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Chapter 64
The TPSPLINE Procedure

Overview

The TPSPLINE procedure uses the penalized least squares method to fit a nonpara-
metric regression model. It computes thin-plate smoothing splines to approximate
smooth multivariate functions observed with noise. The TPSPLINE procedure al-
lows great flexibility in the possible form of the regression surface. In particular,
PROC TPSPLINE makes no assumptions of a parametric form for the model. The
generalized cross validation (GCV) function may be used to select the amount of
smoothing.

The TPSPLINE procedure complements the methods provided by the standard SAS
regression procedures such as the GLM, REG and NLIN procedures. These proce-
dures can handle most situations in which you specify the regression model and the
model is known up to a fixed number of parameters. However, when you have no
prior knowledge about the model, or when you know that the data cannot be repre-
sented by a model with a fixed number of parameters, you can use the TPSPLINE
procedure to model the data.

The TPSPLINE procedure uses the penalized least squares method to fit the data with
a flexible model in which the number of effective parameters can be as large as the
number of unique design points. Hence, as the sample size increases, the model space
increases as well, enabling the thin-plate smoothing spline to fit more complicated
situations.

The main features of the TPSPLINE procedure are as follows:

� provides penalized least squares estimates

� supports the use of multidimensional data

� supports multiple SCORE statements

� fits both semiparametric models and nonparametric models

� provides options for handling large data sets

� supports multiple dependent variables

� enables you to choose a particular model by specifying the model degrees of
freedom or smoothing parameter

The Penalized Least Squares Estimate

Penalized least squares estimates provide a way to balance fitting the data closely and
avoiding excessive roughness or rapid variation. A penalized least squares estimate
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is a surface that minimizes the penalized least squares over the class of all surfaces
satisfying sufficient regularity conditions.

Definexi as ad-dimensional covariate vector,zi as ap-dimensional covariate vector,
andyi as the observation associated with(xi; zi). Assuming that the relation between
zi andyi is linear but the relation betweenxi andyi is unknown, you can fit the data
using a semiparametric model as follows:

yi = f(xi) + zi� + �i

wheref is an unknown function that is assumed to be reasonably smooth,�i; i =
1; � � � ; n are independent, zero-mean random errors, and� is a p-dimensional un-
known parametric vector.

This model consists of two parts. Thezi� is the parametric part of the model, and
thezi are the regression variables. Thef(xi) is the nonparametric part of the model,
and thexi are the smoothing variables.

The ordinary least squares method estimatesf(xi) and� by minimizing the quantity:

1

n

nX
i=1

(yi � f(xi)� zi�)
2

However, the functional space off(x) is so large that you can always find a function
f that interpolates the data points. In order to obtain an estimate that fits the data well
and has some degree of smoothness, you can use the penalized least squares method.

The penalized least squares function is defined as

S�(f) =
1

n

nX
i=1

(yi � f(xi)� zi�)
2 + �J2(f)

whereJ2(f) is the penalty on the roughness off and is defined, in most cases, as the
integral of the square of the second derivative off .

The first term measures the goodness of fit and the second term measures the smooth-
ness associated withf . The� term is the smoothing parameter, which governs the
tradeoff between smoothness and goodness of fit. When� is large, it heavily penal-
izes estimates with large second derivatives. Conversely, a small value of� puts more
emphasis on the goodness of fit.

The estimatef� is selected from a reproducing kernel Hilbert space, and it can be
represented as a linear combination of a sequence of basis functions. Hence, the final
estimates off can be written as

f�(xi) = �0 +
dX

j=1

�jxij +
nX

j=1

�jBj(xi)

whereBj is the basis function, which depends on where the dataxj is located, and
�j and�j are the coefficients that need to be estimated.
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For a fixed�, the coefficients(�; �; �) can be estimated by solving ann� n system.

The smoothing parameter can be chosen by minimizing the generalized cross valida-
tion (GCV) function.

If you write

ŷ = A(�)y

thenA(�) is referred to as thehat or smoothingmatrix, and the GCV functionV (�)
is defined as

V (�) =
(1=n)jj(I �A(�))yjj2

[(1=n)tr(I�A(�))]2

PROC TPSPLINE with Large Data Sets

The calculation of the penalized least squares estimate is computationally intensive.
The amount of memory and CPU time needed for the analysis depend on the number
of unique design points, which corresponds to the number of unknown parameters to
be estimated.

You can specify the D=valueoption in the MODEL statement to reduce the number
of unknown parameters. The option groups design points by the specified range (see
the D= option on page 3335).

PROC TPSPLINE selects one design point from the group and treats all observations
in the group as replicates of that design point. Calculation of the thin-plate smoothing
spline estimates are based on the reprocessed data. The way to choose the design
point from a group depends on the order of the data. Therefore, different orders of
input data may result in different estimates.

This option, by combing several design points into one, reduces the number of unique
design points. Therefore, it provides an approximate estimate to the original data.
The value you specify determines the range used to group the data.

Getting Started

The following example demonstrates how you can use the TPSPLINE procedure to
fit a semiparametric model.

Suppose thaty is a continuous variable andx1 andx2 are two explanatory variables
of interest. To fit a smoothing spline model, you can use a MODEL statement similar
to that used in many regression procedures in the SAS System.

proc tpspline;
model y = (x1 x2);

run;
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The TPSPLINE procedure can fit semiparametric models; the parentheses in the pre-
ceding MODEL statement separates the smoothing variables from the regression vari-
ables. The following statements illustrates this syntax.

proc tpspline;
model y = x3 (x1 x2);

run;

This model assumes a linear relation withx3 and an unknown functional relation
with x1 andx2.

If you want to fit several responses using the same explanatory variables, you can
save computation time by using the multiple responses feature in the MODEL state-
ment. For example, ify1 andy2 are two response variables, the following MODEL
statement can be used to fit two models. Separate analyses are then performed for
each response variable.

proc tpspline;
model y1 y2 = (x1 x2);

run;

The following example illustrates the use of PROC TPSPLINE. The data are from
Bates, Lindstrom, Wahba, and Yandell (1987).

data Measure;
input x1 x2 y @@;
datalines;
-1.0 -1.0 15.54483570 -1.0 -1.0 15.76312613

-.5 -1.0 18.67397826 -.5 -1.0 18.49722167
.0 -1.0 19.66086310 .0 -1.0 19.80231311
.5 -1.0 18.59838649 .5 -1.0 18.51904737

1.0 -1.0 15.86842815 1.0 -1.0 16.03913832
-1.0 -.5 10.92383867 -1.0 -.5 11.14066546

-.5 -.5 14.81392847 -.5 -.5 14.82830425
.0 -.5 16.56449698 .0 -.5 16.44307297
.5 -.5 14.90792284 .5 -.5 15.05653924

1.0 -.5 10.91956264 1.0 -.5 10.94227538
-1.0 .0 9.61492010 -1.0 .0 9.64648093

-.5 .0 14.03133439 -.5 .0 14.03122345
.0 .0 15.77400253 .0 .0 16.00412514
.5 .0 13.99627680 .5 .0 14.02826553

1.0 .0 9.55700164 1.0 .0 9.58467047
-1.0 .5 11.20625177 -1.0 .5 11.08651907

-.5 .5 14.83723493 -.5 .5 14.99369172
.0 .5 16.55494349 .0 .5 16.51294369
.5 .5 14.98448603 .5 .5 14.71816070

1.0 .5 11.14575565 1.0 .5 11.17168689
-1.0 1.0 15.82595514 -1.0 1.0 15.96022497

-.5 1.0 18.64014953 -.5 1.0 18.56095997
.0 1.0 19.54375504 .0 1.0 19.80902641
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.5 1.0 18.56884576 .5 1.0 18.61010439
1.0 1.0 15.86586951 1.0 1.0 15.90136745

;

The data setMeasure contains three variablesx1, x2, andy. Suppose that you want
to fit a surface by using the variablesx1 andx2 to model the responsey. The variables
x1 andx2 are spaced evenly on a[�1� 1] � [�1 � 1] square, and the responsey is
generated by adding a random error to a functionf(x1; x2). The raw data are plotted
using the G3D procedure. In order to plot those replicates, the data are jittered a little
bit.

data Measure1;
set Measure;

run;

proc sort data=Measure1;
by x2 x1;

run;

data measure1;
set measure1; by x1;
if last.x1 then x1=x1+0.00001;

run;

proc g3d data=Measure1;
scatter x2*x1=y /size=.5

zmin=9
zmax=21
zticknum=4;

title "Raw Data";
run;

Figure 64.1 displays the raw data.

