
83

C H A P T E R

4
Using SAS Files

Introduction to SAS Files, Data Libraries, and Engines 83
Types of SAS Files 84

SAS Data Files (Member Type DATA) 85

SAS Data Views (Member Type VIEW) 85

Filename Extensions and Member Types 85

Accessing SAS Data Files 86
Specifying Pathnames 87

Assigning Librefs with the LIBNAME Statement 88

Engine/Host Options 91

Omitting Engine Names From the LIBNAME Statement 91

Assigning a Libref to Several Directories (Concatenating Directories) 91

Understanding How Concatenated SAS Data Libraries Are Accessed 92
Accessing Files for Input and Update 92

Accessing Files for Output 92

Accessing Data Sets with the Same Name 93

Using Multiple Engines for a Library 93

Using Environment Variables as Librefs 93
Librefs Assigned by SAS 94

SASUSER Data Library 94

WORK Data Library 95

USER Data Library 95

Accessing Disk-Format Data Libraries 96
Accessing Sequential-Format Data Libraries 96

Reading and Writing SAS Files on Tape 96

Reading and Writing Transport Formats on Tape 97

Writing Sequential Data Sets to Named Pipes 97

Accessing BMDP, OSIRIS, or SPSS Data Files 98

The BMDP Engine 98
The OSIRIS Engine 99

The SPSS Engine 100

Accessing SAS Files from Previous Releases or from Other Hosts 100

Sharing Files 101

Sharing Files in a Network 101

Introduction to SAS Files, Data Libraries, and Engines
Your data can reside in different types of files, including SAS files and files that are

formatted by other software products, such as database management systems. Under
UNIX, a SAS file is a specially structured UNIX file. Although the UNIX operating
environment manages the file for the SAS System by storing it, the operating system

84 Types of SAS Files 4 Chapter 4

cannot process it because of the structure built into the file by the SAS System. For
example, you can list the filename with the ls command, but you cannot use the vi
editor to edit the file. A SAS file can be permanent or temporary.

SAS files are stored in SAS data libraries. A SAS data library is a collection of SAS
files within a UNIX directory. Any UNIX directory can be used as a SAS data library.
(The directory can also contain files called external files that not managed by the SAS
System. See Chapter 5, “Using External Files and Devices,” on page 103 for how to
access external files.) The SAS System stores temporary SAS files in a WORK data
library (see “WORK Data Library” on page 95), which is automatically defined for you.
You must specify a data library for each permanent SAS file.

SAS files and SAS data libraries are accessed through engines. An engine is set of
routines that the SAS System must use to access the files in the data library. The SAS
System can read from and, in some cases, write to the file by using the engine that is
appropriate for that file type. For some file types, you need to tell the SAS System
which engine to use. For others, the SAS System automatically chooses the appropriate
engine. The engine that is used to create a SAS data set determines the format of the
file.

SAS data libraries can be identified with librefs. A libref is a name by which you
reference the file in your application. You can assign librefs by using the LIBNAME
statement, by defining an environment variable, or through the New Library window.

Types of SAS Files
Different types of SAS files serve different functions. There are four different types

of SAS files.

Data sets
consist of descriptor information and data values organized as a table of rows and
columns that can be processed by one of the engines. The descriptor information
includes data set type, data set label, the names and labels of the columns in the
data set, and so on. A SAS data set can also include indexes for one or more
columns.

SAS data sets are implemented in two forms:
� If the data values and the data set’s descriptor information are stored in one

file, the SAS data set is called a SAS data file.
� If the file simply contains information about where to obtain a data set’s data

values and descriptor information, the SAS data set is called a SAS data view.
The default engine processes the data set as if the data file or data view and the

indexes were a single entity.
For more information, see “SAS Data Files (Member Type DATA)” on page 85

and “SAS Data Views (Member Type VIEW)” on page 85.

Catalogs
are a special type of SAS file that can contain multiple entries. Many different
types of entries can be kept in the same SAS catalog. For example, catalogs can
contain entries created by SAS/AF and SAS/FSP software, windowing applications,
key definitions, SAS/GRAPH graphs, and so on.

Stored program files
are compiled DATA steps generated by the Stored Program Facility. For details on
the Stored Program Facility, see SAS Language Reference: Dictionary.

Using SAS Files 4 Filename Extensions and Member Types 85

Access descriptor files
describe the data formatted by other software products such as the ORACLE or the
SYBASE database management systems. Descriptor files created by the ACCESS
procedure in SAS/ACCESS software have the SAS member type of ACCESS.

SAS Data Files (Member Type DATA)
The SAS data file is probably the most frequently used type of SAS file. SAS data

files are created in the DATA step and by some SAS procedures. There are two types of
data files:

� Native data files store data values and their descriptor information in files
formatted by the SAS System. These are the traditional SAS data sets familiar
from previous versions of the SAS System.

Native SAS data files created by the default engine can be indexed. An index is
an auxiliary file created in addition to the data file it indexes. The index provides
fast access to observations within a SAS data file by a variable or key. Under
UNIX, indexes are stored as separate files but are treated as integral parts of the
SAS data file by the SAS System.

CAUTION:
Do not remove index files using UNIX commands. Removing the index file can
damage your SAS data set. Also, do not change its name or move it to a
different directory. Use the DATASETS procedure to manage indexes. 4

� Interface data files store data in files that have been formatted by other software
and that the SAS System can only read. See “Accessing BMDP, OSIRIS, or SPSS
Data Files” on page 98 for more information.

