
103

C H A P T E R

5
Using External Files and Devices

Introduction to External Files and Devices 103
Accessing an External File or Device 104

Specifying Pathnames 105

Using Wildcards in Pathnames (Input Only) 105

Assigning Filerefs with the FILENAME Statement 106

Using DISK Files 109
Debugging Code With DUMMY Devices 110

Sending Output to PRINTER Devices 110

Using Temporary Files (TEMP Device Type) 110

Accessing TERMINAL Devices Directly 110

Assigning Filerefs to Files on Other Systems (FTP and SOCKET access types) 111

Concatenating Filenames 111
Assigning a Fileref to a Directory (Using Aggregate Syntax) 111

Assigning a Fileref to Several Directories 112

Using Environment Variables to Assign Filerefs 112

Filerefs Assigned by the SAS System 113

File Descriptors in the Bourne and Korn Shells 114
Reserved Filerefs 114

Reading from and Writing to UNIX Commands (PIPE) 114

Using the Fileref for Reading 115

Using the Fileref for Writing 116

Sending Electronic Mail from Within the SAS System (EMAIL) 116
Initializing Electronic Mail 116

Using the DATA Step or SCL to Send Electronic Mail 117

Syntax of the FILENAME Statement for Electronic Mail 117

Example: Sending E-Mail from the DATA Step 119

Example: Sending E-Mail Using SCL Code 120

Processing Files on TAPE 121
Using the TAPE Device Type 122

Using the PIPE Device Type 122

Working with External Files Created on the Mainframe 123

Example: Multi-volume, Standard Label Tapes 123

Introduction to External Files and Devices
At times during a SAS session, you might want to use external files, that is, files

that contain data or text or files in which you want to store data or text. These files are
created and maintained by the operating system, not by the SAS System.

You can use external files in a SAS session to
� hold raw data to be read with the INPUT statements

104 Accessing an External File or Device 4 Chapter 5

� store printed reports created by a SAS procedure
� submit a file containing SAS statements for processing
� store data written with PUT statements.

For the SAS System, external files and devices can serve both as sources of input and
as receivers of output. The input can be either raw data to be read in a DATA step or
SAS statements to be processed by the SAS System. The output can be

� the SAS log, which contains notes and messages produced by the program
� the formatted output of SAS procedures
� data written with PUT statements in a DATA step.

You might also want to use peripheral devices such as a printer, plotter, or your own
terminal. UNIX treats these I/O devices as if they were files. Each device is associated
with a file, called a special file, which is treated as an ordinary disk file. When you
write to a special file, the associated device is automatically activated. All special files
reside in the dev directory or its subdirectories. Although there are some differences in
how you use the various devices, the basic concept is the same for them all.

UNIX also enables you to use pipes to send data to and from operating system
commands as if they were I/O devices.

The rest of this chapter describes how to specify an external file or device within a
SAS session. Chapter 6, “Routing Output,” on page 125 describes now to send the SAS
log and SAS procedure output to an external file.

If you need to access an external file containing a transport data library, refer to
Moving and Accessing SAS Files across Operating Environments.

Accessing an External File or Device
To read or write to an external file or device, refer to the file or device in the

appropriate SAS statements in one of two ways:
� specifying the pathnames for the files.
� assigning a fileref to a device, one or more files, or a directory and using the fileref

when you want to refer to the file or device.

In most cases, you will want to use a fileref. A fileref is nickname that you assign to a
file or device. You simply assign the fileref once, and then use it as needed. Filerefs are
especially useful when

� the pathname is long and has to be specified several times within a program
� the pathname might change. If the pathname changes, you need to change only

the statement that assigns the fileref, not every reference to the file.

You can assign filerefs in the File Shortcuts window of the Explorer, with the
FILENAME statement, with the FILENAME function,* or by defining the fileref as an
environment variable.

To access the external file or device, you will need to specify its pathname or fileref in
the appropriate SAS statements:

FILE
specifies the current output file for PUT statements.

* For a complete description of the FILENAME statement and the FILENAME function, see SAS Language Reference:
Dictionary.

Using External Files and Devices 4 Using Wildcards in Pathnames (Input Only) 105

%INCLUDE
includes a file containing SAS source statements into the Program Editor.

INFILE
identifies an external file that you want to read with an INPUT statement.

Specifying Pathnames
You can reference an external file directly by specifying its pathname in the FILE,

INFILE, or %INCLUDE statements, or you can reference the file indirectly by
specifying a fileref and a pathname in the FILENAME statement and then using the
fileref in the FILE, INFILE, or %INCLUDE statements.

Whether you reference a file directly or indirectly, you will need to specify its
pathname in the appropriate statement. In most cases, you must enclose the name in
quotes. For example, the following INFILE statement refers to the file /users/pat/
cars:

infile ’/users/pat/cars’;

The following FILE statement directs output to the specified terminal:

file ’/dev/ttyp1’;

The level of specification depends on your current directory. You can use the character
substitutions shown in Table 4.2 on page 88 to specify the pathname. You can also use
wildcards as described in “Using Wildcards in Pathnames (Input Only)” on page 105.

