=0,2,4,6,8,10;
grid x=1 to 5 y=0 to 10 by 2;

To specify grid locations from a SAS data set, you must provide the name of the data
set and the variables containing the values of thex andy coordinates.

GRIDDATA=SAS-data-set
GDATA=SAS-data-set

specifies a SAS data set containing thex andy grid coordinates.

XCOORD=(variable-name)
XC=(variable-name)

gives the name of the variable containing thex coordinate of the grid locations in the
GRIDDATA= data set.

YCOORD=(variable-name)
YC=(variable-name)

gives the name of the variable containing they coordinate of the grid locations in the
GRIDDATA= data set.

SIMULATE Statement

SIMULATE simulate-options ;

The SIMULATE statement specifies details on the simulation and the covariance
model used in the simulation. You can specify the following options with a
SIMULATE statement, which can be abbreviated by SIM.

NUMREAL=number
NUMR=number
NR=number

specifies the number of realizations to produce for the spatial process specified by
the covariance model. Note that the number of observations in the OUTSIM= data
set contributed by a given SIMULATE statement is the product of the NUMREAL=
value with the number of grid points. This can cause the OUTSIM= data set to
become large even for moderate values of the NUMREAL= option.

VAR= (variable-name)
specifies the single numeric variable used as the conditioning variable in the simula-
tion. In other words, the simulation is conditional on the values of the VAR= variable
found in the DATA= data set. If you omit the VAR= option, the simulation isuncon-
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ditional. Since multiple SIMULATE statements are allowed, you can perform both
unconditional and conditional simulations with a single PROC SIM2D statement.

Covariance Model Specification
There are two ways to specify a semivariogram or covariance model. In the first
method, you can specify the required parameters SCALE, RANGE, and FORM, and
possibly the optional parameters NUGGET, ANGLE, and RATIO, explicitly in the
SIMULATE statement.

In the second method, you can specify an MDATA= data set. This data set contains
variables corresponding to the required SCALE, RANGE, and FORM parameters,
and, optionally, variables for the NUGGET, ANGLE, and RATIO parameters.

The two methods are exclusive; either you specify all parameters explicitly, or they
are all are read from the MDATA= data set.

ANGLE=angle
ANGLE= (angle1,. . . ,anglek)

specifies the angle of the major axis for anisotropic models, measured in degrees
clockwise from the N-S axis. In the case of a nested semivariogram model, you can
specify an angle for each nesting. The default is ANGLE=0.

FORM=form–spec
FORM=(form–spec1, form–spec2,. . . ,form–speck)

specifies the functional form or forms of the semivariogram model, whereform–spec
can take only the values SPHERICAL, EXPONENTIAL, and GAUSSIAN. The
two ways of specifying the FORM= parameter allows specification of both nested
and nonnested models. The following abbreviations are permitted. For the spher-
ical model, you can specify theform–specas FORM=SPHERICAL, FORM=SPH,
or FORM=S. For the exponential model, you can specify theform–spec as
FORM=EXPONENTIAL, FORM=EXP, or FORM=E. For the Gaussian model, you
can specify theform–specas FORM=GAUSSIAN, FORM=GAUSS, or FORM=G.

MDATA=SAS-data-set
specifies the input data set that contains parameter values for the covariance or semi-
variogram model. The MDATA= data set must contain variables named SCALE,
RANGE, and FORM, and it can optionally contain the variables NUGGET, ANGLE,
and RATIO.

The FORM variables must be character, and they can assume the same values al-
lowed in the explicit FORM= syntax described previously. The RANGE and SCALE
variables must be numeric. The optional variables ANGLE, RATIO, and NUGGET
must also be numeric if present.