SAS OnlineDoc: Version 8



3328 � Chapter 64. The TPSPLINE Procedure

Figure 64.1. Plot of Data Set MEASURE

The following statements invoke the TPSPLINE procedure, using theMeasure data
set as input. In the MODEL statement, thex1 andx2 variables are listed as smoothing
variables. TheLOGNLAMBDA= option returns a list of GCV values withlog10(n�)
ranging from�4 to �2. The OUTPUT statement creates the data setestimate to
contain the predicted values and the 95% upper and lower confidence limits.

proc tpspline data=Measure;
model y=(x1 x2) /lognlambda=(-4 to -2 by 0.1);
output out=estimate pred uclm lclm;

run;

proc print data=estimate;
run;

The results of this analysis are displayed in the following figures. Figure 64.2 shows
that the data setMeasure contains 50 observations with 25 unique design points.
The GCV values are listed along with thelog10 of n�. The value oflog10(n�) that
minimizes the GCV function is around�3:5. The final thin-plate smoothing spline
estimate is based on LOGNLAMBDA =�3.4762. The residual sum of squares is
0.246110, and the degrees of freedom is 24.593203. The standard deviation, defined
as RSS/(Tr(I-A)), is 0.098421. The predictions and 95% confidence limits are dis-
played in Figure 64.3.
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The TPSPLINE Procedure
Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 50
Number of Missing Observations 0
Unique Smoothing Design Points 25

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 3

Figure 64.2. Output from PROC TPSPLINE

The TPSPLINE Procedure
Dependent Variable: y

GCV Function

log10(n*Lambda) GCV

-4.000000 0.019215
-3.900000 0.019183
-3.800000 0.019148
-3.700000 0.019113
-3.600000 0.019082
-3.500000 0.019064*
-3.400000 0.019074
-3.300000 0.019135
-3.200000 0.019286
-3.100000 0.019584
-3.000000 0.020117
-2.900000 0.021015
-2.800000 0.022462
-2.700000 0.024718
-2.600000 0.028132
-2.500000 0.033165
-2.400000 0.040411
-2.300000 0.050614
-2.200000 0.064699
-2.100000 0.083813
-2.000000 0.109387

Note: * indicates minimum GCV value.

Summary Statistics
of Final Estimation

log10(n*Lambda) -3.476189
Smoothing Penalty 2558.143232
Residual SS 0.246110
Tr(I-A) 25.406797
Model DF 24.593203
Standard Deviation 0.098421
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Estimates from Proc TPSPLINE

Obs x1 x2 y P_y LCLM_y UCLM_y

1 -1.0 -1.0 15.5448 15.6474 15.5115 15.7832
2 -1.0 -1.0 15.7631 15.6474 15.5115 15.7832
3 -0.5 -1.0 18.6740 18.5783 18.4430 18.7136
4 -0.5 -1.0 18.4972 18.5783 18.4430 18.7136
5 0.0 -1.0 19.6609 19.7270 19.5917 19.8622
6 0.0 -1.0 19.8023 19.7270 19.5917 19.8622
7 0.5 -1.0 18.5984 18.5552 18.4199 18.6905
8 0.5 -1.0 18.5190 18.5552 18.4199 18.6905
9 1.0 -1.0 15.8684 15.9436 15.8077 16.0794

10 1.0 -1.0 16.0391 15.9436 15.8077 16.0794
11 -1.0 -0.5 10.9238 11.0467 10.9114 11.1820
12 -1.0 -0.5 11.1407 11.0467 10.9114 11.1820
13 -0.5 -0.5 14.8139 14.8246 14.6896 14.9597
14 -0.5 -0.5 14.8283 14.8246 14.6896 14.9597
15 0.0 -0.5 16.5645 16.5102 16.3752 16.6452
16 0.0 -0.5 16.4431 16.5102 16.3752 16.6452
17 0.5 -0.5 14.9079 14.9812 14.8461 15.1162
18 0.5 -0.5 15.0565 14.9812 14.8461 15.1162
19 1.0 -0.5 10.9196 10.9497 10.8144 11.0850
20 1.0 -0.5 10.9423 10.9497 10.8144 11.0850
21 -1.0 0.0 9.6149 9.6372 9.5019 9.7724
22 -1.0 0.0 9.6465 9.6372 9.5019 9.7724
23 -0.5 0.0 14.0313 14.0188 13.8838 14.1538
24 -0.5 0.0 14.0312 14.0188 13.8838 14.1538
25 0.0 0.0 15.7740 15.8822 15.7472 16.0171
26 0.0 0.0 16.0041 15.8822 15.7472 16.0171
27 0.5 0.0 13.9963 14.0006 13.8656 14.1356
28 0.5 0.0 14.0283 14.0006 13.8656 14.1356
29 1.0 0.0 9.5570 9.5769 9.4417 9.7122
30 1.0 0.0 9.5847 9.5769 9.4417 9.7122
31 -1.0 0.5 11.2063 11.1614 11.0261 11.2967
32 -1.0 0.5 11.0865 11.1614 11.0261 11.2967
33 -0.5 0.5 14.8372 14.9182 14.7831 15.0532
34 -0.5 0.5 14.9937 14.9182 14.7831 15.0532
35 0.0 0.5 16.5549 16.5386 16.4036 16.6736
36 0.0 0.5 16.5129 16.5386 16.4036 16.6736
37 0.5 0.5 14.9845 14.8549 14.7199 14.9900
38 0.5 0.5 14.7182 14.8549 14.7199 14.9900
39 1.0 0.5 11.1458 11.1727 11.0374 11.3080
40 1.0 0.5 11.1717 11.1727 11.0374 11.3080
41 -1.0 1.0 15.8260 15.8851 15.7493 16.0210
42 -1.0 1.0 15.9602 15.8851 15.7493 16.0210
43 -0.5 1.0 18.6401 18.5946 18.4593 18.7299
44 -0.5 1.0 18.5610 18.5946 18.4593 18.7299
45 0.0 1.0 19.5438 19.6729 19.5376 19.8081
46 0.0 1.0 19.8090 19.6729 19.5376 19.8081
47 0.5 1.0 18.5688 18.5832 18.4478 18.7185
48 0.5 1.0 18.6101 18.5832 18.4478 18.7185
49 1.0 1.0 15.8659 15.8761 15.7402 16.0120
50 1.0 1.0 15.9014 15.8761 15.7402 16.0120

Figure 64.3. Data Set ESTIMATE

The fitted surface is plotted with PROC G3D as follows.

proc g3d data=estimate;
plot x2*x1=p_y/grid

zmin=9
zmax=21
zticknum=4;
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title ’Plot of Fitted Surface’;
run;

The resulting plot is displayed in Figure 64.4.

