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Chapter 65
The TRANSREG Procedure

Overview

The TRANSREG (transformation regression) procedure fits linear models, optionally
with spline and other nonlinear transformations, and it can be used to code experi-
mental designs prior to their use in other analyses.

The TRANSREG procedure fits many types of linear models, including

� ordinary regression and ANOVA

� metric and nonmetric conjoint analysis (Green and Wind 1975; de Leeuw,
Young, and Takane 1976)

� metric and nonmetric vector and ideal point preference mapping (Carroll 1972)

� simple, multiple, and multivariate regression with variable transformations
(Young, de Leeuw, and Takane 1976; Winsberg and Ramsay 1980; Breiman
and Friedman 1985)

� redundancy analysis (Stewart and Love 1968) with variable transformations
(Israels 1984)

� canonical correlation analysis with variable transformations (van der Burg and
de Leeuw 1983)

� response surface regression (Meyers 1976; Khuri and Cornell 1987) with vari-
able transformations

The data set can contain variables measured on nominal, ordinal, interval, and ratio
scales (Siegel 1956). Any mix of these variable types is allowed for the dependent
and independent variables. The TRANSREG procedure can transform

� nominal variables by scoring the categories to minimize squared error (Fisher
1938), or they can be expanded into dummy variables

� ordinal variables by monotonically scoring the ordered categories so that order
is weakly preserved (adjacent categories can be merged) and squared error is
minimized. Ties can be optimally untied or left tied (Kruskal 1964). Ordinal
variables can also be transformed to ranks.

� interval and ratio scale of measurement variables linearly or nonlinearly with
spline (de Boor 1978; van Rijckevorsel 1982) or monotone spline (Winsberg
and Ramsay 1980) transformations. In addition, smooth, logarithmic, exponen-
tial, power, logit, and inverse trigonometric sine transformations are available.

Transformations produced by the PROC TRANSREG multiple regression algorithm,
requesting spline transformations, are often similar to transformations produced by
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the ACE smooth regression method of Breiman and Friedman (1985). However,
ACE does not explicitly optimize a loss function (de Leeuw 1986), while PROC
TRANSREG always explicitly optimizes a squared-error loss function.

PROC TRANSREG extends the ordinary general linear model by providing optimal
variable transformations that are iteratively derived using the method of alternating
least squares (Young 1981). PROC TRANSREG iterates until convergence, alternat-
ing

� finding least-squares estimates of the parameters of the model given the current
scoring of the data (that is, the current vectors)

� finding least-squares estimates of the scoring parameters given the current set
of model parameters

For more background on alternating least-squares optimal scaling methods and trans-
formation regression methods, refer to Young, de Leeuw, and Takane (1976), Wins-
berg and Ramsay (1980), Young (1981), Gifi (1990), Schiffman, Reynolds, and
Young (1981), van der Burg and de Leeuw (1983), Israels (1984), Breiman and Fried-
man (1985), and Hastie and Tibshirani (1986). (These are just a few of the many
relevant sources.)

Getting Started

This section provides several examples that illustrate features of the TRANSREG
procedure.

Main-Effects ANOVA

This example shows how to use the TRANSREG procedure to code and fit a main-
effects ANOVA model. The input data set contains the dependent variablesY, factors
X1 andX2, and 11 observations. The following statements perform a main-effects
ANOVA:

title ’Introductory Main-Effects ANOVA Example’;

data A;
input Y X1 $ X2 $;
datalines;

8 a a
7 a a
4 a b
3 a b
5 b a
4 b a
2 b b
1 b b
8 c a
7 c a
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5 c b
2 c b
;

*---Fit a Main-Effects ANOVA model with 1, 0, -1 coding. ---;
proc transreg ss2;

model identity(Y) = class(X1 X2 / effects);
output coefficients replace;

run;

*---Print TRANSREG output data set---;
proc print label;

format Intercept -- X2a 5.2;
run;

Introductory Main-Effects ANOVA Example

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.88144 Converged

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 57.00000 19.00000 19.83 0.0005
Error 8 7.66667 0.95833
Corrected Total 11 64.66667

Root MSE 0.97895 R-Square 0.8814
Dependent Mean 4.66667 Adj R-Sq 0.8370
Coeff Var 20.97739

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 4.6666667 261.333 261.333 272.70 <.0001 Intercept
Class.X1a 1 0.8333333 4.167 4.167 4.35 0.0705 X1 a
Class.X1b 1 -1.6666667 16.667 16.667 17.39 0.0031 X1 b
Class.X2a 1 1.8333333 40.333 40.333 42.09 0.0002 X2 a

Figure 65.1. ANOVA Example Output from PROC TRANSREG

SAS OnlineDoc: Version 8
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The iteration history in Figure 65.1 shows that the final R-Square of 0.88144 is
reached on the first iteration.

This is followed by ANOVA, fit statistics, and regression tables. PROC TRANSREG
uses an effects (also called deviations from means or 0, 1, -1) coding in this example.

The TRANSREG procedure produces the data set displayed in Figure 65.2.

Introductory Main-Effects ANOVA Example

Obs _TYPE_ _NAME_ Y Intercept X1 a X1 b X2 a X1 X2

1 SCORE ROW1 8 1.00 1.00 0.00 1.00 a a
2 SCORE ROW2 7 1.00 1.00 0.00 1.00 a a
3 SCORE ROW3 4 1.00 1.00 0.00 -1.00 a b
4 SCORE ROW4 3 1.00 1.00 0.00 -1.00 a b
5 SCORE ROW5 5 1.00 0.00 1.00 1.00 b a
6 SCORE ROW6 4 1.00 0.00 1.00 1.00 b a
7 SCORE ROW7 2 1.00 0.00 1.00 -1.00 b b
8 SCORE ROW8 1 1.00 0.00 1.00 -1.00 b b
9 SCORE ROW9 8 1.00 -1.00 -1.00 1.00 c a

10 SCORE ROW10 7 1.00 -1.00 -1.00 1.00 c a
11 SCORE ROW11 5 1.00 -1.00 -1.00 -1.00 c b
12 SCORE ROW12 2 1.00 -1.00 -1.00 -1.00 c b
13 M COEFFI Y . 4.67 0.83 -1.67 1.83
14 MEAN Y . . 5.50 3.00 6.50

Figure 65.2. Output Data Set from PROC TRANSREG

The output data set has three kinds of observations, identified by values of–TYPE–.

� When –TYPE–=’SCORE’, the observation contains information on the de-
pendent and independent variables as follows:

– Y is the original dependent variable.

– X1 andX2 are the independent classification variables, and theIntercept
throughX2 a columns contain the main effects design matrix that PROC
TRANSREG creates. The variable names areIntercept, X1a, X1b, and
X2a. Their labels are shown in the listing.

� When–TYPE–=’M COEFFI’, the observation contains coefficients of the fi-
nal linear model.

� When–TYPE–=’MEAN’, the observation contains the marginal means.

The observations with–TYPE–=’SCORE’ form the score partition of the data set,
and the observations with–TYPE–=’M COEFFI’ and–TYPE–=’MEAN’ form the
coefficient partition of the data set.
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Detecting Nonlinear Relationships

The TRANSREG procedure can detect nonlinear relationships among variables. For
example, suppose 400 observations are generated from the following function

t =
x

4
+ sin(x)

and data are created as follows

y = t+ �

where� is random normal error.

The following statements find a cubic spline transformation ofX with four knots. For
information on using splines and knots, see Example 65.1.

The following statements produce Figure 65.3 through Figure 65.4:

title ’Curve Fitting Example’;

*---Create An Artificial Nonlinear Scatter Plot---;
data Curve;

Pi=3.14159265359;
Pi4=4*Pi;
Increment=Pi4/400;
do X=Increment to Pi4 by Increment;

T=X/4 + sin(X);
Y=T + normal(7);
output;
end;

run;

*---Request a Spline Transformation of X---;
proc transreg data=Curve dummy;

model identity(Y)=spline(X / nknots=4);
output predicted;
id T;

run;

*---Plot the Results---;
goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot;
title;
axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
plot T*X=2 / &opts name=’tregin1’;
plot Y*X=1 / &opts name=’tregin2’;
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plot Y*X=1 T*X=2 PY*X=3 / &opts name=’tregin3’ overlay ;
symbol1 color=blue v=star i=none;

symbol2 color=yellow v=none i=join line=1;
symbol3 color=red v=none i=join line=2;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:tregin1 2:tregin3 3:tregin2;

run; quit;

PROC TRANSREG increases the squared multiple correlation from the original
value of 0.19945 to 0.47062. The plot ofT by X shows the original function, the
plot of Y by X shows the error-perturbed data, and the third plot shows the data, the
true function as a solid curve, and the regression function as the dashed curve. The
regression function closely approximates the true function.

Curve Fitting Example

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.74855 1.29047 0.19945
1 0.00000 0.00000 0.47062 0.27117 Converged

Algorithm converged.

Figure 65.3. Curve Fitting Example Output
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Figure 65.4. Plots for the Curve Fitting Example
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Syntax

The following statements are available in PROC TRANSREG.

PROC TRANSREG < DATA=SAS-data-set >
< OUTTEST=SAS-data-set >< a-options >< o-options > ;

MODEL < transform(dependents < / t-options >)
< transform(dependents < / t-options >)...> = >
transform(independents < / t-options >)
< transform(independents < / t-options >)...>< / a-options > ;

OUTPUT < OUT=SAS-data-set >< o-options > ;
ID variables ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

To use the TRANSREG procedure, you need the PROC TRANSREG and MODEL
statements. To produce an OUT= output data set, the OUTPUT statement is re-
quired. PROC TRANSREG enables you to specify the same options in more than
one statement. All of the MODEL statementa-options(algorithm options) and all of
the OUTPUT statemento-options(output options) can also be specified in the PROC
TRANSREG statement. You can abbreviate alla-options, o-options, and t-options
(transformation options) to their first three letters. This is a special feature of the
TRANSREG procedure and is not generally true of other SAS/STAT procedures. See
Table 65.1 on page 3377.

The rest of this section provides detailed syntax information for each of the preced-
ing statements, beginning with the PROC TRANSREG statement. The remaining
statements are described in alphabetical order.

PROC TRANSREG Statement

PROC TRANSREG < DATA=SAS-data-set >
< OUTTEST=SAS-data-set >< a-options >< o-options > ;

The PROC TRANSREG statement starts the TRANSREG procedure. Optionally,
this statement identifies an input and an OUTTEST= data set, specifies the algorithm
and other computational details, requests displayed output, and controls the contents
of the OUT= data set (which is created with the OUTPUT statement). The DATA=
and OUTTEST= options can appear only in the PROC TRANSREG statement.

The following table summarizes options available in the PROC TRANSREG state-
ment. Alla-optionsando-optionsare described in the sections on either the MODEL
or OUTPUT statement, in which these options can also be specified.
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Table 65.1. Options Available in the TRANSREG Procedure

Task Option Statement
Identify input data set
specifies input SAS data set DATA= PROC

Output data set with test statistics
specifies output test statistics data set OUTTEST= PROC

Input data set
specifies input observation type TYPE= MODEL
restarts iterations REITERATE MODEL

Specify method and control iterations
specifies minimum criterion change CCONVERGE= MODEL
specifies minimum data change CONVERGE= MODEL
specifies canonical dummy-variable initialization DUMMY MODEL
specifies maximum number of iterations MAXITER= MODEL
specifies iterative algorithm METHOD= MODEL
specifies number of canonical variables NCAN= MODEL
specifies singularity criterion SINGULAR= MODEL

Control missing data handling
includes monotone special missing values MONOTONE= MODEL
excludes observations with missing values NOMISS MODEL
unties special missing values UNTIE= MODEL

Control intercept and CLASS variables
CLASS dummy variable name prefix CPREFIX= MODEL
CLASS dummy variable label prefix LPREFIX= MODEL
no intercept or centering NOINT MODEL
order of class variable levels ORDER= MODEL
controls output of reference levels REFERENCE= MODEL
CLASS dummy variable label separators SEPARATORS= MODEL

Control displayed output
confidence limits alpha ALPHA= MODEL
displays parameter estimate confidence limits CL MODEL
displays model specification details DETAIL MODEL
displays iteration histories HISTORY MODEL
suppresses displayed output NOPRINT MODEL
suppresses the iteration histories SHORT MODEL
displays regression results SS2 MODEL
displays ANOVA table TEST MODEL
displays conjoint part-worth utilities UTILITIES MODEL

Control standardization
fits additive model ADDITIVE MODEL
do not zero constant variables NOZEROCONSTANT MODEL
specifies transformation standardization TSTANDARD= MODEL

Predicted values, residuals, scores
outputs canonical scores CANONICAL OUTPUT
outputs individual confidence limits CLI OUTPUT

SAS OnlineDoc: Version 8
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Table 65.1. (continued)

Task Option Statement
outputs mean confidence limits CLM OUTPUT
specifies design matrix coding DESIGN= OUTPUT
outputs leverage LEVERAGE OUTPUT
does not restore missing values NORESTOREMISSING OUTPUT
suppresses output of scores NOSCORES OUTPUT
outputs predicted values PREDICTED OUTPUT
outputs redundancy variables REDUNDANCY= OUTPUT
outputs residuals RESIDUALS OUTPUT

Output data set replacement
replaces dependent variables DREPLACE OUTPUT
replaces independent variables IREPLACE OUTPUT
replaces all variables REPLACE OUTPUT

Output data set coefficients
outputs coefficients COEFFICIENTS OUTPUT
outputs ideal point coordinates COORDINATES OUTPUT
outputs marginal means MEANS OUTPUT
outputs redundancy analysis coefficients MREDUNDANCY OUTPUT

Output data set variable name prefixes
dependent variable approximations ADPREFIX= OUTPUT
independent variable approximations AIPREFIX= OUTPUT
canonical dependent variables CDPREFIX= OUTPUT
conservative individual lower CL CILPREFIX= OUTPUT
canonical independent variables CIPREFIX= OUTPUT
conservative-individual-upper CL CIUPREFIX= OUTPUT
conservative-mean-lower CL CMLPREFIX= OUTPUT
conservative-mean-upper CL CMUPREFIX= OUTPUT
METHOD=MORALS untransformed dependent DEPENDENT= OUTPUT
liberal-individual-lower CL LILPREFIX= OUTPUT
liberal-individual-upper CL LIUPREFIX= OUTPUT
liberal-mean-lower CL LMLPREFIX= OUTPUT
liberal-mean-upper CL LMUPREFIX= OUTPUT
residuals RDPREFIX= OUTPUT
predicted values PPREFIX= OUTPUT
redundancy variables RPREFIX= OUTPUT
transformed dependents TDPREFIX= OUTPUT
transformed independents TIPREFIX= OUTPUT

Output data set macros
creates macro variables MACRO OUTPUT

Output data set details
dependent and independent approximations APPROXIMATIONS OUTPUT
canonical correlation coefficients CCC OUTPUT
canonical elliptical point coordinate CEC OUTPUT
canonical point coordinates CPC OUTPUT
canonical quadratic point coordinates CQC OUTPUT
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Table 65.1. (continued)

Task Option Statement
approximations to transformed dependents DAPPROXIMATIONS OUTPUT
approximations to transformed independents IAPPROXIMATIONS OUTPUT
elliptical point coordinates MEC OUTPUT
point coordinates MPC OUTPUT
quadratic point coordinates MQC OUTPUT
multiple regression coefficients MRC OUTPUT

DATA=SAS-data-set
specifies the SAS data set to be analyzed. If you do not specify the DATA= option,
PROC TRANSREG uses the most recently created SAS data set. The data set must
be an ordinary SAS data set; it cannot be a special TYPE= data set.

OUTTEST=SAS-data-set
specifies an output data set to contain hypothesis tests results. When you specify
the OUTTEST= option, the data set contains ANOVA results. When you specify the
SS2a-option, regression tables are also output. When you specify the UTILITIES
o-option, conjoint analysis part-worth utilities are also output.

BY Statement

BY variables ;

You can specify a BY statement with PROC TRANSREG to obtain separate analy-
ses on observations in groups defined by the BY variables. When a BY statement
appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

� Sort the data using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY
statement for the TRANSREG procedure. The NOTSORTED option does not
mean that the data are unsorted but rather that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

� Create an index on the BY variables using the DATASETS procedure.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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FREQ Statement

FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other
values in the observation, specify the variable’s name in a FREQ statement. PROC
TRANSREG then treats the data set as if each observation appearedn times, where
n is the value of the FREQ variable for the observation. Noninteger values of the
FREQ variable are truncated to the largest integer less than the FREQ value. The
observation is used in the analysis only if the value of the FREQ statement variable
is greater than or equal to 1.

ID Statement

ID variables ;

The ID statement includes additional character or numeric variables in the OUT=
data set. The variables must be contained in the input data set.

MODEL Statement

MODEL < transform(dependents < / t-options >)
< transform(dependents < / t-options >)...> = >
transform(independents < / t-options >)
< transform(independents < / t-options >)...>< / a-options > ;

The MODEL statement specifies the dependent and independent variables (depen-
dentsandindependents, respectively) and specifies the transformation (transform) to
apply to each variable. Only one MODEL statement can appear in the TRANSREG
procedure. Thet-optionsare transformation options, and thea-optionsare the al-
gorithm options. Thet-optionsprovide details for the transformation; these depend
on the transformchosen. Thet-optionsare listed after a slash in the parentheses
that enclose the variable list (eitherdependentsor independents). Thea-optionscon-
trol the algorithm used, details of iteration, details of how the intercept and dummy
variables are generated, and displayed output details. Thea-optionsare listed after
the entire model specification (thedependents, independents, transformations, and
t-options) and after a slash. You can also specify the algorithm options in the PROC
TRANSREG statement. When you specify the DESIGNo-option, dependentsand
an equal sign are not required. The operators “*”, “|”, and “@” from the GLM pro-
cedure are available for interactions with the CLASS expansion and the IDENTITY
transformation.
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Class(a * b ...
c | d ...
e | f ... @ n)

Identity(a * b ...
c | d ...
e | f ... @ n)

In addition, transformations and spline expansions can be crossed with classification
variables:

transform (var) * class(group)
transform (var) | class(group)

See the “Types of Effects” section on page 1518 in Chapter 30, “The GLM
Procedure,” for a description of the @, *, and | operators and see the “Model State-
ment Usage” section on page 3413 for information on how to use these operators in
PROC TRANSREG. Note that nesting is not allowed in PROC TRANSREG.

The next three sections discuss the transformations available (transforms) (see the
“Families of Transformations” section on page 3381), the transformation options (t-
options) (see the “Transformation Options (t-options)” section on page 3387), and
the algorithm options (a-options) (see the “Algorithm Options (a-options)” section
on page 3393).

Families of Transformations
In the MODEL statement,transformspecifies a transformation in one of four fami-
lies.

Variable expansions preprocess the specified variables, replacing them with
more variables.

Nonoptimal transformations preprocess the specified variables, replacing each one
with a single new nonoptimal, nonlinear transforma-
tion.

Optimal transformations replace the specified variables with new, iteratively de-
rived optimal transformation variables that fit the spec-
ified model better than the original variable (except
for contrived cases where the transformation fits the
model exactly as well as the original variable).

Other transformations are the IDENTITY and SSPLINE transformations.
These do not fit into the preceding categories.

The following table summarizes the transformations in each family.
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Members
Family of Family
Variable expansions
B-spline basis BSPLINE
set of dummy variables CLASS
elliptical response surface EPOINT
circular response surface POINT
piecewise polynomial basis PSPLINE
quadratic response surface QPOINT

Nonoptimal transformations
inverse trigonometric sine ARSIN
exponential EXP
logarithm LOG
logit LOGIT
raises variables to specified power POWER
transforms to ranks RANK
noniterative smoothing spline SMOOTH

Optimal transformations
linear LINEAR
monotonic, ties preserved MONOTONE
monotonic B-spline MSPLINE
optimal scoring OPSCORE
B-spline SPLINE
monotonic, ties not preserved UNTIE

Other transformations
identity, no transformation IDENTITY
iterative smoothing spline SSPLINE

You can use any transformation with either dependent or independent variables (ex-
cept the SMOOTH transformation, which can be used only with independent vari-
ables). However, the variable expansions are usually more appropriate for indepen-
dent variables.

Thetransformis followed by a variable (or list of variables) enclosed in parentheses.
Optionally, depending on thetransform, the parentheses can also containt-options,
which follow the variables and a slash. For example,

model log(y)=class(x);

finds a LOG transformation ofY and performs a CLASS expansion ofX.

model identity(y) = spline(x1 x2 / nknots=3);

The preceding statement finds SPLINE transformations ofX1 and X2. The
NKNOTS= t-optionused with the SPLINE transformation specifies three knots. The
IDENTITY(Y) transformation specifies thatY is not to be transformed.
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The rest of this section provides syntax details for members of the four families
of transformations. Thet-optionsare discussed in the “Transformation Options (t-
options)” section on page 3387.

Variable Expansions
The TRANSREG procedure performs variable expansions before iteration begins.
Variable expansions expand the original variables into a typically larger set of new
variables. The original variables are those that are listed in parentheses aftertrans-
form, and they are sometimes referred to by the name of thetransform. For exam-
ple, in CLASS(X1 X2), X1 andX2 are sometimes referred to as CLASS expansion
variables or simply CLASS variables, and the expanded variables are referred to as
dummy variables. Similarly, in POINT(Dim1 Dim2), Dim1 andDim2 are sometimes
referred to as POINT variables.

The resulting variables are not transformed by the iterative algorithms after the ini-
tial preprocessing. Observations with missing values for these types of variables are
excluded from the analysis.

The POINT, EPOINT, and QPOINT variable expansions are used in preference map-
ping analyses (also called PREFMAP, external unfolding, ideal point regression)
(Carroll 1972) and for response surface regressions. These three expansions cre-
ate circular, elliptical, and quadratic response or preference surfaces (see the “Point
Models” section on page 3424). The CLASS variable expansion is used for main
effects ANOVA.

The following list provides syntax and details for the variable expansiontransforms.

BSPLINE
BSP

expands each variable to a B-spline basis. You can specify the DEGREE=,
KNOTS=, NKNOTS=, and EVENLYt-optionswith the BSPLINE expansion. When
DEGREE=n (3 by default) withk knots (0 by default),n + k + 1 variables are
created. In addition, the original variable appears in the OUT= data set before the
ID variables. For example, BSPLINE(X) expandsX into X–0 X–1 X–2 X–3 and
outputsX as well. TheX–: variables contain the B-spline (which are the same basis
vectors that the SPLINE and MSPLINE transformations use internally). The columns
of the BSPLINE expansion sum to a column of ones, so an implicit intercept model
is fit when the BSPLINE expansion is specified. If you specify the BSPLINE ex-
pansion for more than one variable, the model is less than full rank. See the section
“SPLINE, BSPLINE, and PSPLINE Comparisons” on page 3433. Variables follow-
ing BSPLINE must be numeric, and they are typically continuous.

CLASS
CLA

expands the variables to a set of dummy variables. For example, CLASS(X1 X2) is
used for a simple main-effects model, CLASS(X1 | X2) fits a main-effects and inter-
actions model, and CLASS(X1|X2|X3|X4@2 X1*X2*X3) creates all main effects,
all two-way interactions, and one three-way interaction. See the “Model Statement
Usage” section on page 3413 for information on how to use the operators @, *, and |
in PROC TRANSREG. To determine class membership, PROC TRANSREG uses the
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values of the formatted variables. Variables following CLASS can be either character
or numeric; numeric variables should be discrete.

EPOINT
EPO

expands the variables for an elliptical response surface regression or for an elliptical
ideal point regression. Specify the COORDINATESo-option to output PREFMAP
ideal elliptical point model coordinates to the OUT= data set. Each axis of the el-
lipse (or ellipsoid) is oriented in the same direction as one of the variables. The
EPOINT expansion creates a new variable for each original variable. The value of
each new variable is the square of each observed value for the corresponding paren-
thesized variable. The regression analysis then uses both sets of variables (original
and squared). Variables following EPOINT must be numeric, and they are typically
continuous.

POINT
POI

expands the variables for a circular response surface regression or for a circular ideal
point regression. Specify the COORDINATESo-option to output PREFMAP ideal
point model coordinates to the OUT= data set. The POINT expansion creates a new
variable having a value for each observation that is the sums of squares of all the
POINT variables. This new variable is added to the set of variables and is used in
the regression analysis. For more on ideal point regression, refer to Carroll (1972).
Variables following POINT must be numeric, and they are typically continuous.

PSPLINE
PSP

expands each variable to a piecewise polynomial basis. You can specify the DE-
GREE=, KNOTS=, NKNOTS=, and EVENLYt-options with PSPLINE. When
DEGREE=n (3 by default) withk knots (0 by default),n+k variables are created. In
addition, the original variable appears in the OUT= data set before the ID variables.
For example, PSPLINE(X / NKNOTS=1) expandsX into X–1 X–2 X–3 X–4 and
outputsX as well. Unlike BSPLINE, an intercept is not implicit in the columns of
PSPLINE. Refer to Smith (1979) for a good introduction to piecewise polynomial
splines. Also see the section “SPLINE, BSPLINE, and PSPLINE Comparisons” on
page 3433. Variables following PSPLINE must be numeric, and they are typically
continuous.

QPOINT
QPO

expands the variables for a quadratic response surface regression or for a quadratic
ideal point regression. Specify the COORDINATESo-option to output PREFMAP
quadratic ideal point model coordinates to the OUT= data set. Form QPOINT vari-
ables,m(m+1)=2 new variables are created containing the squares and crossproducts
of the original variables. The regression analysis uses both sets (original and crossed).
Variables following QPOINT must be numeric, and they are typically continuous.

Nonoptimal Transformations
Like variable expansions, nonoptimal transformations are computed before the iter-
ative algorithm begins. Nonoptimal transformations create a single new transformed
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variable that replaces the original variable. The new variable is not transformed by
the subsequent iterative algorithms (except for a possible linear transformation with
missing value estimation).

The following list provides syntax and details for nonoptimal variable transforma-
tions.

ARSIN
ARS

finds an inverse trigonometric sine transformation. Variables following ARSIN must
be numeric, in the interval(�1:0 � X � 1:0), and they are typically continuous.

EXP
exponentiates variables (the variableX is transformed toaX). To specify the value
of a, use the PARAMETER=t-option. By default,a is the mathematical constant
e = 2:718 : : :. Variables following EXP must be numeric, and they are typically
continuous.

LOG
transforms variables to logarithms (the variableX is transformed tologa(X)). To
specify the base of the logarithm, use the PARAMETER=t-option. The default is a
natural logarithm with basee = 2:718 : : :. Variables following LOG must be numeric
and positive, and they are typically continuous.

LOGIT
finds a logit transformation on the variables. The logit ofX is log(X=(1�X)). Unlike
other transformations, LOGIT does not have a three-letter abbreviation. Variables
following LOGIT must be numeric, in the interval(0:0 < X < 1:0), and they are
typically continuous.

POWER
POW

raises variables to a specified power (the variableX is transformed toXa). You must
specify the power parametera by specifying the PARAMETER=t-option following
the variables:

power(variable / parameter=number)

You can use POWER for squaring variables (PARAMETER=2), reciprocal transfor-
mations (PARAMETER=�1), square roots (PARAMETER=0.5), and so on. Vari-
ables following POWER must be numeric, and they are typically continuous.

RANK
RAN

transforms variables to ranks. Ranks are averaged within ties. The smallest input
value is assigned the smallest rank. Variables following RANK must be numeric.

SMOOTH
SMO

is a noniterative smoothing spline transformation. You can specify the smoothing
parameter with either the SM= or the PARAMETER=t-option. The default smooth-
ing parameter is SM=0. Variables following SMOOTH must be numeric, and they

SAS OnlineDoc: Version 8



3386 � Chapter 65. The TRANSREG Procedure

are typically continuous. The SMOOTH transformation can be used only with in-
dependent variables. For more information, see the “Smoothing Splines” section on
page 3415.

Optimal Transformations
Optimal transformations are iteratively derived. Missing values for these types of
variables can be optimally estimated (see the “Missing Values” section on page 3418).

The following list provides syntax and details for optimal transformations.

LINEAR
LIN

finds an optimal linear transformation of each variable. For variables with no missing
values, the transformed variable is the same as the original variable. For variables
with missing values, the transformed nonmissing values have a different scale and
origin than the original values. Variables following LINEAR must be numeric.

MONOTONE
MON

finds a monotonic transformation of each variable, with the restriction that ties are
preserved. The Kruskal (1964) secondary least-squares monotonic transformation is
used. This transformation weakly preserves order and category membership (ties).
Variables following MONOTONE must be numeric, and they are typically discrete.

MSPLINE
MSP

finds a monotonically increasing B-spline transformation with monotonic coefficients
(de Boor 1978; de Leeuw 1986) of each variable. You can specify the DEGREE=,
KNOTS=, NKNOTS=, and EVENLYt-optionswith MSPLINE. By default, PROC
TRANSREG uses a quadratic spline. Variables following MSPLINE must be nu-
meric, and they are typically continuous.

OPSCORE
OPS

finds an optimal scoring of each variable. The OPSCORE transformation assigns
scores to each class (level) of the variable. Fisher’s (1938) optimal scoring method
is used. Variables following OPSCORE can be either character or numeric; numeric
variables should be discrete.

SPLINE
SPL

finds a B-spline transformation (de Boor 1978) of each variable. By default, PROC
TRANSREG uses a cubic polynomial transformation. You can specify the DE-
GREE=, KNOTS=, NKNOTS=, and EVENLYt-optionswith SPLINE. Variables fol-
lowing SPLINE must be numeric, and they are typically continuous.

UNTIE
UNT

finds a monotonic transformation of each variable without the restriction that ties
are preserved. The TRANSREG procedure uses the Kruskal (1964) primary least-
squares monotonic transformation method. This transformation weakly preserves
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order but not category membership (it may untie some previously tied values). Vari-
ables following UNTIE must be numeric, and they are typically discrete.

Other Transformations
IDENTITY
IDE

specifies variables that are not changed by the iterations. Typically, the IDENTITY
transformation is used with a simple variable list, such as IDENTITY(X1-X5). How-
ever, you can also specify interaction terms. For example, IDENTITY(X1 | X2) cre-
atesX1, X2, and the productX1*X2; and IDENTITY(X1 | X2 | X3) createsX1, X2,
X1*X2, X3, X1*X3, X2*X3, andX1*X2*X3. See the “Model Statement Usage”
section on page 3413 for information on how to use the operators @, *, and | in
PROC TRANSREG.

The IDENTITY transformation is used for variables when no transformation and
no missing data estimation are desired. However, the REFLECTt-option, the AD-
DITIVE a-option, and the TSTANDARD=Z, and TSTANDARD=CENTER options
can linearly transform all variables, including IDENTITY variables, after the itera-
tions. Observations with missing values in IDENTITY variables are excluded from
the analysis, and no optimal scores are computed for missing values in IDENTITY
variables. Variables following IDENTITY must be numeric.

SSPLINE
SSP

finds an iterative smoothing spline transformation of each variable. The SSPLINE
transformation does not generally minimize squared error. You can specify the
smoothing parameter with either the SM=t-option or the PARAMETER=t-option.
The default smoothing parameter is SM=0. Variables following SSPLINE must be
numeric, and they are typically continuous.

Transformation Options (t-options)
If you use a nonoptimal, optimal, or other transformation, you can uset-options,
which specify additional details of the transformation. Thet-optionsare specified
within the parentheses that enclose variables and are listed after a slash. You can use
t-optionswith both dependent and independent variables. For example,

proc transreg;
model identity(y)=spline(x / nknots=3);
output;

run;

The preceding statements find an optimal variable transformation (SPLINE) of
the independent variable, and they use at-option to specify the number of knots
(NKNOTS=). The following is a more complex example:

proc transreg;
model mspline(y / nknots=3)=class(x1 x2 / effects);
output;

run;
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These statements find a monotone spline transformation (MSPLINE with three knots)
of the dependent variable and perform a CLASS expansion with effects coding of the
independents.

The following sections discuss thet-optionsavailable for nonoptimal, optimal, and
other transformations.

The following table summarizes thet-options.

Table 65.2. t-options Available in the MODEL Statement

Task Option
Nonoptimal transformation t-options
uses original mean and variance ORIGINAL

Parameter t-options
specifies miscellaneous parameters PARAMETER=
specifies smoothing parameter SM=

Spline t-options
specifies the degree of the spline DEGREE=
spaces the knots evenly EVENLY
specifies the interior knots or break points KNOTS=
createsn knots NKNOTS=

CLASS Variable t-options
CLASS dummy variable name prefix CPREFIX=
requests a deviations-from-means coding DEVIATIONS
requests a deviations-from-means coding EFFECTS
CLASS dummy variable label prefix LPREFIX=
order of class variable levels ORDER=
CLASS dummy variable label separators SEPARATORS=
controls reference levels ZERO=

Other t-options
operations occur after the expansion AFTER
renames variables NAME=
reflects the variable around the mean REFLECT
specifies transformation standardization TSTANDARD=

Nonoptimal Transformation t-options
ORIGINAL
ORI

matches the variable’s final mean and variance to the mean and variance of the origi-
nal variable. By default, the mean and variance are based on the transformed values.
The ORIGINAL t-option is available for all of the nonoptimal transformations.
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Parameter t-options
PARAMETER=number
PAR=number

specifies the transformation parameter. The PARAMETER=t-option is available for
the EXP, LOG, POWER, SMOOTH, and SSPLINE transformations. For EXP, the pa-
rameter is the value to be exponentiated; for LOG, the parameter is the base value; and
for POWER, the parameter is the power. For SMOOTH and SSPLINE, the parame-
ter is the raw smoothing parameter. (You can specify a SAS/GRAPH-style smooth-
ing parameter with the SM=t-option.) The default for the PARAMETER=t-option
for the LOG and EXP transformations ise = 2:718 : : :. The default parameter for
SMOOTH and SSPLINE is computed from SM=0. For the POWER transformation,
you must specify the PARAMETER=t-option; there is no default.

SM=n
specifies a SAS/GRAPH-style smoothing parameter in the range 0 to 100. You can
specify the SM=t-option only with the SMOOTH and SSPLINE transformations.
The smoothness of the function increases as the value of the smoothing parameter
increases. By default, SM=0.

Spline t-options
The following t-optionsare available with the SPLINE and MSPLINE optimal trans-
formations and the PSPLINE and BSPLINE expansions.

DEGREE=n
DEG=n

specifies the degree of the spline transformation. The degree must be a nonnegative
integer. The defaults are DEGREE=3 for SPLINE, PSPLINE, and BSPLINE vari-
ables and DEGREE=2 for MSPLINE variables.

The polynomial degree should be a small integer, usually 0, 1, 2, or 3. Larger values
are rarely useful. If you have any doubt as to what degree to specify, use the default.

EVENLY
EVE

is used with the NKNOTS=t-option to space the knots evenly. The differences be-
tween adjacent knots are constant.