SAS Data Views (Member Type VIEW)
A SAS data view contains only the information needed to derive the data values and

the descriptor information. Depending on how the SAS data view is created, the actual
data can be in other SAS data sets or in other vendors’ files.

Views can be of two kinds:
� Native SAS data views contain information about data in one or more SAS data

files or SAS data views. This type of view is created with the SQL procedure or
DATA step.

� Interface SAS data views contain information about data formatted by other
software products, for example, a database management system. The ACCESS
procedure in SAS/ACCESS software creates such a view.

Filename Extensions and Member Types
Because the SAS System needs to distinguish between the different file types, it

automatically assigns a certain extension to each file when it creates the file. Also,
since a SAS file is a member of a SAS data library, the system assigns each file a SAS
member type.

Table 4.1 on page 86 lists the file extensions and their corresponding SAS member
types.

CAUTION:
Do not change the file extensions of SAS files. File extensions determine how the SAS
System accesses files; changing them can cause unpredictable results. 4

86 Accessing SAS Data Files 4 Chapter 4

Table 4.1 File Extensions for SAS File Types

Version 6 Version 7 and Version 8

Random
Access
Files

Sequential
Access Files

Random
Access
Files

Sequential
Access Files

SAS
Member
Type Description

.sas .sas .sas .sas .sas SAS program

.lst .lst .lst .lst .lst Procedure output

.log .log .log .log .log SAS log file

.ssdnn1 .sdqnn .sas7bdat .sas7sdat DATA SAS data file

.snxnn .siqnn .sas7bndx .sas7sndx INDEX Data file index; not treated by the
SAS System as a separate file

.sctnn .scqnn .sas7bcat .sas7scat CATALOG SAS catalog

.sspnn .ssqnn .sas7bpgm .sas7spgm PROGRAM Stored program (DATA step)

.ssvnn .svqnn .sas7bvew .sas7svew VIEW SAS data view

.ssann .saqnn .sas7bacs .sas7sacs ACCESS Access descriptor file

.sstnn .stqnn .sas7baud .sas7saud AUDIT Audit file

.sfdnn .sfqnn .sas7bfdb .sas7sfdb FDB Consolidation database

.ssmnn .smqnn .sas7bmdb .sas7smdb MDDB Multi-dimensional database

.sdsnn .soqnn .sas7bods .sas7sods SASODS Output delivery system file

.snmnn .sqnnn .sas7bdmd .sas7sdmd DMDB Data mining database

.sitnn .srqnn .sas7bitm .sas7ssitm ITEMSTOR Item store file

.sutnn .suqnn .sas7butl .sas7sutl UTILITY Utility file

.spunn .spqnn .sas7bput .sas7sput PUTILITY Permanent utility file

.ssbnn .sbqnn .sas7bbak .sas7sbak BACKUP Backup file

1 All Version 6 files end with a two-character code (nn) that identifies sets of compatible SAS files. See “Sharing Files” on page
101 for more information.

A UNIX directory can store a variety of files, but you might find it more practical to
store files in separate directories according to their use. Also, you can keep libraries that
are accessed by different engines in the same directory, but this is not recommended.
See “Using Multiple Engines for a Library” on page 93 for more information.

Accessing SAS Data Files
If you want to read or write to a permanent SAS file, you can refer to the SAS file in

one of two ways:
� refer to the data file directly by using its pathname in the appropriate statements

(such as DATA, SET, MERGE, UPDATE, OUTPUT, and PROC).
� assign a libref to the SAS data library (directory) that contains the data file and

use the libref as the first level of a two-level file name.

A libref is a nickname that you can use to refer to the data library during the SAS
session or job. You will probably want to use a libref when:

Using SAS Files 4 Specifying Pathnames 87

� the data file pathname is long and must be specified several times within a
program

� the pathname might change. If the pathname changes, you need to change only
the statement assigning the libref, not every reference to the file.

� your application will be used on other platforms. Using librefs makes it easier to
port an application to other operating environments.

� you need to concatenate libraries. See “Assigning a Libref to Several Directories
(Concatenating Directories)” on page 91 for more information.

You can assign a libref with the LIBNAME statement or through the New Library
window in the Explorer. To open the New Library window, select

File I New I Library

You can also use an environment variable as the libref.
After you have defined a libref, you can use the libref in one of two ways to access a

permanent SAS data library:
� as the first level of a two-level SAS file name:

libref.member-name

where libref is the first-level name referring to the directory where the file is
stored, and member-name specifies the name of the file being read or created.

� as the value of the USER= option. (See “USER Data Library” on page 95 for
details.)

For example, these SAS statements access the data file FINAL.DATA in the library in
the the directory /users/myid/mydir:

libname sales ’/users/myid/mydir’;
data sales.final;

Specifying Pathnames
Whether you specify a data file name directly in the various SAS statements or

specify the data library name in a LIBNAME statement and then refer to the libref, the
same rules apply for specifying UNIX directory and file pathnames.

Specify directory and file pathnames in quotes. The level of specification depends on
your current directory. For example, if /u/1999/budgets is not your current directory,
then to access the data file named may, you must specify the entire pathname:

data ’/u/1999/budgets/may’;

If you wanted to use a libref, you would specify:

libname budgets ’/u/1999/budgets’;
data budgets.may;

If /u/1999/budgets is your current directory, you could specify only the data file
names:

data ’quarter1’;
merge ’jan’ ’feb’ ’mar’;
run;

If you wanted to use a libref, you would specify:

88 Assigning Librefs with the LIBNAME Statement 4 Chapter 4

libname budgets ’.’;
data budgets.quarter1;
merge budgets.jan budgets.feb budgets.mar;
run;

You can use the character substitutions shown in Table 4.2 on page 88 to specify
pathnames.

