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Introduction

This chapter introduces SAS System users to SYBASE, which is a relational
database management system. It accompanies and should be used with SAS/ACCESS
Software for Relational Databases: Reference (order #57204).*

This chapter focuses on the terms and concepts that help you use the SAS/ACCESS
Interface to SYBASE. Then it describes the statements and options that are specific to
SYBASE, the ACCESS and DBLOAD procedures, and the SQL procedure’s CONNECT
statement.

For general information about database management systems, including information
for the database administrator about how the SAS/ACCESS interfaces work, refer to

* Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.
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Appendix 2, "DBMS Overview and Information for the Database Administrator". For
more information about SYBASE, refer to your SYBASE documentation.

SAS/ACCESS LIBNAME Statement

Chapter 3, "SAS/ACCESS LIBNAME Statement" describes options that you specify
in the SAS/ACCESS LIBNAME statement to associate a SAS libref with a DBMS
database, schema, server, or group of tables and views. The following section describes
DBMS-specific options and option values that you can use in the SAS/ACCESS
Interface to SYBASE.

LIBNAME Statement: SYBASE Specifics

Associates a SAS libref with a DBMS database, schema, server, or group of tables and views.
Valid: Anywhere

Syntax

LIBNAME libref SAS/ACCESS-engine-name
<SAS/ACCESS-engine-connection-options>
<SAS/ACCESS-LIBNAME-options=>;

Arguments

libref
is any SAS name that serves as an alias to associate the SAS System with a
database, schema, server, or group of tables and views.

SAS/ACCESS-engine-name
is a SAS/ACCESS engine name for your DBMS, in this case, sybase. SAS/ACCESS
engines are implemented differently in different operating environments. The engine
name is required.

SAS/ACCESS-engine-connection-options
are options that you specify to connect to a particular database; these options are
different for each database. If the connection options contain characters that are not
allowed in SAS names, enclose the values of the options in quotation marks. If you
specify the appropriate system options or environment variables for your database,
you can often omit the connection options. See your SYBASE documentation for
details.

SAS/ACCESS-LIBNAME-options
are options that apply to the processing of objects and data in a DBMS, such as its
tables or indexes. For example, the BULK_BUFFER= option enables you to specify
the number of bulk rows of DBMS data that the DBMS can write to the buffer.
Support for many of these options is DBMS specific.
Some SAS/ACCESS LIBNAME options have the same names as SAS/ACCESS
data set options. When you specify an option in the LIBNAME statement, it applies
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to objects and data that are referenced by the libref. A SAS/ACCESS data set option
applies only to the data set on which it is specified. If a like-named option is specified
in both the SAS/ACCESS engine LIBNAME statement and after a data set name
(which references a DBMS table or view), the SAS System uses the value that is
specified later, on the data set name. See “Data Set Options: SYBASE Specifics” on
page 7 for more information on data set options.

Details The LIBNAME statement associates a libref with a SAS/ACCESS engine to
access tables or views in a database management system (DBMS). The SAS/ACCESS
engine enables you to connect to a particular DBMS and, therefore, to specify a DBMS
table or view name in a two-level SAS name. For example, in
MYDBLIB.EMPLOYEES_Q2, MYDBLIB is a SAS libref that points to a particular
group of DBMS objects, and EMPLOYEES_Q?2 is a DBMS table name. When you
specify MYDBLIB.EMPLOYEES Q2 in a DATA step or procedure, you dynamically
access the DBMS table. Beginning in Version 7, SAS software supports reading,
updating, creating, and deleting DBMS tables.

To disassociate or clear a libref from a DBMS, use a LIBNAME statement, specifying
the libref (for example, MYDBLIB) and the CLEAR option as follows:

libname mydblib CLEAR;

The database engine will disconnect from the database and close any free threads or
resources that are associated with that connection.
See for more information on options that you can use in the LIBNAME statement.

SAS/ACCESS Engine Connection Options  The SAS/ACCESS engine connection options
for SYBASE are as follows:

USER= on page 3
PASSWORD= on page 3
DATABASE= on page 3
SERVER= on page 4

USER=<'>SYBASE-user-name<’>
specifies the SYBASE user name (also called the login name) that you use to
connect to the database that contains the tables and views that you want to
access. If the username contains spaces or nonalphanumeric characters, you must
enclose the user name in quotation marks.

PASSWORD=<">SYBASE-password<'>
specifies the password that is associated with the SYBASE user name.

If you omit the password, a default password of NULL is used. If the password
contains spaces or nonalphanumeric characters, you must enclose the password in
guotation marks.

PASSWORD-= can also be specified with the SYBPW=, PASS=, and PW= aliases.

DATABASE=<'>database-name<’>
specifies the name of the SYBASE database that contains the tables and views
that you want to access.

If the database name contains spaces or non-alphanumeric characters, you must
enclose it in quotation marks. If you omit DATABASE=, the default database for
your SYBASE user name is used.

DATABASE= can also be specified with the DB= alias.
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SERVER=<">server-name<'>

specifies the server with which to connect. This server accesses the database that
contains the tables and views that you want to access.

If the server name contains lowercase, spaces, or nonalphanumeric characters,
you must enclose it in quotation marks.

If you omit SERVER=, the default action for your operating system occurs. On
UNIX systems, the value of the environment variable DSQUERY is used if it has
been set.

SAS/ACCESS LIBNAME Options  \When you specify any of the following options in the
LIBNAME statement, the option is applied to all objects (such as tables, views, and
indexes) in the database that the libref represents.

The SAS/ACCESS interface to SYBASE supports all of the SAS/ACCESS LIBNAME
options listed in Chapter 3, "SAS/ACCESS LIBNAME Statement" , except for
PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES-=. In addition to the
supported options, the following LIBNAME options are used only in the interface to
SYBASE or have SYBASE—specific aspects to them:

CONNECTION= on page 4

DBLINK= on page 4

ENABLE_BULK= on page 5
MAX_CONNECTS= on page 5
PACKETSIZE= on page 5
QUOTED_IDENTIFIER= on page 5
READ_BUFFER= on page 5
READ_ISOLATION_LEVEL= on page 5
READ_LOCK_TYPE= on page 6
SCHEMA= on page 6
UPDATE_ISOLATION_LEVEL= on page 6
UPDATE_LOCK_TYPE= on page 6

CONNECTION=SHAREDREAD | UNIQUE | GLOBALREAD
indicates whether multiple opens for read access can use the same physical
connection.