If you specify NKNOTS=k, k knots are created at

minimum+ i((maximum�minimum)=(k + 1))

for i = 1; : : : ; k. For example, if you specify

spline(X / knots=2 evenly)

and the variableX has a minimum of 4 and a maximum of 10, then the two interior
knots are 6 and 8. Without the EVENLYt-option, the NKNOTS=t-option places
knots at percentiles, so the knots are not evenly spaced.

SAS OnlineDoc: Version 8



3390 � Chapter 65. The TRANSREG Procedure

KNOTS=number-list | n TO m BY p
KNO=number-list | n TO m BY p

specifies the interior knots or break points. By default, there are no knots. The first
time you specify a value in the knot list, it indicates a discontinuity in thenth (from
DEGREE=n) derivative of the transformation function at the value of the knot. The
second mention of a value indicates a discontinuity in the(n� 1)th derivative of the
transformation function at the value of the knot. Knots can be repeated any number
of times for decreasing smoothness at the break points, but the values in the knot list
can never decrease.

You cannot use the KNOTS=t-optionwith the NKNOTS=t-option. You should keep
the number of knots small (see the section “Specifying the Number of Knots” on
page 3431).

NKNOTS=n
NKN=n

createsn knots, the first at the100=(n+1) percentile, the second at the200=(n+1)
percentile, and so on. Knots are always placed at data values; there is no interpola-
tion. For example, if NKNOTS=3, knots are placed at the twenty-fifth percentile, the
median, and the seventy-fifth percentile. By default, NKNOTS=0. The NKNOTS=
t-optionmust be� 0.

You cannot use the NKNOTS=t-optionwith the KNOTS=t-option.

You should keep the number of knots small (see the section “Specifying the Number
of Knots” on page 3431).

CLASS Variable t-options
CPREFIX=n | number-list
CPR=n | number-list

specifies the number of first characters of a CLASS expansion variable’s name to
use in constructing names for dummy variables. When CPREFIX= is specified as
an a-option (see the description of the CPREFIX=a-option on page 3396) or an
o-option, it specifies the default for all CLASS variables. When you specify CPRE-
FIX= as a t-option, it overrides the default only for selected variables. A differ-
ent CPREFIX= value can be specified for each CLASS variable by specifying the
CPREFIX=number-listt-option, like the ZERO=formatted-value-listt-option.

DEVIATIONS
DEV
EFFECTS
EFF

requests a deviations-from-means coding of CLASS variables. The coded design
matrix has values of 0, 1, and�1 for reference levels. This coding is referred to as
“deviations-from-means,” “effects,” “center-point,” or “full-rank” coding.

LPREFIX=n | number-list
LPR=n | number-list

specifies the number of first characters of a CLASS expansion variable’s label (or
name if no label is specified) to use in constructing labels for dummy variables. When
LPREFIX= is specified as ana-option(see the description of the LPREFIX=a-option
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on page 3396) or ano-option, it specifies the default for all CLASS variables. When
you specify LPREFIX= as at-option, it overrides the default only for selected vari-
ables. A different LPREFIX= value can be specified for each CLASS variable by
specifying the LPREFIX=number-listt-option, like the ZERO=formatted-value-list
t-option.

ORDER=DATA | FREQ | FORMATTED | INTERNAL
ORD=DAT | FRE | FOR | INT

specifies the order in which the CLASS variable levels are to be reported. The default
is ORDER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL,
the sort order is machine dependent. When ORDER= is specified as ana-option
(see the description of the ORDER=a-option on page 3398) or as ano-option, it
specifies the default ordering for all CLASS variables. When you specify ORDER=
as at-option, it overrides the default ordering only for selected variables. You can
specify a different ORDER= value for each CLASS specification.

SEPARATORS=’ string-1 ’<’string-2 ’ >
SEP=’string-1 ’<’string-2 ’ >

specifies separators for creating CLASS expansion variable labels. By default, SEPA-
RATORS=’ ’ ’ * ’ (“blank” and “blank asterisk blank”). When SEPARATORS=
is specified as ana-option (see the description of the SEPARATORS=a-optionon
page 3399) or ano-option, it specifies the default separators for all CLASS variables.
When you specify SEPARATORS= as at-option, it overrides the default only for se-
lected variables. You can specify a different SEPARATORS= value for each CLASS
specification.

ZERO=FIRST | LAST | NONE | SUM
ZER=FIR | LAS | NON | SUM
ZERO=’formatted-value ’ <’formatted-value ’ ...>

is used with CLASS variables. The default is ZERO=LAST.

The specification CLASS(variable / ZERO=FIRST) sets to missing the dummy vari-
able for the first of the sorted categories, implying a zero coefficient for that category.

The specification CLASS(variable / ZERO=LAST) sets to missing the dummy vari-
able for the last of the sorted categories, implying a zero coefficient for that category.

The specification CLASS(variable / ZERO=’formatted-value’) sets to missing the
dummy variable for the category with a formatted value that matches ’formatted-
value’, implying a zero coefficient for that category. With ZERO=formatted-value-
list, the first formatted value applies to the first variable in the specification, the sec-
ond formatted value applies to the next variable that was not previously mentioned
and so on. For example, CLASS(A A*B B B*C C / ZERO=’x’ ’y’ ’z’) specifies that
the reference level forA is ’x’, for B is ’y’, and for C is ’z’. With ZERO=’formatted-
value’, the procedure first looks for exact matches between the formatted values and
the specified value. If none are found, leading blanks are stripped from both and the
values are compared again. If zero or two or more matches are found, warnings are
issued.

The specifications ZERO=FIRST, ZERO=LAST, and ZERO=’formatted-value’ are
used for reference cell models. TheIntercept parameter estimate is the marginal
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mean for the reference cell, and the other marginal means are obtained by adding the
intercept to the dummy variable coefficients.

The specification CLASS(variable / ZERO=NONE) sets to missing none of the
dummy variables. The columns of the expansion sum to a column of ones, so an im-
plicit intercept model is fit. If you specify ZERO=NONE for more than one variable,
the model is less than full rank. In the model MODEL IDENTITY(Y) = CLASS(X /
ZERO=NONE), the coefficients are cell means.

The specification CLASS(variable / ZERO=SUM) sets to missing none of the dummy
variables, and the coefficients for the dummy variables created from the variable sum
to 0. This creates a less-than-full-rank model, but the coefficients are uniquely deter-
mined due to the sum-to-zero constraint.

In the presence of iterative transformations, hypothesis tests for ZERO=NONE and
ZERO=SUM levels are not exact; they are liberal because a model with an explicit
intercept is fit inside the iterations. There is no provision for adjusting the transfor-
mations while setting to 0 a parameter that is redundant given the explicit intercept
and the other parameters.

Other t-options
AFTER
AFT

requests that certain operations occur after the expansion. Thist-option affects the
NKNOTS= t-option when the SPLINE or MSPLINE transformation is crossed with
a CLASS specification. For example, if the original spline variable (1 2 3 4 5 6 7 8
9) is expanded into the three variables (1 2 3 0 0 0 0 0 0), (0 0 0 4 5 6 0 0 0), and (0
0 0 0 0 0 7 8 9), then, by default, NKNOTS=1 would use the overall median of 5 as
the knot for all three variables. When you specify the AFTERt-option, the knots for
the three variables are 2, 5, and 8. Note that the structural zeros are ignored when the
internal knot list is created, but they are not ignored for the external knots.

You can also specify the AFTERt-optionwith the RANK and SMOOTH transforma-
tions. The following specifications compute ranks and smooth within groups, after
crossing, ignoring the structural zeros.

class(x / zero=none) | rank(z / after)
class(x / zero=none) | smooth(z / after)

NAME=(variable-list)
NAM=(variable-list)

renames variables as they are used in the MODEL statement. Thist-optionallows a
variable to be used more than once.

For example, ifX is a character variable, then the following step stores both the orig-
inal character variableX and a numeric variableXC that contains category numbers
in the OUT= data set.

proc transreg data=a;
model identity(y) = opscore(x / name=(xc));
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output;
id x;

run;

With the CLASS and IDENTITY transformations, which allow interaction effects,
the first name applies to the first variable in the specification, the second name ap-
plies to the next variable that was not previously mentioned, and so on. For example,
IDENTITY(A A*B B B*C C / NAME=(G H I)) specifies that the new name forA is
G, for B is H, and forC is I. The same assignment is used for the (not useful) spec-
ification IDENTITY(A A B B C C / NAME=(G H I)). For all transformsother than
CLASS and IDENTITY (all those in which interactions are not supported), repeated
variables are not handled specially. For example, SPLINE(A A B B C C / NAME=(A
G B H C I)) creates six variables, a copy ofA namedA, another copy ofA namedG,
a copy ofB namedB, another copy ofB namedH, a copy ofC namedC, and another
copy ofC namedI.

REFLECT
REF

reflects the transformation

y = �(y � �y) + �y

after the iterations are completed and before the final standardization and results cal-
culations. Thist-option is particularly useful with the dependent variable in a con-
joint analysis. When the dependent variable consists of ranks with the most preferred
combination assigned 1.0, the REFLECTt-option reflects the transformation so that
positive utilities mean high preference. (See Example 65.2.)

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z
TST=CEN | NOM | ORI | Z

specifies the standardization of the transformed variables for the hypothesis tests
and in the OUT= data set. By default, TSTANDARD=ORIGINAL. When TSTAN-
DARD= is specified as ana-option (see the description of the TSTANDARD=a-
option on page 3400) or ano-option, it determines the default standardization for
all variables. When you specify TSTANDARD= as at-option, it overrides the de-
fault standardization only for selected variables. You can specify a different TSTAN-
DARD= value for each transformation. For example, to perform a redundancy anal-
ysis with standardized dependent variables, specify

model identity(y1-y4 / tstandard=z) = identity(x1-x10);

Algorithm Options (a-options)
This section discusses the options that can appear in the PROC TRANSREG or
MODEL statements asa-options. They are listed after the entire model specifica-
tion and after a slash.
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For example,

proc transreg;
model spline(y / nknots=3)=log(x1 x2 / parameter=2)

/ nomiss maxiter=50;
output;

run;

In the preceding statements, NOMISS and MAXITER= area-options. (SPLINE and
LOG aretransforms, and NKNOTS= and PARAMETER= aret-options.) The state-
ments find a spline transformation with 3 knots onY and a base 2 logarithmic transfor-
mation onX1 andX2. The NOMISSa-optionexcludes all observations with missing
values, and the MAXITER=a-optionspecifies the maximum number of iterations.

Table 65.3. Options Available in the PROC TRANSREG or MODEL Statements

Task Option
Input data set
specifies input observation type TYPE=
restarts iterations REITERATE

Specify method and control iterations
specifies minimum criterion change CCONVERGE=
specifies minimum data change CONVERGE=
specifies canonical dummy-variable initialization DUMMY
specifies maximum number of iterations MAXITER=
specifies iterative algorithm METHOD=
specifies number of canonical variables NCAN=
specifies singularity criterion SINGULAR=

Control missing data handling
includes monotone special missing values MONOTONE=
excludes observations with missing values NOMISS
unties special missing values UNTIE=

Control intercept and CLASS variables
CLASS dummy variable name prefix CPREFIX=
CLASS dummy variable label prefix LPREFIX=
no intercept or centering NOINT
order of class variable levels ORDER=
controls output of reference levels REFERENCE=
CLASS dummy variable label separators SEPARATORS=

Control displayed output
confidence limits alpha ALPHA=
displays parameter estimate confidence limits CL
displays model specification details DETAIL
displays iteration histories HISTORY
suppresses displayed output NOPRINT
suppresses the iteration histories SHORT
displays regression results SS2
displays ANOVA table TEST
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Table 65.3. (continued)

Task Option
displays conjoint part-worth utilities UTILITIES

Control standardization
fits additive model ADDITIVE
do not zero constant variables NOZEROCONSTANT
specifies transformation standardization TSTANDARD=

The following list provides details on thesea-options.

ADDITIVE
ADD

creates an additive model by multiplying the values of each independent variable
(after the TSTANDARD= standardization) by that variable’s corresponding multi-
ple regression coefficient. This process scales the independent variables so that the
predicted-values variable for the final dependent variable is simply the sum of the
final independent variables. An additive model is a univariate multiple regression
model. As a result, the ADDITIVEa-option is not valid if METHOD=CANALS,
or if METHOD=REDUNDANCY or METHOD=UNIVARIATE with more than one
dependent variable.

ALPHA= number
ALP=number

specifies the level of significance for all of the confidence limits. By default,
ALPHA=0.05.

CCONVERGE=n
CCO=n

specifies the minimum change in the criterion being optimized (squared multiple cor-
relation for METHOD=MORALS and METHOD=UNIVARIATE, average squared
multiple correlation for METHOD=REDUNDANCY, average squared canonical cor-
relation for METHOD=CANALS) that is required to continue iterating. By default,
CCONVERGE=0.0.

CL
requests confidence limits on the parameter estimates in the displayed output.

CONVERGE=n
CON=n

specifies the minimum average absolute change in standardized variable scores that
is required to continue iterating. By default, CONVERGE=0.00001. Average change
is computed over only those variables that can be transformed by the iterations; that
is, all LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE, MSPLINE, and SS-
PLINE variables and nonoptimal transformation variables with missing values.
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CPREFIX=n
CPR=n

specifies the number of first characters of a CLASS expansion variable’s name to use
in constructing names for dummy variables. Dummy variable names are constructed
from the firstn characters of the CLASS expansion variable’s name and the first32�
n characters of the formatted CLASS expansion variable’s value. For example, if the
variableClassVariable has values 1, 2, and 3, then, by default, the dummy variables
are namedClassVariable1, ClassVariable2, andClassVariable3. However, with
CPREFIX=5, the dummy variables are namedClass1, Class2, andClass3. When
CPREFIX=0, dummy variable names are created entirely from the CLASS expansion
variable’s formatted values. Valid values range from -1 to 31, where -1 indicates
the default calculation and 0 to 31 are the number of prefix characters to use. The
default, -1, sets n to 32 - min(32, max(2,fl)), wherefl is the format length. When
CPREFIX= is specified as ana-optionor ano-option, it specifies the default for all
CLASS variables. When you specify CPREFIX= as at-option, it overrides the default
only for selected variables.

DETAIL
DET

reports on details of the model specification. For example, it reports the knots and
coefficients for splines, reference levels for CLASS variables, and so on.

DUMMY
DUM

provides a canonical dummy variable initialization. When there are no monotonicity
constraints and there is only one canonical variable in each set, PROC TRANSREG
(with the DUMMY a-option) can usually find the optimal solution in only one itera-
tion. The initialization iteration is number 0, which is slower and uses more memory
than other iterations. However, when there are no monotonicity constraints, when
there is only one canonical variable in each set, and when there is enough available
memory, specifying the DUMMYa-optioncan greatly decrease the amount of time
required to find the optimal transformations. Furthermore, by solving for the transfor-
mations directly instead of iteratively, PROC TRANSREG avoids certain nonoptimal
solutions.

HISTORY
HIS

displays the iteration histories even when the NOPRINTa-optionis specified.

LPREFIX=n
LPR=n

specifies the number of first characters of a CLASS expansion variable’s label (or
name if no label is specified) to use in constructing labels for dummy variables.
Dummy variable labels are constructed from the firstn characters of the CLASS
expansion variable’s name and the first127 � n characters of the formatted CLASS
expansion variable’s value. Valid values range from -1 to 127. Values of 0 to 127
specify the number of name or label characters to use. The default is -1, which spec-
ifies that PROC TRANSREG should pick a value depending on the length of the
prefix and the formatted class value. When LPREFIX= is specified as ana-option
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or ano-option, it determines the default for all CLASS variables. When you specify
LPREFIX= as at-option, it overrides the default only for selected variables.

MAXITER=n
MAX=n

specifies the maximum number of iterations. By default, MAXITER=30. A specifica-
tion of MAXITER=0 is allowed to save time when no transformations are requested.

METHOD=CANALS | MORALS | REDUNDANCY | UNIVARIATE
MET=CAN | MOR | RED | UNI

specifies the iterative algorithm. By default, METHOD=UNIVARIATE, unless you
specify options that cannot be handled by the UNIVARIATE algorithm. Specifically,
the default is METHOD=MORALS for the following situations:

� if you specify LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE,
MSPLINE, or SSPLINE transformations for the independent variables

� if you specify the ADDITIVEa-optionwith more than one dependent variable

� if you specify the IAPPROXIMATIONSo-option

CANALS specifies canonical correlation with alternating least squares. This
jointly transforms all dependent and independent variables to max-
imize the average of the firstn squared canonical correlations,
wheren is the value of the NCAN=a-option.

MORALS specifies multiple optimal regression with alternating least squares.
This transforms each dependent variable, along with the set of in-
dependent variables, to maximize the squared multiple correlation.

REDUNDANCY jointly transforms all dependent and independent variables to
maximize the average of the squared multiple correlations.

UNIVARIATE transforms each dependent variable to maximize the squared mul-
tiple correlation, while the independent variables are not trans-
formed.

MONOTONE=two-letters
MON=two-letters

specifies the first and last special missing value in the list of those special missing val-
ues to be estimated using within-variable order and category constraints. By default,
there are no order constraints on missing value estimates. Thetwo-lettersvalue must
consist of two letters in alphabetical order. For example, MONOTONE=DF means
that the estimate of .D must be less than or equal to the estimate of .E, which must be
less than or equal to the estimate of .F; no order constraints are placed on estimates
of .–, .A through .C, and .G through .Z. For details, see the “Missing Values” section
on page 3418.

NCAN=n
NCA=n

specifies the number of canonical variables to use in the METHOD=CANALS algo-
rithm. By default, NCAN=1. The value of the NCAN=a-optionmust be� 1.
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When canonical coefficients and coordinates are included in the OUT= data set, the
NCAN= a-optionalso controls the number of rows of the canonical coefficient ma-
trices in the data set. If you specify an NCAN= value larger than the minimum of
the number of dependent variables and the number of independent variables, PROC
TRANSREG displays a warning and sets the NCAN=a-option to the maximum al-
lowable value.

NOINT
NOI

omits the intercept from the OUT= data set and suppresses centering of data. The
NOINT a-option is not allowed with iterative transformations since there is no pro-
vision for optimal scaling without an intercept. The NOINTa-optionis allowed only
when there is no implicit intercept and when all of the data in a BY group absolutely
will not change during the iterations.

NOMISS
NOM

excludes all observations with missing values from the analysis, but does not exclude
them from the OUT= data set. If you omit the NOMISSa-option, PROC TRAN-
SREG simultaneously computes the optimal transformations of the nonmissing val-
ues and estimates the missing values that minimize squared error. For details, see the
“Missing Values” section on page 3418.

Casewise deletion of observations with missing values occurs when the NOMISS
a-option is specified, when there are missing values in expansions, when there are
missing values in METHOD=UNIVARIATE independent variables, when there are
weights less than or equal to 0, or when there are frequencies less than 1. Excluded
observations are output with a blank value for the–TYPE– variable, and they have
a weight of 0. They do not contribute to the analysis but are scored and transformed
assupplementaryor passive observations.

See the “Passive Observations” section on page 3424 for more information on ex-
cluded observations.

NOPRINT
NOP

suppresses the display of all output unless you specify the HISTORYa-option. The
NOPRINTa-optionwithout the HISTORYa-optiontemporarily disables the Output
Delivery System (ODS). For more information, see Chapter 15, “Using the Output
Delivery System.”

NOZEROCONSTANT
NOZERO
NOZ

specifies that constant variables are expected and should not be zeroed. By default,
constant variables are zeroed. This option is useful when PROC TRANSREG is used
to code designs for choice models. When these designs are very large, it may be more
efficient to code by subject and choice set. When attributes are constant within choice
set, specify the NOZEROCONSTANT option to get the correct results. You can
specify this option in the PROC TRANSREG, MODEL, and OUTPUT statements.
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ORDER=DATA | FREQ | FORMATTED | INTERNAL
ORD=DAT | FRE | FOR | INT

specifies the order in which the CLASS variable levels are to be reported. The default
is ORDER=INTERNAL. For ORDER=FORMATTED and ORDER=INTERNAL,
the sort order is machine dependent. When ORDER= is specified as ana-option
or ano-option, it determines the default ordering for all CLASS variables. When
you specify ORDER= as at-option, it overrides the default ordering only for selected
variables.

DATA sorts by order of appearance in the input data set.

FORMATTED sorts by formatted value.

FREQ sorts by descending frequency count; levels with the most observa-
tions appear first.

INTERNAL sorts by unformatted value.

REFERENCE=NONE | MISSING | ZERO
REF=NON | MIS | ZER

specifies how reference levels of CLASS variables are to be treated. The options are
REFERENCE=NONE, the default, in which reference levels are suppressed; REF-
ERENCE=MISSING, in which reference levels are displayed and output with miss-
ing values; and REFERENCE=ZERO, in which reference levels are displayed and
output with zeros. The REFERENCE= option can be specified in the PROC TRAN-
SREG, MODEL, or OUTPUT statement, and it can be independently specified for the
OUT= data set and the displayed output. When you specify it in only one statement,
it sets the option for both the displayed output and the OUT= data set.

REITERATE
REI

enables the TRANSREG procedure to use previous transformations as starting points.
The REITERATEa-option affects only variables that are iteratively transformed
(specified as LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE, MSPLINE, and
SSPLINE). For iterative transformations, the REITERATEa-optionrequests a search
in the input data set for a variable that consists of the value of the TDPREFIX= or
TIPREFIX= o-option followed by the original variable name. If such a variable is
found, it is used to provide the initial values for the first iteration. The final trans-
formation is a member of the transformation family defined by the original variable,
not the transformation family defined by the initialization variable. See the section
“Using the REITERATE Algorithm Option” on page 3421.

SEPARATORS=’ string-1 ’<’string-2 ’ >
SEP=’string-1 ’<’string-2 ’ >

specifies separators for creating CLASS expansion variable labels. By default, SEP-
ARATORS=’ ’ ’ * ’ (“blank” and “blank asterisk blank”). The first value is used
to separate variable names and values in interactions. The second value is used to
separate interaction components. For example, the label for the dummy variable for
theA=1 andB=2 cell is, by default, ’A 1 * B 2’. If SEPARATORS=’=’ ’x’ is speci-
fied, then the label is ’A=1xB=2’. When SEPARATORS= is specified as ana-option
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or ano-option, it determines the default separators for all CLASS variables. When
you specify SEPARATORS= as at-option, it overrides the default only for selected
variables.

SHORT
SHO

suppresses the iteration histories.

SINGULAR=n
SIN=n

specifies the largest value within rounding error of zero. By default,
SINGULAR=1E�12. The TRANSREG procedure uses the value of the
SINGULAR= a-option for checking 1 � R2 when constructing full-rank matri-
ces of predictor variables, checking denominators before dividing, and so on. PROC
TRANSREG computes the regression coefficients by sweeping with rational pivot-
ing.

SS2
produces a regression table based on Type II sums of squares. Tests of the contri-
bution of each transformation to the overall model are displayed and output to the
OUTTEST= data set when you specify the OUTTEST= option. When you specify
the SS2a-option, the TESTa-option is implied. See the section “Hypothesis Tests”
on page 3433. You can suppress the variable labels in the regression tables by speci-
fying the NOLABEL option in the OPTIONS statement.

TEST
TES

generates an ANOVA table. PROC TRANSREG tests the null hypothesis that the
vector of scoring coefficients for all of the transformations is zero. See the section
“Hypothesis Tests” on page 3433.

TSTANDARD=CENTER | NOMISS | ORIGINAL | Z
TST=CEN | NOM | ORI | Z

specifies the standardization of the transformed variables for the hypothesis tests
and in the OUT= data set. By default, TSTANDARD=ORIGINAL. When TSTAN-
DARD= is specified as ana-optionor ano-option, it determines the default standard-
ization for all variables. When you specify TSTANDARD= as at-option, it overrides
the default standardization only for selected variables.

CENTER centers the output variables to mean zero, but the variances are the
same as the variances of the input variables.

NOMISS sets the means and variances of the transformed variables in the OUT=
data set, computed over all output values that correspond to nonmiss-
ing values in the input data set, to the means and variances com-
puted from the nonmissing observations of the original variables. The
TSTANDARD=NOMISS specification is useful with missing data.
When a variable is linearly transformed, the final variable contains the
original nonmissing values and the missing value estimates. In other
words, the nonmissing values are unchanged. If your data have no
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missing values, TSTANDARD=NOMISS and TSTANDARD=ORIGINAL
produce the same results.

ORIGINAL sets the means and variances of the transformed variables to the means
and variances of the original variables. This is the default.

Z standardizes the variables to mean zero, variance one.

The final standardization is affected by other options. If you also specify the ADDI-
TIVE a-option, the TSTANDARD= option specifies an intermediate step in comput-
ing the final means and variances. The final independent variables, along with their
means and standard deviations, are scaled by the regression coefficients, creating an
additive model with all coefficients equal to one.

For nonoptimal variable transformations, the means and variances of the original vari-
ables are actually the means and variances of the nonlinearly transformed variables,
unless you specify the ORIGINAL nonoptimalt-option in the MODEL statement.
For example, if a variableX with no missing values is specified as LOG, then, by
default, the final transformation ofX is simply LOG(X), not LOG(X) standardized to
the mean ofX and variance ofX.

TYPE=’text ’|name
TYP=’text ’|name

specifies the valid value for the–TYPE– variable in the input data set. If PROC
TRANSREG finds an input–TYPE– variable, it uses only observations with a

–TYPE– value that matches the TYPE= value. This enables a PROC TRAN-
SREG OUT= data set containing coefficients to be used as input to PROC TRAN-
SREG without requiring a WHERE statement to exclude the coefficients. If a

–TYPE– variable is not in the data set, all observations are used. The default is
TYPE=’SCORE’, so if you do not specify the TYPE=a-option, only observations
with –TYPE–=’SCORE’ are used. Do not confuse this option with the data set
TYPE= option. The DATA= data set must be an ordinary SAS data set.

PROC TRANSREG displays a note when it reads observations with blank values of

–TYPE– , but it does not automatically exclude those observations. Data sets created
by the TRANSREG and PRINQUAL procedures have blank–TYPE– values for
those observations that were excluded from the analysis due to nonpositive weights,
nonpositive frequencies, or missing data. When these observations are read again,
they are excluded for the same reason that they were excluded from their original
analysis, not because their–TYPE– value is blank.

UNTIE=two-letters
UNT=two-letters

specifies the first and last special missing value in the list of those special missing
values that are to be estimated with within-variable order constraints but no category
constraints. Thetwo-lettersvalue must consist of two letters in alphabetical order.
By default, there are category constraints but no order constraints on special missing
value estimates. For details, see the “Missing Values” section on page 3418 and the
“Optimal Scaling” section on page 3428.
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UTILITIES
UTI

produces a table of the part-worth utilities from a conjoint analysis. Utilities, their
standard errors, and the relative importance of each factor are displayed and output
to the OUTTEST= data set when you specify the OUTTEST= qoption. When you
specify the UTILITIESa-option, the TESTa-option is implied. Refer to SAS Tech-
nical Report R-109,Conjoint Analysis Examples, for more information on conjoint
analysis.

OUTPUT Statement

OUTPUT OUT=SAS-data-set < o-options > ;

The OUTPUT statement creates a new SAS data set that contains coefficients,
marginal means, and information on original and transformed variables. The infor-
mation on original and transformed variables composes the score partition of the data
set; observations have–TYPE–=’SCORE’. The coefficients and marginal means
compose the coefficient partition of the data set; observations have–TYPE–=’M
COEFFI’ or–TYPE–=’MEAN’. Other values of–TYPE– are possible; for details,
see “–TYPE– and–NAME– Variables” later in this chapter. For details on data set
structure, see the “Output Data Set” section on page 3436.

To specify the data set, use the OUT= specification.

OUT=SAS-data-set
specifies the output data set for the data, transformed data, predicted values, residuals,
scores, coefficients, and so on. When you use an OUTPUT statement but do not use
the OUT= specification, PROC TRANSREG creates a data set and uses theDATAn
convention. If you want to create a permanent SAS data set, you must specify a
two-level name (refer to “SAS Files” inSAS Language Reference: Conceptsand
“Introduction to DATA Step Processing” in theSAS Procedures Guidefor details).

To control the contents of the data set and variable names, use one or more of the
o-options. You can also specify these options in the PROC TRANSREG statement.

Output Options (o-options)
The following table provides a summary of options in the OUTPUT statement. These
options include the OUT= option and all of theo-options.

Table 65.4. Options Available in the OUTPUT Statement

Task Option
Identify output data set
output data set OUT=

Predicted values, residuals, scores
outputs canonical scores CANONICAL
outputs individual confidence limits CLI
outputs mean confidence limits CLM
specifies design matrix coding DESIGN=
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Table 65.4. (continued)

Task Option
outputs leverage LEVERAGE
does not restore missings NORESTOREMISSING
suppresses output of scores NOSCORES
outputs predicted values PREDICTED
outputs redundancy variables REDUNDANCY=
outputs residuals RESIDUALS

Output data set replacement
replaces dependent variables DREPLACE
replaces independent variables IREPLACE
replaces all variables REPLACE

Output data set coefficients
outputs coefficients COEFFICIENTS
outputs ideal point coordinates COORDINATES
outputs marginal means MEANS
outputs redundancy analysis coefficients MREDUNDANCY

Output data set variable name prefixes
dependent variable approximations ADPREFIX=
independent variable approximations AIPREFIX=
canonical dependent variables CDPREFIX=
conservative individual lower CL CILPREFIX=
canonical independent variables CIPREFIX=
conservative-individual-upper CL CIUPREFIX=
conservative-mean-lower CL CMLPREFIX=
conservative-mean-upper CL CMUPREFIX=
METHOD=MORALS untransformed dependent DEPENDENT=
liberal-individual-lower CL LILPREFIX=
liberal-individual-upper CL LIUPREFIX=
liberal-mean-lower CL LMLPREFIX=
liberal-mean-upper CL LMUPREFIX=
residuals RDPREFIX=
predicted values PPREFIX=
redundancy variables RPREFIX=
transformed dependents TDPREFIX=
transformed independents TIPREFIX=

Output data set macros
creates macro variables MACRO

Control CLASS variables
controls output of reference levels REFERENCE=

Output data set details
dependent and independent approximations APPROXIMATIONS
canonical correlation coefficients CCC
canonical elliptical point coordinate CEC
canonical point coordinates CPC
canonical quadratic point coordinates CQC
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Table 65.4. (continued)

Task Option
approximations to transformed dependents DAPPROXIMATIONS
approximations to transformed independents IAPPROXIMATIONS
elliptical point coordinates MEC
point coordinates MPC
quadratic point coordinates MQC
multiple regression coefficients MRC

For the coefficients partition, the COEFFICIENTS, COORDINATES, and MEANS
o-optionsprovide the coefficients that are appropriate for your model. For more
explicit control of the coefficient partition, use the options that control details and
prefixes.

The following list provides details on these options.

ADPREFIX=name
ADP=name

specifies a prefix for naming the dependent variable predicted values. The default
is ADPREFIX=P when you specify the PREDICTEDo-option; otherwise, it is AD-
PREFIX=A. Specifying the ADPREFIX=o-optionalso implies the PREDICTEDo-
option, and the ADPREFIX=o-optionis the same as the PPREFIX=o-option.

AIPREFIX=name
AIP=name

specifies a prefix for naming the independent variable approximations. The default
is AIPREFIX=A. Specifying the AIPREFIX=o-optionalso implies the IAPPROXI-
MATIONS o-option.

APPROXIMATIONS
APPROX
APP

is equivalent to specifying both the DAPPROXIMATIONS and the IAPPROXIMA-
TIONS o-options. If METHOD=UNIVARIATE, then the APPROXIMATIONSo-
option implies only the DAPPROXIMATIONSo-option.

CANONICAL
CAN

outputs canonical variables to the OUT= data set. When METHOD=CANALS, the
CANONICAL o-option is implied. The CDPREFIX=o-option specifies a prefix
for naming the dependent canonical variables (defaultCand), and the CIPREFIX=
o-option specifies a prefix for naming the independent canonical variables (default
Cani).

CCC
outputs canonical correlation coefficients to the OUT= data set.
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CDPREFIX=name
CDP=name

provides a prefix for naming the canonical dependent variables. The default is CD-
PREFIX=Cand. Specifying the CDPREFIX=o-optionalso implies the CANONI-
CAL o-option.

CEC
outputs canonical elliptical point model coordinates to the OUT= data set.

CILPREFIX=name
CIL=name

specifies a prefix for naming the conservative-individual-lower confidence limits. The
default prefix isCIL. Specifying the CILPREFIX=o-optionalso implies the CLIo-
option.

CIPREFIX=name
CIP=name

provides a prefix for naming the canonical independent variables. The default is
CIPREFIX=Cani. Specifying the CIPREFIX=o-optionalso implies the CANONI-
CAL o-option.

CIUPREFIX=name
CIU=name

specifies a prefix for naming the conservative-individual-upper confidence limits. The
default prefix isCIU. Specifying the CIUPREFIX=o-optionalso implies the CLIo-
option.

CLI
outputs individual confidence limits to the OUT= data set. The names of the confi-
dence limits variables are constructed from the original dependent variable names and
the prefixes specified in the followingo-options: LILPREFIX= (defaultLIL for lib-
eral individual lower), CILPREFIX= (defaultCIL for conservative individual lower),
LIUPREFIX= (defaultLIU for liberal individual upper), and CIUPREFIX= (default
CIU for conservative individual upper). When there are no monotonicity constraints,
the liberal and conservative limits are the same.

CLM
outputs mean confidence limits to the OUT= data set. The names of the confidence
limits variables are constructed from the original dependent variable names and the
prefixes specified in the followingo-options: LMLPREFIX= (defaultLML for liberal
mean lower), CMLPREFIX= (defaultCML for conservative mean lower), LMUPRE-
FIX= (defaultLMU for liberal mean upper), and CMUPREFIX= (defaultCMU for
conservative mean upper). When there are no monotonicity constraints, the liberal
and conservative limits are the same.

CMLPREFIX=name
CML=name

specifies a prefix for naming the conservative-mean-lower confidence limits. The
default prefix isCML. Specifying the CMLPREFIX=o-optionalso implies the CLM
o-option.
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CMUPREFIX=name
CMU=name

specifies a prefix for naming the conservative-mean-upper confidence limits. The
default prefix isCMU. Specifying the CMUPREFIX=o-optionalso implies the CLM
o-option.

COEFFICIENTS
COE

outputs either multiple regression coefficients or raw canonical coefficients to the
OUT= data set. If you specify METHOD=CANALS (in the MODEL or PROC
TRANSREG statement), then the COEFFICIENTSo-option outputs the firstn
canonical variables, wheren is the value of the NCAN=a-option (specified in the
MODEL or PROC TRANSREG statement). Otherwise, the COEFFICIENTSo-
option includes multiple regression coefficients in the OUT= data set. In addition,
when you specify the CLASS expansion for any independent variable, the COEFFI-
CIENTSo-optionalso outputs marginal means.