Table 4.2 Character Substitutions in Pathnames

Characters Meaning

~/ $HOME/

Can be used only at the beginning of a pathname.

~name/ name’s home directory (taken from file /etc/passwd). Can be used
only at the beginning of a pathname.

!sasroot name of sasroot directory (see Appendix 1, “The sasroot Directory,”
on page 317). Specified only at the beginning of a pathname.

. current working directory

.. parent of current working directory

$VARIABLE environment variable VARIABLE

Assigning Librefs with the LIBNAME Statement
Use the LIBNAME statement to associate a libref with a SAS data library. The

general form of the LIBNAME statement is

LIBNAME libref <engine> ’SAS-data-library’ <options> <engine/host-options>;

LIBNAME libref <engine> (’library-1<,...’library-n’>) <options>;

LIBNAME libref (’library-1’|libref- 1 ... ’library-n’|libref-n);

LIBNAME libref CLEAR | _ALL_ CLEAR;

LIBNAME libref LIST| _ALL_ LIST;

libref
is any valid libref as doc umented in SAS Language Reference: Dictionary.

The SAS System reserves some librefs for special system libraries. See “Librefs
Assigned by SAS” on page 94 for more information.

engine
is one of the library engines supported under UNIX. “Details” on page 245
describes the two types of engines: library engines and view engines. See Table 4.3
on page 90 for engine names and descriptions. If no engine name is specified, the
SAS System determines which engine to use as described in “Omitting Engine
Names From the LIBNAME Statement” on page 91.

’SAS-data-library’
differs according to the engine name that you specify and according to your
current working directory. Table 4.3 on page 90 describes what each engine

Using SAS Files 4 Assigning Librefs with the LIBNAME Statement 89

expects for this argument. Specify directory pathnames as described in “Specifying
Pathnames” on page 87. You cannot create directories with the LIBNAME
statement. The directory that you specify must already exist. Enclose the data
library name in quotes. Remember that UNIX filenames are case-sensitive.

’library-n’ |libref-n
are pathnames or librefs (that have already been assigned) for the data libraries
that you want to access with the same libref. Use these forms of the LIBNAME
statement when you want to concatenate data libraries. Separate the pathnames
with either commas or blank spaces. Enclose library pathnames in quotes. Do not
enclose librefs in quotes. See “Assigning a Libref to Several Directories
(Concatenating Directories)” on page 91 for more information.

options
are LIBNAME statement options that are available in all operating environments.
See SAS Language Reference: Dictionary for information about these options.

engine/host-options
can be any of the options described in “Engine/Host Options” on page 91.

ALL
refers to all librefs currently defined. You can use this keyword when you are
listing or clearing librefs.

CLEAR
clears the specified libref or, if you specify _ALL_, clears all librefs that are
currently defined. SASUSER, SASHELP, and WORK remain assigned.

Note: When you clear a libref defined by an environment variable, the variable
remains defined, but it is no longer considered a libref. You can still reuse it,
either as a libref or a fileref. See “Using Environment Variables as Librefs” on
page 93 for more information. 4

The SAS System automatically clears the association between librefs and their
respective data libraries at the end of your job or session. If you want to associate
an existing libref with a different SAS data library during the current session, you
do not have to end the session or clear the libref. The SAS System automatically
reassigns the libref when you issue a LIBNAME statement for the new SAS data
library.

LIST
prints to the SAS log the engine, pathname, file format, access permissions, and so
on, that are associated with the specified libref or, if you specify _ALL_, prints this
information for all librefs that are currently defined. Librefs defined as
environment variables appear only if you have already used those librefs in a SAS
statement.

The association between the libref and the SAS data library lasts as long as the SAS
job or session, unless you use the LIBNAME statement either to clear the association or
to associate the libref with another SAS data library.

Table 4.3 on page 90 describes each of the engines that you can specify in the
LIBNAME statement and tells what each engine expects for the SAS-data-library
argument.

90 Assigning Librefs with the LIBNAME Statement 4 Chapter 4

Table 4.3 Engine Names and Descriptions

Engine Type Name (alias) Description SAS-data-library

default V8 (BASE)

V7

enables you to create new SAS data files and
access existing SAS data files that were
created with Version 7 or Version 8. The V7
and V8 engines are identical. This engine
enables read access to data files created with
some earlier versions of SAS, but this engine
is the only one that supports Version 7 and
Version 8 catalogs. This engine allows for data
set indexing and compression and is also
documented in SAS Language Reference:
Dictionary.

is the pathname of the
directory containing the
library.

sequential V8TAPE

(TAPE)

V7TAPE

V6TAPE

accesses SAS data files that were created in a
sequential format, whether on tape or on disk.
This engine requires less overhead than the
default engine because sequential access is
simpler than random access. This engine is
also documented in SAS Language Reference:
Dictionary.

is the name of the special file
(see “Introduction to External
Files and Devices” on page
103) that is associated with
the sequential device, such as
/dev/rmt/0mn.

compatibility V6 accesses any data file created by Release 6.09
through 6.12.

is the pathname of the
directory containing the
library.

servers SPDS enables communication between a client
session and a data server. You must have the
Scalable Performance Data Server licensed on
your client machine to use this engine. Refer
to Scalable Performance Data Server User’s
Guide, Version 2 for more information.

is the logical LIBNAME
domain name for an SPDS
data library on the server
machine. The name server
resolves the domain name
into the physical path for the
library.