The number of observations present in the MDATA= data set corresponds to the level
of nesting of the covariance or semivariogram model. For example, to specify a non-
nested model using a spherical covariance, an MDATA= data set might look like the
following.
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data md1;
input scale range form $;
datalines;
25 10 sph

run;

The PROC SIM2D statement to use the MDATA= specification is of the form

proc sim2d data=...;
sim var=.... mdata=md1;

run;

This is equivalent to the following explicit specification of the covariance model pa-
rameters:

proc sim2d data=...;
sim var=.... scale=25 range=10 form=sph;

run;

The following MDATA= data set is an example of an anisotropic nested model:

data md2;
input scale range form $ nugget angle ratio;
datalines;
20 8 S 5 35 .7
12 3 G 5 0 .8
4 1 G 5 45 .5
;

proc sim2d data=...;
sim var=.... mdata=md2;

run;

This is equivalent to the following explicit specification of the covariance model pa-
rameters:

proc sim2d data=...;
sim var=.... scale=(20,12,4) range=(8,3,1) form=(S,G,G)

angle=(35,0,45) ratio=(.7,.8,.5) nugget=5;
run;

This example is somewhat artificial in that it is usually hard to detect different
anisotropy directions and ratios for different nestings using an experimental semi-
variogram. Note that the NUGGET value is the same for all nestings. This is always
the case; the nugget effect is a single additive term for all models. For further details,
refer to the section “The Nugget Effect” on page 1727 in Chapter 34, “The KRIGE2D
Procedure.”

The SIMULATE statement can be given a label. This is useful for identification in
the OUTSIM= data set when multiple SIMULATE statements are specified.
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For example,

proc sim2d data=...;
gauss1: sim var=.... form=gauss;
mean ....;
gauss2: sim var=.... form gauss;
mean ....;
exp1: sim var=.... form=exp;
mean ....;
exp2: sim var=.... form=exp;
mean ....;

run;

In the OUTSIM= data set, the values ’GAUSS1’, ’GAUSS2’, ’EXP1’, and ’EXP2’
for the LABEL variable help to identify the realizations corresponding to the four
SIMULATE statements. If you do not provide a label for a SIMULATE statement,
a default label of SIMn is given, wheren is the number of unlabeled SIMULATE
statements seen so far.

NUGGET=number
specifies the nugget effect for the model. This effect is due to a discontinuity in
the semivariogram as determined by plotting the sample semivariogram (refer to the
section “The Nugget Effect” on page 1727 in the chapter on the KRIGE2D procedure
for details). For models without any nugget effect, the NUGGET= option is left out.
The default is NUGGET=0.

RANGE=range
RANGE=(range1,. . . ,rangek)

specifies the range parameter in the semivariogram models. In the case of a nested
semivariogram model, you must specify a range for each nesting.

The range parameter is the divisor in the exponent in all supported models. It has
the units of distance or distance squared for these models, and it is related to the
correlation scale for the underlying spatial process. Refer to the section “Theoretical
Semivariogram Models” beginning on page 1721 in the chapter on the KRIGE2D
procedure for details on how the RANGE= values are determined.

RATIO=ratio
RATIO=(ratio1,. . . ,ratiok)

specifies the ratio of the length of the minor axis to the length of the major axis for
anisotropic models. The value of the RATIO= option must be between 0 and 1. In
the case of a nested semivariogram model, you can specify a ratio for each nesting.
The default is RATIO=1.

SCALE=scale
SCALE= (scale1,. . . ,scalek)

specifies the scale parameter in semivariogram models. In the case of a nested semi-
variogram model, you must specify a scale for each nesting.
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The scale parameter is the multiplicative factor in all supported models; it has the
same units as the variance of the VAR= variable. Refer to the section “Theoretical
Semivariogram Models” beginning on page 1721 in the chapter on the KRIGE2D
procedure for details on how the SCALE= values are determined.

SEED=seed value
specifies the seed to use for the random number generator. If you omit the SEED=
value, the system clock is used.

SINGULAR=number
gives the singularity criteria for solving the set of linear equations involved in the
computation of the mean and covariance of the conditional distribution associated
with a given SIMULATE statement. The larger the value of the SINGULAR= option,
the easier it is for the covariance matrix system to be declared singular. The default is
SINGULAR=1E-8. For more details on the use of the SINGULAR= option, see the
section “Computational and Theoretical Details of Spatial Simulation” beginning on
page 3103.