COORDINATES
COO

outputs either ideal point or vector model coordinates for preference mapping to the
OUT= data set. When METHOD=CANALS, these coordinates are computed from
canonical coefficients; otherwise, the coordinates are computed from multiple regres-
sion coefficients. For details, see the “Point Models” section on page 3424.

CPC
outputs canonical point model coordinates to the OUT= data set.

CQC
outputs canonical quadratic point model coordinates to the OUT= data set.

DAPPROXIMATIONS
DAP

outputs the approximations of the transformed dependent variables to the OUT=
data set. These are the target values for the optimal transformations. With
METHOD=UNIVARIATE and METHOD=MORALS, the dependent variable ap-
proximations are the ordinary predicted values from the linear model. The names
of the approximation variables are constructed from the ADPREFIX=o-option(de-
fault A) and the original dependent variable names. For ordinary predicted values,
use the PREDICTEDo-option instead of the DAPPROXIMATIONSo-option, since
the PREDICTEDo-option uses a more relevant prefix (“P” instead of “A”) and a
more relevant variable label suffix (“Predicted Values” instead of “Approximations”).

DESIGN<=n>
DES<=n>

specifies that your primary goal is design matrix coding, not analysis. Specifying
the DESIGNo-optionmakes the procedure run faster. The DESIGNo-option sets
the default method to UNIVARIATE and the default MAXITER= value to zero. It
suppresses computing the regression coefficients, unless they are needed for some
other option. Furthermore, when the DESIGNo-option is specified, the MODEL
statement is not required to have an equal sign. When no MODEL statement equal
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sign is specified, all variables are considered independent variables, all options that
require dependent variables are ignored, and the IREPLACEo-optionis implied.

You can use DESIGN=n for coding very large data sets, wheren is the number of
observations to code at one time. For example, to code a data set with a large number
of observations, you can specify DESIGN=100 or DESIGN=1000 to process the data
set in blocks of 100 or 1000 observations. If you specify the DESIGNo-option
rather than DESIGN=n, PROC TRANSREG tries to process all observations at once,
which will not work with very large data sets. Specify the NOZEROCONSTANTa-
optionwith DESIGN=n to ensure that constant variables within blocks are not zeroed.
See the section “Using the DESIGN Output Option” on page 3470 and the section
“Choice Experiments: DESIGN, NORESTOREMISSING, NOZEROCONSTANT
Usage” on page 3476.

DEPENDENT=name
DEP=name

specifies the untransformed dependent variable for OUT= data sets with
METHOD=MORALS when there is more than one dependent variable. The de-
fault is DEPENDENT=–DEPEND– .

DREPLACE
DRE

replaces the original dependent variables with the transformed dependent variables
in the OUT= data set. The names of the transformed variables in the OUT= data set
correspond to the names of the original dependent variables in the input data set. By
default, both the original dependent variables and transformed dependent variables
(with names constructed from the TDPREFIX= (defaultT) o-optionand the original
dependent variable names) are included in the OUT= data set.

IAPPROXIMATIONS
IAP

outputs the approximations of the transformed independent variables to the OUT=
data set. These are the target values for the optimal transformations. The names of
the approximation variables are constructed from the AIPREFIX=o-option(default
A) and the original independent variable names. Specifying the AIPREFIX=o-option
also implies the IAPPROXIMATIONSo-option. The IAPPROXIMATIONSo-option
is not valid when METHOD=UNIVARIATE.

IREPLACE
IRE

replaces the original independent variables with the transformed independent vari-
ables in the OUT= data set. The names of the transformed variables in the OUT=
data set correspond to the names of the original independent variables in the input
data set. By default, both the original independent variables and transformed inde-
pendent variables (with names constructed from the TIPREFIX=o-option(defaultT)
and the original independent variable names) are included in the OUT= data set.
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LEVERAGE<=name>
LEV<=name>

creates a variable with the specified name in the OUT= data set that contains lever-
ages. Specifying the LEVERAGEo-option is equivalent to specifying LEVER-
AGE=Leverage.

LILPREFIX=name
LIL=name

specifies a prefix for naming the liberal-individual-lower confidence limits. The de-
fault prefix is LIL. Specifying the LILPREFIX=o-option also implies the CLIo-
option.

LIUPREFIX=name
LIU=name

specifies a prefix for naming the liberal-individual-upper confidence limits. The de-
fault prefix isLIU. Specifying the LIUPREFIX=o-option also implies the CLIo-
option.

LMLPREFIX=name
LML=name

specifies a prefix for naming the liberal-mean-lower confidence limits. The de-
fault prefix isLML. Specifying the LMLPREFIX=o-option also implies the CLM
o-option.

LMUPREFIX=name
LMU=name

specifies a prefix for naming the liberal-mean-upper confidence limits. The default
prefix is LMU. Specifying the LMUPREFIX=o-option also implies the CLMo-
option.

MACRO(keyword=name...)
MAC(keyword=name...)

creates macro variables. Most of the options available within the MACROo-option
are rarely needed. By default, the TRANSREG procedure creates a macro variable
named–TRGIND with a complete list of independent variables created by the proce-
dure. When the TRANSREG procedure is being used for design matrix creation prior
to running a procedure without a CLASS statement, this macro provides a convenient
way to use the results from PROC TRANSREG. For example, a PROC LOGISTIC
step that uses a design matrix coded by PROC TRANSREG could use the following
MODEL statement:

model y=&_trgind;

The TRANSREG procedure, also by default, creates a macro variable named

–TRGINDN, which contains the number of variables in the–TRGIND list. This
macro variable could be used in an ARRAY statement as follows:

array indvars[&_trgindn] &_trgind;
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See the section “Using the DESIGN Output Option” on page 3470 and the section
“Choice Experiments: DESIGN, NORESTOREMISSING, NOZEROCONSTANT
Usage” on page 3476 for examples of using the default macro variables.

The availablekeywordsare as follows.

DN=name specifies the name of a macro variable that contains the num-
ber of dependent variables. By default, a macro variable named

–TRGDEPN is created. This is the number of variables in the
DL= list and the number of macro variables created by the DV=
and DE= specifications.

IN=name specifies the name of a macro variable that contains the number
of independent variables. By default, a macro variable named

–TRGINDN is created. This is the number of variables in the IL=
list and the number of macro variables created by the IV= and IE=
specifications.

DL=name specifies the name of a macro variable that contains the list of
the dependent variables. By default, a macro variable named

–TRGDEP is created. These are the variable names of the final
transformed variables in the OUT= data set. For example, if there
are three dependent variables,Y1–Y3, then–TRGDEP contains,
by default,TY1 TY2 TY3 (or Y1 Y2 Y3 if you specify the RE-
PLACEo-option).

IL=name specifies the name of a macro variable that contains the list of
the independent variables. By default, a macro variable named

–TRGIND is created. These are the variable names of the final
transformed variables in the OUT= data set. For example, if there
are three independent variables,X1–X3, then–TRGIND contains,
by default,TX1 TX2 TX3 (or X1 X2 X3 if you specify the RE-
PLACEo-option).

DV=prefix specifies a prefix for creating a list of macro variables, each
of which contains one dependent variable name. For example,
if there are three dependent variables,Y1–Y3, and you specify
MACRO(DV=DEP), then three macro variables,DEP1, DEP2,
andDEP3, are created, containingTY1, TY2, andTY3, respec-
tively (or Y1, Y2, Y3 if you specify the REPLACEo-option). By
default, no list is created.

IV=prefix specifies a prefix for creating a list of macro variables, each of
which contains one independent variable name. For example, if
there are three independent variables,X1–X3, and you specify
MACRO(IV=IND), then three macro variables,IND1, IND2, and
IND3, are created, containingTX1, TX2, andTX3, respectively
(or X1, X2, X3 if you specify the REPLACEo-option). By de-
fault, no list is created.
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DE=prefix specifies a prefix for creating a list of macro variables, each of
which contains one dependent variable effect. This list shows the
origin of each model term. Each effect consists of two or more
parts, and each part consists of a value in 32 columns followed
by a blank. For example, if you specify MACRO(DE=D), then a
macro variable D1 is created for IDENTITY(Y). The D1 macro
variable is shown below, wrapped onto two lines.

4 TY
IDENTITY Y

The first part is the number of parts (4), the second part is the trans-
formed variable name, the third part is the transformation, and the
last part is the input variable name. By default, no list is created.

IE=prefix specifies a prefix for creating a list of macro variables, each of
which contains one independent variable effect. This list shows
the origin of each model term. Each effect consists of two or more
parts, and each part consists of a value in 32 columns followed by
a blank. For example, if you specify MACRO(ID=I), then three
macro variables,I1, I2, and I3, are created for CLASS(X1 | X2)
when bothX1 andX2 have values of 1 and 2. These macro vari-
ables are shown below, but with extra white space removed.

5 Tx11 CLASS x1 1
5 Tx21 CLASS x2 1
8 Tx11x21 CLASS x1 1 CLASS x2 1

For CLASS variables, the formatted level appears after the variable
name. The first two effects are the main effects, and the last is the
interaction term. By default, no list is created.

MEANS
MEA

outputs marginal means for CLASS variable expansions to the OUT= data set.

MEC
outputs multiple regression elliptical point model coordinates to the OUT= data set.

MPC
outputs multiple regression point model coordinates to the OUT= data set.

MQC
outputs multiple regression quadratic point model coordinates to the OUT= data set.

MRC
outputs multiple regression coefficients to the OUT= data set.

MREDUNDANCY
MRE

outputs multiple redundancy analysis coefficients to the OUT= data set.
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NORESTOREMISSING
NORESTORE
NOR

specifies that missing values should not be restored when the OUT= data set is cre-
ated. By default, the coded CLASS variable contains a row of missing values for
observations in which the CLASS variable is missing. When you specify the NORE-
STOREMISSINGo-option, these observations contain a row of zeros instead. This
is useful when the TRANSREG procedure is used to code designs for choice models
and there is a constant alternative indicated by a missing value.

NOSCORES
NOS

excludes original variables, transformed variables, predicted values, residuals, and
scores from the OUT= data set. You can use the NOSCORESo-optionwith various
other options to create an OUT= data set that contains only a coefficient partition (for
example, a data set consisting entirely of coefficients and coordinates).

PREDICTED
PRE
P

outputs predicted values, which for METHOD=UNIVARIATE and METHOD=MORALS
are the ordinary predicted values from the linear model, to the OUT= data set. The
names of the predicted values’ variables are constructed from the PPREFIX=o-option
(default P) and the original dependent variable names. Specifying the PPREFIX=
o-optionalso implies the PREDICTEDo-option.

PPREFIX=name
PDPREFIX=name
PDP=name

specifies a prefix for naming the dependent variable predicted values. The default
is PPREFIX=P when you specify the PREDICTEDo-option; otherwise, it is PPRE-
FIX=A. Specifying the PPREFIX=o-optionalso implies the PREDICTEDo-option,
and the PPREFIX=o-optionis the same as the ADPREFIX=o-option.

RDPREFIX=name
RDP=name

specifies a prefix for naming the residual (dependent) variables to the OUT= data set.
The default is RDPREFIX=R. Specifying the RDPREFIX=o-optionalso implies the
RESIDUALSo-option.

REDUNDANCY<=STANDARDIZE | UNSTANDARDIZE >
RED<=STA | UNS>

outputs redundancy variables to the OUT= data set, either standardized or un-
standardized. Specifying the REDUNDANCYo-option is the same as speci-
fying REDUNDANCY=STANDARDIZE. The results of the REDUNDANCY
o-option depends on the TSTANDARD= option. You must specify TSTAN-
DARD=Z to get results based on standardized data. The TSTANDARD= op-
tion controls how the data that go into the redundancy analysis are scaled, and
REDUNDANCY=STANDARDIZEjUNSTANDARDIZE controls how the re-
dundancy variables are scaled. The REDUNDANCYo-option is implied by
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METHOD=REDUNDANCY. The RPREFIX=o-option specifies a prefix (default
Red) for naming the redundancy variables.

REFERENCE=NONE | MISSING | ZERO
REF=NON | MIS | ZER

specifies how reference levels of CLASS variables are to be treated. The options are
REFERENCE=NONE, the default, in which reference levels are suppressed; REF-
ERENCE=MISSING, in which reference levels are displayed and output with miss-
ing values; and REFERENCE=ZERO, in which reference levels are displayed and
output with zeros. The REFERENCE= option can be specified in the PROC TRAN-
SREG, MODEL, or OUTPUT statement, and it can be independently specified for the
OUT= data set and the displayed output. When you specify it in only one statement,
it sets the option for both the displayed output and the OUT= data set.

REPLACE
REP

is equivalent to specifying both the DREPLACE and the IREPLACEo-options.

RESIDUALS
RES
R

outputs the differences between the transformed dependent variables and their pre-
dicted values. The names of the residual variables are constructed from the RDPRE-
FIX= o-option(defaultR) and the original dependent variable names.

RPREFIX=name
RPR=name

provides a prefix for naming the redundancy variables. The default is RPRE-
FIX=Red. Specifying the RPREFIX=o-option also implies the REDUNDANCY
o-option.

TDPREFIX=name
TDP=name

specifies a prefix for naming the transformed dependent variables. By default, TD-
PREFIX=T. The TDPREFIX=o-optionis ignored when you specify the DREPLACE
o-option.

TIPREFIX=name
TIP=name

specifies a prefix for naming the transformed independent variables. By default,
TIPREFIX=T. The TIPREFIX=o-option is ignored when you specify the IRE-
PLACEo-option.

WEIGHT Statement

WEIGHT variable ;

When you use a WEIGHT statement, a weighted residual sum of squares is mini-
mized. The WEIGHT statement has no effect on degrees of freedom or number of
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observations, but the weights affect most other calculations. The observation is used
in the analysis only if the value of the WEIGHT statement variable is greater than 0.

Details

Model Statement Usage

MODEL < transform(dependents< / t-options>)
< transform(dependents< / t-options>)...> = >
transform(independents< / t-options>)
< transform(independents< / t-options>)...>< / a-options> ;

Here are some examples of model statements:

� linear regression

model identity(y) = identity(x);

� a linear model with a nonlinear regression function

model identity(y) = spline(x / nknots=5);

� multiple regression

model identity(y) = identity(x1-x5);

� multiple regression with nonlinear transformations

model spline(y / nknots=3) = spline(x1-x5 / nknots=3);

� multiple regression with nonlinear but monotone transformations

model mspline(y / nknots=3) = mspline(x1-x5 / nknots=3);

� multivariate multiple regression

model identity(y1-y4) = identity(x1-x5);

� canonical correlation

model identity(y1-y4) = identity(x1-x5) / method=canals;

� redundancy analysis

model identity(y1-y4) = identity(x1-x5) / method=redundancy;

� preference mapping, vector model (Carroll 1972)

model identity(Attrib1-Attrib3) = identity(Dim1-Dim2);

� preference mapping, ideal point model (Carroll 1972)

model identity(Attrib1-Attrib3) = point(Dim1-Dim2);
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� preference mapping, ideal point model, elliptical (Carroll 1972)

model identity(Attrib1-Attrib3) = epoint(Dim1-Dim2);

� preference mapping, ideal point model, quadratic (Carroll 1972)

model identity(Attrib1-Attrib3) = qpoint(Dim1-Dim2);

� metric conjoint analysis

model identity(Subj1-Subj50) = class(a b c d e f / zero=sum);

� nonmetric conjoint analysis

model monotone(Subj1-Subj50) = class(a b c d e f / zero=sum);

� main effects, two-way interaction

model identity(y) = class(a|b);

� less-than-full-rank model—main effects and two-way interaction are con-
strained to sum to zero

model identity(y) = class(a|b / zero=sum);

� main effects and all two-way interactions

model identity(y) = class(a|b|c@2);

� main effects and all two- and three-way interactions

model identity(y) = class(a|b|c);

� main effects and just B*C two-way interaction

model identity(y) = class(a b c b*c);

� seven main effects, three two-way interactions

model identity(y) = class(a b c d e f g a*b a*c a*d);

� deviations-from-means (effects or(1; 0;�1)) coding, with an A reference level
of ’1’ and a B reference level of ’2’

model identity(y) = class(a|b / deviations zero=’1’ ’2’);

� cell-means coding (implicit intercept)

model identity(y) = class(a*b / zero=none);

� reference cell model

model identity(y) = class(a|b / zero=’1’ ’1’);

� reference line with change in line parameters

model identity(y) = class(a) | identity(x);
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� reference curve with change in curve parameters

model identity(y) = class(a) | spline(x);

� separate curves and intercepts

model identity(y) = class(a / zero=none) | spline(x);

� quantitative effects with interaction

model identity(y) = identity(x1 | x2);

� separate quantitative effects with interaction within each cell

model identity(y) = class(a * b / zero=none) | identity(x1 | x2);

Smoothing Splines

You can use PROC TRANSREG to output to a SAS data set the same smoothing
splines that the GPLOT procedure creates. The SMOOTH transformation is a nonit-
erative transformation for smoothing splines. The smoothing parameter can be spec-
ified with either the SM= or the PARAMETER=o-option. The independent variable
transformation (Tx in this case) contains the results. The GPLOT requesty*x=2 with
I=SM50 creates the same curve asTx*x.

title ’Smoothing Splines’;

data x;
do x = 1 to 100 by 2;

do rep = 1 to 3;
y = log(x) + sin(x / 10) + normal(7);
output;
end;

end;
run;

proc transreg;
model identity(y) = smooth(x / sm=50);
output;

run;

%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
proc gplot;

axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
plot y*x=1 y*x=2 tx*x=3 / &opts overlay;
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=none i=sm50;
symbol3 color=cyan v=dot i=none;

run; quit;
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Figure 65.5. Smoothing Spline Example 1

When you cross a SMOOTH variable with a CLASS variable, specify ZERO=NONE
with the CLASS expansion and the AFTERt-optionwith the SMOOTH transforma-
tion so that separate functions are found within each group.

title2 ’Two Groups’;

data x;
do x = 1 to 100;

group = 1;
do rep = 1 to 3;

y = log(x) + sin(x / 10) + normal(7);
output;
end;

group = 2;
do rep = 1 to 3;

y = -log(x) + cos(x / 10) + normal(7);
output;
end;

end;
run;

proc transreg;
model identity(y) = class(group / zero=none) |

smooth(x / after sm=50);
output out=curves;

run;

data curves2;
set curves;
if group1 = 0 then tgroup1x = .;
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if group2 = 0 then tgroup2x = .;
run;

%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
proc gplot;

axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
plot y*x=1 tgroup1x*x=2 tgroup2x*x=2 / &opts overlay;
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=none i=join;

run; quit;

Figure 65.6. Smoothing Spline Example 2

The SMOOTH transformation is valid only with independent variables; typically, it is
used in models with a single independent and a single dependent variable. When there
are multiple independent variables designated as SMOOTH, the TRANSREG proce-
dure tries to smooth theith independent variable using theith dependent variable as a
target. When there are more independent variables than dependent variables, the last
dependent variable is reused as often as is necessary. For example, for the model

model identity(y1-y3) = smooth(x1-x5);

smoothing is based on the pairs (y1, x1), (y2, x2), (y3, x3), (y3, x4), and (y3, x5).

The SMOOTH transformation is a noniterative transformation; smoothing occurs
once per variable before the iterations begin. In contrast, SSPLINE provides an iter-
ative smoothing spline transformation. It does not generally minimize squared error;
hence, divergence is possible with SSPLINE.
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Missing Values

PROC TRANSREG can estimate missing values, with or without category or mono-
tonicity constraints, so that the regression model fit is optimized. Several approaches
to missing data handling are provided. All observations with missing values in IDEN-
TITY, CLASS, POINT, EPOINT, QPOINT, SMOOTH, PSPLINE, and BSPLINE
variables are excluded from the analysis. When METHOD=UNIVARIATE (spec-
ified in the PROC TRANSREG or MODEL statement), observations with missing
values in any of the independent variables are excluded from the analysis. When you
specify the NOMISSa-option, observations with missing values in the other analysis
variables are excluded. Otherwise, missing data are estimated, using variable means
as initial estimates.

You can specify the LINEAR, OPSCORE, MONOTONE, UNTIE, SPLINE,
MSPLINE, SSPLINE, LOG, LOGIT, POWER, ARSIN, RANK, and EXP trans-
formations in any combination with nonmissing values, ordinary missing values,
and special missing values, as long as the nonmissing values in each variable have
positive variance. No category or order restrictions are placed on the estimates of
ordinary missing values. You can force missing value estimates within a variable
to be identical by using special missing values (refer to “DATA Step Processing” in
SAS Language Reference: Concepts). You can specify up to 27 categories of missing
values, in which within-category estimates must be the same, by coding the missing
values using .– and .A through .Z.

You can also specify an ordering of some missing value estimates. You can use the
MONOTONE=a-optionin the PROC TRANSREG or MODEL statement to indicate
a range of special missing values (a subset of the list from .A to .Z) with estimates
that must be weakly ordered within each variable in which they appear. For example,
if MONOTONE=AI, the nine classes, .A, .B,: : :, .I, are monotonically scored and
optimally scaled just as MONOTONE transformation values are scored. In this case,
category but not order restrictions are placed on the missing values .– and .J through
.Z. You can also use the UNTIE=a-option (in the PROC TRANSREG or MODEL
statement) to indicate a range of special missing values with estimates that must be
weakly ordered within each variable in which they appear but can be untied.

The missing value estimation facilities allow for partitioned or mixed-type variables.
For example, a variable can be considered part nominal and part ordinal. Nominal
classes of otherwise ordinal variables are coded with special missing values. This
feature can be useful with survey research. The class “unfamiliar with the product”
in the variable “Rate your preference for ’Brand X’ on a 1 to 9 scale, or if you are
unfamiliar with the product, check ’unfamiliar with the product’” is an example. You
can code “unfamiliar with the product” as a special missing value, such as .A. The 1s
to 9s can be monotonically transformed, while no monotonic restrictions are placed
on the quantification of the “unfamiliar with the product” class.

A variable specified for a LINEAR transformation, with special missing values and
ordered categorical missing values, can be part interval, part ordinal, and part nom-
inal. A variable specified for a MONOTONE transformation can have two indepen-
dent ordinal parts. A variable specified for an UNTIE transformation can have an
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ordered categorical part and an ordered part without category restrictions. Many other
mixes are possible.

Missing Values, UNTIE, and Hypothesis Tests

The TRANSREG procedure has the ability to estimate missing data and monoton-
ically transform variables while untying tied values. Estimates of ordinary missing
values (.) may all be different. Analyses with UNTIE transformations, the UNTIE=
a-option, and ordinary missing data estimation are all prone to degeneracy problems.
Consider the following example. A perfect fit is found by collapsing all observations
except the one with two missing values into a single value inY andX1.

data x;
input y x1 x2 @@;
datalines;

1 3 7 8 3 9 1 8 6 . . 9 3 3 9
8 5 1 6 7 3 2 7 2 1 8 2 . 9 1
;

proc transreg dummy;
model linear(y) = linear(x1 x2);
output;

run;

proc print;
run;

Obs _TYPE_ _NAME_ y Ty Intercept x1 x2 TIntercept Tx1 Tx2

1 SCORE ROW1 1 2.7680 1 3 7 1 5.1233 7
2 SCORE ROW2 8 2.7680 1 3 9 1 5.1233 9
3 SCORE ROW3 1 2.7680 1 8 6 1 5.1233 6
4 SCORE ROW4 . 12.5878 1 . 9 1 12.7791 9
5 SCORE ROW5 3 2.7680 1 3 9 1 5.1233 9
6 SCORE ROW6 8 2.7680 1 5 1 1 5.1233 1
7 SCORE ROW7 6 2.7680 1 7 3 1 5.1233 3
8 SCORE ROW8 2 2.7680 1 7 2 1 5.1233 2
9 SCORE ROW9 1 2.7680 1 8 2 1 5.1233 2

10 SCORE ROW10 . 2.7680 1 9 1 1 5.1233 1

Figure 65.7. Missing Values Example

Generally, the use of ordinary missing data estimation, the UNTIE transformation,
and the UNTIE=a-optionshould be avoided, particularly with hypothesis tests. With
these options, parameters are estimated based on only a single observation, and they
can exert tremendous influence over the results. Each of these parameters has one
model degree of freedom associated with it, so small or zero error degrees of freedom
can also be a problem.
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Controlling the Number of Iterations

Severala-optionsin the PROC TRANSREG or MODEL statement control the num-
ber of iterations performed. Iteration terminates when any one of the following con-
ditions is satisfied:

� The number of iterations equals the value of the MAXITER=a-option.

� The average absolute change in variable scores from one iteration to the next
is less than the value of the CONVERGE=a-option.

� The criterion change is less than the value of the CCONVERGE=a-option.

You can specify negative values for either convergence option if you wish to define
convergence only in terms of the other option. The criterion change can become
negative when the data have converged so that it is numerically impossible, within
machine precision, to increase the criterion. Usually, a negative criterion change is
the result of very small amounts of rounding error since the algorithms are (usually)
convergent. However, there are other cases where a negative criterion change is a
sign of divergence, which is not necessarily an error. When you specify an SSPLINE
transformation or the REITERATE or DUMMYa-option, divergence may be per-
fectly normal.

When there are no monotonicity constraints and there is only one canonical vari-
able in each set, PROC TRANSREG (with the DUMMYa-option) can usually
find the optimal solution in only one iteration. (There are no monotonicity con-
straints when the MONOTONE, MSPLINE, or UNTIE transformations and the UN-
TIE= and MONOTONE=a-optionsare not specified. There is only one canoni-
cal variable in each set when METHOD=MORALS or METHOD=UNIVARIATE,
or when METHOD=REDUNDANCY with only one dependent variable, or when
METHOD=CANALS and NCAN=1.)

The initialization iteration is number 0. When there are no monotonicity constraints
and there is only one canonical variable in each set, the next iteration shows no change
and iteration stops. At least two iterations (0 and 1) are performed with the DUMMY
a-optioneven if nothing changes in iteration 0. The MONOTONE, MSPLINE, and
UNTIE variables are not transformed by the dummy variable initialization. Note that
divergence with the DUMMYa-option, particularly in the second iteration, is not an
error. The initialization iteration is slower and uses more memory than other itera-
tions. However, for many models, specifying the DUMMYa-optioncan greatly de-
crease the amount of time required to find the optimal transformations. Furthermore,
by solving for the transformations directly instead of iteratively, PROC TRANSREG
avoids certain nonoptimal solutions.

You can increase the number of iterations to ensure convergence by increasing the
value of the MAXITER=a-option and decreasing the value of the CONVERGE=
a-option. Since the average absolute change in standardized variable scores seldom
decreases below 1E�11, you should not specify a value for the CONVERGE=a-
option less than 1E�8 or 1E�10. Most of the data changes occur during the first
few iterations, but the data can still change after 50 or even 100 iterations. You

SAS OnlineDoc: Version 8



Using the REITERATE Algorithm Option � 3421

can try different combinations of values for the CONVERGE= and MAXITER=a-
optionsto ensure convergence without extreme overiteration. If the data do not con-
verge with the default specifications, try CONVERGE=1E�8 and MAXITER=50, or
CONVERGE=1E�10 and MAXITER=200. Note that you can specify the REITER-
ATE a-optionto start iterating where the previous analysis stopped.

Using the REITERATE Algorithm Option

You can use the REITERATEa-option to perform additional iterations when PROC
TRANSREG stops before the data have adequately converged. For example, suppose
that you execute the following code:

proc transreg data=a;
model mspline(y) = mspline(x1-x5);
output out=b coefficients;

run;

If the transformations do not converge in the default 30 iterations, you can perform
more iterations without repeating the first 30 iterations.

proc transreg data=b reiterate;
model mspline(y) = mspline(x1-x5);
output out=b coefficients;

run;

Note that a WHERE statement is not necessary to exclude the coefficient observa-
tions. They are automatically excluded because their–TYPE– value is not SCORE.

You can also use the REITERATEa-option to specify starting values other than the
original values for the transformations. Providing alternate starting points may avoid
local optima. Here are two examples.

proc transreg data=a;
model rank(y) = rank(x1-x5);
output out=b;

run;

proc transreg data=b reiterate;
/* Use ranks as the starting point. */
model mspline(y) = mspline(x1-x5);
output out=c coefficients;

run;

data b;
set a;
array tx[6] ty tx1-tx5;
do j = 1 to 6;

tx[j] = normal(7);
end;

run;
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proc transreg data=b reiterate;
/* Use a random starting point. */
model mspline(y) = mspline(x1-x5);
output out=c coefficients;

run;

Note that divergence with the REITERATEa-option, particularly in the second it-
eration, is not an error since the initial transformation is not required to be a valid
member of the transformation family. When you specify the REITERATEa-option,
the iteration does not terminate when the criterion change is negative during the first
10 iterations.

Avoiding Constant Transformations

There are times when the optimal scaling produces a constant transformed variable.
This can happen with the MONOTONE, UNTIE, and MSPLINE transformations
when the target is negatively correlated with the original input variable. It can hap-
pen with all transformations when the target is uncorrelated with the original input
variable. When this happens, the procedure modifies the target to avoid a constant
transformation. This strategy avoids certain nonoptimal solutions.

If the transformation is monotonic and a constant transformed variable results, the
procedure multiplies the target by�1 and tries the optimal scaling again. If the trans-
formation is not monotonic or if the multiplication by�1 did not help, the procedure
tries using a random target. If the transformation is still constant, the previous non-
constant transformation is retained. When a constant transformation is avoided by
any strategy, a message is displayed: “A constant transformation was avoided for
name.”

With extreme collinearity, small amounts of rounding error might interact with the
instability of the coefficients to produce target vectors that are not positively corre-
lated with the original scaling. If a regression coefficient for a variable is zero, the
formula for the target for that variable contains a zero divide. In a multiple regression
model, after many iterations, one independent variable can be scaled the same way as
the current scaling of the dependent variable, so the other independent variables have
coefficients of zero. When the constant transformation warning appears, you should
interpret your results with extreme caution, and recheck your model.

Constant Variables

Constant and almost constant variables are zeroed and ignored. As long as the depen-
dent variable is not constant, PROC TRANSREG produces an iteration history table
for all models, not just models in which the variables can change. When constant
variables are expected and should not be zeroed, specify the NOZEROCONSTANT
option.
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Convergence and Degeneracies

When you specify the SSPLINE transformation, divergence is normal. The rest of
this section assumes that you did not specify SSPLINE. For all the methods available
in PROC TRANSREG, the algorithms are convergent, both in terms of the criterion
being optimized and the parameters being estimated. The value of the criterion being
maximized (squared multiple correlation, average squared multiple correlation, or
average squared canonical correlation) can, theoretically, never decrease from one
iteration to the next. The values of the parameters being solved for (the scores and
weights of the transformed variables) become stable after sufficient iteration.

In practice, the criterion being maximized can decrease with overiteration. When
the statistic has very nearly reached its maximum, further iterations might report a
decrease in the criterion in the last few decimal places. This is a normal result of
very small amounts of rounding error. By default, iteration terminates when this
occurs because, by default, CCONVERGE=0.0. Specifying CCONVERGE=�1, an
impossible change, turns off this check for convergence.

Even though the algorithms are convergent, they might not converge to a global op-
timum. Also, under extreme circumstances, the solution might degenerate. Because
two points always form a straight line, the algorithms sometimes try to reach this
degenerate optimum. This sometimes occurs when one observation is an ordinal out-
lier (when one observation has the extreme rank on all variables). The algorithm can
reach an optimal solution that ties all other categories producing two points. Similar
results can occur when there are many missing values. More generally, whenever
there are very few constraints on the scoring of one or more points, degeneracies can
be a problem. In a well-behaved analysis, the maximum data change, average data
change, and criterion change all decrease at a rapid rate with each iteration. When
the rate of change increases for several iterations, the solution might be degenerating.

Implicit and Explicit Intercepts

Depending on several options, the model intercept is nonzero, zero, or implicit,
or there is no intercept. Ordinarily, the model contains an explicit nonzero in-
tercept, and theIntercept variable in the OUT= data set contains ones. When
TSTANDARD=CENTER or TSTANDARD=Z is specified, the model contains
an explicit, zero intercept and theIntercept variable contains zeros. When
METHOD=CANALS, the model is fit with centered variables and theIntercept vari-
able is set to missing.

If you specify CLASS with ZERO=NONE or BSPLINE for one or more independent
variables, and TSTANDARD=NOMISS or TSTANDARD=ORIGINAL (the default),
an implicit intercept model is fit. The intercept is implicit in a set of the independent
variables since there exists a set of independent variables the sum of which is a col-
umn of ones. All statistics are mean corrected. The implicit intercept is not an option;
it is implied by the model.
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With METHOD=CANALS, theIntercept variable contains thecanonical intercept
for canonical coefficients observations:�̂0 = y

0�̂� x0�̂ whereY�̂ � X�̂.

Passive Observations

Observations may be excluded from the analysis for several reasons; these include
zero weight; zero frequency; missing values in variables designated IDENTITY,
CLASS, POINT, EPOINT, QPOINT, SMOOTH, PSPLINE, or BSPLINE; and miss-
ing values with the NOMISSa-optionspecified. These observations are passive in
that they do not contribute to determining transformations,R2, sums of squares, de-
grees of freedom, and so on. However, some information can be computed for them.
For example, if no independent variable values are missing, predicted values and
redundancy variable values can both be computed. Residuals can be computed for
observations with a nonmissing dependent and nonmissing predicted value. Canoni-
cal variables for dependent variables can be computed when no dependent variables
are missing; canonical variables for independent variables can be computed when no
independent variables are missing, and so on. Passive observations in the OUT= data
set have a blank value for–TYPE– .

Point Models

The expanded set of independent variables generated from the POINT, EPOINT, and
QPOINT expansions can be used to perform ideal point regressions (Carroll 1972)
and compute ideal point coordinates for plotting in a biplot (Gabriel 1981). The three
types of ideal point coordinates can all be described as transformed coefficients. As-
sume thatm independent variables are specified in one of the three point expansions.
Letb0 be a1�m row vector of coefficients for these variables and one of the depen-
dent variables. LetR be a matrix created from the coefficients of the extra variables.
When coordinates are requested with the MPC, MEC, or MQCo-options, b0 andR
are created from multiple regression coefficients. When coordinates are requested
with the CPC, CEC, or CQCo-options, b0 andR are created from canonical coeffi-
cients.

If you specify the POINT expansion in the MODEL statement,R is anm�m iden-
tity matrix times the coefficient for the sums of squares (–ISSQ–) variable. If you
specify the EPOINT expansion,R is anm�m diagonal matrix of coefficients from
the squared variables. If you specify the QPOINT expansion,R is anm�m symmet-
ric matrix of coefficients from the squared variables on the diagonal and crossproduct
variables off the diagonal. The MPC, MEC, MQC, CPC, CEC, and CQC ideal point
coordinates are defined as�0:5b0R�1. WhenR is singular, the ideal point coordi-
nates are infinitely far away and are set to missing, so you should try a simpler version
of the model. The version that is simpler than the POINT model is the vector model
where no extra variables are created. In the vector model, designate all independent
variables as IDENTITY. Then draw vectors from the origin to the COEFFICIENTS
points.
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Typically, when you request ideal point coordinates, the MODEL statement should
consist of a single transformation for the dependent variables (usually IDENTITY,
MONOTONE, or MSPLINE) and a single expansion for the independent variables
(one of POINT, EPOINT, or QPOINT).