You can omit the quotes on a filename if
� there is not already a fileref defined with that filename.
� the file has the filename extension expected by the statement that you are using to

refer to the file. If you do not enclose a filename in quotes, the FILE and INFILE
statements assume a file extension of .dat, and the %INCLUDE statement
assumes a file extension of .sas.

� the file is in the current directory.
� the filename is all lower case characters.

For example, if the current directory is /users/mkt/report and it includes file
qtr.sas, you can reference qtr.sas in any of the following statements:

%include ’/users/mkt/report/qtr.sas’;
%include ’qtr.sas’;
file ’qtr.sas’;

If there is no QTR fileref already defined, you can omit the quotes and the filename
extension on the %INCLUDE statement:

%include qtr;

Using Wildcards in Pathnames (Input Only)
You can use the *, ?, and []wildcards to specify pathnames in the FILENAME (only

if the fileref is to be used for input), INFILE, and %INCLUDE statements and the
INCLUDE command.

* matches one or more characters, except for the period at the
beginning of filenames.

106 Assigning Filerefs with the FILENAME Statement 4 Chapter 5

? matches any single character.

[] matches any single character from the set of characters defined
within the brackets. You can specify a range of characters by
specifying the starting character and ending character separated by
a hyphen.

Wildcards are supported for input only. You cannot use wildcards in the FILE
statement.

The following example reads input from every file in the current directory that
begins with the string wild and ends with .dat:

filename wild ’wild*.dat’;
data;

infile wild;
input;

run;

The following example reads input from every file in every subdirectory of the
current working directory:

filename subfiles ’*/*’;
data;

infile subfiles;
input;

run;

If new files are added to any of the subdirectories, they can be accessed with the
subfiles fileref without changing the FILENAME statement.

You can also use wildcards in filenames, but not in directory names, when you use
aggregate syntax:

filename curdir ".";
data;

infile curdir(’wild*’);
input;

run;

The period in the FILENAME statement refers to the current directory. See Table 4.2
on page 88 for information on other characters substitutions available on UNIX.

The following statement associates the fileref myref with all files that begin with
alphabetic characters. Files beginning with numbers or other characters such as the
period or tilde are excluded.

filename myref ’[a-zA-Z]*.dat’;

The following statement associates myref with any file beginning with sales (in either
uppercase, lowercase, or mixed case) and a year between 1990 and 1999:

filename myref ’[Ss][Aa][Ll][Ee][Ss]199[0-9].dat’;

Assigning Filerefs with the FILENAME Statement
The most common way to assign a fileref to an external file or device is with the

FILENAME statement. There are several forms of the FILENAME statement,
depending on the type of device you want to access.

FILENAME fileref <device-type> ’external-file’ <host-options>;

FILENAME fileref device-type <’external-file’><host-options>;

Using External Files and Devices 4 Assigning Filerefs with the FILENAME Statement 107

FILENAME fileref CLEAR | _ALL_ CLEAR;

FILENAME fileref LIST | _ALL_ LIST;

FILENAME fileref (“pathname-1” ... “pathname-n”);

FILENAME fileref directory-name;

FILENAME fileref <access-method> ’external-file’ access-information;

fileref
is the name by which you reference the file.

device-type
specifies a device, such as a disk, terminal, printer, pipe, and so on. The
device-type keyword must follow fileref and precede pathname. Table 5.1 on page
108 describes the valid device types. DISK is the default device type.

’external-file’
differs according to device type. Table 5.1 on page 108 shows the information
appropriate to each device. Remember that UNIX filenames are case-sensitive.
See “Specifying Pathnames” on page 105 for more information.

“pathname-n”
are pathnames for the files that you want to access with the same fileref. Use this
form of the FILENAME statement when you want to concatenate filenames.
Concatenating filenames is available only for DISK files, so you do not have to
specify the device-type. Separate the pathnames with either commas or blank
spaces. Enclose each pathname in quotes. Table 4.2 on page 88 shows character
substitutions you can use when specifying a pathname. If the fileref that you are
defining is to be used for input, then you can also use wildcards as described in
“Using Wildcards in Pathnames (Input Only)” on page 105. Remember that UNIX
filenames are case-sensitive.

directory-name
specifies the directory that contains the files that you want to access. For more
information, see “Assigning a Fileref to a Directory (Using Aggregate Syntax)” on
page 111.

host-options
control how the external file is processed. See “FILENAME” on page 237 for an
explanation of these options.

access-method
can be CATALOG, SOCKET, FTP, or URL. Table 5.1 on page 108 describes the
information expected by these access methods.

access-information
differs according to the access method. Table 5.1 on page 108 shows the
information appropriate to each access method.

ALL
refers to all filerefs currently defined. You can use this keyword when you are
listing or clearing filerefs.

CLEAR
clears the specified fileref or, if you specify _ALL_, clears all filerefs that are
currently defined.