MEAN Statement

MEAN spec1,. . . ,spec6 ;

MEAN QDATA= SAS-data-set CONST=var1 CX=var2 CY=var3

CXX=var4 CYY=var5 CXY=var6 ;

MEAN QDATA= SAS-data-set ;

A mean function�(s) that is a quadratic in the coordinates can be written

�(s) = �(x; y) = �0 + �1x+ �2y + �3x
2 + �4y

2 + �5xy

The MEAN statement is used to specify the quadratic surface to use as the mean
function for the simulated SRF. There are three ways to specify the MEAN statement.
The MEAN statement allows the specification of the coefficients�0; � � � ; �5 either
explicitly or through a QDATA= data set.

An example of an explicit specification is

mean 1.4 + 2.5*x + 3.6*y + .47*x*x + .58*y*y + .69*x*y;

In this example, all terms have a nonzero coefficient. Any term with a zero coefficient
is simply left out of the specification. For example,

mean 1.4;

is a valid quadratic form with all terms having zero coefficients except the constant
term.
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An equivalent way of specifying the mean function is through the QDATA= data set.
For example, the following MEAN statement

mean 1.4 + 2.5*x + 3.6*y + .47*x*x + .58*y*y + .69*x*y;

can be alternatively specified by the following DATA step and MEAN statement:

data q1;
input c1 c2 c3 c4 c5 c6;
datalines;
1.4 2.5 3.6 .47 .58 .69

run;
proc sim2d data=....;

simulate ...;
mean qdata=q1 const=c1 cx=c2 cy=c3 cxx=c4

cyy=c5 cxy=c6;
run;

The QDATA= data set specifies the data set containing the coefficients. The param-
eters CONST=, CX=, CY=, CXX=, CYY=, and CYX= specify the variables in the
QDATA= data set that correspond to the constant, linear x, linear y, and so on. For
any coefficient not specified in this list, the QDATA= data set is checked for the pres-
ence of variables with default names of CONST, CX, CY, CXX, CYY, and CXY. If
these variables are present, their values are taken as the corresponding coefficients.
Hence, you can rewrite the previous example as

data q1;
input const cx cy cxx cyy cxy;
datalines;
1.4 2.5 3.6 .47 .58 .69
;

proc sim2d data=....;
simulate ...;
mean qdata=q1;

run;

If a given coefficient does not appear in the list or in the data set with the default
name, a value of zero is assumed.

Details

Computational and Theoretical Details of Spatial Simulation

Introduction
There are a number of approaches to simulating spatial random fields or, more gener-
ally, simulating sets of dependent random variables. This includes sequential indica-
tor methods, turning bands, and the Karhunen-Loeve Expansion. Refer to Christakos
(1992, Chapter 8) and Duetsch and Journel (1992, Chapter V) for details.
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A particularly simple method available for Gaussian spatial random fields is the LU
decomposition method. This method is computationally efficient. For a given covari-
ance matrix, theLU = LL

T decomposition is computed once, and the simulation
proceeds by repeatedly generating a vector of independentN(0; 1) random variables
and multiplying by theLmatrix.

One problem with this technique is memory requirements; memory is required to
hold the full data and grid covariance matrix in core. While this is especially limiting
in the three-dimensional case, you can use PROC SIM2D, which handles only two-
dimensional data, for moderately sized simulation problems.

Theoretical Development
It is a simple matter to produce anN(0; 1) random number, and by stackingk N(0; 1)
random numbers in a column vector, you can obtain a vector with independent stan-
dard normal componentsW � Nk(0; I). The meaning of the termsindependence
andrandomnessin the context of a deterministic algorithm required for the genera-
tion of these numbers is a little subtle; refer to Knuth (1981, Vol. 2, Chapter 3) for
details.

Rather thanW � Nk(0; I), what is required is the generation of a vector
Z � Nk(0;C), that is,

Z =

2
6664

Z1

Z2

...
Zk

3
7775

with covariance matrix

C =

0
BBB@

C11 C12 � � � C1k

C21 C22 � � � C2k

. . .
Ck1 Ck2 � � � Ckk

1
CCCA

If the covariance matrix is symmetric and positive definite, it has a Cholesky rootL

such thatC can be factored as

C = LL
T

whereL is lower triangular. Refer to Ralston and Rabinowitz (1978, Chapter 9,
Section 3-3) for details. This vectorZ can be generated by the transformationZ =
LW. Note that this is where the assumption of a Gaussian SRF is crucial. When
W � Nk(0; I), thenZ = LW is also Gaussian. The mean ofZ is