Redundancy Analysis

Redundancy analysis (Stewart and Love 1968) is a principal component anal-
ysis of multivariate regression predicted values. These first steps show the
redundancy analysis results produced by PROC TRANSREG. The specifica-
tion TSTANDARD=Z standardizes all variables to mean zero and variance one.
METHOD=REDUNDANCY specifies redundancy analysis and outputs the redun-
dancy variables to the OUT= data set. The MREDUNDANCYo-optionoutputs two
sets of redundancy analysis coefficients to the OUT= data set.

title ’Redundancy Analysis’;

data x;
input y1-y3 x1-x4;
datalines;

6 8 8 15 18 26 27
1 12 16 18 9 20 8
5 6 15 20 17 29 31
6 9 15 14 10 16 22
7 5 12 14 6 13 9
3 6 7 2 14 26 22
3 5 9 13 18 10 22
6 3 11 3 15 22 29
6 3 7 10 20 21 27
7 5 9 8 10 12 18

;

proc transreg data=x tstandard=z method=redundancy;
model identity(y1-y3) = identity(x1-x4);
output out=red mredundancy replace;

run;

proc print data=red(drop=Intercept);
format _numeric_ 4.1;

run;
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Redundancy Analysis

Obs _TYPE_ _NAME_ y1 y2 y3 x1 x2 x3 x4 Red1 Red2 Red3

1 SCORE ROW1 0.5 0.6 -0.8 0.6 0.9 1.0 0.7 0.2 -0.5 -0.9
2 SCORE ROW2 -2.0 2.1 1.5 1.1 -1.0 0.1 -1.7 1.6 -1.5 0.4
3 SCORE ROW3 0.0 -0.1 1.2 1.4 0.7 1.5 1.2 1.0 0.8 -1.3
4 SCORE ROW4 0.5 1.0 1.2 0.4 -0.8 -0.5 0.1 0.5 1.7 0.1
5 SCORE ROW5 1.0 -0.4 0.3 0.4 -1.6 -1.0 -1.6 1.0 0.1 0.9
6 SCORE ROW6 -1.0 -0.1 -1.1 -1.6 0.1 1.0 0.1 -0.8 -0.9 1.4
7 SCORE ROW7 -1.0 -0.4 -0.6 0.2 0.9 -1.5 0.1 -1.0 -0.4 -1.3
8 SCORE ROW8 0.5 -1.2 0.0 -1.5 0.3 0.4 1.0 -1.2 0.8 0.7
9 SCORE ROW9 0.5 -1.2 -1.1 -0.3 1.3 0.2 0.7 -1.0 -0.9 -0.8

10 SCORE ROW10 1.0 -0.4 -0.6 -0.6 -0.8 -1.1 -0.4 -0.4 0.8 0.7
11 M REDUND Red1 . . . 0.7 -0.6 0.4 -0.1 . . .
12 M REDUND Red2 . . . 0.3 -1.5 -0.6 1.9 . . .
13 M REDUND Red3 . . . -0.7 -0.7 0.3 -0.3 . . .
14 R REDUND x1 . . . . . . . 0.8 -0.0 -0.6
15 R REDUND x2 . . . . . . . -0.6 -0.2 -0.7
16 R REDUND x3 . . . . . . . 0.1 -0.2 -0.1
17 R REDUND x4 . . . . . . . -0.5 0.3 -0.5

Figure 65.8. Redundancy Analysis Example

The–TYPE–=’SCORE’ observations of theRed1–Red3 variables contain the re-
dundancy variables. The nonmissing “M REDUND” values are coefficients for pre-
dicting the redundancy variables from the independent variables. The nonmissing “R
REDUND” values are coefficients for predicting the independent variables from the
redundancy variables.

These following steps show how to generate the same results manually. The data
set is standardized, predicted values are computed, and principal components of the
predicted values are computed. The following statements produce the redundancy
variables, shown in Figure 65.9:

proc standard data=x out=std m=0 s=1;
title2 ’Manually Generate Redundancy Variables’;

run;

proc reg noprint data=std;
model y1-y3 = x1-x4;
output out=p p=ay1-ay3;

run; quit;

proc princomp data=p cov noprint std out=p;
var ay1-ay3;

run;

proc print data=p(keep=Prin:);
format _numeric_ 4.1;

run;
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Redundancy Analysis
Manually Generate Redundancy Variables

Obs Prin1 Prin2 Prin3

1 0.2 -0.5 -0.9
2 1.6 -1.5 0.4
3 1.0 0.8 -1.3
4 0.5 1.7 0.1
5 1.0 0.1 0.9
6 -0.8 -0.9 1.4
7 -1.0 -0.4 -1.3
8 -1.2 0.8 0.7
9 -1.0 -0.9 -0.8

10 -0.4 0.8 0.7

Figure 65.9. Redundancy Analysis Example

The following statements produce the coefficients for predicting the redundancy vari-
ables from the independent variables, shown in Figure 65.10:

proc reg data=p outest=redcoef noprint;
title2 ’Manually Create Redundancy Coefficients’;
model Prin1-Prin3 = x1-x4;

run; quit;

proc print data=redcoef(keep=x1-x4);
format _numeric_ 4.1;

run;

Redundancy Analysis
Manually Create Redundancy Coefficients

Obs x1 x2 x3 x4

1 0.7 -0.6 0.4 -0.1
2 0.3 -1.5 -0.6 1.9
3 -0.7 -0.7 0.3 -0.3

Figure 65.10. Redundancy Analysis Example

The following statements produce the coefficients for predicting the independent vari-
ables from the redundancy variables, shown in Figure 65.11:

proc reg data=p outest=redcoef2 noprint;
title2 ’Manually Create Other Coefficients’;
model x1-x4 = prin1-prin3;

run; quit;

proc print data=redcoef2(keep=Prin1-Prin3);
format _numeric_ 4.1;

run;
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Redundancy Analysis
Manually Create Other Coefficients

Obs Prin1 Prin2 Prin3

1 0.8 -0.0 -0.6
2 -0.6 -0.2 -0.7
3 0.1 -0.2 -0.1
4 -0.5 0.3 -0.5

Figure 65.11. Redundancy Analysis Example

Optimal Scaling

An alternating least-squares optimal scaling algorithm can be divided into two major
stages. The first stage estimates the parameters of the linear model. These param-
eters are used to create the predicted values or target for each variable that can be
transformed. Each target minimizes squared error (as explained in the discussion of
the algorithms inSAS Technical Report R-108. The definition of the target depends
on many factors, such as whether a variable is independent or dependent, which al-
gorithm is used (for example, regression, redundancy, CANALS, principal compo-
nents), and so on. The definition of the target is independent of the transformation
family you specify for the variable. However, the target values for a variable typically
do not fit the prescribed transformation family for the variable. They might not have
the right category structure; they might not have the right order; they might not be a
linear combination of the columns of a B-spline basis; and so on.

The second major stage is optimal scaling. Optimal scaling can be defined as a pos-
sibly constrained, least-squares regression problem. When you specify an optimal
transformation, or when missing data are estimated for any variable, the full represen-
tation of the variable is not simply a vector; it is a matrix with more than one column.
The optimal scaling phase finds the vector that is a linear combination of the columns
of this matrix, that is closest to the target (in terms of minimum squared error), among
those that do not violate any of the constraints imposed by the transformation family.
Optimal scaling methods are independent of the data analysis method that generated
the target. In all cases, optimal scaling can be accomplished by creating a design
matrix based on the original scaling of the variable and the transformation family
specified for that variable. The optimally scaled variable is a linear combination of
the columns of the design matrix. The coefficients of the linear combination are found
using (possibly constrained) least squares. Many optimal scaling problems are solved
without actually constructing design and projection matrices. The following two sec-
tions describe the algorithms used by PROC TRANSREG for optimal scaling. The
first section discusses optimal scaling for OPSCORE, MONOTONE, UNTIE, and
LINEAR transformations, including how missing values are handled. The second
section addresses SPLINE and MSPLINE transformations.

OPSCORE, MONOTONE, UNTIE, and LINEAR Transformations

Two vectors of information are needed to produce the optimally scaled variable: the
initial variable scaling vectorx and the target vectory. For convenience, both vectors
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are first sorted on the values of the initial scaling vector. If you request an UNTIE
transformation, the target vector is sorted within ties in the initial scaling vector. The
normal SAS System collating sequence for missing and nonmissing values is used.
Sorting simply allows constraints to be specified in terms of relations among adjoin-
ing coefficients. The sorting process partitionsx andy into missing and nonmissing
parts(x0mx

0

n)
0, and(y0my

0

n)
0.

Next, PROC TRANSREG determines category membership. Every ordinary miss-
ing value (.) forms a separate category. (Three ordinary missing values form three
categories.) Every special missing value within the range specified in the UNTIE=
a-optionforms a separate category. (If UNTIE= BC and there are three .B and two .C
missing values, five categories are formed from them.) For all other special missing
values, a separate category is formed for each different value. (If there are four .A
missing values, one category is formed from them.)

Each distinct nonmissing value forms a separate category for OPSCORE and MONO-
TONE transformations (1 1 1 2 2 3 form three categories). Each nonmissing datum
forms a separate category for all other transformations (1 1 1 2 2 3 form six cate-
gories). Once category membership is determined, category means are computed.
Here is an example:

x: (. . .A .A .B 1 1 1 2 2 3 3 3 4)’

y: (5 6 2 4 2 1 2 3 4 6 4 5 6 7)’

OPSCORE and
MONOTONE means: (5 6 3 2 2 5 5 7)’

other means: (5 6 3 2 1 2 3 4 6 4 5 6 7)’

The category means are the coefficients of a category indicator design matrix. The
category means are the Fisher (1938) optimal scores. For MONOTONE and UNTIE
transformations, order constraints are imposed on the category means for the non-
missing partition by merging categories that are out of order. The algorithm checks
upward until an order violation is found, then averages downward until the order vi-
olation is averaged away. (The average of�x1 computed fromn1 observations and�x2
computed fromn2 observations is(n1�x1 + n2�x2)=(n1 + n2).) The MONOTONE
algorithm (Kruskal 1964, secondary approach to ties) for this example with means
for the nonmissing values(2 5 5 7)0 would do the following checks:2 < 5:OK,
5 = 5:OK, 5 < 7:OK. The means are in the proper order, so no work is needed.

The UNTIE transformation (Kruskal 1964, primary approach to ties) uses the same
algorithm on the means of the nonmissing values(1 2 3 4 6 4 5 6 7)0 but with different
results for this example:1 < 2:OK, 2 < 3:OK, 3 < 4:OK, 4 < 6:OK, 6 > 4:average
6 and 4 and replace 6 and 4 by the average. The new means of the nonmissing values
are (1 2 3 4 5 5 5 6 7)0. The check resumes:4 < 5:OK, 5 = 5:OK, 5 = 5:OK,
5 < 6:OK, 6 < 7:OK. If some of the special missing values are ordered, the upward
checking, downward averaging method is applied to them also, independently of the
other missing and nonmissing partitions. Once the means conform to any required
category or order constraints, an optimally scaled vector is produced from the means.
The following example results from a MONOTONE transformation.
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x: (. . .A .A .B 1 1 1 2 2 3 3 3 4) 0

y: (5 6 2 4 2 1 2 3 4 6 4 5 6 7) 0

result: (5 6 3 3 2 2 2 2 5 5 5 5 5 7) 0

The upward checking, downward averaging algorithm is equivalent to creating a cat-
egory indicator design matrix, solving for least-squares coefficients with order con-
straints, then computing the linear combination of design matrix columns.

For the optimal transformation LINEAR and for nonoptimal transformations, missing
values are handled as just described. The nonmissing target values are regressed onto
the matrix defined by the nonmissing initial scaling values and an intercept. In this
example, the target vectoryn = (1 2 3 4 6 4 5 6 7)0 is regressed onto the design
matrix

�
1 1 1 1 1 1 1 1 1

1 1 1 2 2 3 3 3 4

�
0

Although only a linear transformation is performed, the effect of a linear regression
optimal scaling is not eliminated by the later standardization step (unless the variable
has no missing values). In the presence of missing values, the linear regression is
necessary to minimize squared error.

SPLINE and MSPLINE Transformations

The missing portions of variables subjected to SPLINE or MSPLINE transformations
are handled the same way as for OPSCORE, MONOTONE, UNTIE, and LINEAR
transformations (see the previous section). The nonmissing partition is handled by
first creating a B-spline basis of the specified degree with the specified knots for the
nonmissing partition of the initial scaling vector and then regressing the target onto
the basis. The optimally scaled vector is a linear combination of the B-spline basis
vectors using least-squares regression coefficients. An algorithm for generating the
B-spline basis is given in de Boor (1978, pp. 134–135). B-splines are both a computa-
tionally accurate and efficient way of constructing a basis for piecewise polynomials;
however, they are not the most natural method of describing splines.

Consider an initial scaling vectorx = (1 2 3 4 5 6 7 8 9)0 and a degree three spline
with interior knots at 3.5 and 6.5. The B-spline basis for the transformation is the
left matrix in Table 65.5, and the natural piecewise polynomial spline basis is the
right matrix. The two matrices span the same column space. The natural basis has
an intercept, a linear term, a quadratic term, a cubic term, and two more terms since
there are two interior knots. These terms are generated (for knotk andx elementx)
by the formula(x� k)3 � I(x>k). The indicator variableI(x>k) evaluates to 1.0 ifx
is greater thank and to 0.0 otherwise. If knotk had been repeated, there would be a
(x�k)2�I(x>k) term also. Notice that the fifth column makes no contribution to the
curve before 3.5, makes zero contribution at 3.5 (the transformation is continuous),
and makes an increasing contribution beyond 3.5. The same pattern of results holds
for the last term with knot 6.5. The coefficient of the fifth column represents the
change in the cubic portion of the curve after 3.5. The coefficient of the sixth column
represents the change in the cubic portion of the curve after 6.5.
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Table 65.5. Spline Bases

B-Spline Basis Piecewise
Piecewise Polynomial Polynomial Splines2

6666666666664

0:171 0:557 0:250 0:022 0 0

0:037 0:447 0:443 0:073 0 0

0:001 0:251 0:576 0:172 0 0

0 0:093 0:572 0:334 0:001 0

0 0:020 0:437 0:517 0:027 0

0 0:001 0:253 0:623 0:123 0

0 0 0:108 0:557 0:332 0:003
0 0 0:032 0:341 0:548 0:079
0 0 0:004 0:109 0:523 0:364

3
7777777777775

2
6666666666664

1 1 1 1 0:000 0:000
1 2 4 8 0:000 0:000
1 3 9 27 0:000 0:000
1 4 16 64 0:125 0:000
1 5 25 125 3:375 0:000
1 6 36 216 15:625 0:000
1 7 49 343 42:875 0:125
1 8 64 512 91:125 3:375
1 9 81 729 166:375 15:625

3
7777777777775

The numbers in the B-spline basis do not have a simple interpretation like the num-
bers in the natural piecewise polynomial basis. The B-spline basis has a diagonally
banded structure. The band shifts one column to the right after every knot. The num-
ber of nonzero elements in a row is one greater than the degree. The elements within
a row always sum to one. The B-spline basis is accurate because of the smallness
of the numbers and the lack of extreme collinearity inherent in the natural polyno-
mials. B-splines are efficient because PROC TRANSREG can take advantage of the
sparseness of the B-spline basis when it accumulates crossproducts. The number of
required multiplications and additions to accumulate the crossproduct matrix does
not increase with the number of knots but does increase with the degree of the spline,
so it is much more computationally efficient to increase the number of knots than to
increase the degree of the polynomial.

MSPLINE transformations are handled like SPLINE transformations except that con-
straints are placed on the coefficients to ensure monotonicity. When the coefficients
of the B-spline basis are monotonically increasing, the transformation is monotoni-
cally increasing. When the polynomial degree is two or less, monotone coefficient
splines, integrated splines (Winsberg and Ramsay 1980), and the general class of all
monotone splines are equivalent.

Specifying the Number of Knots

Keep the number of knots small (usually less than ten, although you can specify
more). A degree three spline with nine knots, one at each decile, can closely follow
a large variety of curves. Each spline transformation of degreep with q knots fits a
model withp + q parameters. The total number of parameters should be much less
than the number of observations. Usually in regression analyses, it is recommended
that there be at least five or ten observations for each parameter in order to get stable
results. For example, when spline transformations of degree three with nine knots are
requested for six variables, the number of observations in the data set should be at
least five or ten times 72 (since6 � (3 + 9) is the total number of parameters). The
overall model can also have a parameter for the intercept and one or more parameters
for each nonspline variable in the model.
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Increasing the number of knots gives the spline more freedom to bend and follow the
data. Increasing the degree also gives the spline more freedom, but to a lesser extent.
Specifying a large number of knots is much better than increasing the degree beyond
three.

When you specify NKNOTS=q for a variable withn observations, then each of the
q + 1 segments of the spline containsn=(q + 1) observations on the average. When
you specify KNOTS=number-list, make sure that there is a reasonable number of
observations in each interval.

The following statements find a cubic polynomial transformation ofX and no trans-
formation ofY:

proc transreg;
model identity(Y)=spline(X);
output;

run;

The following statements find a cubic spline transformation curve forX that consists
of the weighted sum of a single constant, a single straight line, a quadratic curve for
the portion of the variable less than 3.0, a different quadratic curve for the portion
greater than 3.0 (since the 3.0 knot is repeated), and a different cubic curve for each
of the intervals: (minimum to 1.5), (1.5 to 2.4), (2.4 to 3.0), (3.0 to 4.0), and (4.0
to maximum). The transformation is continuous everywhere, its first derivative is
continuous everywhere, its second derivative is continuous everywhere except at 3.0,
and its third derivative is continuous everywhere except at 1.5, 2.4, 3.0, and 4.0.

proc transreg;
model identity(Y)=spline(X / knots=1.5 2.4 3.0 3.0 4.0);
output;

run;

The following statements find a quadratic spline transformation that consists of a
polynomialX–t = b0+b1X+b2X

2 for the range (X < 3.0) and a completely different
polynomialX–t = b3 + b4X + b5X2 for the range (X > 3.0). The two curves are not
required to be continuous at 3.0.

proc transreg;
model identity(y)=spline(x / knots=3 3 3 degree=2);
output;

run;

The following statements categorizeY into 10 intervals and find a step-function trans-
formation. One aspect of this transformation family is unlike all other optimal trans-
formation families. The initial scaling of the data does not fit the restrictions imposed
by the transformation family. This is because the initial variable can be continuous,
but a discrete step function transformation is sought. Zero degree spline variables are
categorized before the first iteration.
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proc transreg;
model identity(Y)=spline(X / degree=0 nknots=9);
output;

run;

The following statements find a continuous, piecewise linear transformation ofX:

proc transreg;
model identity(Y)=spline(X / degree=1 nknots=8);
output;

run;

SPLINE, BSPLINE, and PSPLINE Comparisons

SPLINE is a transformation. It takes a variable as input and produces a transformed
variable as output. Internally, with SPLINE, a B-spline basis is used to find the trans-
formation, which is a linear combination of the columns of the B-spline basis. How-
ever, with SPLINE, the basis is not made available in any output.

BSPLINE is an expansion. It takes a variable as input and produces more than one
variable as output. The output variables comprise the B-spline basis that is used
internally by SPLINE.

PSPLINE is an expansion. It takes a variable as input and produces more than one
variable as output. The difference between PSPLINE and BSPLINE is that PSPLINE
produces a piecewise polynomial, whereas BSPLINE produces a B-spline. A matrix
consisting of a piecewise polynomial basis and an intercept spans the same space
as the B-spline matrix, but the basis vectors are quite different. The numbers in the
piecewise polynomials can get quite large; the numbers in the B-spline basis range
between 0 and 1. There are many more zeros in the B-spline basis.

Interchanging SPLINE, BSPLINE, and PSPLINE should have no effect on the fit of
the overall model except for the fact that PSPLINE is much more prone to numerical
problems. Similarly, interchanging a CLASS expansion and an OPSCORE transfor-
mation should have no effect on the fit of the overall model.

Hypothesis Tests

The TRANSREG procedure has a set of options for testing hypotheses in models with
a single dependent variable. The TESTa-optionproduces an ANOVA table. It tests
the null hypothesis that the vector of coefficients for all of the transformations is zero.
The SS2a-optionproduces a regression table with Type II tests of the contribution of
each transformation to the overall model. In some cases, exact tests are provided; in
other cases, the tests are approximate, liberal, or conservative.

For two reasons it is typically not appropriate to test hypotheses by using the output
from PROC TRANSREG as input to other procedures such as the REG procedure.
First, PROC REG has no way of determining how many degrees of freedom were
used for each transformation. Second, the Type II sums of squares for the tests of
the individual regression coefficients are not correct for the transformation regression
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model since PROC REG, as it evaluates the effect of each variable, cannot change the
transformations of the other variables. PROC TRANSREG uses the correct degrees
of freedom and sums of squares.

In an ordinary univariate linear model, there is one parameter for each independent
variable, including the intercept. In the transformation regression model, many of
the “variables” are used internally in the bases for the transformations. Each basis
column has one parameter orscoringcoefficient, and each linearly independent col-
umn has one model degree of freedom associated with it. Coefficients applied to
transformed variables,model coefficients, do not enter into the degrees of freedom
calculations. They are by-products of the standardizations and can be absorbed into
the transformations by specifying the ADDITIVEa-option. The wordparameteris
reserved for model and scoring coefficients that have a degree of freedom associated
with them.

For expansions, there is one model parameter for each variable created by the ex-
pansion (except for all missing CLASS columns and expansions that have an implicit
intercept). Each IDENTITY variable has one model parameter. If there arem POINT
variables, they expand tom+ 1 variables and, hence, havem+ 1 model parameters.
Form EPOINT variables, there are2m model parameters. Form QPOINT variables,
there arem(m + 3)=2 model parameters. If a variable withm categories is desig-
nated CLASS, there arem � 1 parameters. For BSPLINE and PSPLINE variables
of DEGREE=n with NKNOTS=k, there aren + k parameters. Note that one of the
n + k + 1 BSPLINE columns and one of them CLASS(variable / ZERO=NONE)
columns are not counted due to the implicit intercept.

There are scoring parameters for missing values in nonexcluded observations. Each
ordinary missing value (.) has one scoring parameter. Each different special missing
value (.– and .A through .Z) within each variable has one scoring parameter. Miss-
ing values specified in the UNTIE= and MONOTONE= options follow the rules for
UNTIE and MONOTONE transformations, which are described later in this chapter.

For all nonoptimal transformations (LOG, LOGIT, ARSIN, POWER, EXP, RANK),
there is one parameter per variable in addition to any missing value scoring parame-
ters.

For SPLINE, OPSCORE, and LINEAR transformations, the number of scoring pa-
rameters is the number of basis columns that are used internally to find the trans-
formations minus 1 for the intercept. The number of scoring parameters for SPLINE
variables is the same as the number of model parameters for BSPLINE and PSPLINE
variables. If DEGREE=n and NKNOTS=k, there aren+ k scoring parameters. The
number of scoring parameters for OPSCORE, SMOOTH, and SSPLINE variables
is the same as the number of model parameters for CLASS variables. If there are
m categories, there arem � 1 scoring parameters. There is one parameter for each
LINEAR variable. For SPLINE, OPSCORE, LINEAR, MONOTONE, UNTIE, and
MSPLINE transformations, missing value scoring parameters are computed as de-
scribed previously with the nonoptimal transformations.

The number of scoring parameters for MONOTONE, UNTIE, and MSPLINE trans-
formations is less precise than for SPLINE, OPSCORE, and LINEAR transforma-

SAS OnlineDoc: Version 8



Hypothesis Tests � 3435

tions. One way of handling a MONOTONE transformation is to treat it as if it were
the same as an OPSCORE transformation. If there arem categories, there arem� 1

potential scoring parameters. However, there are typically fewer thanm� 1 unique
parameter estimates since some of thosem � 1 scoring parameter estimates may be
tied during the optimal scaling to impose the order constraints. Imposing ties on the
scoring parameter estimates is equivalent to fitting a model with fewer parameters. So
there are two available scoring parameter counts:m � 1 and a smaller number that
is determined during the analysis. Usingm� 1 as the model degrees of freedom for
MONOTONE variables (treating OPSCORE and MONOTONE transformations the
same way) isconservative, since the MONOTONE scoring parameter estimates are
more restricted than the OPSCORE scoring parameter estimates. Using the smaller
count (the number of scoring parameter estimates that are different minus 1 for the
intercept) in the model degrees of freedom isliberal, since the data and the model
together are being used to determine the number of parameters. PROC TRANSREG
reports tests using both liberal and conservative degrees of freedom to provide lower
and upper bounds on the “true”p-values.

For the UNTIE transformation, the conservative scoring parameter count is the num-
ber of distinct observations, whereas the liberal scoring parameter count is the num-
ber of scoring parameter estimates that are different minus 1 for the intercept. Hence,
when you specify UNTIE, conservative tests have zero error degrees of freedom un-
less there are replicated observations.

For MSPLINE variables of DEGREE=n and NKNOTS=k, the conservative scoring
parameter count isn+k, whereas the liberal parameter count is the number of scoring
parameter estimates that are different, minus 1 for the intercept. A liberal degrees of
freedom of 1 does not necessarily imply a linear transformation. It just implies that
n plusk minus the number of ties imposed equals 1. An example of a one degree-of-
freedom nonlinear transformation is a two-piece linear transformation in which the
slope of one piece is 0.

The number of scoring parameters is determined during each iteration. After the
last iteration, enough information is available for the TESTa-option to produce an
ANOVA table that reports the overall fit of the model. If you specify the SS2a-
option, further iterations are necessary to test the contribution of each transformation
to the overall model.

The liberal tests do not compensate for over-parameterization. For example, request-
ing a spline transformation withk knots when a linear transformation will suffice
results in “liberal” tests that are actually conservative because too many degrees of
freedom are being used for the transformations. Use as few knots as possible to avoid
this problem.

In ordinary multiple regression, anF test of the null hypothesis that the coefficient for
variablexj is zero can be constructed by comparing two linear models. One model
is the full model with all parameters, and the other is a reduced model that has all
parameters except the parameter for variablexj. The difference between the model
sum of squares for the full model and the model sum of squares for the reduced
model is the Type II sum of squares for the test of the null hypothesis that the coef-
ficient for variablexj is 0. The numerator of theF test has one degree of freedom.
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The mean square error for the full model is the denominator of theF test of variable
xj. Note that the estimates of the coefficients for the two models are not usually the
same. When variablexj is removed, the coefficients for the other variables change to
compensate for the removal ofxj. In a transformation regression model, the transfor-
mations of the other variables must be allowed to change and the numerator degrees
of freedom are not always ones. It is not correct to simply let the model coefficients
for the transformed variables change and apply the new model coefficients to the old
transformations computed with the old scoring parameter estimates. In a transforma-
tion regression model, further iteration is needed to test each transformation because
all the scoring parameter estimates for other variables must be allowed to change to
test the effect of variablexj. This can be quite time consuming for a large model if
the DUMMY a-optioncannot be used to solve directly for the transformations.

Output Data Set

The OUT= output data set can contain a great deal of information; however, in most
cases, the output data set contains a small portion of the entire range of available in-
formation and is organized for direct input into the %PLOTIT macro or graphical or
analysis procedures. For information on the %PLOTIT macro, see Appendix B, “Us-
ing the %PLOTIT Macro.”

Output Data Set Examples
The next section provides a complete list of the contents of the OUT= data set. How-
ever, before presenting complete details, this section provides three brief examples,
illustrating some typical output data sets.

The first example shows the output data set from a two-way ANOVA model. The
following statements produce Figure 65.12:

title ’ANOVA Output Data Set Example’;

data ReferenceCell;
input Y X1 $ X2 $;
datalines;

11 a a
12 a a
10 a a

4 a b
5 a b
3 a b
5 b a
6 b a
4 b a
2 b b
3 b b
1 b b

;

*---Fit Reference Cell Two-Way ANOVA Model---;
proc transreg data=ReferenceCell;

model identity(Y) = class(X1 | X2);
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output coefficients replace predicted residuals;
run;

*---Print the Results---;
proc print;
run;

proc contents position;
ods select position;

run;

ANOVA Output Data Set Example

X1a
Obs _TYPE_ _NAME_ Y PY RY Intercept X1a X2a X2a X1 X2

1 SCORE ROW1 11 11 0 1 1.0 1 1 a a
2 SCORE ROW2 12 11 1 1 1.0 1 1 a a
3 SCORE ROW3 10 11 -1 1 1.0 1 1 a a
4 SCORE ROW4 4 4 0 1 1.0 0 0 a b
5 SCORE ROW5 5 4 1 1 1.0 0 0 a b
6 SCORE ROW6 3 4 -1 1 1.0 0 0 a b
7 SCORE ROW7 5 5 0 1 0.0 1 0 b a
8 SCORE ROW8 6 5 1 1 0.0 1 0 b a
9 SCORE ROW9 4 5 -1 1 0.0 1 0 b a

10 SCORE ROW10 2 2 0 1 0.0 0 0 b b
11 SCORE ROW11 3 2 1 1 0.0 0 0 b b
12 SCORE ROW12 1 2 -1 1 0.0 0 0 b b
13 M COEFFI Y . . . 2 2.0 3 4
14 MEAN Y . . . . 7.5 8 11

ANOVA Output Data Set Example

The CONTENTS Procedure

-----Variables Ordered by Position-----

# Variable Type Len Pos Label
-----------------------------------------------------------

1 _TYPE_ Char 8 56
2 _NAME_ Char 32 64
3 Y Num 8 0
4 PY Num 8 8 Y Predicted Values
5 RY Num 8 16 Y Residuals
6 Intercept Num 8 24 Intercept
7 X1a Num 8 32 X1 a
8 X2a Num 8 40 X2 a
9 X1aX2a Num 8 48 X1 a * X2 a

10 X1 Char 8 96
11 X2 Char 8 104

Figure 65.12. ANOVA Example Output Data Set Contents

The–TYPE– variable indicates observation type: score, multiple regression coeffi-
cient (parameter estimates), and marginal means. The–NAME– variable contains
the default observation labels, “ROW1”, “ROW2”, and so on, and contains the de-
pendent variable name (Y) for the remaining observations. If you specify an ID state-
ment,–NAME– contains the values of the first ID variable for score observations.
TheY variable is the dependent variable,PY contains the predicted values,RY con-
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tains the residuals, and the variablesIntercept throughX1aX2a contain the design
matrix. TheX1 andX2 variables are the original CLASS variables.

The next example shows the contents of the output data set from fitting a curve
through a scatter plot.

title ’Output Data Set for Curve Fitting Example’;

data A;
do X = 1 to 100;

Y = log(x) + sin(x / 10) + normal(7);
output;
end;

run;

proc transreg;
model identity(Y) = spline(X / nknots=9);
output predicted out=B;

run;

proc contents position;
ods select position;

run;

These statements produce Figure 65.13.

Output Data Set for Curve Fitting Example

The CONTENTS Procedure

-----Variables Ordered by Position-----

# Variable Type Len Pos Label
-----------------------------------------------------------------
1 _TYPE_ Char 8 56
2 _NAME_ Char 32 64
3 Y Num 8 0
4 TY Num 8 8 Y Transformation
5 PY Num 8 16 Y Predicted Values
6 Intercept Num 8 24 Intercept
7 X Num 8 32
8 TIntercept Num 8 40 Intercept Transformation
9 TX Num 8 48 X Transformation

Figure 65.13. Predicted Values Example Output Data Set Contents

The OUT= data set contains–TYPE– and–NAME– variables. Since no coefficients
or coordinates are requested, all observations are–TYPE–=’SCORE’. TheY vari-
able is the original dependent variable,TY is the transformed dependent variable,PY
contains the predicted values,X is the original independent variable, andTX is the
transformed independent variable. The data set also contains anIntercept and trans-
formed interceptTIntercept variable. (In this case, the transformed intercept is the
same as the intercept. However, if you specify the TSTANDARD= and ADDITIVE
options, these are not always the same.)
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The next example shows the results from specifying METHOD=MORALS when
there is more than one dependent variable.

title ’METHOD=MORALS Output Data Set Example’;

data x;
input Y1 Y2 X1 $ X2 $;
datalines;

11 1 a a
10 4 b a

5 2 a b
5 9 b b
4 3 c c
3 6 b a
1 8 a b

;

*---Fit Reference Cell Two-Way ANOVA Model---;
proc transreg data=x noprint dummy;

model spline(Y1 Y2) = opscore(X1 X2 / name=(N1 N2));
output coefficients predicted residuals;
id x1 x2;

run;

*---Print the Results---;
proc print;
run;

proc contents position;
ods select position;

run;

These statements produce Figure 65.14.
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METHOD=MORALS Output Data Set Example

Obs _DEPVAR_ _TYPE_ _NAME_ _DEPEND_ T_DEPEND_ P_DEPEND_ R_DEPEND_

1 Spline(Y1) SCORE a 11 13.1600 11.1554 2.00464
2 Spline(Y1) SCORE b 10 6.1931 6.8835 -0.69041
3 Spline(Y1) SCORE a 5 2.4467 4.7140 -2.26724
4 Spline(Y1) SCORE b 5 2.4467 0.4421 2.00464
5 Spline(Y1) SCORE c 4 4.2076 4.2076 -0.00000
6 Spline(Y1) SCORE b 3 5.5693 6.8835 -1.31422
7 Spline(Y1) SCORE a 1 4.9766 4.7140 0.26261
8 Spline(Y1) M COEFFI Y1 . . . .
9 Spline(Y2) SCORE a 1 -0.5303 -0.5199 -0.01043

10 Spline(Y2) SCORE b 4 5.5487 4.5689 0.97988
11 Spline(Y2) SCORE a 2 3.8940 4.5575 -0.66347
12 Spline(Y2) SCORE b 9 9.6358 9.6462 -0.01043
13 Spline(Y2) SCORE c 3 5.6210 5.6210 0.00000
14 Spline(Y2) SCORE b 6 3.5994 4.5689 -0.96945
15 Spline(Y2) SCORE a 8 5.2314 4.5575 0.67390
16 Spline(Y2) M COEFFI Y2 . . . .