Note: When you use the SQL procedure, you must specify CONNECTION=
UNIQUE to create tables with the SELECT statement and to perform correlated
subquery joins. You must also specify CONNECTION= UNIQUE when you use the
APPEND procedure to append data from one table to another. »

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

DBLINK=database-link
allows you to link to another database within the same server to which you are
connected.
If you omit DBLINK=, SAS can only access objects in your default database.
DBLINK= and SCHEMA= on page 6 can be used together, so that a SYBASE
object can be referenced as libref.schema-owner’s-name.object.
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ENABLE_BULK=YES | NO
enables the connection to process bulk copy when you load data into a SYBASE
table. Bulk copy groups rows so that they are inserted as a unit into the SYBASE
table. Using bulk copy can improve performance.

Default value: YES

ENABLE_BULK=YES enables the connection to perform a bulk copy of SAS
data into SYBASE. Specifying ENABLE_BULK=NO might save some memory but
it also disables the bulk copy ability for that libref.

If you use both the LIBNAME option, ENABLE_BULK-=, and the data set
option, BULKCOPY=, the values of the two options must be the same or an error is
returned. However, since the default value of ENABLE_BULK=is YES, you do not
have to specify ENABLE_BULK= in order to use the BULKCOPY= data set option.

Note: In V7 and previous releases, this option was called BULKCOPY=. In
Version 8, an error is returned if you try to specify BULKCOPY=. A

MAX_CONNECTS=numeric-value
allows you to specify the maximum number of simultaneous connections that
SYBASE allows.
If you omit MAX_CONNECTS=, the maximum number of connections defaults

to 25. Note that increasing the number of connections has a direct impact on
memory.

PACKETSIZE=numeric-value

allows you to specify the packet size for SYBASE to use. You may specify any
multiple of 512, up to the limit of the maximum network packet size setting on
your server.

If you omit PACKETSIZE=, the packet size defaults to the current server
setting. You can query the default network packet value in ISQL by using the
SYBASE sp_configure command.

QUOTED_IDENTIFIER=YES | NO
allows you to specify table and column names with embedded spaces and special
characters. This option is used in place of the PRESERVE_TAB_NAMES= and
PRESERVE_COL_NAMES= options, which have no effect on the SYBASE engine.
Default value: NO.
QUOTED_IDENTIFIER= can also be specified with the QUOTED= alias.

READ_BUFFER=numeric-value

specifies the number of bulk rows of DBMS data to write to the buffer.

Default value: 100

This option improves performance by specifying a number of rows that can be
held in memory for efficient input into SYBASE. A higher number signifies that
more rows can be held in memory and accessed quickly during read operations. If
you omit READ_BUFFER=, the default value is READ_BUFFER=100. The
maximum number of rows allowed is dependent on the amount of memory that is
available to your system.

READ_BUFFER= can also be specified with the BUFFSIZE= alias.

READ_ISOLATION_LEVEL=1]2] 3
specifies which level of read isolation locking for SYBASE to use when it reads
tables and views.

If you omit READ_ISOLATION_LEVEL-=, the default value is
READ_ISOLATION_LEVEL=1, which is the SYBASE default transaction isolation
level that prevents dirty reads. Refer to your SYBASE documentation for more
information.

READ_ISOLATION_LEVEL-= can also be specified with the READ_ISO_LVL=
and R_ISOLVL= aliases.
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READ_LOCK_TYPE=NOLOCK
specifies the method of locking to use during the reading of tables and views.
In the SAS/ACCESS Interface to SYBASE, the default value and only valid
value is READ_LOCK_TYPE=NOLOCK.
For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

SCHEMA=schema-name
allows you to view another user's database tables and views. If you omit
SCHEMA-=, you can view only your own tables and views.
SCHEMA-= can also be specified with the OWNER= alias.

UPDATE_ISOLATION_LEVEL=1 | 3
specifies which level of read isolation locking for SYBASE to use when it reads
tables and views for update.

If you omit UPDATE_ISOLATION_LEVEL=, the default value is
UPDATE_ISOLATION_LEVEL=1, which is the SYBASE default cursor isolation
level. SYBASE uses a shared or update lock on base table pages that contain rows
that represent a current cursor position. This option applies only when
UPDATE_LOCK=PAGE. Refer to your SYBASE documentation for more
information.

UPDATE_ISOLATION_LEVEL= can also be specified with the
CURSOR_ISOLATION_LEVEL=, CURSOR_ISO_LVL=, UPD_ISO_LVL=, and
U_ISOLVL= aliases.

Note: This option applies to updates only when UPDATE_LOCK_TYPE=PAGE
because cursor updating is in effect. It does not apply when
UPDATE_LOCK_TYPE=NOLOCK. 2

UPDATE_LOCK_TYPE=NOLOCK | PAGE
specifies the method of locking to use during the updating of tables and views.

If you specify UPDATE_LOCK_TYPE=NOLOCK, SAS/ACCESS uses SYBASE
browse mode updating, in which the table that is being updated must have a
primary key and a timestamp column. If you specify
UPDATE_LOCK_TYPE=PAGE, SAS/ACCESS uses a cursor that can be updated.
When you use UPDATE_LOCK_TYPE=PAGE, it is recommended that the table
have a defined primary key. If you omit UPDATE_LOCK_TYPE-=, the default
value is UPDATE_LOCK_TYPE=PAGE.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

Example 1: Specifying a LIBNAME Statement to Access SYBASE Data

In this example, the libref MYDBLIB connects to a SYBASE database. The
SAS/ACCESS engine connection options are USER=, PASSWORD=, DATABASE=, and
SERVER=.

libname mydblib sybase user=testuser
password=testpass database=testdb
server=testserver;

proc print data=mydblib.CUSTOMERS;
where gender='M’;
run;
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Example 2: Appending SAS Data to a SYBASE Table Using BULKCOPY=

In this example, rows from the SAS data set, HR2.HIRES90S, are being added to the
SYBASE table, MIDHIRES.STAFF. By specifying the BULKCOPY=YES data set
option, the rows are inserted into the SYBASE tables as a unit. The BULKCOPY=
option enables the connection to perform a bulk copy and, therefore, the rows of data
are appended more quickly.

libname midhires sybase user=alhafez password=football server=hr svr
database=personnel;
libname hr2 ’'Your-SAS-Data-Library’;
proc append base=midhires.staff(bulkcopy=yes) data=hr2.hires90s;
where HIREDATE between '01JAN1990'd and '31DEC1997'd;
run;

See Also

The SQL Chapter in the SAS Procedures Guide for enhancements in Version 7 and
Version 8.