E(Z) = L(E(W)) = 0

and the variance is

Var(Z) = Var(LW) = E(LWW
T
L
T ) = LE(WW

T )LT = LL
T = C
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Consider now an SRFZ(s); s 2 D � R2, with spatial covariance functionC(h).
Fix locationss1; s2; � � � ; sk, and letZ denote the random vector

Z =

2
6664

Z(s1)
Z(s2)

...
Z(sk)

3
7775

with corresponding covariance matrix

Cz =

0
BBB@

C(0) C(s1 � s2) � � � C(s1 � sk)
C(s2 � s1) C(0) � � � C(s2 � sk)

. . .
C(sk � s1) C(sk � s2) � � � C(0)

1
CCCA

Since this covariance matrix is symmetric and positive definite, it has a Cholesky root,
and theZ(si); i = 1; � � � ; k can be simulated as described previously. This is how the
SIM2D procedure implements unconditional simulation in the zero mean case. More
generally,

Z(s) = �(s) + "(s)

with �(s) being a quadratic form in the coordinatess = (x; y), and the"(s) being an
SRF having the same covariance matrixCz as previously. In this case, the�(si); i =
1; � � � ; k is computed once and added to the simulated vector"(si); i = 1; � � � ; k for
each realization.

For a conditional simulation, this distribution of

Z =

2
6664

Z(s1)
Z(s2)

...
Z(sk)

3
7775

must be conditioned on the observed data. The relevant general result concerning
conditional distributions of multivariate normal random variables is the following.
LetX � Nm(�;�), where

X =

�
X1

X2

�

� =

�
�1

�2

�

and

� =

�
�11 �12

�21 �22

�
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The subvectorX1 is k� 1,X2 is n� 1,�11 is k� k,�22 is n� n, and�12 = �
T
21

is k � n, with k + n = m. The full vectorX is partitioned into two subvectorsX1

andX2, and� is similarly partitioned into covariances and cross covariances.

With this notation, the distribution ofX1 conditioned onX2 = x2 isNk(~�; ~�), with

~� = �1 +�12�
�1

22
(x2 � �2)

and

~� = �11 ��12�
�1

22
�21

Refer to Searle (1971, pp. 46–47) for details. The correspondence with the condi-
tional spatial simulation problem is as follows. Let the coordinates of the observed
data points be denoted~s1;~s2; � � � ;~sn, with values~z1; ~z2; � � � ; ~zn. Let ~Z denote the
random vector

~Z =

2
6664

Z(~s1)
Z(~s2)

...
Z(~sn)

3
7775

The random vector~Z corresponds toX2, while Z corresponds toX1. Then�
Z j ~Z = ~z

�
� Nk(~�; ~C) as in the previous distribution. The matrix

~C = C11 �C12C
�1

22
C21

is again positive definite, so a Cholesky factorization can be performed.

The dimensionn for ~Z is simply the number of nonmissing observations for the
VAR= variable; the values~z1; ~z2; � � � ; ~zn are the values of this variable. The coor-
dinates~s1;~s2; � � � ;~sn are also found in the DATA= data set, with the variables cor-
responding to the x and y coordinates identified in the COORDINATES statement.
Note that all VAR= variables use the same set of conditioning coordinates; this fixes
the matrixC22 for all simulations.

The dimensionk for Z is the number of grid points specified in the GRID statement.
Since there is a single GRID statement, this fixes the matrixC11 for all simulations.
Similarly,C12 is fixed.

The Cholesky factorization~C = LL
T is computed once, as is the mean correction

~� = �1 +C12C
�1

22
(x2 � �2)

Note that the means�1 and�2 are computed using the grid coordinatess1; s2; � � � ; sk,
the data coordinates~s1;~s2; � � � ;~sn, and the quadratic form specification from the
MEAN statement. The simulation is now performed exactly as in the unconditional
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case. Ak � 1 vector of independent standardN(0; 1) random variables is generated
and multiplied byL, and ~� is added to the transformed vector. This is repeatedN

times, whereN is the value specified for the NR= option.