Figure 64.4. Plot of TPSPLINE Fit of Data Set Measure

Because the data in data setMeasure are very sparse, the fitted surface is not smooth.
To produce a smoother surface, the following statements generate the data setPred
in order to obtain a finer grid. The SCORE statement evaluates the fitted surface at
those new design points.

data pred;
do x1=-1 to 1 by 0.1;

do x2=-1 to 1 by 0.1;
output;

end;
end;

run;

proc tpspline data=measure;
model y=(x1 x2)/lognlambda=(-4 to -2 by 0.1);
score data=pred out=predy;

run;

proc g3d data=predy;
plot x2*x1=p_y/grid

zmin=9
zmax=21
zticknum=4;
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title ’Plot of Fitted Surface on a Fine Grid’;
run;

The surface plot based on the finer grid is displayed in Figure 64.5. The plot shows
that a parametric model with quadratic terms ofx1 andx2 provides a reasonable fit
to the data.

Figure 64.5. Plot of TPSPLINE fit

Syntax

PROC TPSPLINE < option > ;
MODEL dependents = < variables > (variables) < /options > ;
SCORE data=SAS-data-set out=SAS-data-set ;
OUTPUT < out=SAS-data-set > keyword < � � � keyword > ;
BY variables ;
FREQ variable ;
ID variables ;

The syntax in PROC TPSPLINE is similar to that of other regression procedures in
the SAS System. The PROC TPSPLINE and MODEL statements are required. The
SCORE statement can appear multiple times; all other statements appear only once.

The syntax for PROC TPSPLINE is described in the following sections in alphabeti-
cal order after the description of the PROC TPSPLINE statement.

SAS OnlineDoc: Version 8
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PROC TPSPLINE Statement

PROC TPSPLINE< option > ;

The PROC TPSPLINE statement invokes the procedure. You can specify the follow-
ing option.

DATA=SAS-data-set
specifies the SAS data set to be read by PROC TPSPLINE. The default value is the
most recently created data set.

BY Statement

BY variables ;

You can specify a BY statement with PROC TPSPLINE to obtain separate analysis on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

� Sort the data using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the TPSPLINE procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

� Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.

FREQ Statement

FREQ variable ;

If one variable in your input data set represents the frequency of occurrence for other
values in the observation, specify the variable’s name in a FREQ statement. PROC
TPSPLINE treats the data as if each observation appearsn times, wheren is the value
of the FREQ variable for the observation. If the value of the FREQ variable is less
than one, the observation is not used in the analysis. Only the integer portion of the
value is used.
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ID Statement

ID variables ;

The variables in the ID statement are copied from the input data set to the OUT= data
set. If you omit the ID statement, only the variables used in the MODEL statement
and requested statistics are included in the output data set.

MODEL Statement

MODEL dependents = < regression variables > (smoothing variables) <

/options > ;

The MODEL statement specifies the dependent variables, the independent regres-
sion variables, which are listed with no parentheses, and the independent smoothing
variables, which are listed inside parentheses.

The regression variables are optional. At least one smoothing variable is required,
and it must be listed after the regression variables. No variables can be listed in both
the regression variable list and the smoothing variable list.

If you specify more than one dependent variable, PROC TPSPLINE calculates a thin-
plate smoothing spline estimate for each dependent variable, using the regression
variables and smoothing variables specified on the right-hand side.

If you specify regression variables, PROC TPSPLINE fits a semiparametric model
using the regression variables as the linear part of the model.

You can specify the following options in the MODEL statement.

ALPHA= number
specifies the significance level� of the confidence limits on the final thin-plate
smoothing spline estimate when you request confidence limits to be included in the
output data set. Specifynumberas a value between 0 and 1. The default value is
0.05. See the “OUTPUT Statement” section on page 3336 for more information on
the OUTPUT statement.

DF=number
specifies the degrees of freedom of the thin-plate smoothing spline estimate, defined
as

df = trace(A(�))

whereA(�) is the hat matrix. Specifynumberas a value between zero and the
number of unique design points.
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DISTANCE=number
D=number

defines a range such that if two data points(xi; zi) and(xj; zj) satisfy

maxkjxik � xjkj � D=2

then these data points are treated as replicates, wherexi are the smoothing variables
andzi are the regression variables.

You can use the DISTANCE= option to reduce the number of unique design points
by treating nearby data as replicates. This can be useful when you have a large data
set. The default value is 0.

LAMBDA0= number
specifies the smoothing parameter,�0, to be used in the thin-plate smoothing spline
estimate. By default, PROC TPSPLINE uses the� parameter that minimizes the
GCV function for the final fit. The LAMBDA0= value must be positive.

LAMBDA= list-of-values
specifies a set of values for the� parameter. PROC TPSPLINE returns a GCV value
for each� point that you specify. You can use the LAMBDA= option to study the
GCV function curve for a set of values for�. All values listed in the LAMBDA=
option must be positive.

LOGNLAMBDA0= number
LOGNL0=number

specifies the smoothing parameter�0 on thelog10(n�) scale. If you specify both
the LOGNL0= and LAMBDA0= options, only the value provided by the LOGNL0=
option is used. By default, PROC TPSPLINE uses the� parameter that minimizes
the GCV function for the estimate.

LOGNLAMBDA= list-of-values
LOGNL= list-of-values

specifies a set of values for the� parameter on thelog10(n�) scale. PROC TP-
SPLINE returns a GCV value for each� point that you specify. You can use the
LOGNLAMBDA= option to study the GCV function curve for a set of� values.
If you specify both the LOGNL= and LAMBDA= options, only the list of values
provided by LOGNL= option is used.

In some cases, the LOGNL= option may be prefered over the LAMBDA= option.
Because the LAMBDA= value must be positive, a small change in that value can
result in a major change in theGCV value. If you instead specify� on thelog10
scale, the allowable range is enlarged to include negative values. Thus, theGCV
function is less sensitive to changes inLOGNLAMBDA.

M=number
specifies the order of the derivative in the penalty term. The M= value must be a
positive integer. The default value is themax(2; INT (d=2) + 1), whered is the
number of smoothing variables.
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SCORE Statement

SCORE DATA=SAS-data-set OUT=SAS-data-set ;

The SCORE statement calculates predicted values for a new data set. If you have
multiple data sets to predict, you can specify multiple SCORE statements. You must
use a SCORE statement for each data set.

The following keywords must be specified in the SCORE statement.

DATA=SAS-data-set
specifies the input SAS data set containing the smoothing variablesx and regression
variablesz. The predicted response (y) value is computed for each(x; z) pair. The
data set must include all independent variables specified in the MODEL statement.

OUT=SAS-data-set
specifies the name of the SAS data set to contain the predictions.

OUTPUT Statement

OUTPUT OUT=SAS-data-set < keyword � � � keyword > ;

The OUTPUT statement creates a new SAS data set containing diagnostic measures
calculated after fitting the model.

You can request a variety of diagnostic measures that are calculated for each observa-
tion in the data set. The new data set contains the variables specified in the MODEL
statement in addition to the requested variables. If nokeywordis present, the data set
contains only the predicted values.

Details on the specifications in the OUTPUT statement are as follows.

OUT=SAS-data-set
specifies the name of the new data set to contain the diagnostic measures. This spec-
ification is required.

keyword
specifies the statistics to include in the output data set. The names of the new variables
that contain the statistics are formed by using a prefix of one or more characters
that identify the statistic, followed by an underscore (–), followed by the dependent
variable name.

For example, suppose that you have two dependent variables, sayy1 and y2, and
you specify the keywords PRED, ADIAG, and UCLM. The output SAS data set will
contain the following variables.
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� P–y1 andP–y2

� ADIAG–y1 andADIAG–y2

� UCLM–y1 andUCLM–y2

The keywords and the statistics they represent are as follows:

RESID | R residual values, calculated as
ACTUAL - PREDICTED

PRED predicted values

STD standard error of the mean predicted value

UCLM upper limit of the confidence interval for the expected value of the
dependent variables. By default, PROC TPSPLINE computes 95%
confidence limits.