Data Set Options: SYBASE Specifics

Chapter 4, "SAS/ACCESS Data Set Options" describes the SAS/ACCESS options
that you can use when you specify a SAS data set in a DATA or PROC step; in this
case, the SAS data set accesses data from a DBMS table or view. The following section
describes the DBMS-specific options and option values that you can use in the
SAS/ACCESS Interface to SYBASE. A data set option applies only to the SAS data set,
or DBMS object, on which it is specified.

Unless otherwise noted, when you omit a SAS/ACCESS data set option, and you have
specified a like-named LIBNAME option in the LIBNAME statement, the value of the
LIBNAME option applies to all data sets within the libref.

Note: Not all LIBNAME options have corresponding data set options. Refer to
Chapter 3, "SAS/ACCESS LIBNAME Statement" , Chapter 4, "SAS/ACCESS Data Set
Options" , and this chapter for a full listing of SAS/ACCESS LIBNAME options, data
set options, and SYBASE-specific LIBNAME and data set options. A

The SAS/ACCESS data set options for SYBASE are as follows:
“AUTOCOMMIT=" on page 8
“BULK_BUFFER=" on page 8
“BULKCOPY=" on page 8
“DBLINK=" on page 9
“READ_BUFFER=" on page 9
“READ_ISOLATION_LEVEL=" on page 10
“READ_LOCK_TYPE=" on page 10
“SEGMENT_NAME=" on page 11
“UPDATE_ISOLATION_LEVEL=" on page 11
“UPDATE_LOCK_TYPE=" on page 12
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AUTOCOMMIT=

Specifies whether to enable the SYBASE autocommit capability.
Default value: YES

Syntax
AUTOCOMMIT=YES | NO

YES
enables the SYBASE autocommit capability.

NO
does not enable the SYBASE autocommit capability.

Details If AUTOCOMMIT=YES, all updates, inserts, and deletes are committed
immediately after they are executed and no rollback is possible. If AUTOCOMMIT=NO,
SAS performs the commit after processing the number of rows that are specified by
using DBCOMMIT=, or the default number of rows, if DBCOMMIT= is not specified.

BULK_BUFFER=

Specifies the number of bulk rows that the SAS/ACCESS engine can buffer for output.

Default value: 100
Alias: BULKBUFF=

Syntax
BULK BUFFER=numeric-value

numeric-value
specifies the number of rows to be buffered for output.

Details This option improves performance by specifying the number of rows that can
be held in memory for efficient retrieval from SYBASE. A higher number signifies that
more rows can be held in memory and accessed quickly during output operations. The

maximum number of rows that are allowed depends on the amount of memory that is

available to your system.

BULKCOPY=

Calls the SYBASE hulk copy utility.
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Default value: NO
Aliases: BULK=, DBNOLOG=

Syntax
BULKCOPY=YES | NO

YES
calls the SYBASE bulk copy utility when you load data into a SYBASE table.

NO
does not call the SYBASE bulk copy utility.

Details  This utility groups rows so that they are inserted as a unit into a SYBASE
table. Using this utility can improve performance.

If you specify BULKCOPY=YES, the SYBASE bulk copy utility is enabled and the
connection to do the bulk copying is enabled. The LIBNAME option ENABLE_BULK=
works in conjunction with the BULKCOPY= data set option. The LIBNAME
ENABLE_BULK= option is YES by default, but the BULKCOPY= data set option is NO
by default. Therefore, you must set BULKCOPY=YES to perform the bulk load.

If you specify BULKCOPY=NO, or omit the BULKCOPY= option (leaving the default
value of NO), the bulk copy utility is not enabled.

For examples that use the BULKCOPY= options, see “Example 1: Specifying a
LIBNAME Statement to Access SYBASE Data” on page 6.

BULKCOPY= can also be specified with the BULK= and DBNOLOG= aliases.

DBLINK=

Allows you to link to another database within the same server to which you are connected.

Default value: None

Syntax
DBLINK=database-link

database-link
specifies the name of the SYBASE database to which you want to link.

Details

The database server that you specify must be on a server to which you are connected.
The DBLINK= dataset option overrides value of the LIBNAME option DBLINK=.

READ_BUFFER=

Specifies the number of bulk rows of SYBASE data to write to the buffer.
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Default value: 100

Syntax
READ_BUFFER=numeric-value

numeric-value
specifies the number of rows which can be held in the buffer during read operations
from SAS.

Details  This option improves performance by specifying a number of rows that can be
held in memory for input into SAS. The maximum number of rows allowed is dependent
on the amount of memory available to your system. Buffering data reads can decrease
network activities and increase performance.

READ_BUFFER= can also be specified with the BUFFSIZE=, BUFSIZE=, and
SYBBUFSIZE= aliases.

READ_ISOLATION_LEVEL=

Specifies which level of read isolation locking to use when reading data.

Default value: 1

Syntax
READ_ISOLATION_LEVEL=1]2] 3

1
indicates that the SYBASE default transaction isolation level, which prevents dirty
reads, is used.

2
indicates that SYBASE transaction level 2, which uses serialized reads, is used.

3
indicates that SYBASE transaction level 3, which also uses serialized reads, is used.

Details Refer to your SYBASE documentation for more information.
READ_ISOLATION_LEVEL can also be specified with the READ_ISO_LVL= and
R_ISOLVL= aliases.