Obs Intercept N1 N2 TIntercept TN1 TN2 X1 X2

1 1 0 0 1.0000 0.06711 -0.09384 a a
2 1 1 0 1.0000 1.51978 -0.09384 b a
3 1 0 1 1.0000 0.06711 1.32038 a b
4 1 1 1 1.0000 1.51978 1.32038 b b
5 1 2 2 1.0000 0.23932 1.32038 c c
6 1 1 0 1.0000 1.51978 -0.09384 b a
7 1 0 1 1.0000 0.06711 1.32038 a b
8 . . . 10.9253 -2.94071 -4.55475 Y1 Y1
9 1 0 0 1.0000 0.03739 -0.09384 a a

10 1 1 0 1.0000 1.51395 -0.09384 b a
11 1 0 1 1.0000 0.03739 1.32038 a b
12 1 1 1 1.0000 1.51395 1.32038 b b
13 1 2 2 1.0000 0.34598 1.32038 c c
14 1 1 0 1.0000 1.51395 -0.09384 b a
15 1 0 1 1.0000 0.03739 1.32038 a b
16 . . . -0.3119 3.44636 3.59024 Y2 Y2

Figure 65.14. METHOD=MORALS Rolled Output Data Set
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METHOD=MORALS Output Data Set Example

The CONTENTS Procedure

-----Variables Ordered by Position-----

# Variable Type Len Pos Label
----------------------------------------------------------------------------

1 _DEPVAR_ Char 42 80 Dependent Variable Transformation(Name)
2 _TYPE_ Char 8 122
3 _NAME_ Char 32 130
4 _DEPEND_ Num 8 0 Dependent Variable
5 T_DEPEND_ Num 8 8 Dependent Variable Transformation
6 P_DEPEND_ Num 8 16 Dependent Variable Predicted Values
7 R_DEPEND_ Num 8 24 Dependent Variable Residuals
8 Intercept Num 8 32 Intercept
9 N1 Num 8 40

10 N2 Num 8 48
11 TIntercept Num 8 56 Intercept Transformation
12 TN1 Num 8 64 N1 Transformation
13 TN2 Num 8 72 N2 Transformation
14 X1 Char 8 162
15 X2 Char 8 170

If you specify METHOD=MORALS with multiple dependent variables, PROC
TRANSREG performs separate univariate analyses and stacks the results in the
OUT= data set. For this example, the results of the first analysis are in the partition
designated by–DEPVAR–=’Spline(Y1)’ and the results of the first analysis are in
the partition designated by–DEPVAR–=’Spline(Y2)’, which are the transformation
and dependent variable names. Each partition has–TYPE–=’SCORE’ observations
for the variables and a–TYPE–=’M COEFFI’ observation for the coefficients. In
this example, an ID variable is specified, so the–NAME– variable contains the for-
matted values of the first ID variable. Since both dependent variables have to go into
the same column, the dependent variable is given a new name,–DEPEND– . The de-
pendent variable transformation is namedT–DEPEND– , the predicted values vari-
able is namedP–DEPEND–, and the residuals variable is namedR–DEPEND– .

The independent variables are character OPSCORE variables. By default, PROC
TRANSREG replaces character OPSCORE variables with category numbers and dis-
cards the original character variables. To avoid this, the input variables are renamed
from X1 andX2 to N1 andN2 and the originalX1 andX2 are added to the data
set as ID variables. TheN1 andN2 variables contain the initial values for the OP-
SCORE transformations, and theTN1 andTN2 variables contain optimal scores. The
data set also contains anIntercept and transformed interceptTIntercept variable.
The regression coefficients are in the transformation columns, which also contain the
variables to which they apply.

Output Data Set Contents
This section presents the various matrices that can result from PROC TRANSREG
processing and that appear in the OUT= data set. The exact contents of an OUT=
data set depends on many options.
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Table 65.6. PROC TRANSREG OUT= Data Set Contents

–TYPE– Contents Options, Default Prefix
SCORE dependent variables DREPLACE not specified
SCORE independent variables IREPLACE not specified
SCORE transformed dependent variables default, TDPREFIX=T
SCORE transformed independent variables default, TIPREFIX=T
SCORE predicted values PREDICTED, PPREFIX=P
SCORE residuals RESIDUALS, RDPREFIX=R
SCORE leverage LEVERAGE, LEVERAGE=Leverage
SCORE lower individual confidence limits CLI, LILPREFIX=LIL,

CILPREFIX=CIL
SCORE upper individual confidence limits CLI, LIUPREFIX=LIU,

CIUPREFIX=CIU
SCORE lower mean confidence limits CLM, LMLPREFIX=LML,

CMLPREFIX=CML
SCORE upper mean confidence limits CLM, LMUPREFIX=LMU,

CMUPREFIX=CMU
SCORE dependent canonical variables CANONICAL, CDPREFIX=Cand
SCORE independent canonical variables CANONICAL, CIPREFIX=Cani
SCORE redundancy variables REDUNDANCY, RPREFIX=Red
SCORE ID, CLASS, BSPLINE variables ID, CLASS, BSPLINE,
SCORE independent variables approximations IAPPROXIMATIONS, IAPREFIX=A

M COEFFI multiple regression coefficients COEFFICIENTS, MRC
C COEFFI canonical coefficients COEFFICIENTS, CCC
MEAN marginal means COEFFICIENTS, MEANS
M REDUND multiple redundancy coefficients MREDUNDANCY
R REDUND multiple redundancy coefficients MREDUNDANCY
M POINT point coordinates COORDINATES or MPC, POINT
M EPOINT elliptical point coordinates COORDINATES or MEC, EPOINT
M QPOINT quadratic point coordinates COORDINATES or MQC, QPOINT
C POINT canonical point coordinates COORDINATES or CPC, POINT
C EPOINT canonical elliptical point coordinates COORDINATES or CEC, EPOINT
C QPOINT canonical quadratic point coordinates COORDINATES or CQC, QPOINT

The independent and dependent variables are created from the original input data.
Several potential differences exist between these variables and the actual input data.
An intercept variable can be added, new variables can be added for POINT, EPOINT,
QPOINT, CLASS, IDENTITY, PSPLINE, and BSPLINE variables, and category
numbers are substituted for character OPSCORE variables. These matrices are not
always what is input to the first iteration. After the expanded data set is stored for in-
clusion in the output data set, several things happen to the data before they are input
to the first iteration: column means are substituted for missing values; zero degree
SPLINE and MSPLINE variables are transformed so that the iterative algorithms get
step function data as input, which conform to the zero degree transformation family
restrictions; and the nonoptimal transformations are performed.
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Details for the UNIVARIATE Method
When you specify METHOD=UNIVARIATE (in the MODEL or PROC TRANSREG
statement), PROC TRANSREG can perform several analyses, one for each depen-
dent variable. While each dependent variable can be transformed, their indepen-
dent variables are not transformed. The OUT= data set optionally contains all of
the–TYPE–=’SCORE’ observations, optionally followed by coefficients or coordi-
nates.

Details for the MORALS Method
When you specify METHOD=MORALS (in the MODEL or PROC TRANSREG
statement), successive analyses are performed, one for each dependent variable. Each
analysis transforms one dependent variable and the entire set of the independent vari-
ables. All information for the first dependent variable (scores then, optionally, coef-
ficients) appear first. Then all information for the second dependent variable (scores
then, optionally, coefficients) appear next. This arrangement is repeated for all de-
pendent variables.

Details for the CANALS and REDUNDANCY Methods
For METHOD=CANALS and METHOD=REDUNDANCY (specified in either the
MODEL or PROC TRANSREG statement), one analysis is performed that simul-
taneously transforms all dependent and independent variables. The OUT= data set
optionally contains all of the–TYPE–=’SCORE’ observations, optionally followed
by coefficients or coordinates.

Variable Names
As shown in the preceding examples, some variables in the output data set directly
correspond to input variables and some are created. All original optimal and nonop-
timal transformation variable names are unchanged.

The names of the POINT, QPOINT, and EPOINT expansion variables are also left
unchanged, but new variables are created. When independent POINT variables are
present, the sum-of-squares variable–ISSQ– is added to the output data set. For
each EPOINT and QPOINT variable, a new squared variable is created by append-
ing “–2”. For example,Dim1 andDim2 are expanded intoDim1, Dim2, Dim1–2,
andDim2–2. In addition, for each pair of QPOINT variables, a new crossproduct
variable is created by combining the two names, for example,Dim1Dim2.

The names of the CLASS variables are constructed from original variable names and
levels. Lengths are controlled by the CPREFIX=a-option. For example, whenX1
andX2 both have values of ’a’ and ’b’, CLASS(X1 | X2 / ZERO=NONE) createsX1
main effect variable namesX1a X1b, X2 main effect variable namesX2a X2b, and
interaction variable namesX1aX2a X1aX2b X1bX2a X1bX2b.

PROC TRANSREG then uses these variable names when creating the transformed,
predicted, and residual variable names by affixing the relevant prefix and possibly
dropping extra characters.

METHOD=MORALS Variable Names
When you specify METHOD=MORALS and only one dependent variable is present,
the output data set is structured exactly as if METHOD=REDUNDANCY (see the
section “Details for the CANALS and REDUNDANCY Methods” on page 3443).
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When more than one dependent variable is present, the dependent variables are out-
put in the variable–DEPEND–, transformed dependent variables are output in the
variableT–DEPEND– , predicted values are output in the variableP–DEPEND–,
and residuals are output in the variableR–DEPEND– . You can partition the data
set into BY groups, one per dependent variable, by referring to the character variable

–DEPVAR–, which contains the original dependent variable names and transforma-
tions.

Duplicate Variable Names
When the same name is generated from multiple variables in the OUT= data set, new
names are created by appending “2”, “3”, or “4”, and so on, until a unique name is
created. For 32-character names, the last character is replaced with a numeric suffix
until a unique name is created. For example, if there are two output variables that oth-
erwise would be namedX, thenX andX2 are created instead. If there are two output
variables that otherwise would be namedThisIsAThirtyTwoCharacterVarName,
thenThisIsAThirtyTwoCharacterVarName andThisIsAThirtyTwoCharacterVar-
Nam2 are created instead.

OUTTEST= Output Data Set

The OUTTEST= data set contains hypothesis test results. The OUTTEST= data set
always contains ANOVA results. When you specify the SS2a-option, regression
tables are also output. When you specify the UTILITIESa-option, conjoint analy-
sis part-worth utilities are also output. The OUTTEST= data set has the following
variables:

–DEPVAR– is a 42-character variable that contains the dependent variable
transformation and name.

–TYPE– is an 8-character variable that contains the table type. The first
character is “U” for univariate or “M” for multivariate. The second
character is blank. The third character is “A” for ANOVA, “2”
for Type II sum of squares, or “U” for UTILITIES. The fourth
character is blank. The fifth character is “L” for liberal tests, “C”
for conservative tests, or “U” for the usual tests.

Title is an 80-character variable that contains the table title.

Variable is a 42-character variable that contains the independent variable
transformations and names for regression tables and blanks for
ANOVA tables.

Coefficient contains the multiple regression coefficients for regression tables
and underscore special missing values for ANOVA tables.

Statistic is a 24-character variable that contains the names for statistics in
other variables, such asValue.

Value contains multivariate test statistics and all other information that
does not fit in one of the other columns including R-Square, De-
pendent Mean, Adj R-Sq, and Coeff Var. WheneverValue is not

an underscore special missing value,Statistic describes the con-
tents ofValue.
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NumDF contains numerator degrees of freedom forF tests.

DenDF contains denominator degrees of freedom forF tests.

SSq contains sums of squares.

MeanSquare contains mean squares.

F containsF statistics.

NumericP contains thep-value for theF statistic, stored in a numeric variable.

P is a 9-character variable that contains the formattedp-value for the
F statistic, including the appropriate�, <=, >=, or blank symbols.

LowerLimit contains lower confidence limits on the parameter estimates.

UpperLimit contains upper confidence limits on the parameter estimates.

StdError contains standard errors. For SS2 and UTILITIES tables, standard
errors are output for each coefficient with one degree of freedom.

Importance contains the relative importance of each factor for UTILITIES ta-
bles.

Label is a 256-character variable that contains variable labels.

There are several possible tables in the OUTTEST= data set corresponding to com-
binations of univariate and multivariate tests; ANOVA and regression results; and
liberal, conservative, and the usual tests. Each table is composed of only a subset
of the variables. Numeric variables contain underscore special missing values when
they are not a column in a table. Ordinary missing values (.) appear in variables that
are part of a table when a nonmissing value cannot be produced. For example, theF
is missing for a test with zero degrees of freedom.

Computational Resources

This section provides information on the computational resources required to use
PROC TRANSREG.

Let

n = number of observations

q = number of expanded independent variables

r = number of expanded dependent variables

k = maximum spline degree

p = maximum number of knots

� More than56(q + r) plus the maximum of the data matrix size, the optimal
scaling work space, and the covariance matrix size bytes of array space are
required. The data matrix size is8n(q + r) bytes. The optimal scaling work
space requires less than8(6n+(p+k+2)(p+k+11)) bytes. The covariance
matrix size is4(q + r)(q + r + 1) bytes.
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� PROC TRANSREG tries to store the original and transformed data in memory.
If there is not enough memory, a utility data set is used, potentially resulting in
a large increase in execution time. The amount of memory for the preceding
data formulas is an underestimate of the amount of memory needed to handle
most problems. These formulas give the absolute minimum amount of memory
required. If a utility data set is used, and if memory can be used with perfect
efficiency, then roughly the amount of memory stated previously is needed. In
reality, most problems require at least two or three times the minimum.

� PROC TRANSREG sorts the data once. The sort time is roughly proportional
to (q + r)n3=2.

� One regression analysis per iteration is required to compute model parameters
(or two canonical correlation analyses per iteration for METHOD=CANALS).
The time required for accumulating the crossproducts matrix is roughly propor-
tional ton(q+ r)2. The time required to compute the regression coefficients is
roughly proportional toq3.

� Each optimal scaling is a multiple regression problem, although some trans-
formations are handled with faster special-case algorithms. The number of
regressors for the optimal scaling problems depends on the original values of
the variable and the type of transformation. For each monotone spline transfor-
mation, an unknown number of multiple regressions is required to find a set of
coefficients that satisfies the constraints. The B-spline basis is generated twice
for each SPLINE and MSPLINE transformation for each iteration. The time
required to generate the B-spline basis is roughly proportional tonk2.

Solving Standard Least-Squares Problems

This section illustrates how to solve some ordinary least-squares problems and gener-
alizations of those problems by formulating them as transformation regression prob-
lems. One problem involves finding linear and nonlinear regression functions in a
scatter plot. The next problem involves simultaneously fitting two lines or curves
through a scatter plot. The last problem involves finding the overall fit of a multi-way
main-effects and interactions analysis-of-variance model.

Nonlinear Regression Functions
This example uses PROC TRANSREG in simple regression to find the optimal re-
gression line, a nonlinear but monotone regression function, and a nonlinear non-
monotone regression function. A regression line can be found by specifying

proc transreg;
model identity(y) = identity(x);
output predicted;

run;

A monotone regression function (in this case, a monotonically decreasing regression
function, since the correlation coefficient is negative) can be found by requesting an
MSPLINE transformation of the independent variable, as follows.
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proc transreg;
model identity(y) = mspline(x / nknots=9);
output predicted;

run;

The monotonicity restriction can be relaxed by requesting a SPLINE transformation
of the independent variable, as shown below.

proc transreg;
model identity(y) = spline(x / nknots=9);
output predicted;

run;

In this example, it is not useful to plot the transformationTX, sinceTX is just an
intermediate result used in finding a regression function through the originalX andY
scatter plot.

The following statements provide a specific example of using the TRANSREG pro-
cedure for fitting nonlinear regression functions. These statements produce Figure
65.15 through Figure 65.18.

title ’Linear and Nonlinear Regression Functions’;
*---Generate an Artificial Nonlinear Scatter Plot---;
*---SAS/IML Software is Required for this Example---;
proc iml;

N = 500;
X = (1:N)‘;
X = X/(N/200);
Y = -((X/50)-1.5)##2 + sin(X/8) + sqrt(X)/5 + 2*log(X) + cos(X);
X = X - X[:,];
X = -X / sqrt(X[##,]/(n-1));
Y = Y - Y[:,];
Y = Y / sqrt(Y[##,]/(n-1));
all = Y || X;
create outset from all;
append from all;
quit;

data A;
set outset(rename=(col1=Y col2=X));
if Y<-2 then Y=-2 + ranuni(7654321)/2;
X1=X; X2=X; X3=X; X4=X;

run;

*---Predicted Values for the Linear Regression Line---;
proc transreg data=A;

title2 ’A Linear Regression Line’;
model identity(Y)=identity(X);
output out=A pprefix=L;
id X1-X4;

run;
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*---Predicted Values for the Monotone Regression Function---;
proc transreg data=A;

title2 ’A Monotone Regression Function’;
model identity(Y)=mspline(X / nknots=9);
output out=A pprefix=M;
id X1-X4 LY;

run;

*---Predicted Values for the Nonmonotone Regression Function---;
proc transreg data=A;

title2 ’A Nonmonotone Regression Function’;
model identity(Y)=spline(X / nknots=9);
output out=A predicted;
id X1-X4 LY MY;

run;

*---Plot the Results---;
goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot data=A;
title;
axis1 minor=none label=(angle=90 rotate=0)

order=(-2 to 2 by 2);
axis2 minor=none order=(-2 to 2 by 2);
plot Y*X1=1 / &opts name=’tregnl1’;
plot Y*X2=1 LY*X2=2 / overlay &opts name=’tregnl2’;
plot Y*X3=1 MY*X3=2 / overlay &opts name=’tregnl3’;
plot Y*X4=1 PY*X4=2 / overlay &opts name=’tregnl4’;
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=none i=join;
label X1 = ’Nonlinear Scatter Plot’

X2 = ’Linear Regression, r**2 = 0.14580’
X3 = ’Monotone Function, r**2 = 0.60576’
X4 = ’Nonlinear Function, r**2 = 0.89634’;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:tregnl1 2:tregnl3 3:tregnl2 4:tregnl4;

run; quit;
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Linear and Nonlinear Regression Functions
A Linear Regression Line

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.14580 Converged

Algorithm converged.

Figure 65.15. A Linear Regression Line

Linear and Nonlinear Regression Functions
A Monotone Regression Function

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.62131 1.34209 0.14580
2 0.00000 0.00000 0.60576 0.45995 Converged

Algorithm converged.

Figure 65.16. A Monotone Regression Function

Linear and Nonlinear Regression Functions
A Nonmonotone Regression Function

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.83948 2.78984 0.14580
2 0.00000 0.00000 0.89634 0.75054 Converged

Algorithm converged.

Figure 65.17. A Nonmonotone Regression Function
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Figure 65.18. Linear, Monotone, and Nonmonotone Regression Functions

The squared correlation is only 0.15 for the linear regression, showing that a simple
linear regression model is not appropriate for these data. By relaxing the constraints
placed on the regression line, the proportion of variance accounted for increases from
0.15 (linear) to 0.61 (monotone) to 0.90 (nonmonotone). Relaxing the linearity con-
straint allows the regression function to bend and more closely follow the right por-
tion of the scatter plot. Relaxing the monotonicity constraint allows the regression
function to follow the periodic portion of the left side of the plot more closely. The
nonlinear MSPLINE transformation is a quadratic spline with knots at the deciles.
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The nonlinear nonmonotonic SPLINE transformation is a cubic spline with knots at
the deciles.

Different knots and different degrees would produce slightly different results.
The two nonlinear regression functions could be closely approximated by simpler
piecewise linear regression functions. The monotone function could be approximated
by a two-piece line with a single knot at the elbow. The nonmonotone function could
be approximated by a six-piece function with knots at the five elbows.

With this type of problem (one dependent variable with no missing values that is not
transformed and one independent variable that is nonlinearly transformed), PROC
TRANSREG always iterates exactly twice (although only one iteration is necessary).
The first iteration reports theR2 for the linear regression line and finds the optimal
transformation ofX. Since the data change in the first iteration, a second iteration is
performed, which reports theR2 for the final nonlinear regression function, and zero
data change. The predicted values, which are a linear function of the optimal trans-
formation ofX, contain they-coordinates for the nonlinear regression function. The
variance of the predicted values divided by the variance ofY is theR2 for the fit of
the nonlinear regression function. WhenX is monotonically transformed, the trans-
formation ofX is always monotonically increasing, but the predicted values increase
if the correlation is positive and decrease for negative correlations.

Simultaneously Fitting Two Regression Functions
One application of ordinary multiple regression is fitting two or more regression lines
through a single scatter plot. With PROC TRANSREG, this application can easily
be generalized to fit separate or parallel curves. To illustrate, consider a data set
with two groups. The data set has a continuous independent variableX, a continuous
dependent variableY, and a group membership variableG that has the value 1 for one
group and 2 for the other group. The following code shows how PROC TRANSREG
can be used to fit two lines, curves, and monotone curves simultaneously through a
scatter plot. You can use this code with an appropriate number-list for the KNOTS=
t-option.

proc transreg data=A dummy;
title ’Parallel Lines, Separate Intercepts’;
model identity(Y)=class(G) identity(X);
output predicted;

run;

proc transreg data=A;
title ’Parallel Monotone Curves, Separate Intercepts’;
model identity(Y)=class(G) mspline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc transreg data=A dummy;
title ’Parallel Curves, Separate Intercepts’;
model identity(Y)=class(G) spline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;
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proc transreg data=A;
title ’Separate Slopes, Same Intercept’;
model identity(Y)=class(G / zero=none) * identity(X);
output predicted;

run;

proc transreg data=A;
title ’Separate Monotone Curves, Same Intercept’;
model identity(Y) = class(G / zero=none) *

mspline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc transreg data=A dummy;
title ’Separate Curves, Same Intercept’;
model identity(Y) = class(G / zero=none) *

spline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc transreg data=A;
title ’Separate Slopes, Separate Intercepts’;
model identity(Y) = class(G / zero=none) | identity(X);
output predicted;

run;

proc transreg data=A;
title ’Separate Monotone Curves, Separate Intercepts’;
model identity(Y) = class(G / zero=none) |

mspline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc transreg data=A dummy;
title ’Separate Curves, Separate Intercepts’;
model identity(Y) = class(G / zero=none) |

spline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

Since the variablesX1 and X2 both have a large partition of zeros, the KNOTS=
t-option is specified instead of the NKNOTS=t-option. The following example gen-
erates an artificial data set with two curves. In the interest of space, only the preceding
separate curves, separate intercepts example is run.

title ’Separate Curves, Separate Intercepts’;

data A;
do X = -2 to 3 by 0.025;

G = 1;
Y = 8*(X*X + 2*cos(X*6)) + 15*normal(7654321);
output;
G = 2;
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Y = 4*(-X*X + 4*sin(X*4)) - 40 + 15*normal(7654321);
output;
end;

run;

proc transreg data=A dummy;
model identity(Y) = class(G / zero=none) |

spline(X / knots=-1.5 to 2.5 by 0.5);
output predicted;

run;

proc gplot;
axis1 minor=none;
axis2 minor=none label=(angle=90 rotate=0);
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=dot i=none;
plot Y*X=1 PY*X=2 /overlay frame cframe=ligr haxis=axis1

vaxis=axis2 href=0 vref=0;
run; quit;

The previous statements produce Figure 65.19 through Figure 65.20.

Separate Curves, Separate Intercepts

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.42724 4.48710 0.71020
1 0.00000 0.00000 0.86604 0.15584 Converged

Algorithm converged.

Figure 65.19. Fitting Models: Separate Curves, Separate Intercepts
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Figure 65.20. Plot for the Separate Curves, Separate Intercepts Example

Unbalanced ANOVA without Dummy Variables
This example illustrates that an analysis of variance model can be formulated as a
simple regression model with optimal scoring. The purpose of the example is to
explain one aspect of how PROC TRANSREG works, not to propose an alternative
way of performing an analysis of variance.

Finding the overall fit of a large, unbalanced analysis of variance model can be
handled as an optimal scoring problem without creating large, sparse design matri-
ces. For example, consider an unbalanced full main-effects and interactions ANOVA
model with six factors. Assume that a SAS data set is created with factor level indi-
cator variablesC1 throughC6 and dependent variableY. If each factor level consists
of nonblank single characters, you can create a cell indicator in a DATA step with the
statement

x=compress(c1||c2||c3||c4||c5||c6);

The following statements optimally scoreX (using the OPSCORE transformation)
and do not transformY. The finalR2 reported is theR2 for the full analysis of vari-
ance model.

proc transreg;
model identity(y)=opscore(x);
output;

run;

TheR2 displayed by the preceding statements is the same as theR2 that would be
reported by both of the following PROC GLM runs.
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proc glm;
class x;
model y=x;

run;

proc glm;
class c1-c6;
model y=c1|c2|c3|c4|c5|c6;

run;

PROC TRANSREG optimally scores the classes ofX, within the space of a single
variable with values linearly related to the cell means, so the full ANOVA problem is
reduced to a simple regression problem with an optimal independent variable. PROC
TRANSREG requires only one iteration to find the optimal scoring ofX but, by
default, performs a second iteration, which reports no data changes.

Hypothesis Tests for Simple Univariate Models
If the dependent variable has one parameter (IDENTITY, LINEAR with no missing
values, and so on) and if there are no monotonicity constraints, PROC TRANSREG
fits univariate models, which can also be fit with a DATA step and PROC REG. This
is illustrated with an artificial data set.

data htex;
do i = 0.5 to 10 by 0.5;

x1 = log(i);
x2 = sqrt(i) + sin(i);
x3 = 0.05 * i * i + cos(i);
y = x1 - x2 + x3 + 3 * normal(7);
x1 = x1 + normal(7);
x2 = x2 + normal(7);
x3 = x3 + normal(7);
output;

end;
run;

Both PROC TRANSREG and PROC REG are run to fit the same polynomial re-
gression model. The ANOVA and regression tables from PROC TRANSREG are
displayed in Figure 65.21. The ANOVA and regression tables from PROC REG are
displayed in Figure 65.22. The SHORTa-optionis specified to suppress the iteration
history.

proc transreg data=htex ss2 short;
title ’Fit a Polynomial Regression Model with PROC TRANSREG’;
model identity(y) = spline(x1);

run;
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Fit a Polynomial Regression Model with PROC TRANSREG

The TRANSREG Procedure

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 5.8365 1.94550 0.14 0.9329
Error 16 218.3073 13.64421
Corrected Total 19 224.1438

Root MSE 3.69381 R-Square 0.0260
Dependent Mean 0.85490 Adj R-Sq -0.1566
Coeff Var 432.07258

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F

Intercept 1 1.4612767 18.8971 18.8971 1.38 0.2565
Spline(x1) 3 -0.3924013 5.8365 1.9455 0.14 0.9329

Figure 65.21. ANOVA and Regression Output from PROC TRANSREG

data htex2;
set htex;
x1_1 = x1;
x1_2 = x1 * x1;
x1_3 = x1 * x1 * x1;

run;

proc reg;
title ’Fit a Polynomial Regression Model with PROC REG’;
model y = x1_1 - x1_3;

run;
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Fit a Polynomial Regression Model with PROC REG

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 5.83651 1.94550 0.14 0.9329
Error 16 218.30729 13.64421
Corrected Total 19 224.14380

Root MSE 3.69381 R-Square 0.0260
Dependent Mean 0.85490 Adj R-Sq -0.1566
Coeff Var 432.07258

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.22083 1.47163 0.83 0.4190
x1_1 1 0.79743 1.75129 0.46 0.6550
x1_2 1 -0.49381 1.50449 -0.33 0.7470
x1_3 1 0.04422 0.32956 0.13 0.8949

Figure 65.22. ANOVA and Regression Output from PROC REG

The PROC TRANSREG regression table differs in several important ways from the
parameter estimate table produced by PROC REG. The REG procedure displays stan-
dard errors andts. PROC TRANSREG displays Type II sums of squares, mean
squares, andFs. The difference is because the numerator degrees of freedom are
not always 1, sot-tests are not uniformly appropriate. When the degrees of freedom
for variablexj is 1, the following relationships hold between the standard errors(s�j )
and the Type II sums of squares (SSj):

s�j = (�̂2
j =Fj)

1=2

and

SSj = �̂2
j �MSE=s2�j

PROC TRANSREG does not provide tests of the individual terms that go into the
transformation. (However it could if BSPLINE or PSPLINE had been specified in-
stead of SPLINE.) The test of SPLINE(X1) is the same as the test of the overall
model. The intercepts are different due to the different numbers of variables and their
standardizations.

In the next example, bothX1 andX2 are transformed in the first PROC TRANSREG
step, and PROC TRANSREG is used instead of a DATA step to create the polynomi-
als for PROC REG. Both PROC TRANSREG and PROC REG fit the same polyno-
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mial regression model. The output from PROC TRANSREG is in Figure 65.23. The
output from PROC REG is in Figure 65.24.

proc transreg data=htex ss2 dummy;
title ’Two-Variable Polynomial Regression’;
model identity(y) = spline(x1 x2);

run;

proc transreg noprint data=htex maxiter=0;
/* Use PROC TRANSREG to prepare input to PROC REG */
model identity(y) = pspline(x1 x2);
output out=htex2;

run;

proc reg;
model y = x1_1-x1_3 x2_1-x2_3;
test x1_1, x1_2, x1_3;
test x2_1, x2_2, x2_3;

run;

Two-Variable Polynomial Regression

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.69502 4.73421 0.08252
1 0.00000 0.00000 0.17287 0.09035 Converged

Algorithm converged.

Hypothesis Test Iterations Excluding Spline(x1)
TRANSREG MORALS Algorithm Iteration History for Identity(y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.03575 0.32390 0.15097
1 0.00000 0.00000 0.15249 0.00152 Converged

Algorithm converged.

Hypothesis Test Iterations Excluding Spline(x2)
TRANSREG MORALS Algorithm Iteration History for Identity(y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.45381 1.43736 0.00717
1 0.00000 0.00000 0.02604 0.01886 Converged

Algorithm converged.

Figure 65.23. Two-Variable Polynomial Regression Output from PROC
TRANSREG
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Two-Variable Polynomial Regression

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 6 38.7478 6.45796 0.45 0.8306
Error 13 185.3960 14.26123
Corrected Total 19 224.1438

Root MSE 3.77640 R-Square 0.1729
Dependent Mean 0.85490 Adj R-Sq -0.2089
Coeff Var 441.73431

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F

Intercept 1 3.5437125 35.2282 35.2282 2.47 0.1400
Spline(x1) 3 0.3644562 4.5682 1.5227 0.11 0.9546
Spline(x2) 3 -1.3551738 32.9112 10.9704 0.77 0.5315
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Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 6 38.74775 6.45796 0.45 0.8306
Error 13 185.39605 14.26123
Corrected Total 19 224.14380

Root MSE 3.77640 R-Square 0.1729
Dependent Mean 0.85490 Adj R-Sq -0.2089
Coeff Var 441.73431

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 10.77824 7.55244 1.43 0.1771
x1_1 x1 1 1 0.40112 1.81024 0.22 0.8281
x1_2 x1 2 1 0.25652 1.66023 0.15 0.8796
x1_3 x1 3 1 -0.11639 0.36775 -0.32 0.7567
x2_1 x2 1 1 -14.07054 12.50521 -1.13 0.2809
x2_2 x2 2 1 5.95610 5.97952 1.00 0.3374
x2_3 x2 3 1 -0.80608 0.87291 -0.92 0.3726

Figure 65.24. Two-Variable Polynomial Regression Output from PROC REG

Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Test 1 Results for Dependent Variable y

Mean
Source DF Square F Value Pr > F

Numerator 3 1.52272 0.11 0.9546
Denominator 13 14.26123

Two-Variable Polynomial Regression

The REG Procedure
Model: MODEL1

Test 2 Results for Dependent Variable y

Mean
Source DF Square F Value Pr > F

Numerator 3 10.97042 0.77 0.5315
Denominator 13 14.26123
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There are three iteration histories: one for the overall model and two for the two
independent variables. The first PROC TRANSREG iteration history shows theR2

of 0.17287 for the fit of the overall model. The second is for

model identity(y) = spline(x2);

which excludes SPLINE(X1). The third is for

model identity(y) = spline(x1);

which excludes SPLINE(X2). The difference between the first and secondR2 times
the total sum of squares is the model sum of squares for SPLINE(X1)

(0:17287 � 0:15249) � 224:143800 = 4:568165

The difference between the first and thirdR2 times the total sum of squares is the
model sum of squares for SPLINE(X2)

(0:17287 � 0:02604) � 224:143800 = 32:911247

The TEST statement in PROC REG tests the null hypothesis that the vector of pa-
rameters forX1–1 X1–2 X1–3 is zero. This is the same test as the SPLINE(X1)
test used by PROC TRANSREG. Similarly, the PROC REG test that the vector of
parameters forX2–1 X2–2 X2–3 is zero is the same as the PROC TRANSREG
SPLINE(X2) test. So for models with no monotonicity constraints and no dependent
variable transformations, PROC TRANSREG provides little more than a different
packaging of standard least-squares methodology.

Hypothesis Tests with Monotonicity Constraints
Now consider a model with monotonicity constraints. This model has no counterpart
in PROC REG.

proc transreg data=htex ss2 short;
title ’Monotone Splines’;
model identity(y) = mspline(x1-x3 / nknots=3);

run;

The SHORTa-optionis specified to suppress the iteration histories. Two ANOVA ta-
bles are displayed—one using liberal degrees of freedom and one using conservative
degrees of freedom. All sums of squares and theR2s are the same for both tables.
What differs are the degrees of freedom and statistics that are computed using degrees
of freedom. The liberal test has 8 model degrees of freedom and 11 error degrees of
freedom, whereas the conservative test has 15 model degrees of freedom and only
4 error degrees of freedom. The “true”p-value is between 0.8462 and 0.9997, so
clearly you would fail to reject the null hypothesis. Unfortunately, results are not
always this clear. See Figure 65.25.
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Monotone Splines

The TRANSREG Procedure

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on Liberal Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Liberal p

Model 8 58.0534 7.25667 0.48 >= 0.8462
Error 11 166.0904 15.09913
Corrected Total 19 224.1438

Root MSE 3.88576 R-Square 0.2590
Dependent Mean 0.85490 Adj R-Sq -0.2799
Coeff Var 454.52581

Univariate ANOVA Table Based on Conservative Degrees of Freedom

Sum of Mean Conservative
Source DF Squares Square F Value p

Model 15 58.0534 3.87022 0.09 <= 0.9997
Error 4 166.0904 41.52261
Corrected Total 19 224.1438

Root MSE 6.44380 R-Square 0.2590
Dependent Mean 0.85490 Adj R-Sq -2.5197
Coeff Var 753.74578

Figure 65.25. Monotone Spline Transformations
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Monotone Splines

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate Regression Table Based on Liberal Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Liberal p

Intercept 1 4.8687676 54.7372 54.7372 3.63 >= 0.0834
Mspline(x1) 2 -0.6886834 12.1943 6.0972 0.40 >= 0.6773
Mspline(x2) 3 -1.8237319 46.3155 15.4385 1.02 >= 0.4199
Mspline(x3) 3 0.8646155 24.6840 8.2280 0.54 >= 0.6616

Univariate Regression Table Based on Conservative Degrees of Freedom

Type II
Sum of Mean Conservative

Variable DF Coefficient Squares Square F Value p

Intercept 1 4.8687676 54.7372 54.7372 1.32 <= 0.3149
Mspline(x1) 5 -0.6886834 12.1943 2.4389 0.06 <= 0.9959
Mspline(x2) 5 -1.8237319 46.3155 9.2631 0.22 <= 0.9344
Mspline(x3) 5 0.8646155 24.6840 4.9368 0.12 <= 0.9809

Hypothesis Tests with Dependent Variable Transformations
PROC TRANSREG can also provide approximate tests of hypotheses when the de-
pendent variable is transformed, but the output is more complicated. When a depen-
dent variable has more than one degree of freedom, the problem becomes multivari-
ate. Hypothesis tests are performed in the context of a multivariate linear model with
the number of dependent variables equal to the number of scoring parameters for the
dependent variable transformation. The transformation regression model with a de-
pendent variable transformation differs from the usual multivariate linear model in
two important ways. First, the usual assumption of multivariate normality is always
violated. This fact is simply ignored. This is one reason that all hypothesis tests in the
presence of a dependent variable transformation should be considered approximate at
best. Multivariate normality is assumed even though it is known that the assumption
is violated.