Computational Details
In the computation of~� and� described in the previous section, the inverse�

�1

22
is

never actually computed; an equation of the form

�22A = B

is solved forA using a modified Gaussian elimination algorithm that takes advantage
of the fact that�22 is symmetric with constant diagonalCz(0) that is larger than
all off-diagonal elements. The SINGULAR= option pertains to this algorithm. The
value specified for the SINGULAR= option is scaled byCz(0) before comparison
with the pivot element.

Memory Usage
For conditional simulations, the largest matrix held in core at any one time depends on
the number of grid points and data points. Using the previous notation, the data-data
covariance matrixC22 is n � n, wheren is the number of nonmissing observations
for the VAR= variable in the DATA= data set. The grid-data cross covarianceC12 is
n� k, wherek is the number of grid points. The grid-grid covarianceC11 is k � k.
The maximum memory required at any one time for storing these matrices is

max (k(k + 1); n(n+ 1) + 2(n� k))� sizeof(double)

There are additional memory requirements that add to the total memory usage, but
usually these matrix calculations dominate, especially when the number of grid points
is large.

Output Data Set

The SIM2D procedure produces a single output data set: the OUTSIM=SAS-data-
set. The OUTSIM= data set contains all the needed information to uniquely identify
the simulated values.

The OUTSIM= data set contains the following variables:

� LABEL, which is the label for the current SIMULATE statement

� VARNAME, which is the name of the conditioning variable for the current
SIMULATE statement

� –ITER– , which is the iteration number within the current SIMULATE state-
ment

� GXC, which is the x-coordinate for the current grid point

� GYC, which is the y-coordinate for the current grid point

� SVALUE, which is the value of the simulated variable
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If you specify the NARROW option in the PROC SIM2D statement, theLABEL
andVARNAME variables are not included in the OUTSIM= data set. This option is
useful in the case where the number of data points, grid points, and realizations are
such that they generate a very large OUTSIM= data set. The size of the OUTSIM=
data set is reduced when these variables are not included.

In the case of an unconditional simulation, theVARNAME variable is not included.
In the case of mixed conditional and unconditional simulations (that is, when multiple
SIMULATE statements are specified and one or more contain a VAR= specification
and one or more donot contain a VAR= specification), theVARNAME variable is
included but is given a missing value for those observations corresponding to an un-
conditional simulation.

Example

Example 58.1. Simulation

Continuing with the coal seam thickness example from the “Getting Started” sec-
tion beginning on page 3088, this example asks a more complicated question. This
question is economic in nature, and the (approximate) answer requires the use of
simulation.

Simulating a Subregion for Economic Feasibility
The coal seam must be of a minimum thickness, called acutoff value, for a mining
operation to be profitable. Suppose that, for a subregion of the measured area, the cost
of mining is higher than the remaining areas due to the geology of the overburden.
This higher cost results in a higher thickness cutoff value for the subregion. Suppose
also that it is determined from a detailed cost analysis that at least 60 percent of the
subregion must exceed a seam thickness of 39.7 feet for profitability.

How can you use the SRF model (� andCz(s)) and the measured seam thickness
valuesZ(si); i = 1; � � � ; 75 to determine, in some approximate way, if at least 60
percent of the subregion exceeds this minimum?

Spatial prediction does not appear to be helpful in answering this question. While it is
easy to determine if a predicted value at a location in the subregion is above the 39.7
feet cutoff value, it is not clear how to incorporate the standard error associated with
the predicted value. The standard error is what characterizes the stochastic nature of
the prediction (and the underlying SRF). It is clear that it must be included in any
realistic approach to the problem.

A conditional simulation, on the other hand, seems to be a natural way of obtaining
an approximate answer. By simulating the SRF on a sufficiently fine grid in the
subregion, you can determine the proportion of grid points in which the mean value
over realizations exceeds the 39.7 feet cutoff and compare it with the 60 percent value
needed for profitability.
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It is desirable in any simulation study that the quantity being estimated (in this case,
the proportion exceeding the 39.7 feet cutoff) not depend on the number of simu-
lations performed. For example, suppose that the maximum seam thickness is sim-
ulated. It is likely that the maximum value increases as the number of simulations
performed increases. Hence, a simulation is not useful for such an estimate. A simu-
lation is useful for determining thedistributionof the maximum, but there are general
theoretical results for such distributions, making such a simulation unnecessary. Re-
fer to Leadbetter, Lindgren, and Rootzen (1983) for details.