LCLM lower limit of the confidence interval for the expected value of the
dependent variables. By default, PROC TPSPLINE computes 95%
confidence limits.

ADIAG diagonal element of the hat matrix associated with the observation

Details

Computational Formulas

The theoretical foundations for the thin-plate smoothing spline are described in
Duchon (1976, 1977) and Meinguet (1979). Further results and applications are given
in Wahba and Wendelberger (1980), Hutchinson and Bischof (1983), and Seaman and
Hutchinson (1985).

Suppose thatHm is a space of functions whose partial derivatives of total orderm
are inL2(E

d) whereEd is the domain ofx.

Now, consider the data model

yi = f(x1(i); : : :; xd(i)) + �i; i = 1; : : :; n

wheref 2 Hm.

Using the notation from the section “The Penalized Least Squares Estimate” on
page 3323, for a fixed�, estimatef by minimizing the penalized least squares func-
tion

1

n

nX
i=1

(yi � f(xi)� zi�)
2 + �Jm(f)
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There are several ways to defineJm(f). For the thin-plate smoothing spline, withx
of dimensiond, defineJm(f) as

Jm(f) =

Z
1

�1

� � �

Z
1

�1

X m!

�1! � � ��d!

h
@mf

@x1�1 ���@xd
�d

i2
dx1 � � � dxd

where
P

i �i = m.

Whend = 2 andm = 2, Jm(f) is as follows:

J2(f) =

Z
1

�1

Z
1

�1

(
h

@2f
@x12

i2
+ 2

h
@2f

@x1@x2

i2
+
h

@2f
@x22

i2
)dx1dx2

In general,m andd must satisfy the condition that2m � d > 0. For the sake of
simplicity, the formulas and equations that follow assumem = 2. Refer to Wahba
(1990) and Bates et al. (1987) for more details.

Duchon (1976) showed thatf� can be represented as

f�(xi) = �0 +
dX
j=1

�jxij +
nX
j=1

�jE2(xi � xj)

whereE2(s) =
1

23�
jjsjj2 ln(jjsjj):

If you defineK = (K)ij = E2(xi � xj) andT = (T)ij = (xij), the goal is to find
coefficients�; �; and� that minimize

S�(�; �; �) =
1

n
jjy �T� �K� � Z�jj2 + ��TK�

A unique solution is guaranteed if the matrixT is of full rank and�TK� � 0.

If � =

�
�
�

�
andX = (T : Z), the expression forS� becomes

1

n
jjy �X��K�jj2 + ��TK�

The coefficients� and� can be obtained by solving

(K+ n�In)� +X� = y
XT� = 0

To compute� and�, let the QR decomposition ofX be

X = (Q1 : Q2)

�
R

0

�
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where(Q1 : Q2) is an orthogonal matrix andR is upper triangular, withXTQ2 = 0

(Dongarra et al. 1979).

SinceXT� = 0, � must be in the column space ofQ2. Therefore,� can be expressed
as� = Q2
 for a vector
. Substituting� = Q2
 into the preceding equation and
multiplying through byQT

2 gives

QT
2 (K+ n�In)Q2
 = QT

2 y

or

� = Q2
 = Q2[Q
T
2 (K+ n�In)Q2]

�1QT
2 y

The coefficient� can be obtained by solving

R� = QT
1 [y � (K+ n�In)�]

The influence matrixA(�) is defined as

ŷ = A(�)y

and has the form

A(�) = I� n�Q2[Q
T
2 (K+ n�In)Q2]

�1QT
2

Similar to the regression case, and if you consider the trace ofA(�) as the degrees
of freedom for the information signal and the trace of(In �A(�)) as the degrees of
freedom for the noise component, the estimate�2 can be represented as

�̂2 =
RSS(�)

Trace(In �A(�))

whereRSS(�) is the residual sum of squares. Theoretical properties of these es-
timates have not yet been published. However, good numerical results in simula-
tion studies have been described by several authors. For more information, refer to
O’Sullivan and Wong (1987), Nychka (1986a, 1986b, and 1988), and Hall and Titter-
ington (1987).

Confidence Intervals
Viewing the spline model as a Bayesian model, Wahba (1983) proposed Bayesian
confidence intervals for smoothing spline estimates as follows:

f̂�(xi)� z�=2
p
�̂2aii(�)

whereaii(�) is the ith diagonal element of theA(�) matrix andz�=2 is the�=2
point of the normal distribution. The confidence intervals are interpreted as intervals
“across the function” as opposed to point-wise intervals.
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Suppose that you fit a spline estimate to experimental data that consists of a true
function f and a random error term,�i. In repeated experiments, it is likely that
about100(1 � �)% of the confidence intervals cover the corresponding true values,
although some values are covered every time and other values are not covered by the
confidence intervals most of the time. This effect is more pronounced when the true
surface or surface has small regions of particularly rapid change.

Smoothing Parameter
The quantity� is called the smoothing parameter, which controls the balance between
the goodness of fit and the smoothness of the final estimate.

A large� heavily penalizes themth derivative of the function, thus forcingf (m) close
to 0. The final estimating function satisfiesf (m)(x) = 0. A small� places less of a
penalty on rapid change inf (m)(x), resulting in an estimate that tends to interpolate
the data points.

The smoothing parameter greatly affects the analysis, and it should be selected with
care. One method is to perform several analyses with different values for� and
compare the resulting final estimates.

A more objective way to select the smoothing parameter� is to use the “leave-out-
one” cross validation function, which is an approximation of the predicted mean
squares error. A generalized version of the leave-out-one cross validation function
is proposed by Wahba (1990) and is easy to calculate. This Generalized Cross Vali-
dation (GCV) function(V (�)) is defined as

V (�) =
(1=n)jj(I �A(�))yjj2

[(1=n)tr(I�A(�))]2

The justification for using the GCV function to select� relies on asymptotic theory.
Thus, you cannot expect good results for very small sample sizes or when there is not
enough information in the data to separate the information signal from the noise com-
ponent. Simulation studies suggest that for independent and identically distributed
Gaussian noise, you can obtain reliable estimates of� for n greater than 25 or 30.
Note that, even for large values ofn (sayn � 50), in extreme Monte Carlo simu-
lations there may be a small percentage of unwarranted extreme estimates in which
�̂ = 0 or �̂ = 1 (Wahba 1983). Generally, if�2 is known to within an order of
magnitude, the occasional extreme case can be readily identified. Asn gets larger,
the effect becomes weaker.

The GCV function is fairly robust against nonhomogeneity of variances and non-
Gaussian errors (Villalobos and Wahba 1987). Andrews (1988) has provided favor-
able theoretical results when variances are unequal. However, this selection method
is likely to give unsatisfactory results when the errors are highly correlated.

The GCV value may be suspect when� is extremely small because computed values
may become indistinguishable from zero. In practice, calculations with� = 0 or �
near 0 can cause numerical instabilities resulting in an unsatisfactory solution. Sim-
ulation studies have shown that a� with log10(n�) > �8 is small enough that the
final estimate based on this� almost interpolates the data points. A GCV value based
on a� � �8 may not be accurate.
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ODS Tables Produced by PROC TPSPLINE

PROC TPSPLINE assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table. For more
information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 64.1. ODS Tables Produced by PROC TPSPLINE

ODS Table Name Description Statement Option
DataSummary Data summary PROC default
FitSummary Fit parameters and

fit summary
PROC default

FitStatistics Model fit statistics PROC default
GCVFunction GCV table MODEL LOGNLAMBDA, LAMBDA

By referring to the names of such tables, you can use the ODS OUTPUT statement
to place one or more of these tables in output data sets.