READ_LOCK_TYPE=

Specifies the method of locking to use during the reading of tables and views.
Default value: NOLOCK
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Details In the SAS/ACCESS Interface to SYBASE the only valid value is
READ_LOCK_TYPE=NOLOCK.

For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options".

11

SCHEMA=

Allows you to view another user’s database tables and views.

Default value: None

Syntax
SCHEMA=schema-name

schema-name
specifies the name of the user whose database objects you want to view.

Details

SCHEMA-= can also be specified with the OWNER= alias. The SCHEMA= dataset
option overrides the value of the LIBNAME option, SCHEMA=.

SEGMENT_NAME-=

Allows you to control the segment in which you create a table.

Default value: None

Syntax
SEGMENT_NAME=segment-name

segment-name
specifies the name of the segment in which to create a table.

SEGMENT_NAME can also be specified with the SEGMENT= alias.

UPDATE_ISOLATION_LEVEL=

Specifies which level of read isolation locking to use when updating data.
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Default value: 1

Syntax
UPDATE_ISOLATION_LEVEL=1 | 3

1
indicates that the SYBASE default cursor isolation level is used.

3
indicates that SYBASE cursor isolation level 3, which uses serialized reads, is used.

Details SYBASE uses a shared or update lock on base table pages that contain rows
representing a current cursor position. This option applies only when
UPDATE_LOCK=PAGE. Refer to your SYBASE documentation for more information.

Note: This option applies to updates only when UPDATE_LOCK_TYPE=PAGE
because cursor updating is in effect. It does not apply when
UPDATE_LOCK_TYPE=NOLOCK. 2

UPDATE_ISOLATION_LEVEL= can also be specified with the
CURSOR_ISOLATION_LEVEL=, CURSOR_ISO_LVL=, UPD_ISO_LVL= and
U_ISOLVL= aliases.

UPDATE_LOCK_TYPE=

Specifies the method of locking to use during the updating of tables and views.
Default value: PAGE

Details If you specify UPDATE_LOCK_TYPE=NOLOCK, SAS/ACCESS uses
SYBASE browse mode updating, in which the table that is being updated must have a
primary key and timestamp. If you specify UPDATE_LOCK_TYPE=PAGE,
SAS/ACCESS uses a cursor that can be updated. When you use
UPDATE_LOCK_TYPE=PAGE, it is recommended that the table have a defined
primary key.

For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options".

ACCESS Procedure: SYBASE Specifics

Chapter 9, "ACCESS Procedure Reference" describes the generic options and
procedure statements that enable you to create access descriptors, view descriptors, and
SAS data files from DBMS data. The following section describes the SYBASE-specific
statements that you use in the SAS/ACCESS Interface to SYBASE.

In Version 8 of the SAS/ACCESS Interface to SYBASE, you can do the following:

O create, update, and use Version 8 access descriptors and view descriptors
O update an access descriptor created in Version 6
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O create a view descriptor that is based on an access descriptor created in Version 6

O use a view descriptor created in Version 6.

If you are using Version 6 of the SAS/ACCESS Interface to SYBASE, you can do the
following:

O create and use Version 6 access and view descriptors

O use a view descriptor created in Version 8 that is based on an access descriptor
created in Version 6

O use an access descriptor created in Version 6 and updated in Version 8.
Note: In Version 6, you cannot use access descriptors created in Version 8, and you

cannot use view descriptors created in Version 8 that are based on Version 8 access
descriptors. A

ACCESS Procedure Statements for SYBASE

To create an access descriptor, you use the DBMS=SYBASE option and these
database description statements in the PROC ACCESS step: USER=, PASSWORD-=,
DATABASE=, SERVER=, INTERFACE=, and SYBBUFSZ=. The database description
statements supply DBMS-specific information to the SAS System. These statements
must immediately follow the CREATE statement.

Database description statements are required only when you create access
descriptors. Because DBMS information is stored in an access descriptor, you do not
need to repeat this information when you create view descriptors.

The SAS/ACCESS Interface to SYBASE uses the following procedure statements in
interactive line, noninteractive, or batch mode.

PROC ACCESS <accdesc-options | viewdesc-options>;

CREATE <libref.>member-name.ACCESS|VIEW <password-option>;
UPDATE <libref.>member-name.ACCESS|VIEW <password-option>;
USER= <’'>user-name<’>;

PASSWORD-= | PASS= | SYBPW= <’>password<’>;

DATABASE= <'>database-name<’>;

SERVER= <’>server-name<’>;

INTERFACE=<">file-name<’>;

SYBBUFSZ= | SYBBUF= number-of-rows;

TABLE= <’>table-name<’>;

ASSIGN <=> YES|NO;

DROP <’>column-identifier-1<'> <...<'>column-identifier-n <'>>;

FORMAT <'>column-identifier-1<'> <=>SAS-format-name-1
<...<>column-identifier-n<’><=> SAS-format-name-n>;

LIST <ALL|VIEW]<'>column-identifier<’>>;
QUIT;

RENAME <’'>column-identifier-1<’'> <=> SAS-variable-name-1
<...<>column-identifier-n<’> <=> SAS-variable-name-n>;

RESET ALL|]<’>column-identifier-1<'> <...<’>column-identifier-n<’>>;
SELECT ALL]<’'>column-identifier-1<’> <...<’>column-identifier-n<’>>;
SUBSET selection-criteria;

UNIQUE <=> YES|NO;
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Note: SYBASE is a case-sensitive database. Any DBMS objects that were created
with lowercase names or whose names contain special characters must be enclosed in
guotation marks. See “Case Sensitivity in SYBASE” on page 20 for more information. a

DATABASE=<'>database-name<’>;
specifies the name of the SYBASE database that contains the table on which the
access descriptor is based. If you omit this statement, the default database for
your SYBASE user name is used.

INTERFACE=<">file-name<’>;
specifies the name and location of the interfaces file that is searched when you
connect to the SYBASE server. The interfaces file contains names and access
information for the available servers on the network.
If you omit a user name, the default action for your operating system occurs.
INTERFACE-= is not used in some operating environments. Contact your DBA to
see whether this statement applies to your computing environment.

USER= <’>user-name<’>;
specifies the SYBASE user name (also called the login name) that you use when
executing the ACCESS procedure. If you omit this statement, your operating
system account name is used, if applicable to your operating environment.