The second difference concerns the usual multivariate test statistics: Pillai’s Trace,
Wilks’ Lambda, Hotelling-Lawley Trace, and Roy’s Greatest Root. The first three
statistics are defined in terms of all the squared canonical correlations. Here, there is
only one linear combination (the transformation) and, hence, only one squared canon-
ical correlation of interest, which is equal to theR2. It may seem that Roy’s Greatest
Root, which uses only the largest squared canonical correlation, is the only statistic
of interest. Unfortunately, Roy’s Greatest Root is very liberal and provides only a
lower bound on thep-value. Approximate upper bounds are provided by adjusting
the other three statistics for the one linear combination case. The Wilks’ Lambda,
Pillai’s Trace, and Hotelling-Lawley Trace statistics are a conservative adjustment of
the usual statistics.
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These statistics are normally defined in terms of the squared canonical correlations,
which are the eigenvalues of the matrixH(H + E)�1, whereH is the hypothesis
sum-of-squares matrix andE is the error sum-of-squares matrix. Here theR2 is
used for the first eigenvalue, and all other eigenvalues are set to 0 since only one
linear combination is used. Degrees of freedom are computed assuming that all linear
combinations contribute to the Lambda and Trace statistics, so theF tests for those
statistics are conservative. Thep-values for the liberal and conservative statistics
provide approximate lower and upper bounds onp. In practice, the adjusted Pillai’s
Trace is very conservative—perhaps too conservative to be useful. Wilks’ Lambda is
less conservative, and the Hotelling-Lawley Trace seems to be the least conservative.
The conservative statistics and the liberal Roy’s Greatest Root provide a bound on the
truep-value. Unfortunately, they sometimes report a bound of 0.0001 and 1.0000.

Here is an example with a dependent variable transformation.

proc transreg data=htex ss2 dummy short;
title ’Transform Dependent and Independent Variables’;
model spline(y) = spline(x1-x3);

run;

The univariate results match Roy’s Greatest Root results. Clearly, the proper action
is to fail to reject the null hypothesis. However, as stated previously, results are not
always this clear. See Figure 65.26.
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Transform Dependent and Independent Variables

The TRANSREG Procedure

Spline(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Spline(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Liberal p

Model 9 110.8822 12.32025 1.09 >= 0.4452
Error 10 113.2616 11.32616
Corrected Total 19 224.1438

The above statistics are not adjusted for the fact that the dependent
variable was transformed and so are generally liberal.

Root MSE 3.36544 R-Square 0.4947
Dependent Mean 0.85490 Adj R-Sq 0.0399
Coeff Var 393.66234

Adjusted Multivariate ANOVA Table Based on the Usual Degrees of Freedom

Dependent Variable Scoring Parameters=3 S=3 M=2.5 N=3

Statistic Value F Value Num DF Den DF p

Wilks’ Lambda 0.505308 0.23 27 24.006 <= 0.9998
Pillai’s Trace 0.494692 0.22 27 30 <= 0.9999
Hotelling-Lawley Trace 0.978992 0.26 27 11.589 <= 0.9980
Roy’s Greatest Root 0.978992 1.09 9 10 >= 0.4452

The Wilks’ Lambda, Pillai’s Trace, and Hotelling-Lawley Trace statistics are a
conservative adjustment of the normal statistics. Roy’s Greatest Root is
liberal. These statistics are normally defined in terms of the squared
canonical correlations which are the eigenvalues of the matrix H*inv(H+E).
Here the R-Square is used for the first eigenvalue and all other eigenvalues
are set to zero since only one linear combination is used. Degrees of freedom
are computed assuming all linear combinations contribute to the Lambda and
Trace statistics, so the F tests for those statistics are conservative. The p
values for the liberal and conservative statistics provide approximate lower
and upper bounds on p. A liberal test statistic with conservative degrees of
freedom and a conservative test statistic with liberal degrees of freedom yield
at best an approximate p value, which is indicated by a "~" before the p value.

Figure 65.26. Transform Dependent and Independent Variables
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Transform Dependent and Independent Variables

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Spline(y)

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Liberal p

Intercept 1 6.9089087 117.452 117.452 10.37 >= 0.0092
Spline(x1) 3 -1.0832321 32.493 10.831 0.96 >= 0.4504
Spline(x2) 3 -2.1539191 45.251 15.084 1.33 >= 0.3184
Spline(x3) 3 0.4779207 10.139 3.380 0.30 >= 0.8259

The above statistics are not adjusted for the fact that the dependent variable
was transformed and so are generally liberal.

Adjusted Multivariate Regression Table Based on the Usual Degrees of Freedom

Variable Coefficient Statistic Value F Value Num DF Den DF p

Intercept 6.9089087 Wilks’ Lambda 0.49092 2.77 3 8 0.1112
Pillai’s Trace 0.50908 2.77 3 8 0.1112
Hotelling-Lawley 1.036993 2.77 3 8 0.1112
Trace
Roy’s Greatest 1.036993 2.77 3 8 0.1112
Root

Spline(x1) -1.0832321 Wilks’ Lambda 0.777072 0.24 9 19.621 <= 0.9840
Pillai’s Trace 0.222928 0.27 9 30 <= 0.9787
Hotelling-Lawley 0.286883 0.24 9 9.8113 <= 0.9784
Trace
Roy’s Greatest 0.286883 0.96 3 10 >= 0.4504
Root

Spline(x2) -2.1539191 Wilks’ Lambda 0.714529 0.32 9 19.621 <= 0.9572
Pillai’s Trace 0.285471 0.35 9 30 <= 0.9494
Hotelling-Lawley 0.399524 0.33 9 9.8113 <= 0.9424
Trace
Roy’s Greatest 0.399524 1.33 3 10 >= 0.3184
Root

Spline(x3) 0.4779207 Wilks’ Lambda 0.917838 0.08 9 19.621 <= 0.9998
Pillai’s Trace 0.082162 0.09 9 30 <= 0.9996
Hotelling-Lawley 0.089517 0.07 9 9.8113 <= 0.9997
Trace
Roy’s Greatest 0.089517 0.30 3 10 >= 0.8259
Root

These statistics are adjusted in the same way as the multivariate statistics
above.

SAS OnlineDoc: Version 8



Solving Standard Least-Squares Problems � 3467

Hypothesis Tests with One-Way ANOVA
One-way ANOVA models are fit with either an explicit or implicit intercept. In im-
plicit intercept models, the ANOVA table of PROC TRANSREG is the correct table
for a model with an intercept, and the regression table is the correct table for a model
that does not have a separate explicit intercept. The PROC TRANSREG implicit in-
tercept ANOVA table matches the PROC REG table when the NOINTa-option is
not specified, and the PROC TRANSREG implicit intercept regression table matches
the PROC REG table when the NOINTa-option is specified. The following code
illustrates this relationship. See Figure 65.27 through Figure 65.28 for the results.

data oneway;
input y x $;
datalines;

0 a
1 a
2 a
7 b
8 b
9 b
3 c
4 c
5 c
;

proc transreg ss2 data=oneway short;
title ’Implicit Intercept Model’;
model identity(y) = class(x / zero=none);
output out=oneway2;

run;

proc reg data=oneway2;
model y = xa xb xc; /* Implicit Intercept ANOVA */
model y = xa xb xc / noint; /* Implicit Intercept Regression */

run;
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Implicit Intercept Model

The TRANSREG Procedure

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 74.00000 37.00000 37.00 0.0004
Error 6 6.00000 1.00000
Corrected Total 8 80.00000

Root MSE 1.00000 R-Square 0.9250
Dependent Mean 4.33333 Adj R-Sq 0.9000
Coeff Var 23.07692

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Class.xa 1 1.00000000 3.000 3.000 3.00 0.1340 x a
Class.xb 1 8.00000000 192.000 192.000 192.00 <.0001 x b
Class.xc 1 4.00000000 48.000 48.000 48.00 0.0004 x c

Figure 65.27. Implicit Intercept Model (TRANSREG Procedure)
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Implicit Intercept Model

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 74.00000 37.00000 37.00 0.0004
Error 6 6.00000 1.00000
Corrected Total 8 80.00000

Root MSE 1.00000 R-Square 0.9250
Dependent Mean 4.33333 Adj R-Sq 0.9000
Coeff Var 23.07692

NOTE: Model is not full rank. Least-squares solutions for the parameters are
not unique. Some statistics will be misleading. A reported DF of 0 or B
means that the estimate is biased.

NOTE: The following parameters have been set to 0, since the variables are a
linear combination of other variables as shown.

xc = Intercept - xa - xb

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept B 4.00000 0.57735 6.93 0.0004
xa x a B -3.00000 0.81650 -3.67 0.0104
xb x b B 4.00000 0.81650 4.90 0.0027
xc x c 0 0 . . .

Figure 65.28. Implicit Intercept Model (REG Procedure)
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Implicit Intercept Model

The REG Procedure
Model: MODEL2

Dependent Variable: y

NOTE: No intercept in model. R-Square is redefined.

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 3 243.00000 81.00000 81.00 <.0001
Error 6 6.00000 1.00000
Uncorrected Total 9 249.00000

Root MSE 1.00000 R-Square 0.9759
Dependent Mean 4.33333 Adj R-Sq 0.9639
Coeff Var 23.07692

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|

xa x a 1 1.00000 0.57735 1.73 0.1340
xb x b 1 8.00000 0.57735 13.86 <.0001
xc x c 1 4.00000 0.57735 6.93 0.0004

Using the DESIGN Output Option

This example uses PROC TRANSREG and the DESIGNo-option to prepare an in-
put data set with classification variables for the LOGISTIC procedure. The DESIGN
o-option specifies that the goal is design matrix creation, not analysis. When you
specify DESIGN, dependent variables are not required. The DEVIATIONS (or EF-
FECTS)t-option requests a deviations-from-means(1; 0;�1) coding of the classifi-
cation variables, which is the same coding the CATMOD procedure uses. See Figure
65.29. PROC TRANSREG automatically creates a macro variable&–trgind that
contains the list of independent variables created. This macro is used in the PROC
LOGISTIC MODEL statement. See Figure 65.30. For comparison, the same analysis
is also performed with PROC CATMOD. See Figure 65.31.
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title ’Using PROC TRANSREG to Create a Design Matrix’;

data a;
do y = 1, 2;

do a = 1 to 4;
do b = 1 to 3;

w = ceil(uniform(1) * 10 + 10);
output;

end;
end;

end;
run;

proc transreg data=a design;
model class(a b / deviations);
id y w;
output;

run;

proc print;
title2 ’PROC TRANSREG Output Data Set’;

run;

proc logistic;
title2 ’PROC LOGISTIC with Classification Variables’;
freq w;
model y = &_trgind;

run;

proc catmod data=a;
title2 ’PROC CATMOD Should Produce the Same Results’;
model y = a b;
weight w;

run;
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Using PROC TRANSREG to Create a Design Matrix
PROC TRANSREG Output Data Set

Obs _TYPE_ _NAME_ Intercept a1 a2 a3 b1 b2 a b y w

1 SCORE 1 1 1 0 0 1 0 1 1 1 12
2 SCORE 1 1 1 0 0 0 1 1 2 1 20
3 SCORE 1 1 1 0 0 -1 -1 1 3 1 14
4 SCORE 1 1 0 1 0 1 0 2 1 1 13
5 SCORE 1 1 0 1 0 0 1 2 2 1 20
6 SCORE 1 1 0 1 0 -1 -1 2 3 1 20
7 SCORE 1 1 0 0 1 1 0 3 1 1 16
8 SCORE 1 1 0 0 1 0 1 3 2 1 16
9 SCORE 1 1 0 0 1 -1 -1 3 3 1 11

10 SCORE 1 1 -1 -1 -1 1 0 4 1 1 11
11 SCORE 1 1 -1 -1 -1 0 1 4 2 1 19
12 SCORE 1 1 -1 -1 -1 -1 -1 4 3 1 16
13 SCORE 2 1 1 0 0 1 0 1 1 2 19
14 SCORE 2 1 1 0 0 0 1 1 2 2 11
15 SCORE 2 1 1 0 0 -1 -1 1 3 2 20
16 SCORE 2 1 0 1 0 1 0 2 1 2 13
17 SCORE 2 1 0 1 0 0 1 2 2 2 13
18 SCORE 2 1 0 1 0 -1 -1 2 3 2 17
19 SCORE 2 1 0 0 1 1 0 3 1 2 20
20 SCORE 2 1 0 0 1 0 1 3 2 2 13
21 SCORE 2 1 0 0 1 -1 -1 3 3 2 17
22 SCORE 2 1 -1 -1 -1 1 0 4 1 2 15
23 SCORE 2 1 -1 -1 -1 0 1 4 2 2 16
24 SCORE 2 1 -1 -1 -1 -1 -1 4 3 2 13

Figure 65.29. The PROC TRANSREG Design Matrix
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Using PROC TRANSREG to Create a Design Matrix
PROC LOGISTIC with Classification Variables

The LOGISTIC Procedure

Model Information

Data Set WORK.DATA8
Response Variable y
Number of Response Levels 2
Number of Observations 24
Frequency Variable w
Sum of Frequencies 375
Link Function Logit
Optimization Technique Fisher’s scoring

Response Profile

Ordered Total
Value y Frequency

1 1 188
2 2 187

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 521.858 524.378
SC 525.785 547.939
-2 Log L 519.858 512.378

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 7.4799 5 0.1873
Score 7.4312 5 0.1905
Wald 7.3356 5 0.1969

Figure 65.30. PROC LOGISTIC Output
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Using PROC TRANSREG to Create a Design Matrix
PROC LOGISTIC with Classification Variables

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -0.00040 0.1044 0.0000 0.9969
a1 1 -0.0802 0.1791 0.2007 0.6542
a2 1 0.2001 0.1800 1.2363 0.2662
a3 1 -0.1350 0.1819 0.5514 0.4578
b1 1 -0.2392 0.1500 2.5436 0.1107
b2 1 0.3433 0.1474 5.4223 0.0199

Association of Predicted Probabilities and Observed Responses

Percent Concordant 54.0 Somers’ D 0.163
Percent Discordant 37.8 Gamma 0.177
Percent Tied 8.2 Tau-a 0.082
Pairs 35156 c 0.581

Using PROC TRANSREG to Create a Design Matrix
PROC CATMOD Should Produce the Same Results

The CATMOD Procedure

Response y Response Levels 2
Weight Variable w Populations 12
Data Set A Total Frequency 375
Frequency Missing 0 Observations 24

Population Profiles

Sample a b Sample Size
-------------------------------

1 1 1 31
2 1 2 31
3 1 3 34
4 2 1 26
5 2 2 33
6 2 3 37
7 3 1 36
8 3 2 29
9 3 3 28

10 4 1 26
11 4 2 35
12 4 3 29

Response Profiles

Response y
-------------

1 1
2 2

Figure 65.31. PROC CATMOD Output
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Using PROC TRANSREG to Create a Design Matrix
PROC CATMOD Should Produce the Same Results

The CATMOD Procedure

Maximum Likelihood Analysis

Sub -2 Log Convergence
Iteration Iteration Likelihood Criterion
-------------------------------------------------

0 0 519.86039 1.0000
1 0 512.3792 0.0144
2 0 512.37786 2.608E-6
3 0 512.37786 9.929E-13

Maximum Likelihood Analysis

Parameter Estimates
Iteration 1 2 3 4 5 6
---------------------------------------------------------------------------

0 0 0 0 0 0 0
1 -0.001162 -0.0790 0.1965 -0.1327 -0.2365 0.3393
2 -0.000404 -0.0802 0.2001 -0.1350 -0.2392 0.3433
3 -0.000403 -0.0802 0.2001 -0.1350 -0.2392 0.3434

Maximum likelihood computations converged.

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------------
Intercept 1 0.00 0.9969
a 3 1.50 0.6823
b 2 5.64 0.0597

Likelihood Ratio 6 2.81 0.8329

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq
-----------------------------------------------------------------------
Intercept 1 -0.00040 0.1044 0.00 0.9969
a 2 -0.0802 0.1791 0.20 0.6542

3 0.2001 0.1800 1.24 0.2662
4 -0.1350 0.1819 0.55 0.4578

b 5 -0.2392 0.1500 2.54 0.1107
6 0.3434 0.1474 5.42 0.0199
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Choice Experiments: DESIGN, NORESTOREMISSING, NOZE-
ROCONSTANT Usage

A choice experiment is constructed consisting of four product brands, each available
at three different prices, $1.49, $1.99, $2.49. In addition, each choice set contains a
constant “other” alternative available at $1.49. In the fifth choice set, price is constant.
PROC TRANSREG is used to code the design for use in the PHREG procedure to
fit the choice model. In the interest of space, only the fifth choice set is displayed in
Figure 65.32.

title ’Choice Model Coding’;

data design;
array p[4];
input p1-p4 @@;
set = _n_;
do brand = 1 to 4;

price = p[brand];
output;

end;
brand = .; price = 1.49; output; /* constant alternative */
keep set brand price;
datalines;

1.49 1.99 1.49 1.99 1.99 1.99 2.49 1.49 1.99 1.49 1.99 1.49
1.99 1.49 2.49 1.99 1.49 1.49 1.49 1.49 2.49 1.49 1.99 2.49
1.49 1.49 2.49 2.49 2.49 2.49 1.49 1.49 1.49 2.49 2.49 1.99
2.49 2.49 2.49 1.49 1.99 2.49 1.49 2.49 2.49 1.99 2.49 2.49
2.49 1.49 1.49 1.99 1.49 1.99 1.99 1.49 2.49 1.99 1.99 1.99
1.99 1.99 1.49 2.49 1.99 2.49 1.99 1.99 1.49 2.49 1.99 2.49
;

proc transreg data=design design norestoremissing nozeroconstant;
model class(brand / zero=none) identity(price);
output out=coded;
by set;

run;

proc print data=coded(firstobs=21 obs=25);
var set brand &_trgind;

run;

Choice Model Coding

Obs set brand brand1 brand2 brand3 brand4 price

21 5 1 1 0 0 0 1.49
22 5 2 0 1 0 0 1.49
23 5 3 0 0 1 0 1.49
24 5 4 0 0 0 1 1.49
25 5 . 0 0 0 0 1.49

Figure 65.32. The Fifth Choice Set
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For the constant alternative (BRAND = .), the brand coding is a row of zeros due to
the NORESTOREMISSINGo-option, and PRICE is a constant $1.49 (instead of 0)
due to the NOZEROCONSTANTa-option.

The data set was coded by choice set (BYset;). This is a small problem, but with
very large problems, it may be necessary to restrict the number of observations that
are coded at one time so that the procedure uses less time and memory. Coding by
choice set is one option. When coding is performed after the data are merged in,
coding by subject and choice set combinations is another option. Alternatively, you
can specify DESIGN=n, wheren is the number of observations to code at one time.
For example, you can specify DESIGN=100 or DESIGN=1000 to process the data
set in blocks of 100 or 1000 observations. Specify the NOZEROCONSTANT option
to ensure that constant variables within blocks are not zeroed. When you specify
DESIGN=n, or perform coding after the data are merged in, specify the dependent
variable and any other variables needed for analysis as ID variables.

ANOVA Codings

This set of examples illustrates several different ways to code the same two-way
ANOVA model. Figure 65.33 displays the input data set.

title ’Two-way ANOVA Models’;

data x;
input a b @@;
do i = 1 to 2; input y @@; output; end;
drop i;
datalines;

1 1 16 14 1 2 15 13
2 1 1 9 2 2 12 20
3 1 14 8 3 2 18 20
;

proc print label;
run;

Two-way ANOVA Models

Obs a b y

1 1 1 16
2 1 1 14
3 1 2 15
4 1 2 13
5 2 1 1
6 2 1 9
7 2 2 12
8 2 2 20
9 3 1 14

10 3 1 8
11 3 2 18
12 3 2 20

Figure 65.33. Input Data Set
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The following statements fit a cell-means model. See Figure 65.34 and Figure 65.35.

proc transreg data=x ss2 short;
title2 ’Cell-Means Model’;
model identity(y) = class(a * b / zero=none);
output replace;

run;

proc print label;
run;

Two-way ANOVA Models
Cell-Means Model

The TRANSREG Procedure

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Class.a1b1 1 15.0000000 450.000 450.000 30.68 0.0015 a 1 * b 1
Class.a1b2 1 14.0000000 392.000 392.000 26.73 0.0021 a 1 * b 2
Class.a2b1 1 5.0000000 50.000 50.000 3.41 0.1144 a 2 * b 1
Class.a2b2 1 16.0000000 512.000 512.000 34.91 0.0010 a 2 * b 2
Class.a3b1 1 11.0000000 242.000 242.000 16.50 0.0066 a 3 * b 1
Class.a3b2 1 19.0000000 722.000 722.000 49.23 0.0004 a 3 * b 2

Figure 65.34. Cell-Means Model
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The parameter estimates are

�̂11 = y11 = 15

�̂12 = y12 = 14

�̂21 = y21 = 5

�̂22 = y22 = 16

�̂31 = y31 = 11

�̂32 = y32 = 19

Two-way ANOVA Models
Cell-Means Model

a 1 * a 1 * a 2 * a 2 * a 3 * a 3 *
Obs _TYPE_ _NAME_ y Intercept b 1 b 2 b 1 b 2 b 1 b 2 a b

1 SCORE ROW1 16 . 1 0 0 0 0 0 1 1
2 SCORE ROW2 14 . 1 0 0 0 0 0 1 1
3 SCORE ROW3 15 . 0 1 0 0 0 0 1 2
4 SCORE ROW4 13 . 0 1 0 0 0 0 1 2
5 SCORE ROW5 1 . 0 0 1 0 0 0 2 1
6 SCORE ROW6 9 . 0 0 1 0 0 0 2 1
7 SCORE ROW7 12 . 0 0 0 1 0 0 2 2
8 SCORE ROW8 20 . 0 0 0 1 0 0 2 2
9 SCORE ROW9 14 . 0 0 0 0 1 0 3 1

10 SCORE ROW10 8 . 0 0 0 0 1 0 3 1
11 SCORE ROW11 18 . 0 0 0 0 0 1 3 2
12 SCORE ROW12 20 . 0 0 0 0 0 1 3 2

Figure 65.35. Cell-Means Model, Design Matrix

The following statements fit a reference cell model. The default reference level is the
last cell (3,2). See Figure 65.36 and Figure 65.37.

proc transreg data=x ss2 short;
title2 ’Reference Cell Model, (3,2) Reference Cell’;
model identity(y) = class(a | b);
output replace;

run;

proc print label;
run;
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Two-way ANOVA Models
Reference Cell Model, (3,2) Reference Cell

The TRANSREG Procedure

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 19.0000000 722.000 722.000 49.23 0.0004 Intercept
Class.a1 1 -5.0000000 25.000 25.000 1.70 0.2395 a 1
Class.a2 1 -3.0000000 9.000 9.000 0.61 0.4632 a 2
Class.b1 1 -8.0000000 64.000 64.000 4.36 0.0817 b 1
Class.a1b1 1 9.0000000 40.500 40.500 2.76 0.1476 a 1 * b 1
Class.a2b1 1 -3.0000000 4.500 4.500 0.31 0.5997 a 2 * b 1

Figure 65.36. Reference Cell Model, (3,2) Reference Cell

The parameter estimates are

�̂32 = y32 = 19

�̂1 = y12 � y32 = 14� 19 = �5

�̂2 = y22 � y32 = 16� 19 = �3

�̂1 = y31 � y32 = 11� 19 = �8


̂11 = y11 � (�̂32 + �̂1 + �̂1) = 15� (19 +�5 +�8) = 9


̂21 = y21 � (�̂32 + �̂2 + �̂1) = 5� (19 +�3 +�8) = �3

The structural zeros are

�3 � �2 � 
12 � 
22 � 
31 � 
32 � 0
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Two-way ANOVA Models
Reference Cell Model, (3,2) Reference Cell

a 1 * a 2 *
Obs _TYPE_ _NAME_ y Intercept a 1 a 2 b 1 b 1 b 1 a b

1 SCORE ROW1 16 1 1 0 1 1 0 1 1
2 SCORE ROW2 14 1 1 0 1 1 0 1 1
3 SCORE ROW3 15 1 1 0 0 0 0 1 2
4 SCORE ROW4 13 1 1 0 0 0 0 1 2
5 SCORE ROW5 1 1 0 1 1 0 1 2 1
6 SCORE ROW6 9 1 0 1 1 0 1 2 1
7 SCORE ROW7 12 1 0 1 0 0 0 2 2
8 SCORE ROW8 20 1 0 1 0 0 0 2 2
9 SCORE ROW9 14 1 0 0 1 0 0 3 1

10 SCORE ROW10 8 1 0 0 1 0 0 3 1
11 SCORE ROW11 18 1 0 0 0 0 0 3 2
12 SCORE ROW12 20 1 0 0 0 0 0 3 2

Figure 65.37. Reference Cell Model, (3,2) Reference Cell, Design Matrix

The following statements fit a reference cell model, but this time the reference level
is the first cell (1,1). See Figure 65.38 through Figure 65.39.

proc transreg data=x ss2 short;
title2 ’Reference Cell Model, (1,1) Reference Cell’;
model identity(y) = class(a | b / zero=first);
output replace;

run;

proc print label;
run;
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Two-way ANOVA Models
Reference Cell Model, (1,1) Reference Cell

The TRANSREG Procedure

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 15.000000 450.000 450.000 30.68 0.0015 Intercept
Class.a2 1 -10.000000 100.000 100.000 6.82 0.0401 a 2
Class.a3 1 -4.000000 16.000 16.000 1.09 0.3365 a 3
Class.b2 1 -1.000000 1.000 1.000 0.07 0.8027 b 2
Class.a2b2 1 12.000000 72.000 72.000 4.91 0.0686 a 2 * b 2
Class.a3b2 1 9.000000 40.500 40.500 2.76 0.1476 a 3 * b 2

Figure 65.38. Reference Cell Model, (1,1) Reference Cell

The parameter estimates are

�̂11 = y11 = 15

�̂2 = y21 � y11 = 5� 15 = �10

�̂3 = y31 � y11 = 11� 15 = �4

�̂2 = y12 � y11 = 14� 15 = �1


̂22 = y22 � (�̂11 + �̂2 + �̂2) = 16� (15 +�10 +�1) = 12


̂32 = y32 � (�̂11 + �̂3 + �̂2) = 19� (15 +�4 +�1) = 9

The structural zeros are

�1 � �1 � 
11 � 
12 � 
21 � 
31 � 0
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Two-way ANOVA Models
Reference Cell Model, (1,1) Reference Cell

a 2 * a 3 *
Obs _TYPE_ _NAME_ y Intercept a 2 a 3 b 2 b 2 b 2 a b

1 SCORE ROW1 16 1 0 0 0 0 0 1 1
2 SCORE ROW2 14 1 0 0 0 0 0 1 1
3 SCORE ROW3 15 1 0 0 1 0 0 1 2
4 SCORE ROW4 13 1 0 0 1 0 0 1 2
5 SCORE ROW5 1 1 1 0 0 0 0 2 1
6 SCORE ROW6 9 1 1 0 0 0 0 2 1
7 SCORE ROW7 12 1 1 0 1 1 0 2 2
8 SCORE ROW8 20 1 1 0 1 1 0 2 2
9 SCORE ROW9 14 1 0 1 0 0 0 3 1

10 SCORE ROW10 8 1 0 1 0 0 0 3 1
11 SCORE ROW11 18 1 0 1 1 0 1 3 2
12 SCORE ROW12 20 1 0 1 1 0 1 3 2

Figure 65.39. Reference Cell Model, (1,1) Reference Cell, Design Matrix

The following statements fit a deviations-from-means model. The default reference
level is the last cell (3,2). This coding is also called effects coding. See Figure 65.40
and Figure 65.41.

proc transreg data=x ss2 short;
title2 ’Deviations From Means, (3,2) Reference Cell’;
model identity(y) = class(a | b / deviations);
output replace;

run;

proc print label;
run;
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Two-way ANOVA Models
Deviations From Means, (3,2) Reference Cell

The TRANSREG Procedure

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept
Class.a1 1 1.1666667 8.17 8.17 0.56 0.4837 a 1
Class.a2 1 -2.8333333 48.17 48.17 3.28 0.1199 a 2
Class.b1 1 -3.0000000 108.00 108.00 7.36 0.0349 b 1
Class.a1b1 1 3.5000000 73.50 73.50 5.01 0.0665 a 1 * b 1
Class.a2b1 1 -2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 1

Figure 65.40. Deviations-From-Means Model, (3,2) Reference Cell

The parameter estimates are

�̂ = y = 13:33333

�̂1 = (y11 + y12)=2 � y = (15 + 14)=2 � 13:33333 = 1:16667

�̂2 = (y21 + y22)=2 � y = (5 + 16)=2 � 13:33333 = �2:83333

�̂1 = (y11 + y21 + y31)=3 � y = (15 + 5 + 11)=3 � 13:33333 = �3


̂11 = y11 � (y + �̂1 + �̂1) = 15� (13:33333 + 1:16667 +�3) = 3:5


̂21 = y21 � (y + �̂2 + �̂1) = 5� (13:33333 +�2:83333 +�3) = �2:5

The structural zeros are

�3 � �2 � 
12 � 
22 � 
31 � 
32 � 0
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Two-way ANOVA Models
Deviations From Means, (3,2) Reference Cell

a 1 * a 2 *
Obs _TYPE_ _NAME_ y Intercept a 1 a 2 b 1 b 1 b 1 a b

1 SCORE ROW1 16 1 1 0 1 1 0 1 1
2 SCORE ROW2 14 1 1 0 1 1 0 1 1
3 SCORE ROW3 15 1 1 0 -1 -1 0 1 2
4 SCORE ROW4 13 1 1 0 -1 -1 0 1 2
5 SCORE ROW5 1 1 0 1 1 0 1 2 1
6 SCORE ROW6 9 1 0 1 1 0 1 2 1
7 SCORE ROW7 12 1 0 1 -1 0 -1 2 2
8 SCORE ROW8 20 1 0 1 -1 0 -1 2 2
9 SCORE ROW9 14 1 -1 -1 1 -1 -1 3 1

10 SCORE ROW10 8 1 -1 -1 1 -1 -1 3 1
11 SCORE ROW11 18 1 -1 -1 -1 1 1 3 2
12 SCORE ROW12 20 1 -1 -1 -1 1 1 3 2

Figure 65.41. Deviations-From-Means Model, (3,2) Reference Cell, Design Matrix

The following statements fit a deviations-from-means model, but this time the refer-
ence level is the first cell (1,1). This coding is also called effects coding. See Figure
65.42 through Figure 65.43.

proc transreg data=x ss2 short;
title2 ’Deviations From Means, (1,1) Reference Cell’;
model identity(y) = class(a | b / deviations zero=first);
output replace;

run;

proc print label;
run;
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Two-way ANOVA Models
Deviations From Means, (1,1) Reference Cell

The TRANSREG Procedure

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept
Class.a2 1 -2.8333333 48.17 48.17 3.28 0.1199 a 2
Class.a3 1 1.6666667 16.67 16.67 1.14 0.3274 a 3
Class.b2 1 3.0000000 108.00 108.00 7.36 0.0349 b 2
Class.a2b2 1 2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 2
Class.a3b2 1 1.0000000 6.00 6.00 0.41 0.5461 a 3 * b 2

Figure 65.42. Deviations-From-Means Model, (1,1) Reference Cell

The parameter estimates are

�̂ = y = 13:33333

�̂2 = (y21 + y22)=2 � y = (5 + 16)=2 � 13:33333 = �2:8333

�̂3 = (y31 + y32)=2 � y = (11 + 19)=2 � 13:33333 = 1:66667

�̂2 = (y12 + y22 + y32)=3 � y = (14 + 16 + 19)=3 � 13:33333 = 3


̂22 = y22 � (y + �̂2 + �̂2) = 16� (13:33333 +�2:8333 + 3) = 2:5


̂32 = y32 � (y + �̂3 + �̂2) = 19� (13:33333 + 1:66667 + 3) = 1

The structural zeros are

�1 � �1 � 
11 � 
12 � 
21 � 
31 � 0
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Two-way ANOVA Models
Deviations From Means, (1,1) Reference Cell

a 2 * a 3 *
Obs _TYPE_ _NAME_ y Intercept a 2 a 3 b 2 b 2 b 2 a b

1 SCORE ROW1 16 1 -1 -1 -1 1 1 1 1
2 SCORE ROW2 14 1 -1 -1 -1 1 1 1 1
3 SCORE ROW3 15 1 -1 -1 1 -1 -1 1 2
4 SCORE ROW4 13 1 -1 -1 1 -1 -1 1 2
5 SCORE ROW5 1 1 1 0 -1 -1 0 2 1
6 SCORE ROW6 9 1 1 0 -1 -1 0 2 1
7 SCORE ROW7 12 1 1 0 1 1 0 2 2
8 SCORE ROW8 20 1 1 0 1 1 0 2 2
9 SCORE ROW9 14 1 0 1 -1 0 -1 3 1

10 SCORE ROW10 8 1 0 1 -1 0 -1 3 1
11 SCORE ROW11 18 1 0 1 1 0 1 3 2
12 SCORE ROW12 20 1 0 1 1 0 1 3 2

Figure 65.43. Deviations-From-Means Model, (1,1) Reference Cell, Design Matrix

The following statements fit a less-than-full-rank model. The parameter estimates are
constrained to sum to zero within each effect. See Figure 65.44 and Figure 65.45.

proc transreg data=x ss2 short;
title2 ’Less Than Full Rank Model’;
model identity(y) = class(a | b / zero=sum);
output replace;

run;

proc print label;
run;
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Two-way ANOVA Models
Less Than Full Rank Model

The TRANSREG Procedure

Identity(y)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 234.6667 46.93333 3.20 0.0946
Error 6 88.0000 14.66667
Corrected Total 11 322.6667

Root MSE 3.82971 R-Square 0.7273
Dependent Mean 13.33333 Adj R-Sq 0.5000
Coeff Var 28.72281

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 13.3333333 2133.33 2133.33 145.45 <.0001 Intercept
Class.a1 1 1.1666667 8.17 8.17 0.56 0.4837 a 1
Class.a2 1 -2.8333333 48.17 48.17 3.28 0.1199 a 2
Class.a3 1 1.6666667 16.67 16.67 1.14 0.3274 a 3
Class.b1 1 -3.0000000 108.00 108.00 7.36 0.0349 b 1
Class.b2 1 3.0000000 108.00 108.00 7.36 0.0349 b 2
Class.a1b1 1 3.5000000 73.50 73.50 5.01 0.0665 a 1 * b 1
Class.a1b2 1 -3.5000000 73.50 73.50 5.01 0.0665 a 1 * b 2
Class.a2b1 1 -2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 1
Class.a2b2 1 2.5000000 37.50 37.50 2.56 0.1609 a 2 * b 2
Class.a3b1 1 -1.0000000 6.00 6.00 0.41 0.5461 a 3 * b 1
Class.a3b2 1 1.0000000 6.00 6.00 0.41 0.5461 a 3 * b 2

The sum of the regression table DF’s, minus one for the intercept, will be
greater than the model df when there are ZERO=SUM constraints.