MDDB enables communication between a client
session and an MDDB server. You must have
SAS/MDDB Server licensed either or your
client machine or on your server machine to
use this engine. Refer to SAS MDDB Server
Software: Administration Guide for complete
information.

transport XPORT accesses transport data sets. This engine
creates machine-independent SAS transport
files that can be used under all hosts running
Release 6.09 or later of the SAS System. This
engine is documented in Moving and Accessing
SAS Files across Operating Environments.

is the pathname of either a
sequential device or a disk
file.

interface BMDP provides read-only access to BMDP files. This
engine is available only on AIX, HP-UX, and
Solaris.

is the pathname of the data
file.

Using SAS Files 4 Assigning a Libref to Several Directories (Concatenating Directories) 91

Engine Type Name (alias) Description SAS-data-library

OSIRIS provides read-only access to OSIRIS files. is the pathname of the data
file.

SPSS provides read-only access to SPSS files is the pathname of the data
file.

Engine/Host Options
The LIBNAME statement accepts the FILELOCKS option:

FILELOCKS=NONE|FAIL|CONTINUE

This option specifies whether file locking is on or off for the library that you are
defining. This LIBNAME statement option works like the FILELOCKS system option,
except that it applies only to the library that you are defining. See “FILELOCKS” on
page 266 for more information.

You can also specify any of the options supported by the SPDS engines. SPDS is the
Scalable Performance Data Server. Refer to Scalable Performance Data Server User’s
Guide, Version 2 for a description of these options.

Omitting Engine Names From the LIBNAME Statement
It is always more efficient to specify the engine name than to have the SAS System

determine the correct engine. However, if you omit an engine name in the LIBNAME
statement or if you define an environment variable to serve as a libref, the SAS System
determines the appropriate engine.

If you have specified the ENGINE= system option, SAS uses the engine name that
you specified. See “ENGINE” on page 265 for a discussion of the ENGINE= system
option.

Note: The ENGINE= system option specifies the default engine for data libraries on
disk only. 4

If you did not specify the ENGINE= system option, SAS looks at the extensions of the
files in the given directory and uses these rules to determine an engine:

� If all the SAS data sets in the library were created by the same engine, the libref
is assigned to that engine.

� If there are no SAS data sets in the given directory, the libref is assigned to the
default engine.

� If there are SAS data sets from more than one engine, the system issues a message
about finding mixed engine types and assigns the libref to the default engine.

Assigning a Libref to Several Directories (Concatenating Directories)
You can use the LIBNAME statement to assign librefs and engines to one or more

directories, including the working directory.
If you have SAS data sets located in multiple directories, you can treat these

directories as a single SAS data library by specifying a single libref and concatenating
the directory locations, as in the following example:

libname income (’revenue’,’costs’);

This statement indicates that the two directories, revenue and costs, are to be
treated as a single SAS data library.

92 Understanding How Concatenated SAS Data Libraries Are Accessed 4 Chapter 4

If you have already assigned librefs to your SAS data libraries, you can use these
librefs to indicate that you want to concatenate the data libraries, as in this example:

libname income (’corpsale’,’retail’);
libname costs (’salaries’,’expenses’);
libname profits (income,’capgain’,costs);

This statement indicates that the five directories, corpsale, retail, salaries,
expenses, and capgain, are to be treated as a single SAS data library.

When you concatenate SAS data libraries, the SAS System uses a protocol for
accessing the libraries, which depends on whether you are accessing the libraries for
read, write, or update. (A protocol is a set of rules.) See “Understanding How
Concatenated SAS Data Libraries Are Accessed” on page 92 for more information.

See SAS Language Reference: Dictionary for complete documentation on the
LIBNAME statement.

Understanding How Concatenated SAS Data Libraries Are Accessed
When you use the concatenation feature to specify more than one physical directory

for a libref, the SAS System uses the protocol shown in the following sections to
determine which directory is accessed. (The protocol illustrated by these examples
applies to all SAS statements and procedures that access SAS files, such as the DATA,
UPDATE, and MODIFY statements in the DATA step, and the SQL and APPEND
procedures.)

Accessing Files for Input and Update
When a SAS data set is accessed for input or update, the first SAS data set that is

found by that name is the one that is accessed. For example, if you submit the following
statements and the data set OLD.SPECIES exists in both directories, the one in the
mysasdir directory is the one that is printed:

libname old (’mysasdir’,’saslib’);
proc print data=old.species;
run;

The same would be true if you opened OLD.SPECIES for update with the FSEDIT
procedure.

Accessing Files for Output
If the data set is accessed for output, it is always written to the first directory,

provided that the directory exists. If the directory does not exist, an error message is
displayed. For example, if you submit the following statements, the SAS System writes
the OLD.SPECIES data set to the first directory (mysasdir) and replaces any existing
data set with the same name:

libname old (’mysasdir’,’saslib’);
data old.species;
x=1;
y=2;
run;

If a copy of the OLD.SPECIES data set exists in the second directory, it is not
replaced.