For example, the following statements create an output data set namedFitStats con-
taining the FitStatistics table, an output data set namedDataInfo containing the Data-
Summary table, an output data set namedModelInfo containing the FitSummary and
an output data set namedGCVFunc containing the GCVFunction.

proc tpspline data=Melanoma;
model Incidences=Year /LOGNLAMBDA=(-4 to 0 by 0.2);
ods output FitStatistics = FitStats

DataSummary = DataInfo
FitSummary = ModelInfo
GCVFunction = GCVFunc;

run;

Examples

Example 64.1. Partial Spline Model Fit

The following example analyzes the data setMeasure that was introduced in the
“Getting Started” section on page 3325. That analysis determined that the final es-
timated surface can be represented by a quadratic function for one or both of the
independent variables. This example illustrates how you can use PROC TPSPLINE
to fit a partial spline model. The data setMeasure is fit using the following model:

f(x1; x2) = 1 + x1 + x21 + h(x2)

The model has a parametric component (associated with thex1 variable) and a non-
parametric component (associated with thex2 variable). The following statements fit
a partial spline model.
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data Measure;
set Measure;
x1sq = x1*x1;

run;

data pred;
do x1=-1 to 1 by 0.1;

do x2=-1 to 1 by 0.1;
x1sq = x1*x1;
output;

end;
end;

run;

proc tpspline data= measure;
model y = x1 x1sq (x2);
score data = pred

out = predy;
run;

Output 64.1.1 displays the results from these statements.

Output 64.1.1. Output from PROC TPSPLINE

The TPSPLINE Procedure
Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 50
Number of Missing Observations 0
Unique Smoothing Design Points 5

Summary of Final Model

Number of Regression Variables 2
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 4

Summary Statistics
of Final Estimation

log10(n*Lambda) -2.237410
Smoothing Penalty 205.346097
Residual SS 8.582131
Tr(I-A) 43.153394
Model DF 6.846606
Standard Deviation 0.445954
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As displayed in Output 64.1.1, there are five unique design points for the smoothing
variablex2 and two regression variables in the model(x1,x1sq). The dimension of
the null space (polynomial space) is 4. The standard deviation of the estimate is much
larger than the one based on the model with bothx1 andx2 as smoothing variables
(0.445954 compared to 0.098421). One of the many possible explanations may be
that the number of unique design points of the smoothing variable is too small to
warrant an accurate estimate forh(x2).

The following statements produce a surface plot for the partial spline model:

title ’Plot of Fitted Surface on a Fine Grid’;

proc g3d data=predy;
plot x2*x1=p_y/grid

zmin=9
zmax=21
zticknum=4;

run;

The surface displayed in Output 64.1.2 is similar to the one estimated by using the
full nonparametric model (displayed in Figure 64.5).

Output 64.1.2. Plot of TPSPLINE Fit from the Partial Spline Model

Example 64.2. Spline Model With Higher-Order Penalty

The following example continues the analysis of the data setMeasure to illustrate
how you can use PROC TPSPLINE to fit a spline model with a higher-order penalty
term. Spline models with high-order penalty terms move low-order polynomial terms
into the null space. Hence, there is no penalty for these terms, and they can vary
without constraint.
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As shown in the previous analyses, the final model for the data setMeasure must
include quadratic terms for both x1 and x2. This example fits the following model:

f(x1; x2) = �0 + �1x1 + �2x
2
1 + �3x2 + �4x

2
2 + �5x1 � x2 + g(x1; x2)

The model includes quadratic terms for both variables, although it differs from the
usual linear model. The nonparametric termg(x1; x2) explains the variation of the
data unaccounted for by a simple quadratic surface.

To modify the order of the derivative in the penalty term, specify the M= option. The
following statements specify the option M=3 in order to include the quadratic terms
in the null space:

data measure;
set measure;
x1sq = x1*x1;
x2sq = x2*x2;
x1x2 = x1*x2;

;

proc tpspline data= measure;
model y = (x1 x2) /m=3;
score data = pred

out = predy;
run;

The output resulting from these statements is displayed in Output 64.2.1.

Output 64.2.1. Output from PROC TPSPLINE with M=3

The TPSPLINE Procedure
Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 50
Number of Missing Observations 0
Unique Smoothing Design Points 25

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 3
Dimension of Polynomial Space 6

Summary Statistics
of Final Estimation

log10(n*Lambda) -3.783100
Smoothing Penalty 2092.449492
Residual SS 0.273146
Tr(I-A) 29.171609
Model DF 20.828391
Standard Deviation 0.096765
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The model contains six terms in the null space. Compare Output 64.2.1 with Figure
64.2: theLOGNLAMBDA value and the smoothing penalty differ significantly. Note
that, in general, these terms are not directly comparable for different models. The
final estimate based on this model is close to the estimate based on the model using
the default, M=2.

In the following statements, the REG procedure fits a quadratic surface model to the
data setMeasure.

proc reg data= measure;
model y = x1 x1sq x2 x2sq x1x2;

run;

The results are displayed in Output 64.2.2.

Output 64.2.2. Quadratic Surface Model: The REG Procedure

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 443.20502 88.64100 436.33 <.0001
Error 44 8.93874 0.20315
Corrected Total 49 452.14376

Root MSE 0.45073 R-Square 0.9802
Dependent Mean 15.08548 Adj R-Sq 0.9780
Coeff Var 2.98781

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 14.90834 0.12519 119.09 <.0001
x1 1 0.01292 0.09015 0.14 0.8867
x1sq 1 -4.85194 0.15237 -31.84 <.0001
x2 1 0.02618 0.09015 0.29 0.7729
x2sq 1 5.20624 0.15237 34.17 <.0001
x1x2 1 -0.04814 0.12748 -0.38 0.7076

The REG procedure produces slightly different results. To fit a similar model with
PROC TPSPLINE, you can use a MODEL statement specifying the degrees of free-
dom with the DF= option. You can also use a large value for theLOGNLAMBDA0=
option to force a parametric model fit.

Because there is one degree of freedom for each of the following terms,Intercept,
x1, x2, x1sq, x2sq, andx1x2, the DF=6 option is used.
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proc TPSPLINE data=measure;
model y=(x1 x2) /m=3 df=6 lognlambda=(-4 to 1 by 0.2);
score data = pred

out = predy;
run;

The results are displayed in Output 64.2.3. PROC TPSPLINE displays the list of
GCV values for comparison.

Output 64.2.3. Output from PROC TPSPLINE Using M=3 and DF=6

The TPSPLINE Procedure
Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 50
Number of Missing Observations 0
Unique Smoothing Design Points 25

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 3
Dimension of Polynomial Space 6

GCV Function

log10(n*Lambda) GCV

-4.000000 0.016330
-3.800000 0.016051*
-3.600000 0.016363
-3.400000 0.017770
-3.200000 0.021071
-3.000000 0.027496
-2.800000 0.038707
-2.600000 0.056292
-2.400000 0.080613
-2.200000 0.109714
-2.000000 0.139642
-1.800000 0.166338
-1.600000 0.187437
-1.400000 0.202625
-1.200000 0.212871
-1.000000 0.219512
-0.800000 0.223727
-0.600000 0.226377
-0.400000 0.228041
-0.200000 0.229085

0 0.229740
0.200000 0.230153
0.400000 0.230413
0.600000 0.230576
0.800000 0.230680
1.000000 0.230745

Note: * indicates minimum GCV value.
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The TPSPLINE Procedure
Dependent Variable: y

Summary Statistics
of Final Estimation

log10(n*Lambda) 2.382955
Smoothing Penalty 0.000000646
Residual SS 8.938429
Tr(I-A) 43.999670
Model DF 6.000330
Standard Deviation 0.450719

The final estimate is based on 6.000330 degrees of freedom because there are already
6 degrees of freedom in the null space and the search range for lambda is not large
enough (in this case, setting DF=6 is equivalent to setting lambda =1).