Figure 65.44. Less-Than-Full-Rank Model

The parameter estimates are

�̂ = y = 13:33333

�̂1 = (y11 + y12)=2 � y = (15 + 14)=2 � 13:33333 = 1:16667

�̂2 = (y21 + y22)=2 � y = (5 + 16)=2 � 13:33333 = �2:8333

�̂3 = (y31 + y32)=2 � y = (11 + 19)=2 � 13:33333 = 1:66667

�̂1 = (y11 + y21 + y31)=3 � y = (15 + 5 + 11)=3 � 13:33333 = �3

�̂2 = (y12 + y22 + y32)=3 � y = (14 + 16 + 19)=3 � 13:33333 = 3


̂11 = y11 � (y + �̂1 + �̂1) = 15� (13:33333 + 1:16667 +�3) = 3:5
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̂12 = y12 � (y + �̂1 + �̂2) = 14� (13:33333 + 1:16667 + 3) = �3:5


̂21 = y21 � (y + �̂2 + �̂1) = 5� (13:33333 +�2:83333 +�3) = �2:5


̂22 = y22 � (y + �̂2 + �̂2) = 16� (13:33333 +�2:8333 + 3) = 2:5


̂31 = y31 � (y + �̂3 + �̂1) = 11� (13:33333 + 1:66667 +�3) = �1


̂32 = y32 � (y + �̂3 + �̂2) = 19� (13:33333 + 1:66667 + 3) = 1

The constraints are

�1 + �2 + �3 � �1 + �2 � 0


11 + 
12 � 
21 + 
22 � 
31 + 
32 � 
11 + 
21 + 
31 � 
12 + 
22 + 
32 � 0

Two-way ANOVA Models
Less Than Full Rank Model

Obs _TYPE_ _NAME_ y Intercept a 1 a 2 a 3 b 1

1 SCORE ROW1 16 1 1 0 0 1
2 SCORE ROW2 14 1 1 0 0 1
3 SCORE ROW3 15 1 1 0 0 0
4 SCORE ROW4 13 1 1 0 0 0
5 SCORE ROW5 1 1 0 1 0 1
6 SCORE ROW6 9 1 0 1 0 1
7 SCORE ROW7 12 1 0 1 0 0
8 SCORE ROW8 20 1 0 1 0 0
9 SCORE ROW9 14 1 0 0 1 1

10 SCORE ROW10 8 1 0 0 1 1
11 SCORE ROW11 18 1 0 0 1 0
12 SCORE ROW12 20 1 0 0 1 0

a 1 * a 1 * a 2 * a 2 * a 3 * a 3 *
Obs b 2 b 1 b 2 b 1 b 2 b 1 b 2 a b

1 0 1 0 0 0 0 0 1 1
2 0 1 0 0 0 0 0 1 1
3 1 0 1 0 0 0 0 1 2
4 1 0 1 0 0 0 0 1 2
5 0 0 0 1 0 0 0 2 1
6 0 0 0 1 0 0 0 2 1
7 1 0 0 0 1 0 0 2 2
8 1 0 0 0 1 0 0 2 2
9 0 0 0 0 0 1 0 3 1

10 0 0 0 0 0 1 0 3 1
11 1 0 0 0 0 0 1 3 2
12 1 0 0 0 0 0 1 3 2

Figure 65.45. Less-Than-Full-Rank Model, Design Matrix
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Displayed Output

The display options control the amount of displayed output. The displayed output
can contain

� an iteration history and convergence status table, by default

� an ANOVA table when the TEST, SS2, or UTILITIESa-optionis specified

� a regression table when the SS2a-optionis specified

� conjoint analysis part-worth utilities when the UTILITIESa-optionis specified

� model details when the DETAILa-optionis specified

� a multivariate ANOVA table when the dependent variable is transformed and
the TEST or SS2a-optionis specified

� a multivariate regression table when the dependent variable is transformed and
it is specified

� liberal and conservative ANOVA, multivariate ANOVA, regression, and multi-
variate regression tables when there are MONOTONE, UNTIE, or MSPLINE
transformations and the TEST or SS2a-optionis specified

ODS Table Names

PROC TRANSREG assigns a name to each table it creates. You can use these names
to reference the table when using the Output Delivery System (ODS) to select tables
and create output data sets. These names are listed in the following table.

For more information on ODS, see Chapter 15, “Using the Output Delivery System.”

Table 65.7. ODS Tables Produced in PROC TRANSREG

ODS Table Name Description Statement Option
ANOVA ANOVA MODEL/PROC TEST/SS2
LiberalANOVA ANOVA, *1 MODEL/PROC TEST/SS2
ConservANOVA ANOVA, *1 MODEL/PROC TEST/SS2
FitStatistics Fit statistics like R-square MODEL/PROC TEST/SS2
LiberalFitStatistics Fit statistics, *1 MODEL/PROC TEST/SS2
ConservFitStatistics Fit statistics, *1 MODEL/PROC TEST/SS2
MVANOVA Multivariate ANOVA, *2 MODEL/PROC TEST/SS2
LiberalMVANOVA Multivariate ANOVA, *1, *2 MODEL/PROC TEST/SS2
ConservMVANOVA Multivariate ANOVA, *1, *2 MODEL/PROC TEST/SS2
Coef Regression results MODEL/PROC SS2
LiberalCoef Regression results, *1 MODEL/PROC SS2
ConservCoef Regression results, *1 MODEL/PROC SS2
MVCoef Multivariate regression results,

*2
MODEL/PROC SS2

LiberalMVCoef Multivariate regression results,
*1, *2

MODEL/PROC SS2
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Table 65.7. (continued)

ODS Table Name Description Statement Option
ConservMVCoef Multivariate regression results,

*1, *2
MODEL/PROC SS2

Utilities Conjoint Analysis Utilities MODEL/PROC UTILITY
LiberalUtilities Conjoint Analysis Utilities, *1 MODEL/PROC UTILITY
ConservUtilities Conjoint Analysis Utilities, *1 MODEL/PROC UTILITY
Equation Linear Dependency Equation less-than-full-rank model
Details Model Details MODEL/PROC DETAIL
Univariate Univariate Iteration History MODEL/PROC METHOD=UNIVARIATE
MORALS MORALS Iteration History MODEL/PROC METHOD=MORALS
CANALS CANALS Iteration History MODEL/PROC METHOD=CANALS
Redundancy Redundancy Iteration History MODEL/PROC METHOD=REDUNDANCY
TestIterations Hypothesis Test Iterations Itera-

tion History
MODEL/PROC SS2

ConvergenceStatus Convergence Status default

*1. Liberal and conservative test tables are produced when a MONOTONE, UNTIE, or MSPLINE,

transformation is requested.

*2. Multivariate tables are produced when the dependent variable is iteratively transformed.

Examples

Example 65.1. Using Splines and Knots

This example illustrates some properties of splines.Splinesare curves, which are usu-
ally required to be continuous and smooth. Splines are usually defined as piecewise
polynomials of degreen with function values and firstn � 1 derivatives that agree
at the points where they join. The abscissa values of the join points are calledknots.
The term “spline” is also used for polynomials (splines with no knots) and piecewise
polynomials with more than one discontinuous derivative. Splines with no knots
are generally smoother than splines with knots, which are generally smoother than
splines with multiple discontinuous derivatives. Splines with few knots are gener-
ally smoother than splines with many knots; however, increasing the number of knots
usually increases the fit of the spline function to the data. Knots give the curve free-
dom to bend to more closely follow the data. Refer to Smith (1979) for an excellent
introduction to splines.

In this example, an artificial data set is created with a variableY that is a discontin-
uous function ofX. See the first plot in Output 65.1.7. Notice that the function has
four unconnected parts, each of which is a curve. Notice too that there is an overall
quadratic trend, that is, ignoring the shapes of the individual curves, at first theY
values tend to decrease asX increases, thenY values tend to increase.

The first PROC TRANSREG analysis fits a linear regression model. The predicted
values ofY given X are output and plotted to form the linear regression line. The
R2 for the linear regression is 0.10061, and it can be seen from the second plot in
Output 65.1.7 that the linear regression model is not appropriate for these data. The
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following statements create the data set and perform the first PROC TRANSREG
analysis. These statements produce Output 65.1.1.

title ’An Illustration of Splines and Knots’;

* Create in Y a discontinuous function of X.
*
* Store copies of X in V1-V7 for use in PROC GPLOT.
* These variables are only necessary so that each
* plot can have its own x-axis label while putting
* four plots on a page.;

data A;
array V[7] V1-V7;
X=-0.000001;
do I=0 to 199;

if mod(I,50)=0 then do;
C=((X/2)-5)**2;
if I=150 then C=C+5;
Y=C;
end;

X=X+0.1;
Y=Y-sin(X-C);
do J=1 to 7;

V[J]=X;
end;

output;
end;

run;

* Each of the PROC TRANSREG steps fits a
* different spline model to the data set created
* previously. The TRANSREG steps build up a data set with
* various regression functions. All of the functions
* are then plotted with the final PROC GPLOT step.
*
* The OUTPUT statements add new predicted values
* variables to the data set, while the ID statements
* save all of the previously created variables that
* are needed for the plots.;

proc transreg data=A;
model identity(Y) = identity(X);
title2 ’A Linear Regression Function’;
output out=A pprefix=Linear;
id V1-V7;

run;
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Output 65.1.1. Fitting a Linear Regression Model with PROC TRANSREG

An Illustration of Splines and Knots
A Linear Regression Function

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.10061 Converged

Algorithm converged.

The second PROC TRANSREG analysis finds a degree two spline transformation
with no knots, which is a quadratic polynomial. The spline is a weighted sum of a
single constant, a single straight line, and a single quadratic curve. TheR2 increases
from 0.10061, which is the linear fit value from before, to 0.40720. It can be seen
from the third plot in Output 65.1.7 that the quadratic regression function does not
fit any of the individual curves well, but it does follow the overall trend in the data.
Since the overall trend is quadratic, a degree three spline with no knots (not shown)
increasesR2 by only a small amount. The following statements perform the quadratic
analysis and produce Output 65.1.2.

proc transreg data=A;
model identity(Y)=spline(X / degree=2);
title2 ’A Quadratic Polynomial Regression Function’;
output out=A pprefix=Quad;
id V1-V7 LinearY;

run;

Output 65.1.2. Fitting a Quadratic Polynomial

An Illustration of Splines and Knots
A Quadratic Polynomial Regression Function

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.82127 2.77121 0.10061
2 0.00000 0.00000 0.40720 0.30659 Converged

Algorithm converged.

The next step uses the default degree of three, for a piecewise cubic polynomial, and
requests knots at the known break points,X=5, 10, and 15. This requests a spline that
is continuous, has continuous first and second derivatives, and has a third derivative
that is discontinuous at 5, 10, and 15. The spline is a weighted sum of a single
constant, a single straight line, a single quadratic curve, a cubic curve for the portion
of X less than 5, a different cubic curve for the portion ofX between 5 and 10, a
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different cubic curve for the portion ofX between 10 and 15, and another cubic curve
for the portion ofX greater than 15. The newR2 is 0.61730, and it can be seen from
the fourth plot (in Output 65.1.7) that the spline is less smooth than the quadratic
polynomial and it follows the data more closely than the quadratic polynomial. The
following statements perform this analysis and produce Output 65.1.3:

proc transreg data=A;
model identity(Y) = spline(X / knots=5 10 15);
title2 ’A Cubic Spline Regression Function’;
title3 ’The Third Derivative is Discontinuous at X=5, 10, 15’;
output out=A pprefix=Cub1;
id V1-V7 LinearY QuadY;

run;

Output 65.1.3. Fitting a Piecewise Cubic Polynomial

An Illustration of Splines and Knots
A Cubic Spline Regression Function

The Third Derivative is Discontinuous at X=5, 10, 15

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.85367 3.88449 0.10061
2 0.00000 0.00000 0.61730 0.51670 Converged

Algorithm converged.

The same model could be fit with a DATA step and PROC REG, as follows. (The
output from the following code is not displayed.)

data B; /* A is the data set used for transreg */
set a(keep=X Y);
X1=X; /* X */
X2=X**2; /* X squared */
X3=X**3; /* X cubed */
X4=(X> 5)*((X-5)**3); /* change in X**3 after 5 */
X5=(X>10)*((X-10)**3); /* change in X**3 after 10 */
X6=(X>15)*((X-15)**3); /* change in X**3 after 15 */

run;

proc reg;
model Y=X1-X6;

run;

In the next step each knot is repeated three times, so the first, second, and third
derivatives are discontinuous atX=5, 10, and 15, but the spline is required to be
continuous at the knots. The spline is a weighted sum of the following.

SAS OnlineDoc: Version 8



Example 65.1. Using Splines and Knots � 3495

� a single constant

� a line for the portion ofX less than 5

� a quadratic curve for the portion ofX less than 5

� a cubic curve for the portion ofX less than 5

� a different line for the portion ofX between 5 and 10

� a different quadratic curve for the portion ofX between 5 and 10

� a different cubic curve for the portion ofX between 5 and 10

� a different line for the portion ofX between 10 and 15

� a different quadratic curve for the portion ofX between 10 and 15

� a different cubic curve for the portion ofX between 10 and 15

� another line for the portion ofX greater than 15

� another quadratic curve for the portion ofX greater than 15

� and another cubic curve for the portion ofX greater than 15

The spline is continuous since there is not a separate constant in the formula for
the spline for each knot. Now theR2 is 0.95542, and the spline closely follows the
data, except at the knots. The following statements perform this analysis and produce
Output 65.1.4:

proc transreg data=A;
model identity(y) = spline(x / knots=5 5 5 10 10 10 15 15 15);
title3 ’First - Third Derivatives Discontinuous at X=5, 10, 15’;
output out=A pprefix=Cub3;
id V1-V7 LinearY QuadY Cub1Y;

run;

Output 65.1.4. Piecewise Polynomial with Discontinuous Derivatives

An Illustration of Splines and Knots
A Cubic Spline Regression Function

First - Third Derivatives Discontinuous at X=5, 10, 15

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.92492 3.50038 0.10061
2 0.00000 0.00000 0.95542 0.85481 Converged

Algorithm converged.

The same model could be fit with a DATA step and PROC REG, as follows. (The
output from the following code is not displayed.)
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data B;
set a(keep=X Y);
X1=X; /* X */
X2=X**2; /* X squared */
X3=X**3; /* X cubed */
X4=(X>5) * (X- 5); /* change in X after 5 */
X5=(X>10) * (X-10); /* change in X after 10 */
X6=(X>15) * (X-15); /* change in X after 15 */
X7=(X>5) * ((X-5)**2); /* change in X**2 after 5 */
X8=(X>10) * ((X-10)**2); /* change in X**2 after 10 */
X9=(X>15) * ((X-15)**2); /* change in X**2 after 15 */
X10=(X>5) * ((X-5)**3); /* change in X**3 after 5 */
X11=(X>10) * ((X-10)**3); /* change in X**3 after 10 */
X12=(X>15) * ((X-15)**3); /* change in X**3 after 15 */

run;

proc reg;
model Y=X1-X12;

run;

When the knots are repeated four times in the next step, the spline function is discon-
tinuous at the knots and follows the data even more closely, with anR2 of 0.99254. In
this step, each separate curve is approximated by a cubic polynomial (with no knots
within the separate polynomials). The following statements perform this analysis and
produce Output 65.1.5:

proc transreg data=A;
model identity(Y) = spline(X / knots=5 5 5 5 10 10 10 10 15 15 15 15);
title3 ’Discontinuous Function and Derivatives’;
output out=A pprefix=Cub4;
id V1-V7 LinearY QuadY Cub1Y Cub3Y;

run;

Output 65.1.5. Discontinuous Function and Derivatives

An Illustration of Splines and Knots
A Cubic Spline Regression Function

Discontinuous Function and Derivatives

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.90271 3.29184 0.10061
2 0.00000 0.00000 0.99254 0.89193 Converged

Algorithm converged.
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To solve this problem with a DATA step and PROC REG, you would need to create
all of the variables in the preceding DATA step (the B data set for the piecewise
polynomial with discontinuous third derivatives), plus the following three variables.

X13=(X > 5); /* intercept change after 5 */
X14=(X > 10); /* intercept change after 10 */
X15=(X > 15); /* intercept change after 15 */

The last two steps use the NKNOTS=t-option to specify the number of knots but not
their location. NKNOTS=4 places knots at the quintiles while NKNOTS=9 places
knots at the deciles. The spline and its first two derivatives are continuous. The
R2 values are 0.74450 and 0.95256. Even though the knots are placed in the wrong
places, the spline can closely follow the data with NKNOTS=9. The following state-
ments produce Output 65.1.6.

proc transreg data=A;
model identity(Y) = spline(X / nknots=4);
title3 ’Four Knots’;
output out=A pprefix=Cub4k;
id V1-V7 LinearY QuadY Cub1Y Cub3Y Cub4Y;

run;

proc transreg data=A;
model identity(Y) = spline(X / nknots=9);
title3 ’Nine Knots’;
output out=A pprefix=Cub9k;
id V1-V7 LinearY QuadY Cub1Y Cub3Y Cub4Y Cub4kY;

run;

Output 65.1.6. Specifying Number of Knots instead of Knot Location

An Illustration of Splines and Knots
A Cubic Spline Regression Function

Four Knots

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.90305 4.46027 0.10061
2 0.00000 0.00000 0.74450 0.64389 Converged

Algorithm converged.
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An Illustration of Splines and Knots
A Cubic Spline Regression Function

Nine Knots

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Identity(Y)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.94832 3.03488 0.10061
2 0.00000 0.00000 0.95256 0.85196 Converged

Algorithm converged.

The following statements produce plots that show the data and fit at each step of the
analysis. These statements produce Output 65.1.7.

goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot data=A;
title;
axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
plot Y*X=1 / &opts name=’tregdis1’;
plot Y*V1=1 linearY*X=2 /overlay &opts name=’tregdis2’;
plot Y*V2=1 quadY *X=2 /overlay &opts name=’tregdis3’;
plot Y*V3=1 cub1Y *X=2 /overlay &opts name=’tregdis4’;
plot Y*V4=1 cub3Y *X=2 /overlay &opts name=’tregdis5’;
plot Y*V5=1 cub4Y *X=2 /overlay &opts name=’tregdis6’;
plot Y*V6=1 cub4kY *X=2 /overlay &opts name=’tregdis7’;
plot Y*V7=1 cub9kY *X=2 /overlay &opts name=’tregdis8’;
symbol1 color=blue v=star i=none;
symbol2 color=yellow v=dot i=none;
label V1 = ’Linear Regression’

V2 = ’Quadratic Regression Function’
V3 = ’1 Discontinuous Derivative’
V4 = ’3 Discontinuous Derivatives’
V5 = ’Discontinuous Function’
V6 = ’4 Knots’
V7 = ’9 Knots’
Y = ’Y’ LinearY = ’Y’ QuadY = ’Y’ Cub1Y = ’Y’
Cub3Y = ’Y’ Cub4Y = ’Y’ Cub4kY = ’Y’ Cub9kY = ’Y’;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:tregdis1 2:tregdis3 3:tregdis2 4:tregdis4;
treplay 1:tregdis5 2:tregdis7 3:tregdis6 4:tregdis8;

run; quit;
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Output 65.1.7. Plots Summarizing Analysis for Spline Example
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Example 65.2. Nonmetric Conjoint Analysis of Tire Data

This example uses PROC TRANSREG to perform a nonmetric conjoint analysis of
tire preference data. Conjoint analysis decomposes rank ordered evaluation judg-
ments of products or services into components based on qualitative product attributes.
For each level of each attribute of interest, a numerical “part-worth utility” value is
computed. The sum of the part-worth utilities for each product is an estimate of the
utility for that product. The goal is to compute part-worth utilities such that the prod-
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uct utilities are as similar as possible to the original rank ordering. (This example is
a greatly simplified introductory example.)

The stimuli for the experiment are 18 hypothetical tires. The stimuli represent dif-
ferent brands (Goodstone, Pirogi, Machismo)�, prices ($69.99, $74.99, $79.99), ex-
pected tread life (50,000, 60,000, 70,000), and road hazard insurance plans (Yes, No).
There are3 � 3 � 3 � 2 = 54 possible combinations. From these, 18 combinations
are selected that form an efficient experimental design for a main effects model. The
combinations are then ranked from 1 (most preferred) to 18 (least preferred). In this
simple example, there is one set of rankings. A real conjoint study would have many
more.

First, the FORMAT procedure is used to specify the meanings of the factor levels,
which are entered as numbers in the data step along with the ranks. PROC TRAN-
SREG is used to perform the conjoint analysis. A maximum of 50 iterations is re-
quested. The specification Monotone(Rank / Reflect) in the MODEL statement re-
quests that the dependent variableRank should be monotonically transformed and
reflected so that positive utilities mean high preference. The variablesBrand, Price,
Life, andHazard are designated as CLASS variables, and the part-worth utilities
are constrained by ZERO=SUM to sum to zero within each factor. The UTILITIES
a-optiondisplays the conjoint analysis results.

TheImportance column of the Utilities Table shows that price is the most important
attribute in determining preference (57%), followed by expected tread life (18%),
brand (15%), and road hazard insurance (10%). Looking at the Utilities Table for
the maximum part-worth utility within each attribute, you see from the results that
the most preferred combination is Pirogi brand tires, at $69.99, with a 70,000 mile
expected tread life, and road hazard insurance. This product is not actually in the data
set. The sum of the part-worth utilities for this combination is

20:64 = 9:50 + 1:90 + 5:87 + 2:41 + 0:96

The following statements produce Output 65.2.1:

title ’Nonmetric Conjoint Analysis of Ranks’;

proc format;
value BrandF

1 = ’Goodstone’
2 = ’Pirogi ’
3 = ’Machismo ’;

value PriceF
1 = ’$69.99’
2 = ’$74.99’
3 = ’$79.99’;

value LifeF
1 = ’50,000’
2 = ’60,000’

�In real conjoint experiments, real brand names are used.
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3 = ’70,000’;
value HazardF

1 = ’Yes’
2 = ’No ’;

run;

data Tires;
input Brand Price Life Hazard Rank;
format Brand BrandF9. Price PriceF9. Life LifeF6. Hazard HazardF3.;
datalines;

1 1 2 1 3
1 1 3 2 2
1 2 1 2 14
1 2 2 2 10
1 3 1 1 17
1 3 3 1 12
2 1 1 2 7
2 1 3 2 1
2 2 1 1 8
2 2 3 1 5
2 3 2 1 13
2 3 2 2 16
3 1 1 1 6
3 1 2 1 4
3 2 2 2 15
3 2 3 1 9
3 3 1 2 18
3 3 3 2 11
;

proc transreg maxiter=50 utilities short;
ods select ConvergenceStatus FitStatistics Utilities;
model monotone(Rank / reflect) =

class(Brand Price Life Hazard / zero=sum);
output ireplace predicted;

run;

proc print label;
var Rank TRank PRank Brand Price Life Hazard;
label PRank = ’Predicted Ranks’;

run;
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Output 65.2.1. Simple Conjoint Analysis

Nonmetric Conjoint Analysis of Ranks

The TRANSREG Procedure

Monotone(Rank)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Monotone(Rank)

Root MSE 0.49759 R-Square 0.9949
Dependent Mean 9.50000 Adj R-Sq 0.9913
Coeff Var 5.23783

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 9.5000 0.11728 Intercept

Brand Goodstone -1.1718 0.16586 15.463 Class.BrandGoodstone
Brand Pirogi 1.8980 0.16586 Class.BrandPirogi
Brand Machismo -0.7262 0.16586 Class.BrandMachismo

Price $69.99 5.8732 0.16586 56.517 Class.Price_69_99
Price $74.99 -0.5261 0.16586 Class.Price_74_99
Price $79.99 -5.3471 0.16586 Class.Price_79_99

Life 50,000 -1.2350 0.16586 18.361 Class.Life50_000
Life 60,000 -1.1751 0.16586 Class.Life60_000
Life 70,000 2.4101 0.16586 Class.Life70_000

Hazard Yes 0.9588 0.11728 9.659 Class.HazardYes
Hazard No -0.9588 0.11728 Class.HazardNo

The standard errors are not adjusted for the fact that the dependent
variable was transformed and so are generally liberal (too small).
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Nonmetric Conjoint Analysis of Ranks

Rank Predicted
Obs Rank Transformation Ranks Brand Price Life Hazard

1 3 14.4462 13.9851 Goodstone $69.99 60,000 Yes
2 2 15.6844 15.6527 Goodstone $69.99 70,000 No
3 14 5.7229 5.6083 Goodstone $74.99 50,000 No
4 10 5.7229 5.6682 Goodstone $74.99 60,000 No
5 17 2.6699 2.7049 Goodstone $79.99 50,000 Yes
6 12 5.7229 6.3500 Goodstone $79.99 70,000 Yes
7 7 14.4462 15.0774 Pirogi $69.99 50,000 No
8 1 18.7699 18.7225 Pirogi $69.99 70,000 No
9 8 11.1143 10.5957 Pirogi $74.99 50,000 Yes

10 5 14.4462 14.2408 Pirogi $74.99 70,000 Yes
11 13 5.7229 5.8346 Pirogi $79.99 60,000 Yes
12 16 3.8884 3.9170 Pirogi $79.99 60,000 No
13 6 14.4462 14.3708 Machismo $69.99 50,000 Yes
14 4 14.4462 14.4307 Machismo $69.99 60,000 Yes
15 15 5.7229 6.1139 Machismo $74.99 60,000 No
16 9 11.1143 11.6166 Machismo $74.99 70,000 Yes
17 18 1.1905 1.2330 Machismo $79.99 50,000 No
18 11 5.7229 4.8780 Machismo $79.99 70,000 No

Example 65.3. Metric Conjoint Analysis of Tire Data

This example, which is more detailed than the previous one, uses PROC TRANSREG
to perform a metric conjoint analysis of tire preference data. Conjoint analysis can
be used to decompose preference ratings of products or services into components
based on qualitative product attributes. For each level of each attribute of interest, a
numerical “part-worth utility” value is computed. The sum of the part-worth utilities
for each product is an estimate of the utility for that product. The goal is to compute
part-worth utilities such that the product utilities are as similar as possible to the orig-
inal ratings. Metric conjoint analysis, as shown in this example, fits an ordinary linear
model directly to data assumed to be measured on an interval scale. Nonmetric con-
joint analysis, as shown in Example 65.2, finds an optimal monotonic transformation
of original data before fitting an ordinary linear model to the transformed data.

This example has three parts. In the first part, an experimental design is created. In
the second part, a DATA step creates descriptions of the stimuli for the experiment.
The third part of the example performs the conjoint analyses.

The stimuli for the experiment are 18 hypothetical tires. The stimuli represent dif-
ferent brands (Goodstone, Pirogi, Machismo)�, prices ($69.99, $74.99, $79.99), ex-
pected tread life (50,000, 60,000, 70,000), and road hazard insurance plans (Yes, No).

For a conjoint study such as this, you need to create an experimental design with 3
three-level factors, 1 two-level factor, and 18 combinations orruns. While it is easy
to get a design for this situation from ADX software or a table, you can also use the
more general approach of using the OPTEX procedure to find an efficient design.
First, the PLAN procedure is used to construct a full-factorial design consisting of all
possible combinations of the factors. Then, PROC OPTEX is used to find an efficient
design for a main-effects model.

�In real conjoint experiments, real brand names would be used
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The FACTORS statement in PROC PLAN specifies each of the factors and the num-
ber of levels. The full-factorial design is output to the data setCandidates, and no
displayed output is produced from PROC PLAN. The OPTEX procedure searches
the Candidates data set for an efficient experimental design. The option COD-
ING=ORTHCAN specifies an orthogonal coding of the internal design matrix. All
factors are designated as CLASS variables, and a main-effects model (no interac-
tions) is specified. The GENERATE statement requests a design with N=18 products
using the Modified Federov algorithm. For most conjoint studies, this is the best
algorithm to use. The best experimental design is output to a SAS data set called
sasuser.TireDesign. For this study, PROC OPTEX has no trouble finding a perfect,
100% efficient experimental design because a standard, balanced, and orthogonal de-
sign exists for this problem. (It is frequently the case in practice that 100% efficiency
is unobtainable.) Specifying random number seeds on the design procedures, while
not strictly necessary, helps ensure that the design is reproducible. However, in ex-
amples like this in which PROC OPTEX finds many designs, all tied with the same
efficiency, different but equivalent designs are sometimes output. When this happens,
you get different results from those shown. The experimental design is displayed, and
the SUMMARY procedure is used to examine one-way and two-way frequencies for
all of the factors. All frequencies within each crosstabulation are constant, which is
consistent with the 100% efficiency reported by PROC OPTEX. Finally, the tires are
sorted into a random order and stored into a permanant SAS data set. In the interest
of space, only the final design is shown. (The output from PROC OPTEX and PROC
SUMMARY is not displayed.)

title ’Tire Study, Experimental Design’;

proc format;
value BrandF

1 = ’Goodstone’
2 = ’Pirogi ’
3 = ’Machismo ’;

value PriceF
1 = ’$69.99’
2 = ’$74.99’
3 = ’$79.99’;

value LifeF
1 = ’50,000’
2 = ’60,000’
3 = ’70,000’;

value HazardF
1 = ’Yes’
2 = ’No ’;

run;

proc plan seed=070787;
factors Brand=3 Price=3 Life=3 Hazard=2 / noprint;
output out=Candidates;

run;
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proc optex data=Candidates coding=orthcan seed=080489;
class Brand Price Life Hazard;
model Brand Price Life Hazard;
generate n=18 method=m_federov;
output out=TireDesign;
format Brand BrandF9. Price PriceF9. Life LifeF6. Hazard HazardF3.;

run;

proc sort;
by Brand Price Life Hazard;

run;

proc print;
run;

proc summary print;
class Brand -- Hazard;
ways 1 2;

run;

data TireDesign2; /* Randomize the order of the tires */
set TireDesign;
r = uniform(7);

run;

proc sort out=sasuser.TireDesign(drop=r);
by r;

run;

Output 65.3.1. Tire Study, Experimental Design

Tire Study, Experimental Design

Obs Brand Price Life Hazard

1 Goodstone $69.99 50,000 No
2 Goodstone $69.99 50,000 No
3 Goodstone $74.99 60,000 Yes
4 Goodstone $74.99 60,000 Yes
5 Goodstone $79.99 70,000 Yes
6 Goodstone $79.99 70,000 No
7 Pirogi $69.99 60,000 Yes
8 Pirogi $69.99 60,000 No
9 Pirogi $74.99 70,000 No

10 Pirogi $74.99 70,000 No
11 Pirogi $79.99 50,000 Yes
12 Pirogi $79.99 50,000 Yes
13 Machismo $69.99 70,000 Yes
14 Machismo $69.99 70,000 Yes
15 Machismo $74.99 50,000 Yes
16 Machismo $74.99 50,000 No
17 Machismo $79.99 60,000 No
18 Machismo $79.99 60,000 No
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Next, the questionnaires are printed, and subjects are given the questionnaires and are
asked to rate the tires.

The following statements produce Output 65.3.2. This output is abbreviated; the
statements produce stimuli for all combinations.

data _null_;
title;
set sasuser.TireDesign;
file print;
if mod(_n_,4) eq 1 then do;

put _page_;
put +55 ’Subject ________’;
end;

length hazardstring $ 7.;
if put(hazard, hazardf3.) = ’Yes’

then hazardstring = ’with’;
else hazardstring = ’without’;

s = 3 + (_n_ >= 10);
put // _n_ +(-1) ’) For your next tire purchase, ’

’how likely are you to buy this product?’
// +s Brand ’brand tires at ’ Price +(-1) ’,’
/ +s ’with a ’ Life ’tread life guarantee, ’
/ +s ’and ’ hazardstring ’road hazard insurance.’
// +s ’Definitely Would Definitely Would’
/ +s ’Not Purchase Purchase’
// +s ’1 2 3 4 5 6 7 8 9 ’;

run;
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Output 65.3.2. Conjoint Analysis, Stimuli Descriptions

Subject ________

1) For your next tire purchase, how likely are you to buy this product?

Machismo brand tires at $74.99,
with a 50,000 tread life guarantee,
and without road hazard insurance.

Definitely Would Definitely Would
Not Purchase Purchase

1 2 3 4 5 6 7 8 9

2) For your next tire purchase, how likely are you to buy this product?

Goodstone brand tires at $69.99,
with a 50,000 tread life guarantee,
and without road hazard insurance.

Definitely Would Definitely Would
Not Purchase Purchase

1 2 3 4 5 6 7 8 9

3) For your next tire purchase, how likely are you to buy this product?

Pirogi brand tires at $74.99,
with a 70,000 tread life guarantee,
and without road hazard insurance.

Definitely Would Definitely Would
Not Purchase Purchase

1 2 3 4 5 6 7 8 9

4) For your next tire purchase, how likely are you to buy this product?

Goodstone brand tires at $79.99,
with a 70,000 tread life guarantee,
and with road hazard insurance.

Definitely Would Definitely Would
Not Purchase Purchase

1 2 3 4 5 6 7 8 9

The third part of the example performs the conjoint analyses. The DATA step reads
the data. Only the ratings are entered, one row per subject. Real conjoint studies have
many more subjects than five. The TRANSPOSE procedure transposes this (5 � 18)
data set into an (18 � 5) data set that can be merged with the factor level data set
sasuser.TireDesign. The next DATA step does the merge. The PRINT procedure
displays the input data set.