Using SAS Files 4 Using Environment Variables as Librefs 93

Accessing Data Sets with the Same Name
If you use the DATA and SET statements to access data sets with the same name,

the DATA statement uses the output rules and the SET statement uses the input rules.
For example, suppose you submit the following statements and TEST.SPECIES
originally exists only in the second directory, mysasdir:

libname test (’sas’,’mysasdir’);
data test.species;
set test.species;
if value1=’y’ then

value2=3;
run;

The DATA statement opens TEST.SPECIES for output according to the output rules;
that is, the SAS System opens a data set in the first of the concatenated libraries (
sas). The SET statement opens the existing TEST.SPECIES data set in the second (
mysasdir) directory, according to the input rules. Therefore, the original
TEST.SPECIES data set is not updated. After the data step executes, two
TEST.SPECIES data sets exist, one in each directory.

Using Multiple Engines for a Library

You can assign multiple librefs to a single directory, and specify a different engine
with each libref. For example, after the following statements are executed, data sets
that are referenced by ONE are created and accessed using the default engine, while
data sets that are referenced by TWO are created and accessed using the sequential
engine:

libname one v7 ’/users/myid/educ’;
libname two tape ’/users/myid/educ’;

Note: Keeping different types of data libraries in one directory is not recommended
because you must remember the appropriate engine for accessing each library. SAS
cannot determine the right engine for accessing libraries in a directory that contains
libraries of different types. See “Omitting Engine Names From the LIBNAME
Statement” on page 91 for more information. 4

Using Environment Variables as Librefs

An environment variable can also be used as a libref. The variable name must be in
all upper case characters, and the variable value must be the full pathname of the
directory, that is, the name of the directory must begin with a slash.

Suppose you want to use the data library in /users/mydir/educ, and you want to
refer to it with the EDUC environment variable. You can define the variable at two
times:

� before you invoke the SAS System. See “Defining Environment Variables” on page
17. For example, in the Korn shell, you would use

export EDUC=/users/mydir/educ

94 Librefs Assigned by SAS 4 Chapter 4

� after you invoke the SAS System by using the X statement (see “Executing
Operating System Commands from Your SAS Session” on page 12) and the SAS
setenv command:

x setenv EDUC /users/mydir/educ;

You cannot specify an engine when you define a libref as an environment variable, so
the SAS System determines which engine to use as described in “Omitting Engine
Names From the LIBNAME Statement” on page 91.

After the libref is defined, you can use it to access data sets stored in the library:

proc print data=educ.class;
run;

Note: If a variable and a libref have the same name but refer to different files, the
SAS System uses the libref. 4

Librefs Assigned by SAS
The SAS System automatically defines four librefs:

SASHELP
contains a group of catalogs that contain information that is used to control
various aspects of your SAS session. The SASHELP library is in the sasroot
directory. See Appendix 1, “The sasroot Directory,” on page 317.

SAUSER
contains SAS catalogs that enable you to tailor features of the SAS System for
your needs. If the defaults in the SASHELP library are not suitable for your
applications, you can modify them and store your personalized defaults in your
SASUSER library.

USER
allows you to read, create, and write files in a SAS data library other than WORK
without specifying a libref as part of the SAS file name.

WORK
is the temporary, or scratch, library automatically defined by the SAS System at
the beginning of each SAS session or job. The WORK library stores two types of
temporary files: those you create and those created internally by the SAS System
as part of normal processing.

These librefs and the LIBRARY libref are reserved librefs. If your site also has SAS/
GRAPH software or SAS/GIS software, the MAPS or GISMAPS librefs might also be
automatically defined. All these libraries are described in SAS Language Reference:
Dictionary. SASUSER, USER, and WORK have operating system dependencies.

SASUSER Data Library
When you invoke the SAS System, it looks for one special directory in which to store

a data library with the SASUSER libref. If this directory does not exist, the SAS
System uses the SASUSER system option to create it. The configuration file usually
specifies the directory as follows:

-sasuser ~/sasuser

This specification tells the SAS System to create the SASUSER library in the sasuser
subdirectory of your home directory. You can permit read-only access to the SASUSER

Using SAS Files 4 USER Data Library 95

library by using the RSASUSER system option. See Chapter 17, “SAS System Options,”
on page 253 for details on the SASUSER and RSASUSER system options.

Once the SASUSER library has been created, the SAS System automatically assigns
the same libref to it each time you start a SAS session. It cannot be cleared or
reassigned during a SAS session. If you delete the library, the SAS System re-creates it
the next time you start a session.

The SAS System stores your user profile in the SASUSER data library. Your
SASUSER.PROFILE catalog contains the tailoring features you specify for the SAS
System. By default, this information is taken from the SASHELP library. When you
save changes to function key definitions, window attributes, and other information from
SAS sessions, the SAS System stores the changes in the SASUSER.PROFILE catalog.

You can, of course, store other data sets and catalogs there as well. Because the SAS
System assigns the libref for you, you do not need to use a LIBNAME statement before
referencing this library.

WORK Data Library
The WORK data library is the temporary library that is automatically defined by

the SAS System at the beginning of each SAS session or job. The WORK data library
stores temporary SAS files that you create as well as files created internally by the SAS
System.

To access files in the WORK data library, simply specify a one-level name for the file.
The libref WORK is automatically assigned to these files unless you have assigned the
USER libref.

When you invoke the SAS System, it assigns the WORK libref to a subdirectory of
the directory specified in the WORK system option described in Chapter 17, “SAS
System Options,” on page 253. This subdirectory is usually named SAS_workcode
where code is a 12–character code based on the process ID of the SAS session. This
libref cannot be cleared or reassigned during a SAS session.