In the case of simulating the proportion exceeding the 39.7 feet cutoff, it is expected
that this quantity will settle down to a fixed value as the number of realizations in-
creases. At a fixed grid point, the quantity being compared with the cutoff value is the
mean over all simulated realizations; this mean value settles down to a fixed number
as the number of realizations increases. In the same manner, the proportion of the
grid where the mean values exceed the cutoff also becomes constant. This can be
tested using PROC SIM2D.

A crucial, nonprovable assumption in applying SRF theory to the coal seam thickness
data is that the valuesZ(si); i = 1; � � � ; 75 represent asinglerealization from the set
of all possible realizations consistent with the SRF model (� andCz(h)). A condi-
tional simulation repeatedly produces other possible simulated realizations consistent
with the model and data. However, the only concern of the mining company is with
this single unique realization. It is not concerned with similar coal fields to be mined
sometime in the future; it may never see another coal field remotely similar to this
one, or it may not be in business in the future.

Hence the proportion found by generating repeated simulated realizations must some-
how relate back to the unique realization that is the coal field (seam thickness). This
is done by interpreting the proportion found from a simulation to the spatial mean
proportion for the unique realization. The term “spatial mean” is simply an appropri-
ate integral over the fixed (but unknown) spatial functionz(s). (The SRF is denoted
Z(s); a particular realization, a deterministic function of the spatial coordinates, is
denotedz(s).)

This interpretation requires an ergodic assumption, which is also needed in the orig-
inal estimation ofCz(s). Refer to Cressie (1993, pp. 53–58) for a discussion of
ergodicity and Gaussian SRFs.

Implementation Using PROC SIM2D
The subregion to be considered is the southeast corner of the field, which is a square
region with length 40 distance units (in thousands of feet). PROC SIM2D is run
on the entire data set for conditioning, while the simulation grid covers only this
subregion. It is convenient to be able to vary the seed, the grid increment, and the
number of simulations performed. The following macro implements the computation
of the percent area exceeding the cutoff value by using the seed, the grid increment,
and the number of simulated realizations as macro arguments.

The data set produced by PROC SIM2D is transposed so that each grid location is a
separate variable. The MEANS procedure is then used to average the simulated value
at each grid point over all realizations. It is this average that is compared to the cutoff
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value. The last DATA step does the comparison and determines the percent of the
grid locations that exceed this cutoff value and writes the results to the listing file in
the form of a report.

The macro is first invoked with a relatively coarse grid (grid increment of 10 distance
units) and a small number of realizations (5). The next invocation uses a finer grid
and 50 realizations, and the final invocation uses the same grid increment and 500
realizations. Each time, the macro is invoked with a different seed. The simulations
indicate that around 87 percent of the subregion exceeds the cutoff value.

The number of grid points in the simulation increases with the square of the decrease
in the grid increment, leading to long CPU processing times. Increasing the number
of realizations results in a linear increase in processing times. Hence, using as coarse
a grid as possible allows more realizations and experimentation with different seeds.

/*- Set the covariance model parameters and cutoff value -*/
%let cc0=7.5;
%let aa0=30.0;
%let form=gauss;
%let cut=39.7;

data thick;
input east north thick @@;
datalines;

0.7 59.6 34.1 2.1 82.7 42.2 4.7 75.1 39.5
4.8 52.8 34.3 5.9 67.1 37.0 6.0 35.7 35.9
6.4 33.7 36.4 7.0 46.7 34.6 8.2 40.1 35.4