PASSWORD=<">password<'>;
specifies the password for SYBASE. If you omit the password, a default password
of NULL is used.
PASSWORD-= can also be specified with the PASS= and SYBPW= aliases.

SERVER=<'>server-name<’>;

specifies the server with which to connect. This server accesses the database that
contains the table on which a particular access descriptor is based. If the server
name contains lowercase or special characters, you must enclose it in quotation
marks.

If you omit a server name, the default action for your operating system occurs.
On UNIX systems, the value of the environment variable DSQUERY is used if it
has been set.

SYBBUFSZ=number-of-rows;

specifies the number of rows of SYBASE data to write to the buffer. If this
statement is used, SAS/ACCESS creates a buffer whenever the associated view
descriptor is used to browse DBMS data. (Buffering is not performed when the
view descriptor is being used to update data.) The interface view engine uses
SYBBUFSZ= to improve performance by reducing network traffic.

The specified buffer size can be between 1 and 32,767 rows. If you omit this
statement, no data is written to the buffer.

SYBBUFSZ= can also be specified with the SYBBUF= aliases.

ACCESS Procedure Example

In the following example, you create access descriptors and view descriptors for the
EMPLOYEES and INVOICE tables. These tables have different owners and are stored
in PERSONNEL and INVENTORY databases that reside on different machines. The
USER= and PASSWORD= statements identify the owners of the SYBASE tables and
their passwords.

SYBASE is a case-sensitive database. The PROC ACCESS database identification
statements and the SYBASE column names in all of the statements except SUBSET
are converted to uppercase unless the names are enclosed in quotation marks. The
SUBSET statements are passed to SYBASE exactly as you type them, so you must use
the correct case for the SYBASE column names.
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libname vlib ’'sas-data-library’;

proc access dbms=sybase;
create work.employee.access;
server='serverl’;
database='personnel’;
user='testuserl’;
password='testpassl’;
table=EMPLOYEES;
create vlib.emp acc.view;
select all;
format empid 6.;
subset where DEPT like ’'ACC%’;
run;

proc access dbms=sybase;
create work.invoice.access;
server='server2’;
database='inventory’;
user='testuser2’;
password='testpass2’;
table=INVOICE;
rename invoicenum=invnum;
format invoicenum 6. billedon date9.
paidon date9.;
create vlib.sainv.view;
select all;
subset where COUNTRY in ('Argentina’,’Brazil’);
run;

options linesize=120;
title ’'South American Invoices and
Who Submitted Them’;

proc sql;
select invnum, country, billedon, paidon,
billedby, lastname, firstnam
from vlib.emp acc, vlib.sainv
where emp acc.empid=sainv.billedby;

15

DBLOAD Procedure: SYBASE Specifics

Chapter 10, "DBLOAD Procedure Reference" describes the generic options and
procedure statements that enable you to create a DBMS table and to insert data in it.
The following section describes the DBMS-specific statements that you use in the
SAS/ACCESS Interface to SYBASE.

DBLOAD Procedure Statements for SYBASE

To create and load a SYBASE table, the SAS/ACCESS Interface uses the following
statements in the DBLOAD procedure in line and batch mode.
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The database description statements include USER=, PASSWORD=, DATABASE-=,
SERVER=, and INTERFACE= (for some installations). If specified, these statements
must immediately follow the PROC DBLOAD statement. The order of the statements
within this group does not matter. The TABLE= statement must follow the database
description statements.

PROC DBLOAD <DBMS=SYBASE>

<DATA= <libref.>SAS-data-set> <APPEND>;
USER=<'>user-name<'>
PASSWORD=]PASS= | SYBPW= <’>password<’>
DATABASE=|DB= <'>database-name<’>;
SERVER=<">server-name<'>;
INTERFACE=<">file-name<’>;
BULKCOPY=]|BULK= Y|N;
TABLE=<'>table-name<’>;
ACCDESC-=<libref.>access-descriptor;
COMMIT=commit-frequency;
DELETE variable-identifier-1<...variable-identifier-n>;
ERRLIMIT=error-limit;
LABEL,;
LIMIT=load-limit;
LIST <ALL]|COLUMN |variable-identifier>;
LOAD;
NULLS variable-identifier-1=Y | N <...variable-identifier-n=Y | N>;
QUIT;
RENAME variable-identifier-1=
<’>column-name-1<’>
<...variable-identifier-n =<’>column-name-n<’>>;
RESET ALL |variable-identifier-1 <...variable-identifier-n>;
SQL Transact-SQL-statement;
TYPE variable-identifier-1="column-type-1’
<...variable-identifier-n="column-type-n'>;
WHERE SAS-where-expression;

RUN;

Note: If a database object contains lowercase, national, or special characters, you
must enclose it in quotation marks. SYBASE is usually set for case sensitivity.
Therefore, any objects that were given lowercase hames when they were created, or
whose names contain special characters, must be enclosed in quotation marks. See
“Case Sensitivity in SYBASE” on page 20 for more information. a

DATABASE=<'>database-name<’>;

specifies the name of the database in which you want to store the new SYBASE
table. If you omit this statement, the default database for your SYBASE user
name is used.

DATABASE= can also be specified with the DB= alias.

INTERFACE=<">file-name<’>;

specifies the name and location of the interfaces file that is searched when you
connect to the SYBASE server. The interfaces file contains names and access
information for available servers on the network.

If you omit this statement, the default action for your operating system occurs.
INTERFACE-= is not used in some operating environments. Contact your DBA to
determine whether this statement applies to your operating environment.
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USER= <’>user-name<’>;
specifies the SYBASE user name (also called the login name) that you use when
executing the DBLOAD procedure. If you omit a user name, your operating
system account name is used, if applicable to your operating environment.

PASSWORD=<'>password<'>;
specifies the password for SYBASE. If you omit a password, a default password of
NULL is used.
PASSWORD-= can also be specified with the PASS= and SYBPW= aliases.