The WORKINIT and WORKTERM system options control the creation and deletion
of the WORK data library. See SAS Language Reference: Dictionary for details.

Note: If a SAS session is terminated improperly (for example, using the kill -9
command), the SAS System will not delete the SAS_workcode directory. You may want
to use the cleanwork command to delete these straggling directories (see Appendix 2,
“Tools for the System Administrator,” on page 319). 4

USER Data Library
SAS data sets are referenced with a one- or two-level name. The two-level name is

of the form libref.member-name where libref refers to the SAS data library in which the
data set resides and member-name refers to the particular member within that library.
The one-level name is of the form member-name (without a libref). In this case, the SAS
System stores the files in the temporary WORK data library. To override this action
and have files with one-level names stored in a permanent library, first assign the
USER libref to an existing directory. To refer to temporary SAS files while USER is
assigned, use a two-level name with WORK as the libref. You have three ways to assign
the USER libref:

� Assign the USER libref directly using the LIBNAME statement:

libname user ’/users/myid/mydir’;

� Specify the USER system option before you start the session. For example, you
can assign the USER libref when you invoke the SAS System:

96 Accessing Disk-Format Data Libraries 4 Chapter 4

sas -user /users/myid/mydir

� Specify the USER= system option after you start the session. First, assign a libref
to the permanent library. Then use the USER= system option in an OPTIONS
statement to equate that libref to USER. For example, these statements assign the
libref USER to the directory with libref MINE:

libname mine ’/users/myid/mydir’;
options user=mine;

See Chapter 17, “SAS System Options,” on page 253 for details on the USER system
option.

Accessing Disk-Format Data Libraries

You will probably create and access data libraries on disk more than any other type
of library. The default engine and the compatibility engines allow read, write, and
update access to SAS files on disk. They also support indexing and compression.

In the following example, the IN libref is assigned to a directory that contains the
STATS1 data set:

libname in ’/users/myid/myappl’;
proc print data=in.stats1;
run;

Remember, when the LIBNAME statement is issued, the SAS-data-library that it
specifies must already exist. For example, if you want to create the SAS data set
ORDERS in a directory, use the X statement to issue the mkdir UNIX command, and
then use the LIBNAME statement to associate the libref with the directory.

x mkdir /users/publish/books;
libname books ’/users/publish/books’;
data books.orders;

more SAS statements
run;

By default, the LIBNAME statement associates the V8 engine with the directory.

Accessing Sequential-Format Data Libraries

The sequential engines enable you to access data libraries in sequential format on
tape or disk. The sequential engines do not support indexing and compression of
observations.

Note: Before using sequential engines, read the information about sequential data
libraries in SAS Language Reference: Dictionary. 4

Reading and Writing SAS Files on Tape
You can write SAS files directly to tape using the TAPE engine; however, it is more

efficient to use a staging directory so that the files can be processed directly from disk.
You can use the UNIX tar command to move SAS data sets between the staging
directory and tape. (Do not use the UNIX cp command.)

Using SAS Files 4 Writing Sequential Data Sets to Named Pipes 97

A SAS library on tape can contain one or more SAS data sets; however, only one SAS
data set from a given library on tape can be accessed at any given point in a SAS job.

To access Version 8 SAS files on tape, you can specify the V8TAPE or TAPE engine in
the LIBNAME statement:

LIBNAME libref V8TAPE ’tape-device-pathname’;

The tape-device-pathname must be a pathname for a tape device; it should be the name
of the special file associated with the tape device. (Check with your system
administrator for details.) The name must be enclosed in quotes. You cannot specify
remote tape devices in the LIBNAME statement.

Multi-volume tape libraries are supported if you specify the TAPECLOSE=LEAVE
system option when you start your SAS session.

For example, the following LIBNAME statement assigns the libref SEQ2 to the /
dev/tape2 tape device. Because the tape device is specified, the engine does not have
to be specified.

libname seq2 ’/dev/tape2’;

Reading and Writing Transport Formats on Tape
Transport formats on tape are handled in a manner similar to external files. Read

“Processing Files on TAPE” on page 121 before continuing with this topic.
For example, the following SAS statements issue the UNIX mt command to rewind

the tape and create a transport file using the xport engine and PROC CPORT:

x ’mt -t /dev/rmt/0mn rewind’;
libname tranfile xport ’/dev/rmt/0mn’;
proc cport library=sasuser file=tranfile;
run;

The following statements import the transport file into the WORK data library:

x ’mt -t /dev/rmt/0mn rewind’;
libname tranfile xport ’/dev/rmt/0mn’;
proc cimport infile=tranfile library=work;
run;

Writing Sequential Data Sets to Named Pipes
You can send output to and read input from the operating system by using named

pipes. For example, you may want to compress a data set or send it to a tape
management system without creating intermediate files.

You can read from and write to named pipes from within your SAS session by
specifying the pipe name in the LIBNAME statement:

LIBNAME libref <TAPE> ’pipename’;

Since you cannot position a pipe file, SAS uses the TAPE engine to ensure sequential
access. You do not have to specify the engine name; TAPE is assumed.

For example, suppose you want to create a SAS data set and compress the data set
without creating an intermediate, uncompressed data set. Create a named pipe (such
as mypipe) and enter the compress command:

mknod mypipe p compress <mypipe >sasds.Z

In your SAS session, assign a libref to the pipe and begin writing to the data set:

98 Accessing BMDP, OSIRIS, or SPSS Data Files 4 Chapter 4

libname x ’mypipe’;
data x.a;

...more SAS statements...
output;
run;

The data is sent to mypipe, compressed, and written to the data set. When SAS
closes the data set, the compress finishes, and you have a compressed, sequential data
set in sasds.Z.