The standard deviation and RSS (Output 64.2.3) are close to the sum of squares for
the error term and the root MSE from the the linear regression model (Output 64.2.2),
respectively.

For this model, the optimalLOGNLAMBDA is around�3:8, which produces a
standard deviation estimate of 0.096765 (see Output 64.2.1) and aGCV value of
0.016051, while the model specifying DF=6 results in aLOGNLAMBDA larger than
1 and a GCV value larger than 0.23074. The nonparametric model, based on the
GCV, should provide better prediction, but the linear regression model can be more
easily interpreted.

Example 64.3. Multiple Minima of the GCV Function

The following data represent the deposition of sulfate (SO4) at 179 sites in 48 con-
tiguous states of the United States in 1990. Each observation records the latitude and
longitude of the site as well as theSO4 deposition at the site measured in gram per
square meter (g=m2).

You can use PROC TPSPLINE to fit a surface that reflects the general trend and that
reveals underlying features of the data.
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data so4;
input latitude longitude so4 @@;
datalines;
32.45833 87.24222 1.403 34.28778 85.96889 2.103
33.07139 109.86472 0.299 36.07167 112.15500 0.304
31.95056 112.80000 0.263 33.60500 92.09722 1.950
34.17944 93.09861 2.168 36.08389 92.58694 1.578

.

.

.
162 additional observations

.

.

.
45.82278 91.87444 0.984 41.34028 106.19083 0.335
42.73389 108.85000 0.236 42.49472 108.82917 0.313
42.92889 109.78667 0.182 43.22278 109.99111 0.161
43.87333 104.19222 0.306 44.91722 110.42028 0.210
45.07611 72.67556 2.646
;

data pred;
do latitude = 25 to 47 by 1;

do longitude = 68 to 124 by 1;
output;

end;
end;

run;

The preceding statements create the SAS data setso4 and the data setpred in order
to make predictions on a regular grid. The following statements fit a surface forSO4

deposition. The ODS OUTPUT statement creates a data set calledGCV to contain
the GCV values forLOGNLAMBDA in the range from�6 to 1.

proc tpspline data=so4;
ods output GCVFunction=gcv;
model so4 = (latitude longitude) /lognlambda=(-6 to 1 by 0.1);
score data=pred out=prediction1;

run;

Partial output from these statements is displayed in Output 64.3.1.
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Output 64.3.1. Partial Output from PROC TPSPLINE for Data Set SO4

The TPSPLINE Procedure
Dependent Variable: so4

Summary of Input Data Set

Number of Non-Missing Observations 179
Number of Missing Observations 0
Unique Smoothing Design Points 179

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 3

Summary Statistics
of Final Estimation

log10(n*Lambda) 0.277005
Smoothing Penalty 2.458790
Residual SS 12.444975
Tr(I-A) 140.274968
Model DF 38.725032
Standard Deviation 0.297856

The following statements produce Output 64.3.2:

symbol1 interpol=join value=none;
title "GCV Function";

proc gplot data=gcv;
plot gcv*lognlambda/frame cframe=ligr

vaxis=axis1 haxis=axis2;
run;

Output 64.3.2 displays the plot of the GCV function versusnlambda in log10 scale.
The GCV function has two minima. PROC TPSPLINE locates the minimum at
0.277005. The figure also displays a local minimum located around�2:56. Note
that the TPSPLINE procedure may not always find the global minimum, although it
did in this case.
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Output 64.3.2. GCV Function of SO4 Data Set

The following analysis specifies the optionLOGNLAMBDA0=�2:56. The output is
displayed in Output 64.3.3.

proc tpspline data=so4;
model so4 = (latitude longitude) /lognlambda0=-2.56;
score data=pred out=prediction2;

run;

Output 64.3.3. Output from PROC TPSPLINE for Data Set SO4 with
LOGNLAMBDA=�2:56

The TPSPLINE Procedure
Dependent Variable: so4

Summary of Input Data Set

Number of Non-Missing Observations 179
Number of Missing Observations 0
Unique Smoothing Design Points 179

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 2
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 3

Summary Statistics
of Final Estimation

log10(n*Lambda) -2.560000
Smoothing Penalty 177.214368
Residual SS 0.043790
Tr(I-A) 7.208638
Model DF 171.791362
Standard Deviation 0.077940

The smoothing penalty is much smaller in Output 64.3.3 than that displayed in Out-
put 64.3.1. The estimate in Output 64.3.1 uses a large lambda value and, therefore, the
surface is smoother than the estimate usingLOGNLAMBDA=�2:56 (Output 64.3.3).
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The estimate based onLOGNLAMBDA=�2:56 has a larger value for the degrees of
freedom, and it has a much smaller standard deviation.

However, a smaller standard deviation in nonparametric regression does not neces-
sarily mean that the estimate is good: a small� value always produces an estimate
closer to the data and, therefore, a smaller standard deviation.

The following statements produce two contour plots of the estimates using the
GCONTOUR procedure. In the final step, the plots are placed into a single graphic
with the GREPLAY procedure.

title "TPSPLINE fit with lognlambda=0.277";
proc gcontour data=prediction1 gout=grafcat;

plot latitude*longitude = P_so4/
name="tpscon1" legend=legend1
vaxis=axis1 haxis=axis2
cframe=ligr hreverse;

run;

title "TPSPLINE fit with lognlambda=-2.56";
proc gcontour data=prediction2 gout=grafcat;

plot latitude*longitude = P_so4/
name="tpscon2" legend=legend1
vaxis=axis1 haxis=axis2
cframe=ligr hreverse;

run;

title;
proc greplay igout=grafcat tc=sashelp.templt template=v2 nofs;

treplay 1:tpscon1
2:tpscon2;

quit;
run;

Compare the two estimates by examining the contour plots of both estimates (Out-
put 64.3.4).
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Output 64.3.4. Contour Plot of TPSPLINE Estimates with Different Lambdas

As the contour plots show, the estimate withLOGNLAMBDA=0.277 may repre-
sent the underlying trend, while the estimate with theLOGNLAMBDA=-2.56 is very
rough and may be modeling the noise component.

Example 64.4. Large Data Set Application

The following example illustrates how you can use the D= option to decrease the
computation time needed by the TPSPLINE procedure. Note that, while the D= op-
tion can be helpful in decreasing computation time for large data sets, it may produce
unexpected results when used with small data sets.

The following statements generate the data setlarge:

data large;
do x=-5 to 5 by 0.02;

y=5*sin(3*x)+1*rannor(57391);
output;

end;
run;
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The data setlarge contains 501 observations with one independent variablex and one
dependent variabley. The following statements invoke PROC TPSPLINE to produce
a thin-plate smoothing spline estimate and the associated 99% confidence interval.
The output statistics are saved in the data setfit1.

proc tpspline data=large;
model y =(x) /lambda=(-5 to -1 by 0.2) alpha=0.01;
output out=fit1 pred LCLM UCLM;

run;

The results from this MODEL statement are displayed in Output 64.4.1.