SERVER=<'>server-name<’>;
specifies the server with which to connect. This server accesses the database in
which your new table is stored. If the server name contains lowercase or special
characters, you must enclose it in quotation marks.
If you omit this statement, the default action for your operating system occurs.
On UNIX systems, the value of the environment variable DSQUERY is used if it
has been set.

BULKCOPY=Y | N
uses the SYBASE bulk copy utility to insert rows into a SYBASE table. The
default value is N.

If you specify BULKCOPY=Y, BULKCOPY= calls the SYBASE bulk copy utility
in order to load data into a SYBASE table. This utility groups rows so that they
are inserted as a unit into the new table. Using the bulk copy utility can improve
performance.

You use the COMMIT= statement to specify the number of rows in each group;
this argument must be a nonnegative integer. After each group of rows is inserted,
the rows are permanently saved in the table. While each group is being inserted,
if one row in the group is rejected, then all of the rows in that group are rejected.

If you specify BULKCOPY=NO, rows are inserted into the new table using
Transact-SQL INSERT statements. Refer to your SYBASE documentation for
more information on the bulk copy utility.

BULKCOPY= can also be specified with the BULK= alias.

DBLOAD Procedure Example

The following example creates a new SYBASE table, EXCHANGE, from the
DLIB.RATEOFEX data file. An access descriptor ADLIB.EXCHANGE is also created,
which is based on the new table. The DBLOAD procedure sends a Transact-SQL
GRANT statement to SYBASE. You must be granted SYBASE privileges to create new
SYBASE tables or to grant privileges to other users.

Note: The DLIB.RATEOFEX data set is included in the sample data that is shipped
with your software. A

libname adlib ‘SAS-data-library’;
libname dlib ‘SAS-data-library’;

proc dbload dbms=sybase data=dlib.rateofex;
server='serverl’; database='testdb’;
user='testuser’; password='testpass’;
table=EXCHANGE;
accdesc=adlib.exchange;
rename fgnindol=fgnindolar 4=dolrsinfgn;
nulls updated=n fgnindol=n 4=n country=n;
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load;
run;

SQL Procedure Pass-Through Facility: SYBASE Specifics

Chapter 6, "SQL Procedure’s Interaction with SAS/ACCESS Software" describes the
generic PROC SQL statements you use to connect to and disconnect from a DBMS, to
send DBMS-specific statements to the DBMS, and to retrieve DBMS data for your SAS
programs. The following section describes the SYBASE-specific arguments that you use
in the CONNECT statement“Arguments to Connect to SYBASE” on page 18.

Arguments to Connect to SYBASE

The CONNECT statement establishes a connection with SYBASE. You establish a
connection to send Transact-SQL statements to SYBASE or to retrieve SYBASE data.
You can connect multiple times to one or more servers. After you establish a connection,
it remains in effect until you issue a DISCONNECT statement or terminate the SQL
procedure with a QUIT statement or begin a new DATA step or PROC step.

The CONNECT statement is optional. If omitted, the default values for all of the
connection arguments are used.

CONNECT TO SYBASE <AS alias> <(connection-arguments)>;

Connection arguments for SYBASE are all case-sensitive. They are passed to

SYBASE exactly as you type them. See “Case Sensitivity in SYBASE” on page 20 for
more information.

USER=username
specifies the SYBASE user ID that accesses the database. If you omit a username,

your operating system account name is used, if appropriate for your operating
environment.

PASSWORD=password
identifies the SYBASE password that is associated with the specified SYBASE
user ID. If you omit a password, a default password of NULL is used.
PASSWORD-= can also be specified with the SYBPW= alias.

DATABASE=database-name
identifies the database to use for the connection. If you omit this statement, the
default database for your SYBASE username is used.
DATABASE= can also be specified with the DB= alias.

INTERFACE=file-name
specifies the name and location of the SYBASE interfaces file. The interfaces file
contains the names and network addresses of all of the available servers on the
network.
If you omit this statement, the default action for your operating system occurs.
INTERFACE-= is not used in some operating environments. Contact your DBA to
determine whether it applies to your operating environment.

SERVER=server-name
identifies the server to which this connection is made. If you omit this statement,
the default SYBASE action for your operating system occurs. On UNIX systems,
the value of the environment variable DSQUERY is used if it has been set.



SYBASE Chapter, First Edition A SYBASE Naming Conventions 19

SYBBUFSZ=number-of-rows

specifies the number of rows of DBMS data to write to the buffer. If this statement
is used, the SAS/ACCESS interface view engine creates a buffer that is large
enough to hold the specified number of rows. This buffer is created when the
associated database table is read. The interface view engine uses SYBBUFSZ= to
improve performance.

If you omit this statement, no data is written to the buffer.

Pass-Through Example

The following example retrieves a subset of rows from the SYBASE INVOICE table.
Because the WHERE clause is specified in the DBMS query (the inner SELECT
statement), the DBMS processes the WHERE expression and returns a subset of rows
to the SAS System.

proc sql;
connect to sybase(server=SERVERL

database=INVENTORY
user=testuser password=testpass);

gput &sqglxmsg;

select * from connection to sybase

(select * from INVOICE where BILLEDBY=457232);

gput &sqglxmsg;

Note: The SELECT statement that is enclosed in parentheses is sent directly to the
database and therefore must be specified using valid database variable names and
syntax. a

SYBASE Naming Conventions

SYBASE database objects that can be named include tables, views, columns,
indexes, and database procedures. Use the following SYBASE naming conventions:

O

O

A name must be from 1 to 30 characters long (or 28 characters if quoted).

A name must start with an alphabetic character, unless the name is surrounded
by quotation marks.

After the first character, a name may contain the letters A through Z (in uppercase
or lowercase), the digits 0 through 9, the underscore (), the dollar sign ($), the
pound sign (#), the at sign (@), the yen sign (¥), and the monetary pound sign (£).
If you use any of these characters, enclose the name in quotation marks.

Embedded spaces are not permitted unless the name is surrounded by quotation
marks.

o Embedded quotation marks are not permitted.

A name cannot be a SYBASE reserved word unless the name is surrounded by
guotation marks. See your SYBASE documentation for more information about
reserved words.