If you begin writing to a named pipe before the task on the other end (in this case,
the compress command) begins reading, your SAS session will be suspended until the
task begins to read.

Accessing BMDP, OSIRIS, or SPSS Data Files
f Version 7 of the SAS System includes three interface library engines, BMDP,

OSIRIS and SPSS, that enable you to access external data directly from a SAS
program. All these engines are read-only.

Because they are sequential, these engines cannot be used with the POINT= option on
the SET statement or with the FSBROWSE, FSEDIT, or FSVIEW procedures. You can
use PROC COPY, PROC DATASETS, or a DATA step to copy the system file to a SAS
data set and then perform these functions on the SAS data set. Also, some procedures
(such as PROC PRINT) give a warning message about the engine being sequential.

With these engines, the physical filename associated with a libref is an actual
filename, not a directory. This is an exception to the rules concerning librefs.

You can also use the CONVERT procedure to convert BMDP, OSIRIS and SPSS files
to SAS data files. See “CONVERT” on page 225 for more information.

The BMDP Engine
The BMDP interface library engine enables you to read BMDP files from the BMDP

statistical software package directly from a SAS program. The BMDP engine is a
read-only engine. The following discussion assumes you are familiar with the BMDP
save file terminology.*

Note: This engine is available for AIX, HP-UX, and Solaris. 4

To read a BMDP save file, issue a LIBNAME statement that explicitly specifies the
BMDP engine. In this case, the LIBNAME statement takes this form:

LIBNAME libref BMDP ’filename’;

In this form of the LIBNAME statement, libref is a SAS libref and filename is the
BMDP physical filename. If the libref appears previously as a fileref, omit filename
because the physical filename associated with the fileref is used. This engine can only
read save files created under UNIX.

Because there can be multiple save files in a single physical file, you reference the
CODE= value as the member name of the data set within the SAS language. For
example, if the save file contains CODE=ABC and CODE=DEF and the libref is
MYLIB, you reference them as MYLIB.ABC and MYLIB.DEF. All CONTENT types are
treated the same, so even if member DEF is CONTENT=CORR, it is treated as
CONTENT=DATA.

* See the documentation provided by BMDP Statistical Software Inc. for more information.

Using SAS Files 4 The OSIRIS Engine 99

If you know that you want to access the first save file in the physical file or if there is
only one save file, refer to the member name as _FIRST_. This is convenient if you do
not happen to know the CODE= value.

For example, assume that the physical file MYBMDP.DAT contains the save file
ABC. The following SAS code associates the libref MYLIB with the BMDP physical file
and runs the CONTENTS and PRINT procedures on the save file:

libname mylib bmdp ’mybmdp.dat’;
proc contents data=mylib.abc;
run;
proc print data=mylib.abc;
run;

The following example uses the LIBNAME statement to associate the libref MYLIB2
with the BMDP physical file. Then it prints the data for the first save file in the
physical file:

libname mylib2 bmdp ’mybmdp.dat’;
proc print data=mylib2._first_;
run;

The OSIRIS Engine
The Inter-University Consortium on Policy and Social Research (ICPSR) uses the

OSIRIS file format for distribution of its data files. The SAS System provides the
OSIRIS interface library engine to support the many users of the ICPSR data and to be
compatible with PROC CONVERT.

The OSIRIS engine allows you to read OSIRIS data and dictionary files directly from
a SAS program. The following discussion assumes you are familiar with the OSIRIS file
terminology and structure. If you are not, refer to the documentation provided by the
ICPSR.

To read an OSIRIS file, issue a LIBNAME statement that explicitly specifies the
OSIRIS engine. The syntax of the LIBNAME statement in this case is

LIBNAME libref OSIRIS ’data-filename’ DICT=’dictionary-filename’;

libref
is a SAS libref.

’data-filename’
is the physical filename of the data file. If the libref appears also as a fileref, omit
the data filename.

’dictionary-filename’
is the physical filename of the dictionary file. The dictionary filename can also be
an environment variable or a fileref, but if it is either of those, do not enclose it in
quotes. The DICT= option is required.

OSIRIS data files do not have member names. Therefore, use whatever member
name you like.

To use the same dictionary file with different data files, code a separate LIBNAME
statement for each one.

Since the OSIRIS software does not run outside the MVS environment, the layout of
an OSIRIS data dictionary is consistent across operating environments. However, the
OSIRIS engine is designed to accept a data dictionary from any other operating
environment on which the SAS System runs. It is important that the dictionary and
data files not be converted from EBCDIC to ASCII; the engine expects EBCDIC data.

The dictionary file should consist of fixed-length records of length 80. The data file
should contain records large enough to hold the data described in the dictionary.

100 The SPSS Engine 4 Chapter 4

In the following example, the data file is /users/myid/osr/dat, and the dictionary
file is /users/myid/osr/dic. The example associates the libref MYLIB with the
OSIRIS files and runs a PROC CONTENTS and PROC PRINT on the data.

libname mylib osiris ’/users/myid/osr/dat’
dict=’/users/myid/osr/dic’;

proc contents data=mylib._first_;
run;
proc print data=mylib._first_;
run;

The SPSS Engine
The SPSS interface library engine allows you to read only SPSS export files. This

engine does not read Release 9 and SPSS-X native files. The following discussion
assumes that you are familiar with the SPSS save file terminology and structure. If you
are not, refer to the documentation provided by SPSS.