13.3 0.6 44.7 13.3 68.2 37.8 13.4 31.3 37.8
17.8 6.9 43.9 20.1 66.3 37.7 22.7 87.6 42.8
23.0 93.9 43.6 24.3 73.0 39.3 24.8 15.1 42.3
24.8 26.3 39.7 26.4 58.0 36.9 26.9 65.0 37.8
27.7 83.3 41.8 27.9 90.8 43.3 29.1 47.9 36.7
29.5 89.4 43.0 30.1 6.1 43.6 30.8 12.1 42.8
32.7 40.2 37.5 34.8 8.1 43.3 35.3 32.0 38.8
37.0 70.3 39.2 38.2 77.9 40.7 38.9 23.3 40.5
39.4 82.5 41.4 43.0 4.7 43.3 43.7 7.6 43.1
46.4 84.1 41.5 46.7 10.6 42.6 49.9 22.1 40.7
51.0 88.8 42.0 52.8 68.9 39.3 52.9 32.7 39.2
55.5 92.9 42.2 56.0 1.6 42.7 60.6 75.2 40.1
62.1 26.6 40.1 63.0 12.7 41.8 69.0 75.6 40.1
70.5 83.7 40.9 70.9 11.0 41.7 71.5 29.5 39.8
78.1 45.5 38.7 78.2 9.1 41.7 78.4 20.0 40.8
80.5 55.9 38.7 81.1 51.0 38.6 83.8 7.9 41.6
84.5 11.0 41.5 85.2 67.3 39.4 85.5 73.0 39.8
86.7 70.4 39.6 87.2 55.7 38.8 88.1 0.0 41.6
88.4 12.1 41.3 88.4 99.6 41.2 88.8 82.9 40.5
88.9 6.2 41.5 90.6 7.0 41.5 90.7 49.6 38.9
91.5 55.4 39.0 92.9 46.8 39.1 93.4 70.9 39.7
94.8 71.5 39.7 96.2 84.3 40.3 98.2 58.2 39.5
;

%macro area_sim(seed=,nr=,ginc=);

SAS OnlineDoc: Version 8



Example 58.1. Simulation � 3111

%let ngrid=%eval(40/&ginc+1);
%let tgrid=%eval(&ngrid*&ngrid);

proc sim2d data=thick outsim=sim1;
simulate var=thick numreal=&nr seed=&seed

scale=&cc0 range=&aa0 form=&form;
mean 40.14;
coordinates xc=east yc=north;
grid x=60 to 100 by &ginc

y=0 to 40 by &ginc;
run;

proc transpose data=sim1 out=sim2 prefix=sims;
by _iter_;
var svalue;

run;

proc means data=sim2 noprint n mean;
var sims1-sims&tgrid;
output out=msim n=numsim mean=ms1-ms&tgrid;

run;

/*- Determine the percentage of sites exceeding cutoff -*/
data _null_;

file print;
array simss ms1-ms&tgrid;
set msim;

/*- Loop over the grid sites to test cutoff -*/
cflag=0;
do ss=1 to &tgrid;

tempv=simss[ss];
if simss[ss] > &cut then do;

cflag + 1;
end;

end;

area_per=100*(cflag/&tgrid);
put // +5 ’Conditional Simulation of Coal Seam’

’ Thickness for Subregion’;
put / +5 ’Subregion is South-East Corner 40 by 40’

’ distance units’;
put / +5 "Seed:&seed" +2 "Grid Increment:&ginc";
put / +5 "Total Number of Grid Points:&tgrid" +2

"Number of Simulations:&nr";
put / +5 "Percent of Subregion Exceeding Cutoff of

&cut ft.:"
+2 area_per 5.2;

run;
%mend area_sim;
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%area_sim(seed=12345,nr=5,ginc=10);
%area_sim(seed=54321,nr=50,ginc=1);
%area_sim(seed=655311,nr=500,ginc=1);

Output 58.1.1. Conditional Simulation of Coal Seam Thickness

Conditional Simulation of Coal Seam Thickness for Subregion

Subregion is South-East Corner 40 by 40 distance units

Seed:12345 Grid Increment:10

Total Number of Grid Points:25 Number of Simulations:5

Percent of Subregion Exceeding Cutoff of 39.7 ft.: 80.00

Conditional Simulation of Coal Seam Thickness for Subregion

Subregion is South-East Corner 40 by 40 distance units

Seed:54321 Grid Increment:1

Total Number of Grid Points:1681 Number of Simulations:50

Percent of Subregion Exceeding Cutoff of 39.7 ft.: 87.33

Conditional Simulation of Coal Seam Thickness for Subregion

Subregion is South-East Corner 40 by 40 distance units

Seed:655311 Grid Increment:1

Total Number of Grid Points:1681 Number of Simulations:500

Percent of Subregion Exceeding Cutoff of 39.7 ft.: 87.57
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