Output 64.4.1. Output from PROC TPSPLINE without the D= Option

The TPSPLINE Procedure
Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 501
Number of Missing Observations 0
Unique Smoothing Design Points 501

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 2

GCV Function

log10(n*Lambda) GCV

-5.000000 1.258653
-4.800000 1.228743
-4.600000 1.205835
-4.400000 1.188371
-4.200000 1.174644
-4.000000 1.163102
-3.800000 1.152627
-3.600000 1.142590
-3.400000 1.132700
-3.200000 1.122789
-3.000000 1.112755
-2.800000 1.102642
-2.600000 1.092769
-2.400000 1.083779
-2.200000 1.076636
-2.000000 1.072763*
-1.800000 1.074636
-1.600000 1.087152
-1.400000 1.120339
-1.200000 1.194023
-1.000000 1.344213

Note: * indicates minimum GCV value.
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The TPSPLINE Procedure
Dependent Variable: y

Summary Statistics
of Final Estimation

log10(n*Lambda) -1.948303
Smoothing Penalty 9953.706749
Residual SS 475.098382
Tr(I-A) 471.086071
Model DF 29.913929
Standard Deviation 1.004250

The following statements specify an identical model, but with the additional speci-
fication of the D= option. The estimates are obtained by treating nearby points as
replicates.

proc tpspline data=large;
model y =(x) /lambda=(-5 to -1 by 0.2) d=0.05 alpha=0.01;
output out=fit2 pred LCLM UCLM;

run;

The output is displayed in Output 64.4.2.
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Output 64.4.2. Output from PROC TPSPLINE with the D= Option

The TPSPLINE Procedure
Dependent Variable: y

Summary of Input Data Set

Number of Non-Missing Observations 501
Number of Missing Observations 0
Unique Smoothing Design Points 251

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 2

GCV Function

log10(n*Lambda) GCV

-5.000000 1.306536
-4.800000 1.261692
-4.600000 1.226881
-4.400000 1.200060
-4.200000 1.179284
-4.000000 1.162776
-3.800000 1.149072
-3.600000 1.137120
-3.400000 1.126220
-3.200000 1.115884
-3.000000 1.105766
-2.800000 1.095730
-2.600000 1.085972
-2.400000 1.077066
-2.200000 1.069954
-2.000000 1.066076*
-1.800000 1.067929
-1.600000 1.080419
-1.400000 1.113564
-1.200000 1.187172
-1.000000 1.337252

Note: * indicates minimum GCV value.

The TPSPLINE Procedure
Dependent Variable: y

Summary Statistics
of Final Estimation

log10(n*Lambda) -1.947711
Smoothing Penalty 9943.561350
Residual SS 472.142409
Tr(I-A) 471.090128
Model DF 29.909872
Standard Deviation 1.001116
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The difference between the two estimates is minimal. However, the CPU time for the
second MODEL statement is only about 1/8 of the CPU time used in the first model
fit.

The following statements produce a plot for comparison of the two estimates:

data fit2;
set fit2;
P1_y = P_y;
LCLM1_y = LCLM_y;
UCLM1_y = UCLM_y;
drop P_y

LCLM_y
UCLM_y;

proc sort data=fit1;
by x y;

proc sort data=fit2;
by x y;

data comp;
merge fit1 fit2;

by x y;
label p1_y ="Yhat1" p_y="Yhat0"

lclm_y ="Lower CL"
uclm_y ="Upper CL";

symbol1 i=join v=none ;
symbol2 i=join v=none ;
symbol3 i=join v=none color=cyan;
symbol4 i=join v=none color=cyan;

title ’Comparison of Two Estimates’;
title2 ’with and without the D= Option’;

proc gplot data=comp;
plot P_y*x=1

P1_y*x=2
LCLM_y*x=4
UCLM_y*x=4/overlay legend=legend1

vaxis=axis1 haxis=axis2
frame cframe=ligr;

run;

The estimatesfit1 andfit2 are displayed in Output 64.4.3 with the 99% confidence
interval from thefit1 output data set.
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Output 64.4.3. Comparison of Two Fits with and without the D= Option

Example 64.5. Computing a Bootstrap Confidence Interval

The following example illustrates how you can construct a bootstrap confidence in-
terval by using the multiple responses feature in PROC TPSPLINE.

Numerous epidemiological observations have indicated that exposure to solar radia-
tion is an important factor in the etiology of melanoma. The following data present
age-adjusted melanoma incidences for 37 years from the Connecticut Tumor Reg-
istry (Houghton, Flannery, and Viola 1980). The data are analyzed by Ramsay and
Silverman (1997).

data melanoma;
input year incidences @@;
datalines;
1936 0.9 1937 0.8 1938 0.8 1939 1.3
1940 1.4 1941 1.2 1942 1.7 1943 1.8
1944 1.6 1945 1.5 1946 1.5 1947 2.0
1948 2.5 1949 2.7 1950 2.9 1951 2.5
1952 3.1 1953 2.4 1954 2.2 1955 2.9
1956 2.5 1957 2.6 1958 3.2 1959 3.8
1960 4.2 1961 3.9 1962 3.7 1963 3.3
1964 3.7 1965 3.9 1966 4.1 1967 3.8
1968 4.7 1969 4.4 1970 4.8 1971 4.8
1972 4.8
;

run;

The variableincidences records the number of melanoma cases per 100,000 people
for the years 1936 to 1972. The following model fits the data and requests a 90%
Bayesian confidence interval along with the estimate.
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proc tpspline data=melanoma;
model incidences = (year) /alpha = 0.1;
output out = result pred uclm lclm;

run;

The output is displayed in Output 64.5.1

Output 64.5.1. Output from PROC TPSPLINE for the Melanoma Data Set

The TPSPLINE Procedure
Dependent Variable: incidences

Summary of Input Data Set

Number of Non-Missing Observations 37
Number of Missing Observations 0
Unique Smoothing Design Points 37

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 2

Summary Statistics
of Final Estimation

log10(n*Lambda) -0.060735
Smoothing Penalty 0.517132
Residual SS 1.224264
Tr(I-A) 22.585173
Model DF 14.414827
Standard Deviation 0.232823

The following statements produce a plot of the estimated curve:

symbol1 h=1pct ;
symbol2 i=join v=none;
symbol3 i=join v=none;
symbol4 i=join v=none c=cyan;

legend1 frame cframe=ligr cborder=black
label=none position=center;

axis1 label=(angle=90 rotate=0) minor=none;
axis2 minor=none;

title1 ’Age-adjusted Melanoma Incidences for 37 years’;

proc gplot data=result;
plot incidences*year=1

p_incidences*year=2
lclm_incidences*year=3
uclm_incidences*year=4 /overlay legend=legend1

vaxis=axis1 haxis=axis2
frame cframe=ligr;

run;
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The estimated curve is displayed with 90% confidence interval bands in Out-
put 64.5.2. The number of melanoma incidences exhibits a periodic pattern and in-
creases over the years. The periodic pattern is related to sunspot activity and the
accompanying fluctuations in solar radiation.

Output 64.5.2. TPSPLINE Estimate and 90% Confidence Interval of Melanoma
Data

Wang and Wahba (1995) compared several bootstrap confidence intervals to Bayesian
confidence intervals for smoothing splines. Both bootstrap and Bayesian confidence
intervals are across-the-curve intervals, not point-wise intervals. They concluded that
bootstrap confidence intervals work as well as Bayesian intervals concerning average
coverage probability. Additionally, bootstrap confidence intervals appear to be better
for small sample sizes. Based on their simulation, the “percentile-t interval” bootstrap
interval performs better than the other types of bootstrap intervals.