Case sensitivity is set when a server is installed. By default, the names of
database objects are case sensitive. On a case-sensitive server, the names
CUSTOMER and customer are different.
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o Database names must be unique. For each owner within a database, names of
database objects must be unique. Column names and index names must be unique
within a table.

Note: By default, column and table names are notquoted in the SAS/ACCESS
Interface to SYBASE. To quote the table and column names, you must use the
LIBNAME statement QUOTED_IDENTIFIER= option when you assign a libref. »

When you use the DATASETS procedure to list your SYBASE tables, the table
names appear exactly as they exist in the SYBASE data dictionary. If you specified the
LIBNAME option, SCHEMA= , SAS/ACCESS lists the tables for the specified schema
username.

To reference a table or other named object that you own or for the specified schema,
refer to the table name (for example, CUSTOMERS). If you use the LIBNAME
statement DBLINK= option, all references to the libref will refer to the specified
database.

Case Sensitivity in SYBASE

SAS names can be entered in either uppercase or lowercase. When you reference
SYBASE objects through the SAS/ACCESS LIBNAME engine, objects are case-sensitive
and require no quotes.

However, SYBASE database is generally set for case sensitivity, and special
consideration should be given to the names of objects (such as tables and columns)
when they are to be used in SAS software by the SAS/ACCESS procedures. The
ACCESS procedure converts SYBASE object names to uppercase unless they are
enclosed in quotation marks. Any SYBASE objects that were given lowercase names, or
whose names contain national or special characters, must be enclosed in quotation
marks. The only exceptions are the SUBSET statement in the ACCESS procedure and
the SQL statement in the DBLOAD procedure. Arguments or values from these
statements are passed to SYBASE exactly as you type them, with the case preserved.

In the SQL Procedure Pass-Through Facility, all SYBASE object names are case
sensitive. The names are passed to SYBASE exactly as they are typed.

For more information about case-sensitivity and SYBASE names, see “SYBASE
Naming Conventions” on page 19.

SYBASE Data Types

Every column in a table has a name and a data type. The data type indicates to the
DBMS how much physical storage to reserve for the column and the format in which
the data is stored. SYBASE data types fall into four categories: types for character
data, types for numeric data, types for abstract values, and user-defined data types.
Each of these types is described in the following sections.

Note: SAS/ACCESS does not support the following SYBASE data types: BINARY,
VARBINARY, IMAGE, NCHAR(n), and NVARCHAR(n). SAS/ACCESS provides an error
message when it attempts to read a table that has at least one column that uses an
unsupported data type. A
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Character Data

You must enclose all character data in single or double quotation marks.

CHAR(n)
CHAR(Nn) is a character string that can have 1 to 255 letters, symbols, and
numbers. You specify the maximum length of the string with n. Storage size is
also n, regardless of the actual entry length.

VARCHAR(n)
VARCHAR(Nn) is a varying-length character string that can have 1 to 255 letters,
symbols, and numbers. You specify the maximum length of the string with n.
Storage size is the actual entry length.

TEXT
TEXT stores character data of variable length up to two gigabytes. SAS supports
the TEXT data type provided in SYBASE; however, SAS only allows a maximum of
32,767 bytes of character data.

Numeric Data

NUMERIC(p,s), DECIMAL(p,s)
Exact numeric values have specified degrees of precision (p) and scale (s).
NUMERIC data can have a precision of 1 to 38 and scale of 0 to 38, where the
value of s must be less or equal to than the value of p. The DECIMAL data type is
identical to the NUMERIC data type. The default precision and scale are (18,0) for
the DECIMAL data type.

REAL, FLOAT
Floating-point values consist of an integer part, a decimal point, and a fraction
part, or scientific notation. The exact format for REAL and FLOAT data depends
on the number of significant digits and the precision that your machine supports.
You can use all arithmetic operations and aggregate functions with REAL and
FLOAT except modulus. The REAL (4 byte) range is approximately 3.4E-38 to
3.4E+38, with 7-digit precision. The FLOAT (8 byte) range is approximately
1.7E-308 to 1.7E+308, with 15-digit precision.

TINYINT, SMALLINT, INT
Integers contain no fractional part. The three integer data types are TINYINT (1
byte), which has a range of 0 to 255; SMALLINT (2 bytes), which has a range of
-32,768 to +32,767; and INT (4 bytes), which has a range of -2,147,483,648 to
+2,147,483,647.

BIT
BIT data has a storage size of one bit and holds either a 0 or a 1; other integer
values are accepted but are interpreted as 1. BIT data cannot be NULL and

cannot have indexes defined on it.

Abstract Data

SYBASE date and money data types are abstract data types and are described in
this section. Refer to your documentation on Transact-SQL for more information about
abstract data types.
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SMALLDATETIME
SMALLDATETIME data is 4 bytes long and consists of one small integer that
represents the number of days after January 1, 1900, and one small integer that
represents the number of minutes past midnight. The date range is from January
1, 1900, to December 31, 2079.

DATETIME
DATETIME data has two 4-byte integers. The first integer represents the number
of days after January 1, 1900, and the second integer represents the number of
minutes past midnight. Values can range from January 1, 1753 to December 31,
9999.

DATETIME values are input as quoted character strings in various alphabetic
or numeric formats. Time data must be entered in the prescribed order (hours;
minutes; seconds; milliseconds; AM, am, PM, pm) and must include either a colon
or an AM/PM designator. Case is ignored, and spaces can be inserted anywhere
within the value.

When you input DATETIME values, the national language setting determines
how the date values are interpreted. You can change the default date order with
the SET DATEFORMAT statement. See your Transact-SQL documentation for
more information.

You can use SYBASE built-in date functions to perform some arithmetic
calculations on DATETIME values.

TIMESTAMP
TIMESTAMP data is used by SAS in UPDATE mode. If you select a column that
contains TIMESTAMP data for input into SAS, the values are displayed in hex
format.

SMALLMONEY
SMALLMONEY data is 4 bytes long and can range from -214,748.3648 to
214,748.3647. When displayed, it is rounded up to two places.

MONEY
MONEY data is 8 bytes long and can range from -922,337,203,685,477.5808 to
922,337,203,685,477.5807. When input, a dollar sign ($) must appear before the
MONEY value. For negative values, the minus sign must follow the dollar sign.
Commas are not allowed.