PROC TRANSREG fits the five individual conjoint models, one for each subject.
The UTILITIESa-optiondisplays the conjoint analysis results. The SHORTa-option
suppresses the iteration histories, OUTTEST=Utils creates an output data set with all
of the conjoint results, and the SEPARATORS= option requests that the labels con-
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structed for each category contain two blanks between the variable name and the level
value. The ODS select statement is used to limit the displayed output. The MODEL
statement specifies IDENTITY for the ratings, which specifies a metric conjoint anal-
ysis —the ratings are not transformed. The variablesBrand, Price, Life, andHazard
are designated as CLASS variables, and the part-worth utilities are constrained to sum
to zero within each factor.

The following statements produce Output 65.3.3:

title ’Tire Study, Data Entry, Preprocessing’;

data Results;
input (c1-c18) (1.);
datalines;

366479338236695228
583448157149666228
127799316264575448
335869145193567449
366379238246685229
;

*---Create an Object by Subject Data Matrix---;
proc transpose data=Results out=Results(drop=_name_) prefix=Subj;
run;

*---Merge the Factor Levels With the Data Matrix---;
data Both;

merge sasuser.TireDesign Results;
run;

*---Print Input Data Set---;
proc print;

title2 ’Data Set for Conjoint Analysis’;
run;

*---Fit Each Subject Individually---;
proc transreg data=Both utilities short outtest=Utils separators=’ ’;

ods select FitStatistics Utilities;
title2 ’Individual Conjoint Analyses’;
model identity(Subj1-Subj5) =

class(Brand Price Life Hazard / zero=sum);
run;

The output contains two tables per subject, one with overall fit statistics and one with
the conjoint analysis results.
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Output 65.3.3. Conjoint Analysis

Tire Study, Data Entry, Preprocessing
Data Set for Conjoint Analysis

Obs Brand Price Life Hazard Subj1 Subj2 Subj3 Subj4 Subj5

1 Machismo $74.99 50,000 No 3 5 1 3 3
2 Goodstone $69.99 50,000 No 6 8 2 3 6
3 Pirogi $74.99 70,000 No 6 3 7 5 6
4 Goodstone $79.99 70,000 Yes 4 4 7 8 3
5 Pirogi $74.99 70,000 No 7 4 9 6 7
6 Machismo $69.99 70,000 Yes 9 8 9 9 9
7 Pirogi $79.99 50,000 Yes 3 1 3 1 2
8 Machismo $74.99 50,000 Yes 3 5 1 4 3
9 Pirogi $69.99 60,000 No 8 7 6 5 8

10 Pirogi $79.99 50,000 Yes 2 1 2 1 2
11 Goodstone $79.99 70,000 No 3 4 6 9 4
12 Goodstone $69.99 50,000 No 6 9 4 3 6
13 Goodstone $74.99 60,000 Yes 6 6 5 5 6
14 Pirogi $69.99 60,000 Yes 9 6 7 6 8
15 Goodstone $74.99 60,000 Yes 5 6 5 7 5
16 Machismo $79.99 60,000 No 2 2 4 4 2
17 Machismo $79.99 60,000 No 2 2 4 4 2
18 Machismo $69.99 70,000 Yes 8 8 8 9 9

Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj1)

Root MSE 0.49441 R-Square 0.9760
Dependent Mean 5.11111 Adj R-Sq 0.9592
Coeff Var 9.67330

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 5.1111 0.11653 Intercept

Brand Goodstone -0.1111 0.16480 14.286 Class.BrandGoodstone
Brand Pirogi 0.7222 0.16480 Class.BrandPirogi
Brand Machismo -0.6111 0.16480 Class.BrandMachismo

Price $69.99 2.5556 0.16480 53.571 Class.Price_69_99
Price $74.99 -0.1111 0.16480 Class.Price_74_99
Price $79.99 -2.4444 0.16480 Class.Price_79_99

Life 50,000 -1.2778 0.16480 25.000 Class.Life50_000
Life 60,000 0.2222 0.16480 Class.Life60_000
Life 70,000 1.0556 0.16480 Class.Life70_000

Hazard Yes 0.3333 0.11653 7.143 Class.HazardYes
Hazard No -0.3333 0.11653 Class.HazardNo
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Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj2)

Root MSE 0.47140 R-Square 0.9792
Dependent Mean 4.94444 Adj R-Sq 0.9647
Coeff Var 9.53402

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 4.9444 0.11111 Intercept

Brand Goodstone 1.2222 0.15713 30.201 Class.BrandGoodstone
Brand Pirogi -1.2778 0.15713 Class.BrandPirogi
Brand Machismo 0.0556 0.15713 Class.BrandMachismo

Price $69.99 2.7222 0.15713 64.430 Class.Price_69_99
Price $74.99 -0.1111 0.15713 Class.Price_74_99
Price $79.99 -2.6111 0.15713 Class.Price_79_99

Life 50,000 -0.1111 0.15713 4.027 Class.Life50_000
Life 60,000 -0.1111 0.15713 Class.Life60_000
Life 70,000 0.2222 0.15713 Class.Life70_000

Hazard Yes 0.0556 0.11111 1.342 Class.HazardYes
Hazard No -0.0556 0.11111 Class.HazardNo
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Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj3)

Root MSE 0.80277 R-Square 0.9425
Dependent Mean 5.00000 Adj R-Sq 0.9022
Coeff Var 16.05546

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 5.0000 0.18922 Intercept

Brand Goodstone -0.1667 0.26759 13.291 Class.BrandGoodstone
Brand Pirogi 0.6667 0.26759 Class.BrandPirogi
Brand Machismo -0.5000 0.26759 Class.BrandMachismo

Price $69.99 1.0000 0.26759 18.987 Class.Price_69_99
Price $74.99 -0.3333 0.26759 Class.Price_74_99
Price $79.99 -0.6667 0.26759 Class.Price_79_99

Life 50,000 -2.8333 0.26759 62.658 Class.Life50_000
Life 60,000 0.1667 0.26759 Class.Life60_000
Life 70,000 2.6667 0.26759 Class.Life70_000

Hazard Yes 0.2222 0.18922 5.063 Class.HazardYes
Hazard No -0.2222 0.18922 Class.HazardNo
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Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj4)

Root MSE 0.96032 R-Square 0.9160
Dependent Mean 5.11111 Adj R-Sq 0.8572
Coeff Var 18.78895

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 5.1111 0.22635 Intercept

Brand Goodstone 0.7222 0.32011 19.880 Class.BrandGoodstone
Brand Pirogi -1.1111 0.32011 Class.BrandPirogi
Brand Machismo 0.3889 0.32011 Class.BrandMachismo

Price $69.99 0.7222 0.32011 14.458 Class.Price_69_99
Price $74.99 -0.1111 0.32011 Class.Price_74_99
Price $79.99 -0.6111 0.32011 Class.Price_79_99

Life 50,000 -2.6111 0.32011 56.024 Class.Life50_000
Life 60,000 0.0556 0.32011 Class.Life60_000
Life 70,000 2.5556 0.32011 Class.Life70_000

Hazard Yes 0.4444 0.22635 9.639 Class.HazardYes
Hazard No -0.4444 0.22635 Class.HazardNo
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Tire Study, Data Entry, Preprocessing
Individual Conjoint Analyses

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Identity(Subj5)

Root MSE 0.52705 R-Square 0.9740
Dependent Mean 5.05556 Adj R-Sq 0.9558
Coeff Var 10.42509

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range) Variable

Intercept 5.0556 0.12423 Intercept

Brand Goodstone -0.0556 0.17568 9.259 Class.BrandGoodstone
Brand Pirogi 0.4444 0.17568 Class.BrandPirogi
Brand Machismo -0.3889 0.17568 Class.BrandMachismo

Price $69.99 2.6111 0.17568 57.407 Class.Price_69_99
Price $74.99 -0.0556 0.17568 Class.Price_74_99
Price $79.99 -2.5556 0.17568 Class.Price_79_99

Life 50,000 -1.3889 0.17568 29.630 Class.Life50_000
Life 60,000 0.1111 0.17568 Class.Life60_000
Life 70,000 1.2778 0.17568 Class.Life70_000

Hazard Yes 0.1667 0.12423 3.704 Class.HazardYes
Hazard No -0.1667 0.12423 Class.HazardNo

These following statements summarize the results. Three tables are displayed: all
of the importance values, the average importance, and the part-worth utilities. The
first DATA step selects the importance information from theUtils data set. The final
assignment statement stores just the variable name from the label relying on the fact
that the separator is two blanks. PROC TRANSPOSE creates the data set of impor-
tances, one row per subject, and PROC PRINT displays the results. The MEANS
procedure displays the average importance of each attribute across the subjects. The
next DATA step selects the part-worth utilities information from theUtils data set.
PROC TRANSPOSE creates the data set of utilities, one row per subject, and PROC
PRINT displays the results.

*---Gather the Importance Values---;
data Importance;

set Utils(keep=_depvar_ Importance Label);
if n(Importance);
label = substr(label, 1, index(label, ’ ’));

run;

proc transpose out=Importance2(drop=_:);
by _depvar_;
id Label;

run;
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proc print;
title2 ’Importance Values’;

run;

proc means;
title2 ’Average Importance’;

run;

*---Gather the Part-Worth Utilites---;
data Utilities;

set Utils(keep=_depvar_ Coefficient Label);
if n(Coefficient);

run;

proc transpose out=Utilities2(drop=_:);
by _depvar_;
id Label;
idlabel Label;

run;

proc print label;
title2 ’Utilities’;

run;

Output 65.3.4. Summary of Conjoint Analysis Results

Tire Study, Data Entry, Preprocessing
Importance Values

Obs Brand Price Life Hazard

1 14.2857 53.5714 25.0000 7.14286
2 30.2013 64.4295 4.0268 1.34228
3 13.2911 18.9873 62.6582 5.06329
4 19.8795 14.4578 56.0241 9.63855
5 9.2593 57.4074 29.6296 3.70370

Tire Study, Data Entry, Preprocessing
Average Importance

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum
-----------------------------------------------------------------------------
Brand 5 17.3833946 8.1066973 9.2592593 30.2013423
Price 5 41.7707079 23.2500570 14.4578313 64.4295302
Life 5 35.4677599 23.9482430 4.0268456 62.6582278
Hazard 5 5.3781376 3.1802662 1.3422819 9.6385542
-----------------------------------------------------------------------------
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Tire Study, Data Entry, Preprocessing
Utilities

Brand Brand Brand Price Price
Obs Intercept Goodstone Pirogi Machismo $69.99 $74.99

1 5.11111 -0.11111 0.72222 -0.61111 2.55556 -0.11111
2 4.94444 1.22222 -1.27778 0.05556 2.72222 -0.11111
3 5.00000 -0.16667 0.66667 -0.50000 1.00000 -0.33333
4 5.11111 0.72222 -1.11111 0.38889 0.72222 -0.11111
5 5.05556 -0.05556 0.44444 -0.38889 2.61111 -0.05556

Price Life Life Life Hazard Hazard
Obs $79.99 50,000 60,000 70,000 Yes No

1 -2.44444 -1.27778 0.22222 1.05556 0.33333 -0.33333
2 -2.61111 -0.11111 -0.11111 0.22222 0.05556 -0.05556
3 -0.66667 -2.83333 0.16667 2.66667 0.22222 -0.22222
4 -0.61111 -2.61111 0.05556 2.55556 0.44444 -0.44444
5 -2.55556 -1.38889 0.11111 1.27778 0.16667 -0.16667

Based on the importance values, price is the most important attribute for some of the
respondents, but expected tread life is most important for others. On the average,
price is most important followed closely by expected tread life. Brand and road haz-
ard insurance are less important. Both Goodstone and Pirogi are the most preferred
brands by some of the respondents. All respondents preferred a lower price over a
higher price, a longer tread life, and road hazard insurance.

Example 65.4. Transformation Regression of Exhaust
Emissions Data

In this example, the MORALS algorithm is applied to data from an experiment in
which nitrogen oxide emissions from a single cylinder engine are measured for var-
ious combinations of fuel, compression ratio, and equivalence ratio. The data are
provided by Brinkman (1981).

The equivalence ratio and nitrogen oxide variables are continuous and numeric, so
spline transformations of these variables are requested. Each spline is degree three
with nine knots (one at each decile) in order to allow PROC TRANSREG a great deal
of freedom in finding transformations. The compression ratio variable has only five
discrete values, so an optimal scoring is requested. The character variableFuel is
nominal, so it is designated as a classification variable. No monotonicity constraints
are placed on any of the transformations. Observations with missing values are ex-
cluded with the NOMISSa-option.

The squared multiple correlation for the initial model is less than 0.25. PROC TRAN-
SREG increases theR2 to over 0.95 by transforming the variables. The transforma-
tion plots show how each variable is transformed. The transformation of compression
ratio (TCpRatio) is nearly linear. The transformation of equivalence ratio (TEqRa-
tio) is nearly parabolic. It can be seen from this plot that the optimal transformation of
equivalence ratio is nearly uncorrelated with the original scoring. This suggests that
the large increase inR2 is due to this transformation. The transformation of nitrogen
oxide (TNOx) is something like a log transformation.

SAS OnlineDoc: Version 8



Example 65.4. Transformation Regression of Exhaust Emissions Data � 3517

These results suggest the parametric model

log(NOX) = b0 + b1 � EqRatio + b2 � EqRatio2 + b3 � CpRatio

+
X
j

bjclassj(Fuel) + error :

You can perform this analysis with PROC TRANSREG using the following MODEL
statement:

model log(NOx)= psp(EqRatio / deg=2) identity(CpRatio)
class(Fuel / zero=first);

The LOG transformation computes the natural log. The PSPLINE expansion expands
EqRatio into a linear term,EqRatio, and a squared term,EqRatio2. A linear trans-
formation ofCpRatio and a dummy variable expansion ofFuel is requested with the
first level as the reference level. These should provide a good parametric operational-
ization of the optimal transformations. The final model has anR2 of 0.91 (smaller
than before since the model uses fewer degrees of freedom, but still quite good).

The following statements produce Output 65.4.1 through Output 65.4.3:

title ’Gasoline Example’;

data Gas;
input Fuel :$8. CpRatio EqRatio NOx @@;
label Fuel = ’Fuel’

CpRatio = ’Compression Ratio (CR)’
EqRatio = ’Equivalence Ratio (PHI)’
NOx = ’Nitrogen Oxide (NOx)’;

datalines;
Ethanol 12.0 0.907 3.741 Ethanol 12.0 0.761 2.295
Ethanol 12.0 1.108 1.498 Ethanol 12.0 1.016 2.881
Ethanol 12.0 1.189 0.760 Ethanol 9.0 1.001 3.120
Ethanol 9.0 1.231 0.638 Ethanol 9.0 1.123 1.170
Ethanol 12.0 1.042 2.358 Ethanol 12.0 1.215 0.606
Ethanol 12.0 0.930 3.669 Ethanol 12.0 1.152 1.000
Ethanol 15.0 1.138 0.981 Ethanol 18.0 0.601 1.192
Ethanol 7.5 0.696 0.926 Ethanol 12.0 0.686 1.590
Ethanol 12.0 1.072 1.806 Ethanol 15.0 1.074 1.962
Ethanol 15.0 0.934 4.028 Ethanol 9.0 0.808 3.148
Ethanol 9.0 1.071 1.836 Ethanol 7.5 1.009 2.845
Ethanol 7.5 1.142 1.013 Ethanol 18.0 1.229 0.414
Ethanol 18.0 1.175 0.812 Ethanol 15.0 0.568 0.374
Ethanol 15.0 0.977 3.623 Ethanol 7.5 0.767 1.869
Ethanol 7.5 1.006 2.836 Ethanol 9.0 0.893 3.567
Ethanol 15.0 1.152 0.866 Ethanol 15.0 0.693 1.369

SAS OnlineDoc: Version 8



3518 � Chapter 65. The TRANSREG Procedure

Ethanol 15.0 1.232 0.542 Ethanol 15.0 1.036 2.739
Ethanol 15.0 1.125 1.200 Ethanol 9.0 1.081 1.719
Ethanol 9.0 0.868 3.423 Ethanol 7.5 0.762 1.634
Ethanol 7.5 1.144 1.021 Ethanol 7.5 1.045 2.157
Ethanol 18.0 0.797 3.361 Ethanol 18.0 1.115 1.390
Ethanol 18.0 1.070 1.947 Ethanol 18.0 1.219 0.962
Ethanol 9.0 0.637 0.571 Ethanol 9.0 0.733 2.219
Ethanol 9.0 0.715 1.419 Ethanol 9.0 0.872 3.519
Ethanol 7.5 0.765 1.732 Ethanol 7.5 0.878 3.206
Ethanol 7.5 0.811 2.471 Ethanol 15.0 0.676 1.777
Ethanol 18.0 1.045 2.571 Ethanol 18.0 0.968 3.952
Ethanol 15.0 0.846 3.931 Ethanol 15.0 0.684 1.587
Ethanol 7.5 0.729 1.397 Ethanol 7.5 0.911 3.536
Ethanol 7.5 0.808 2.202 Ethanol 7.5 1.168 0.756
Indolene 7.5 0.831 4.818 Indolene 7.5 1.045 2.849
Indolene 7.5 1.021 3.275 Indolene 7.5 0.970 4.691
Indolene 7.5 0.825 4.255 Indolene 7.5 0.891 5.064
Indolene 7.5 0.710 2.118 Indolene 7.5 0.801 4.602
Indolene 7.5 1.074 2.286 Indolene 7.5 1.148 0.970
Indolene 7.5 1.000 3.965 Indolene 7.5 0.928 5.344
Indolene 7.5 0.767 3.834 Ethanol 7.5 0.749 1.620
Ethanol 7.5 0.892 3.656 Ethanol 7.5 1.002 2.964
82rongas 7.5 0.873 6.021 82rongas 7.5 0.987 4.467
82rongas 7.5 1.030 3.046 82rongas 7.5 1.101 1.596
82rongas 7.5 1.173 0.835 82rongas 7.5 0.931 5.498
82rongas 7.5 0.822 5.470 82rongas 7.5 0.749 4.084
82rongas 7.5 0.625 0.716 94%Eth 7.5 0.818 2.382
94%Eth 7.5 1.128 1.004 94%Eth 7.5 1.191 0.623
94%Eth 7.5 1.132 1.030 94%Eth 7.5 0.993 2.593
94%Eth 7.5 0.866 2.699 94%Eth 7.5 0.910 3.177
94%Eth 12.0 1.139 1.151 94%Eth 12.0 1.267 0.474
94%Eth 12.0 1.017 2.814 94%Eth 12.0 0.954 3.308
94%Eth 12.0 0.861 3.031 94%Eth 12.0 1.034 2.537
94%Eth 12.0 0.781 2.403 94%Eth 12.0 1.058 2.412
94%Eth 12.0 0.884 2.452 94%Eth 12.0 0.766 1.857
94%Eth 7.5 1.193 0.657 94%Eth 7.5 0.885 2.969
94%Eth 7.5 0.915 2.670 Ethanol 18.0 0.812 3.760
Ethanol 18.0 1.230 0.672 Ethanol 18.0 0.804 3.677
Ethanol 18.0 0.712 . Ethanol 12.0 0.813 3.517
Ethanol 12.0 1.002 3.290 Ethanol 9.0 0.696 1.139
Ethanol 9.0 1.199 0.727 Ethanol 9.0 1.030 2.581
Ethanol 15.0 0.602 0.923 Ethanol 15.0 0.694 1.527
Ethanol 15.0 0.816 3.388 Ethanol 15.0 0.896 .
Ethanol 15.0 1.037 2.085 Ethanol 15.0 1.181 0.966
Ethanol 7.5 0.899 3.488 Ethanol 7.5 1.227 0.754
Indolene 7.5 0.701 1.990 Indolene 7.5 0.807 5.199
Indolene 7.5 0.902 5.283 Indolene 7.5 0.997 3.752
Indolene 7.5 1.224 0.537 Indolene 7.5 1.089 1.640
Ethanol 9.0 1.180 0.797 Ethanol 7.5 0.795 2.064
Ethanol 18.0 0.990 3.732 Ethanol 18.0 1.201 0.586
Methanol 7.5 0.975 2.941 Methanol 7.5 1.089 1.467
Methanol 7.5 1.150 0.934 Methanol 7.5 1.212 0.722
Methanol 7.5 0.859 2.397 Methanol 7.5 0.751 1.461
Methanol 7.5 0.720 1.235 Methanol 7.5 1.090 1.347
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Methanol 7.5 0.616 0.344 Gasohol 7.5 0.712 2.209
Gasohol 7.5 0.771 4.497 Gasohol 7.5 0.959 4.958
Gasohol 7.5 1.042 2.723 Gasohol 7.5 1.125 1.244
Gasohol 7.5 1.097 1.562 Gasohol 7.5 0.984 4.468
Gasohol 7.5 0.928 5.307 Gasohol 7.5 0.889 5.425
Gasohol 7.5 0.827 5.330 Gasohol 7.5 0.674 1.448
Gasohol 7.5 1.031 3.164 Methanol 7.5 0.871 3.113
Methanol 7.5 1.026 2.551 Methanol 7.5 0.598 0.204
Indolene 7.5 0.973 5.055 Indolene 7.5 0.980 4.937
Indolene 7.5 0.665 1.561 Ethanol 7.5 0.629 0.561
Ethanol 9.0 0.608 0.563 Ethanol 12.0 0.584 0.678
Ethanol 15.0 0.562 0.370 Ethanol 18.0 0.535 0.530
94%Eth 7.5 0.674 0.900 Gasohol 7.5 0.645 1.207
Ethanol 18.0 0.655 1.900 94%Eth 7.5 1.022 2.787
94%Eth 7.5 0.790 2.645 94%Eth 7.5 0.720 1.475
94%Eth 7.5 1.075 2.147
;

*---Fit the Nonparametric Model---;
proc transreg data=Gas dummy test nomiss;

model spline(NOx / nknots=9)=spline(EqRatio / nknots=9)
opscore(CpRatio) class(Fuel / zero=first);

title2 ’Iteratively Estimate NOx, CPRATIO and EQRATIO’;
output out=Results;

run;

*---Plot the Results---;
goptions goutmode=replace nodisplay;
%let opts = haxis=axis2 vaxis=axis1 frame cframe=ligr;
* Depending on your goptions, these plot options may work better:
* %let opts = haxis=axis2 vaxis=axis1 frame;

proc gplot data=Results;
title;
axis1 minor=none label=(angle=90 rotate=0);
axis2 minor=none;
symbol1 color=blue v=dot i=none;
plot TCpRatio*CpRatio / &opts name=’tregex1’;
plot TEqRatio*EqRatio / &opts name=’tregex2’;
plot TNOx*NOx / &opts name=’tregex3’;

run; quit;

goptions display;
proc greplay nofs tc=sashelp.templt template=l2r2;

igout gseg;
treplay 1:tregex1 2:tregex3 3:tregex2;

run; quit;
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*-Fit the Parametric Model Suggested by the Nonparametric Analysis-;
proc transreg data=Gas dummy ss2 short nomiss;

title ’Gasoline Example’;
title2 ’Now fit log(NOx) = b0 + b1*EqRatio + b2*EqRatio**2 +’;
title3 ’b3*CpRatio + Sum b(j)*Fuel(j) + Error’;
model log(NOx)= pspline(EqRatio / deg=2) identity(CpRatio)

class(Fuel / zero=first);
output out=Results2;

run;
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Output 65.4.1. Transformation Regression Example: The Nonparametric Model

Gasoline Example
Iteratively Estimate NOx, CPRATIO and EQRATIO

The TRANSREG Procedure

TRANSREG MORALS Algorithm Iteration History for Spline(NOx)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
0 0.48074 3.86778 0.24597
1 0.00000 0.00000 0.95865 0.71267 Converged

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Spline(NOx)
Nitrogen Oxide (NOx)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Liberal p

Model 21 326.0946 15.52831 162.27 >= <.0001
Error 147 14.0674 0.09570
Corrected Total 168 340.1619

The above statistics are not adjusted for the fact that the dependent
variable was transformed and so are generally liberal.

Root MSE 0.30935 R-Square 0.9586
Dependent Mean 2.34593 Adj R-Sq 0.9527
Coeff Var 13.18661

Adjusted Multivariate ANOVA Table Based on the Usual Degrees of Freedom

Dependent Variable Scoring Parameters=12 S=12 M=4 N=67

Statistic Value F Value Num DF Den DF p

Wilks’ Lambda 0.041355 2.05 252 1455 <= <.0001
Pillai’s Trace 0.958645 0.61 252 1764 <= 1.0000
Hotelling-Lawley Trace 23.18089 12.35 252 945.01 <= <.0001
Roy’s Greatest Root 23.18089 162.27 21 147 >= <.0001

The Wilks’ Lambda, Pillai’s Trace, and Hotelling-Lawley Trace statistics are a
conservative adjustment of the normal statistics. Roy’s Greatest Root is
liberal. These statistics are normally defined in terms of the squared
canonical correlations which are the eigenvalues of the matrix H*inv(H+E).
Here the R-Square is used for the first eigenvalue and all other eigenvalues
are set to zero since only one linear combination is used. Degrees of freedom
are computed assuming all linear combinations contribute to the Lambda and
Trace statistics, so the F tests for those statistics are conservative. The p
values for the liberal and conservative statistics provide approximate lower
and upper bounds on p. A liberal test statistic with conservative degrees of
freedom and a conservative test statistic with liberal degrees of freedom yield
at best an approximate p value, which is indicated by a "~" before the p value.
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Output 65.4.2. Transformation Regression Example: The Parametric Model

Gasoline Example
Now fit log(NOx) = b0 + b1*EqRatio + b2*EqRatio**2 +

b3*CpRatio + Sum b(j)*Fuel(j) + Error

The TRANSREG Procedure

Log(NOx)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Log(NOx)
Nitrogen Oxide (NOx)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 8 79.33838 9.917298 213.09 <.0001
Error 160 7.44659 0.046541
Corrected Total 168 86.78498

Root MSE 0.21573 R-Square 0.9142
Dependent Mean 0.63130 Adj R-Sq 0.9099
Coeff Var 34.17294

Univariate Regression Table Based on the Usual Degrees of Freedom

Type II
Sum of Mean

Variable DF Coefficient Squares Square F Value Pr > F Label

Intercept 1 -14.586532 49.9469 49.9469 1073.18 <.0001 Intercept
Pspline.EqRatio_1 1 35.102914 62.7478 62.7478 1348.22 <.0001 Equivalence

Ratio (PHI) 1
Pspline.EqRatio_2 1 -19.386468 64.6430 64.6430 1388.94 <.0001 Equivalence

Ratio (PHI) 2
Identity(CpRatio) 1 0.032058 1.4445 1.4445 31.04 <.0001 Compression

Ratio (CR)
Class.Fuel94_Eth 1 -0.449583 1.3158 1.3158 28.27 <.0001 Fuel 94%Eth
Class.FuelEthanol 1 -0.414242 1.2560 1.2560 26.99 <.0001 Fuel Ethanol
Class.FuelGasohol 1 -0.016719 0.0015 0.0015 0.03 0.8584 Fuel Gasohol
Class.FuelIndolene 1 0.001572 0.0000 0.0000 0.00 0.9853 Fuel Indolene
Class.FuelMethanol 1 -0.580133 1.7219 1.7219 37.00 <.0001 Fuel Methanol
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Output 65.4.3. Plots of Compression Ratio, Equivalence Ratio, and Nitrogen Oxide

Example 65.5. Preference Mapping of Cars Data

This example uses PROC TRANSREG to perform a preference mapping
(PREFMAP) analysis (Carroll 1972) of car preference data after a PROC PRIN-
QUAL principal component analysis. The PREFMAP analysis is a response surface
regression that locates ideal points for each dependent variable in a space defined by
the independent variables.
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The data are ratings obtained from 25 judges of their preference for each of 17 au-
tomobiles. The ratings were made on a zero (very weak preference) to nine (very
strong preference) scale. These judgments were made in 1980 about that year’s prod-
ucts. There are two character variables that indicate the manufacturer and model of
the automobile. The data set also contains three ratings: miles per gallon (MPG),
projected reliability (Reliability), and quality of the ride (Ride). These ratings are
on a one (bad) to five (good) scale. PROC PRINQUAL creates an OUT= data set
containing standardized principal component scores (Prin1 andPrin2), along with
the ID variables MODEL,MPG, Reliability, andRide.

The first PROC TRANSREG step fits univariate regression models forMPG andRe-
liability. All variables are designated IDENTITY. A vector drawn in the plot ofPrin1
andPrin2 from the origin to the point defined by an attribute’s regression coefficients
approximately shows how the cars differ on that attribute. Refer to Carroll (1972) for
more information. ThePrin1 andPrin2 columns of theTResult1 OUT= data set
contain the car coordinates (–Type–=’SCORE’ observations) and endpoints of the
MPG andReliability vectors (–Type–=’M COEFFI’ observations).

The second PROC TRANSREG step fits a univariate regression model withRide
designated IDENTIY, andPrin1 andPrin2 designated POINT. The POINT expan-
sion creates an additional independent variable–ISSQ– , which contains the sum
of Prin1 squared andPrin2 squared. The OUT= data setTResult2 contains no

–Type–=’SCORE’ observations, only ideal point (–Type–=’M POINT’) coordi-
nates forRide. The coordinates of both the vectors and the ideal points are output by
specifying COORDINATES in the OUTPUT statement in PROC TRANSREG.

A vector model is used forMPG andReliability because perfectly efficient and reli-
able cars do not exist in the data set. The ideal points forMPG andReliability are
far removed from the plot of the cars. It is more likely that an ideal point for quality
of the ride is in the plot, so an ideal point model is used for the ride variable. Refer
to Carroll (1972) and Schiffman, Reynolds, and Young (1981) for discussions of the
vector model and point models (including the EPOINT and QPOINT versions of the
point model that are not used in this example).

The final DATA step combines the two output data sets and creates a data set suit-
able for the %PLOTIT macro. (For information on the %PLOTIT macro, see Ap-
pendix B, “Using the %PLOTIT Macro.”) The plot contains one point per car and
one point for each of the three ratings. The %PLOTIT macro options specify the
input data set, how to handle anti-ideal points (described later), and where to draw
horizontal and vertical reference lines. The DATATYPE= option specifies that the
input data set contains results of a PREFMAP vector model and a PREFMAP ideal
point model. This instructs the macro to draw vectors to–Type–=’M COEFFI’ ob-
servations and circles around–Type–=’M POINT’ observations.

An unreliable to reliable direction extends from the left and slightly below the origin
to the right and slightly above the origin. The Japanese and European Cars are rated,
on the average, as more reliable. A lowMPG to goodMPG direction extends from
the top left of the plot to the bottom right. The smaller cars, on the average, get better
gas mileage. The ideal point forRide is in the top, just right of the center of the plot.
Cars near theRide ideal point tend to have a better ride than cars far away. It can
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be seen from the iteration history tables that none of these ratings perfectly fits the
model, so all of the interpretations are approximate.

The Ride point is a “negative-negative” ideal point. The point models assume that
small ratings mean the object (car) is similar to the rating name and large ratings
imply dissimilarity to the rating name. Because the opposite scoring is used, the
interpretation of theRide point must be reversed to a negative ideal point (bad ride).
However, the coefficient for the–ISSQ– variable is negative, so the interpretation
is reversed again, back to the original interpretation. Anti-ideal points are taken care
of in the %PLOTIT macro. Specify ANTIIDEA=1 when large values are positive or
ideal and ANTIIDEA=-1 when small values are positive or ideal.

The following statements produce Output 65.5.1 through Output 65.5.2:

title ’Preference Ratings for Automobiles Manufactured in 1980’;
data CarPreferences;

input Make $ 1-10 Model $ 12-22 @25 (Judge1-Judge25) (1.)
MPG Reliability Ride;

datalines;
Cadillac Eldorado 8007990491240508971093809 3 2 4
Chevrolet Chevette 0051200423451043003515698 5 3 2
Chevrolet Citation 4053305814161643544747795 4 1 5
Chevrolet Malibu 6027400723121345545668658 3 3 4
Ford Fairmont 2024006715021443530648655 3 3 4
Ford Mustang 5007197705021101850657555 3 2 2
Ford Pinto 0021000303030201500514078 4 1 1
Honda Accord 5956897609699952998975078 5 5 3
Honda Civic 4836709507488852567765075 5 5 3
Lincoln Continental 7008990592230409962091909 2 4 5
Plymouth Gran Fury 7006000434101107333458708 2 1 5
Plymouth Horizon 3005005635461302444675655 4 3 3
Plymouth Volare 4005003614021602754476555 2 1 3
Pontiac Firebird 0107895613201206958265907 1 1 5
Volkswagen Dasher 4858696508877795377895000 5 3 4
Volkswagen Rabbit 4858509709695795487885000 5 4 3
Volvo DL 9989998909999987989919000 4 5 5
;

*---Compute Coordinates for a 2-Dimensional Scatter Plot of Cars---;
proc prinqual data=CarPreferences out=PResults(drop=Judge1-Judge25)

n=2 replace standard scores;
id Model MPG Reliability Ride;
transform identity(Judge1-Judge25);
title2 ’Multidimensional Preference (MDPREF) Analysis’;

run;

*---Compute Endpoints for MPG and Reliability Vectors---;
proc transreg data=PResults;

Model identity(MPG Reliability)=identity(Prin1 Prin2);
output tstandard=center coordinates replace out=TResult1;
id Model;
title2 ’Preference Mapping (PREFMAP) Analysis’;

run;
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*---Compute Ride Ideal Point Coordinates---;
proc transreg data=PResults;

Model identity(Ride)=point(Prin1 Prin2);
output tstandard=center coordinates replace noscores out=TResult2;
id Model;

run;

proc print; run;

*---Combine Data Sets and Plot the Results---;
data plot;

title3 ’Plot of Automobiles and Ratings’;
set Tresult1 Tresult2;

run;

%plotit(data=plot, datatype=vector ideal, antiidea=1, href=0, vref=0);

Output 65.5.1. Preference Ratings Example Output

Preference Ratings for Automobiles Manufactured in 1980
Multidimensional Preference (MDPREF) Analysis

The PRINQUAL Procedure

PRINQUAL MTV Algorithm Iteration History

Iteration Average Maximum Proportion Criterion
Number Change Change of Variance Change Note

----------------------------------------------------------------------------
1 0.00000 0.00000 0.66946 Converged

Algorithm converged.
WARNING: The number of observations is less than or equal to the number of

variables.
WARNING: Multiple optimal solutions may exist.

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(MPG)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.57197 Converged

Algorithm converged.
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Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(Reliability)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.50859 Converged

Algorithm converged.

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for Identity(Ride)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.00000 0.00000 0.37797 Converged

Algorithm converged.

Preference Ratings for Automobiles Manufactured in 1980
Preference Mapping (PREFMAP) Analysis

Obs _TYPE_ _NAME_ Ride Intercept Prin1 Prin2 _ISSQ_ Model

1 M POINT Ride . . 0.49461 2.46539 -0.17448 Ride
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Output 65.5.2. Preference Ratings for Automobiles Manufactured in 1980
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