Suppose that̂f�̂ and�̂ are the estimates off and� from the data. Assume that̂f�̂ is
the “true” f , and generate the bootstrap sample as follows:

y�i = f̂�̂(xi) + ��i ; i = 1; � � � ; n

where�� = (��1; � � � ; �
�

n)
T � N(0; �̂In�n). Denotef�

�̂
(xi) as the random variable

of the bootstrap estimate atxi. Repeat this processK times, so that at each pointxi,
you haveK bootstrap estimateŝf�̂(xi) or K realizations off�

�̂
(xi). For each fixed

xi, consider the following statisticD�

i , which is similar to a Student’st statistic:

D�

i = (f�
�̂
(xi)� f̂�̂(xi))=�̂i

�

where�̂i
� is the estimate of̂� based on theith bootstrap sample.
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Suppose��=2 and�1��=2 are the lower and upper�=2 points of the empirical distri-
bution ofD�

i . The(1� �)100% bootstrap confidence interval is defined as

(f̂�̂(xi)� �1��=2�̂; f̂�̂(xi)� ��=2�̂)

Bootstrap confidence intervals are easy to interpret and can be used with any distri-
bution. However, because they requireK model fits, their construction is computa-
tionally intensive.

The multiple dependent variables feature in PROC TPSPLINE enables you to fit mul-
tiple models with the same independent variables. The procedure calculates the ma-
trix decomposition part of the calculations only once regardless of the number of
dependent variables in the model. These calculations are responsible for most of the
computing time used by the TPSPLINE procedure. This feature is particularly useful
when you need to generate a bootstrap confidence interval.

To construct a bootstrap confidence interval, perform the following tasks:

� Fit the data using PROC TPSPLINE and obtain estimatesf̂�̂(xi) and�̂.

� GenerateK bootstrap samples based onf̂�̂(xi) and�̂.

� Fit theK bootstrap samples with the TPSPLINE procedure to obtain estimates
of f̂�

�̂
(xi) and�̂�i .

� ComputeD�

i and the values��=2 and�1��=2.

The following statements illustrate this process:

proc tpspline data=melanoma;
model incidences = (year) /alpha = 0.05;
output out = result pred uclm lclm;

run;

The output from the initial PROC TPSPLINE analysis is displayed in Output 64.5.3.
The data setresult contains the predicted values and confidence limits from the anal-
ysis.
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Output 64.5.3. Output from PROC TPSPLINE for the Melanoma Data Set

The TPSPLINE Procedure
Dependent Variable: incidences

Summary of Input Data Set

Number of Non-Missing Observations 37
Number of Missing Observations 0
Unique Smoothing Design Points 37

Summary of Final Model

Number of Regression Variables 0
Number of Smoothing Variables 1
Order of Derivative in the Penalty 2
Dimension of Polynomial Space 2

Summary Statistics
of Final Estimation

log10(n*Lambda) -0.060735
Smoothing Penalty 0.517132
Residual SS 1.224264
Tr(I-A) 22.585173
Model DF 14.414827
Standard Deviation 0.232823

The following statements illustrate how you can obtain a bootstrap confidence inter-
val for theMelanoma data. The following statements create the data setbootstrap.
The observations are created with information from the preceding PROC TPSPLINE
execution; as displayed in Output 64.5.3,�̂ = 0:232823. The values off̂�̂(xi) are
stored in the data setresult in the variableP–incidence.

data bootstrap;
set result;
array y{1070} y1-y1070;
do i=1 to 1070;

y{i} = p_incidences + 0.232823*rannor(123456789);
end;
keep y1-y1070 p_incidences year;

run;

ods listing close;

proc tpspline data=bootstrap;
ods output FitStatistics=FitResult;
id p_incidences;
model y1-y1070 = (year);
output out=result2;

run;
ods listing;

The DATA step generates 1,070 bootstrap samples based on the previous estimate
from PROC TPSPLINE. For this data set, some of the bootstrap samples result in�s
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(selected by theGCV function) that cause problematic behavior. Thus, an additional
70 bootstrap samples are generated.

The ODS listing destination is closed before PROC TPSPLINE is invoked. The
model fits all they1–y1070 variables as dependent variables, and the models are
fit for all bootstrap samples simultaneously. The output data setresult2 contains the
variablesyear, y1–y1070, p–y1–p–y1070, andP–incidences.

The ODS OUTPUT statement writes the FitStatistics table to the data setFitResult.
The data setFitResult contains the two variables. They areParameter andValue.
TheFitResult data set is used in subsequent calculations forD�

i .

In the data setFitResult, there are 63 estimates with a standard deviation of zero,
suggesting that the estimates provide perfect fits of the data and are caused by�̂s that
are approximately equal to zero. For small sample sizes, there is a positive probability
that the� chosen by theGCV function will be zero (refer to Wang and Wahba 1995).

In the following steps, these cases are removed from the bootstrap samples as “bad”
samples: they represent failure of theGCV function.

The following SAS statements manipulate the data setFitResult, retaining the stan-
dard deviations for all bootstrap samples and mergingFitResult with the data set
result2, which contains the estimates for bootstrap samples. In the final data set
boot, theD�

i statistics are calculated.

data FitResult; set FitResult;
if Parameter="Standard Deviation";
keep Value;

run;

proc transpose data=sum2 out=sd prefix=sd;

data result2;
if _N_ = 1 then set sd;
set result2;

data boot;
set result2;
array y{1070} p_y1-p_y1070;
array sd{1070} sd1-sd1070;
do i=1 to 1070;

if sd{i} > 0 then do;
d = (y{i} - P_incidences)/sd{i};
obs = _N_;
output;

end;
end;
keep d obs P_incidences year;

run;

The following SAS statements retain the first 1000 bootstrap samples and calculate
the values��=2 and�1��=2 with � = 0:1.
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proc sort data=boot;
by obs;

run;

data boot;
set boot;

by obs;
retain n;

if first.obs then n=1;
else n=n+1;

if n > 1000 then delete;
run;

proc sort data=boot;
by obs error;

run;

data chi1 chi2 ;
set boot;
if (_N_ = (obs-1)*1000+50) then output chi1;
if (_N_ = (obs-1)*1000+950) then output chi2;

run;

proc sort data=result;
by year;

run;

proc sort data=chi1;
by year;

run;

proc sort data=chi2;
by year;

run;

data result;
merge result

chi1(rename=(d=chi05))
chi2(rename=(d=chi95));

keep year incidences P_incidences lower upper
LCLM_incidences UCLM_incidences;

lower = -chi95*0.232823 + P_incidences;
upper = -chi05*0.232823 + P_incidences;

label lower="Lower 95% CL (Bootstrap)"
upper="Upper 95% CL (Bootstrap)"
lclm_incidences="Lower 95% CL (Bayesian)"
uclm_incidences="Upper 95% CL (Bayesian)";

run;
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The data setresult contains the variablesyear, incidences, the TPSPLINE estimate
P–incidences, and the 90% Bayesian and 90% bootstrap confidence intervals.

The following statements produce Output 64.5.4:

symbol1 v=dot h=1pct ;
symbol2 i=join v=none l=1;
symbol3 i=join v=none l=33;
symbol4 i=join v=none l=33;
symbol5 i=join v=none l=43 c=green;
symbol6 i=join v=none l=43 c=green;

title1 ’Age-adjusted Melanoma Incidences for 37 years’;
proc gplot data=result;

plot incidences * year=1
p_incidences * year=2

lclm_incidences * year=3
uclm_incidences * year=3

lower * year=4
upper * year=4

/overlay legend=legend1
vaxis=axis1 haxis=axis2
frame cframe=ligr;

run;

Output 64.5.4 displays the plot of the variableincidences, the predicted values, and
the Bayesian and bootstrap confidence intervals.

The plot shows that the bootstrap confidence interval is similar to the Bayesian con-
fidence interval. However, the Bayesian confidence interval is symmetric around the
estimates, while the bootstrap confidence interval is not.

Output 64.5.4. Comparison of Bayesian and Bootstrap Confidence Interval for
Melanoma Data
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