MONEY values are accurate to a ten-thousandth of a monetary unit. However,
when they are displayed, the dollar sign is omitted and MONEY values are
rounded up to two places. A comma is inserted after every three digits.

You can store values for currencies other than USA dollars, but no form of
conversion is provided.

User-Defined Data Types

You can supplement the SYBASE system data types by defining your own data types
with the SYBASE system procedure sp_addtype. When you define your own data type
for a column, you can specify a default value (other than NULL) for the column and
define a range of allowable values for the column.

NULL Values

SYBASE has a special value that is called NULL. NULL means that a value in a
row is not known or is missing; it does not mean that the value is blank or zero. It is
analogous to the SAS System’s missing value.
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By default, SYBASE columns are defined as NOT NULL. NOT NULL tells SYBASE
not to add a row to the table unless the row has a value for the specified column.

If you want a column to accept NULL values, you must explicitly define it as NULL.
Here is an example of a CREATE TABLE statement that defines all of the columns for
a table to be NULL except for CUSTOMER. In this case, SYBASE only accepts a row
that contains a value for CUSTOMER.

create table CUSTOMERS

(CUSTOMER char(8) not null,
STATE char(2) null,
ZIPCODE char(5) null,
COUNTRY char(20) null,
TELEPHONE char(12) null,
NAME char(60) null,
CONTACT char(30) null,
STREETADDRESS char(40) null,
CITY char(25) null,
FIRSTORDERDATE datetime null);

LIBNAME Statement Data Conversions

Table 1.1 on page 23 shows the default SAS System variable formats that the
libname statement assigns to SYBASE data types during input operations.

Table 1.1 LIBNAME Statement: Default SAS Formats for SYBASE Server Data

Types

SYBASE Column Type SAS Data Type Default SAS Format

CHAR(Nn) character $n. (n <= 255)
$255. (n > 255)

VARCHAR(N ) character $n. (n <= 255)
$255. (n > 255)

TEXT character $n. (n <= 32,767)
$32,767. (n > 32,767)

BIT numeric 1.0

TINYINT numeric 4.0

SMALLINT numeric 6.0

INT numeric 11.0

NUMERIC numeric w, w.d (if possible)

DECIMAL numeric w, w.d (if possible)

FLOAT numeric

REAL numeric

SMALLMONEY numeric DOLLAR12.2

MONEY numeric DOLLAR?24.2

SMALLDATETIME numeric DATETIME22.3
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SYBASE Column Type SAS Data Type Default SAS Format
DATETIME numeric DATETIME22.3
TIMESTAMP hex SHEXw

Table 1.2 on page 24 shows the default SYBASE data types that the LIBNAME
statement assigns to SAS variable formats during ouput operations.

Table 1.2 LIBNAME STATEMENT: Default SYBASE Data Types for SAS Variable

Formats

SAS Variable Format SYBASE Data Type
$w., SCHARw., $VARYINGw., VARCHAR(W)
SHEXw.

any datetime, date, or time format DATETIME

any numeric with a SAS format NUMERIC(p,s)

name of w.d or w.

any other numeric FLOAT

You can override these default data types by using the DBTYPE= option on the data
set.

ACCESS Procedure Data Conversions

Table 1.3 on page 24 shows the default SAS System variable formats that the
ACCESS procedure assigns to SYBASE data types.

Table 1.3 PROC ACCESS: Default SAS Formats for SYBASE Server Data Types

SYBASE Column Type SAS Data Type Default SAS Format

CHAR(n) character $n. (n <= 200)
$200. (n > 200)
VARCHAR(N ) character $n. (n <= 200)
$200. (n > 200)

BIT numeric 1.0

TINYINT numeric 4.0
SMALLINT numeric 6.0

INT numeric 11.0

FLOAT numeric BEST?22.
REAL numeric BEST11.
SMALLMONEY numeric DOLLAR12.2

MONEY numeric DOLLAR24.2
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SYBASE Column Type SAS Data Type Default SAS Format
SMALLDATETIME numeric DATETIME21.2
DATETIME numeric DATETIME21.2

The ACCESS procedure also supports SYBASE user-defined data types. The
ACCESS procedure uses the SYBASE data type on which a user-defined data type is
based in order to assign a default SAS format for columns.

Note: The DECIMAL, NUMERIC, and TEXT data types are not supported in PROC
ACCESS. The TIMESTAMP data type is not displayed in PROC ACCESS. a

DBLOAD Procedure Data Conversions

Table 1.4 on page 25 shows the default SYBASE data types that the DBLOAD
procedure assigns to SAS variable formats.

Tahle 1.4 PROC DBLOAD: Default SYBASE Data Types for SAS Variable Formats

SAS Variable Format SYBASE Data Type
$w., $CHARw., $VARYINGw., VARCHAR(W)
SHEXw.

W. TINYINT

W. SMALLINT

W. INT

W. FLOAT

w.d FLOAT

I1Bw.d, PIBw.d INT

FRACT, E format, and other numeric = FLOAT

formats

DOLLARw.d, w<=12 SMALLMONEY
DOLLARw.d, w>12 MONEY

any datetime, date, or time format DATETIME

The DBLOAD procedure also supports SYBASE user-defined data types. Use the
TYPE= statement to specify a user-defined data type.
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Inserting TEXT into SYBASE from SAS

TEXT data can only be inserted into a SYBASE table by using the BULK= data set
option, as in the following example:

data yourlib.newtable(bulk=yes);
set work.sasbigtext;
run;

If the BULK option is not used, you will receive the following error message:

ERROR: Object not found in database. Error Code: -2782
An untyped variable in the PREPARE statement ’'S401bcf78’
is being resolved to a TEXT or IMAGE type.

This is illegal in a dynamic PREPARE statement.

National Language Support for SYBASE

To support output and update processing from SAS into SYBASE in languages other
than English, special setup steps are required so that date, time, and datetime values
can be processed correctly. In SAS, you must ensure that the DFLANG= system option
is set to the correct language. This can be globally set by the system administrator or
set by a user within a single SAS session. In SYBASE, the default client language, set
in the locales.dat file, must match the language used in SAS.
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