To read an SPSS export file, issue a LIBNAME statement that explicitly specifies the
SPSS engine. The syntax of the LIBNAME statement in this case is

LIBNAME libref SPSS ’filename’;

Libref is a SAS libref and filename is the physical filename. If the libref appears also as
a fileref, omit filename; the physical filename associated with the fileref is used.

Export files can originate from any operating environment. Export files must be
transported to and from your operating environment in text format. If they are
transported in binary format, other operating environments will not be able to read
them.

Because SPSS-X files do not have internal names, refer to them by any member
name you like.

The following example associates the libref MYLIB with the physical file /users/
myid/mydir/myspssx.spp in order to run the CONTENTS and PRINT procedures on
the save file:

libname mylib spss ’/users/myid/mydir/myspssx.spp’;
proc contents data=mylib._first_;
proc print data=mylib._first_;
run;

In the next example, the FILENAME statement associates the fileref MYLIB2 with the
/users/myid/mydir/aspssx.spp SPSS physical file, and the LIBNAME statement
associates the libref with the SPSS engine. The PRINT procedure prints the data from
the save file.

filename mylib2 ’/users/myid/mydir/aspssx.spp’;
libname mylib2 spss;
proc print data=mylib2._first_;
run;

Accessing SAS Files from Previous Releases or from Other Hosts
For information about moving a file to or from a release that precedes Release 6.07,

refer to Moving and Accessing SAS Files across Operating Environments. For
information about moving a file to or from Release 6.07 through Version 8, refer to
Moving and Accessing SAS Files across Operating Environments.

Using SAS Files 4 Sharing Files in a Network 101

Sharing Files
If more than one user accesses a SAS file at the same time or if a single user has

access to the same file from different SAS sessions, the results are unpredictable. By
default, the FILELOCKS system option is set to FAIL, which prevents simultaneous
access to the same SAS file. (See “FILELOCKS” on page 266.) If FILELOCKS has been
set to NONE, then you should do one of the following:

� Make sure that your sasuser directory is unique for each SAS session. Typically,
the system administrator assigns this directory in the system configuration file.
The specification in that file or in your personal configuration file helps ensure
that the directory is unique as long as you run only one SAS session at a time.

If you run two or more SAS sessions simultaneously, you can guarantee unique
user files by specifying different sasuser directories for each session. In the first
session, you can use

-sasuser ~/sasuser

In the nth session, you can use

-sasuser ~/sasusern

For details, see “Processing Configuration Files” on page 17 and “SASUSER” on
page 290. The RSASUSER option can be used to control modifications to the
SASUSER library when it is shared by several users (see “RSASUSER” on page
286).

� If you run two or more SAS sessions simultaneously (either by using the X
statement or by invoking it from two different windows) and you use the same
PROFILE catalog, do not do anything within the SAS session to change that
catalog (for example, using the WSAVE command or changing key assignments)
because both sessions may use the same one.

� If you and other people use the same data sets, avoid writing to them at the same
time.

Sharing Files in a Network
The SAS System can be licensed to run on one or more workstations in a network of

similar machines. The license specifically lists the workstations that the SAS System
can run on. Other workstations in the network may have access to the executable files
for the SAS System but not be able to run the SAS System.

If the licensed workstations are connected via NFS mounts so that they share a file
system, they can all share a single copy of the SAS System executables, although this is
not necessary. They can also share SAS files. However, if a SAS session attempts to
update a data set or catalog, it must obtain an exclusive file lock on that file to prevent
other sessions from accessing that file.

When the SAS System is installed on workstations of different types that are
connected via NFS, each type of workstation must have its own copy of the SAS System
executables. Catalogs and data sets, however, may be shared between certain
combinations of machine types.

If the data set or catalog you want to process exists on your network but cannot be
accessed with the LIBNAME statement because it resides on a different type of
workstation, you have several alternatives:

� You can log in to the remote machine and convert the file to SAS transport format
using the CPORT procedure, copy the transport file to your machine or access it
via NFS, and import it to your type of machine format.

102 Sharing Files in a Network 4 Chapter 4

� You can log in to the remote machine and perform the work there. This alternative
works best when the file is used rarely, or if the original file changes often.

� You can do part of your work on your machine and the other part on the remote
machine. One example of this alternative would be to run a set of statements on a
small test case on the local machine, and then submit the real work to be done on
the remote machine. Similarly, you might want to subset a large data set on
another machine, and then do local analysis on that subset. This can be
accomplished with SAS/CONNECT software.

To allow machines that cannot share SAS data sets or catalogs to coexist in the same
networked file system, the SAS System adds a two-digit suffix to the file extensions.
For example, if two SAS data sets named TEST are created on machines with different
underlying architectures, one will be stored in file test.ssd01 and the other will be
stored in file test.ssd02.

The SAS System may hang when accessing data over NFS mounts if the FILELOCKS
option is set to FAIL or CONTINUE. To alleviate the problem, make sure that all NFS
filelocking daemons are running on both machines (usually statd and lockd).

Note: To test whether there is a problem with file locking, you can set the
FILELOCKS system option to NONE temporarily. It is recommended that you do not set
FILELOCKS to NONE permanently. 4

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for UNIX Environments, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Companion for UNIX Environments, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–502–7
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