Note: When you clear a fileref that is defined by an environment variable, the
variable remains defined but is no longer considered a fileref. You can still reuse
it, either as a fileref or a libref. See “Using Environment Variables to Assign
Filerefs” on page 112 for more information. 4

108 Assigning Filerefs with the FILENAME Statement 4 Chapter 5

LIST
prints to the SAS log the pathname of the specified fileref or, if you specify _ALL_,
lists the definition for all filerefs that are currently defined. Filerefs defined as
environment variables appear only if you have already used those filerefs in a SAS
statement. If you are using the Bourne shell or the Korn shell, the SAS System
cannot determine the name of a preopened file, so it displays the following string
instead of a filename:

<File Descriptor number>

See “Using Environment Variables to Assign Filerefs” on page 112 for more information.

Table 5.1 Device Information in the FILENAME Statement

Device or
Access Method Function External-file

CATALOG references a SAS catalog
as a flat file.

is a valid two-, three-, or four-part SAS catalog name followed by
catalog options needed. Refer to SAS Language Reference: Dictionary
for a description of catalog options.

DISK associates the fileref with
a DISK file.

is either the pathname for a single file, or if you are concatenating
filenames, a list of pathnames separated by blanks or commas and
enclosed in parentheses. The level of specification depends on your
location in the file system. Table 4.2 on page 88 shows character
substitutions that you can use when specifying a UNIX pathname.
See “Using DISK Files” on page 109 for more information.

DUMMY associates a fileref with a
null device.

none. See “Debugging Code With DUMMY Devices” on page 110 for
more information.

EMAIL sends electronic mail to an
address.

is an address and email options. See “Sending Electronic Mail from
Within the SAS System (EMAIL)” on page 116 for more information.

FTP reads or writes to a file
from any machine on a
network that is running
an FTP server.

is the pathname of the external file on the remote machine followed
by FTP options. See “Assigning Filerefs to Files on Other Systems
(FTP and SOCKET access types)” on page 111 and SAS Language
Reference: Dictionary for more information. If you are transferring a
file from the OS/390 operating environment and you want to access
the file by using one of the S370 formats, the file must be of type
RECFM=U before you transfer it to UNIX.

PIPE reads input from or writes
output to a UNIX
command.

is a UNIX command. See “Reading from and Writing to UNIX
Commands (PIPE)” on page 114 and Chapter 6, “Routing Output,” on
page 125 for details.

PLOTTER sends output to a plotter. is a device name and plotter options. See “Using PRTFILE and
PRINT with a Fileref” on page 131and “Using the PRINTTO
Procedure” on page 133 for details.

PRINTER sends output to a printer. is a device name and printer options. See “Sending Output to
PRINTER Devices” on page 110, “Using PRTFILE and PRINT with a
Fileref” on page 131, and “Using the PRINTTO Procedure” on page
133 for details.

Using External Files and Devices 4 Using DISK Files 109

Device or
Access Method Function External-file

SOCKET reads and writes
information over a TCP/IP
socket.

depends on whether the SAS application is a server application or a
client application. In a client application, external-file is the name or
IP address of the host and the TCP/IP port number to connect to
followed by any TCP/IP options. In a server application, it is the port
number to create for listening, followed by the SERVER keyword, and
then any TCP/IP options. See “Assigning Filerefs to Files on Other
Systems (FTP and SOCKET access types)” on page 111 and SAS
Language Reference: Dictionary for details.

TAPE associates a fileref with a
tape.

is the pathname for a tape device. The name specified should be the
name of the special file associated with the tape device. See
“Processing Files on TAPE” on page 121 for more information.

TEMP associates a fileref with an
external file stored in the
WORK data library.

none. See “Using Temporary Files (TEMP Device Type)” on page 110
for more information.

TERMINAL associates a fileref with a
terminal.

is the pathname of a terminal. See “Accessing TERMINAL Devices
Directly” on page 110 for more information.

URL allows you to access
remote files using the
URL of the file.

is the name of the file that you want to read from or write to on a
URL server. The URL must be in one of these forms:
http://hostname/file
http://hostname:portno/file
Refer to SAS Language Reference: Dictionary for more information.

XPRINTER sends output to the
default printer that was
set up through the Printer
Setup dialog.

none. See Chapter 6, “Routing Output,” on page 125 for more
information.

Using DISK Files
The most common use of the FILENAME statement is to access DISK files. The

FILENAME syntax for a DISK file is

FILENAME fileref <DISK> ’pathname’ <options>;

The following FILENAME statement associates the fileref MYFILE with the external
file /users/mydir/myfile, which is stored on a disk device:

filename myfile disk ’/users/mydir/myfile’;

The following FILENAME statement assigns a fileref of PRICES to the file /users/
pat/cars. The FILE statement then refers to the file using the fileref:

filename prices ’/users/pat/cars’;
data current.list;

file prices;
...PUT statements...

run;

See “Concatenating Filenames” on page 111 for more information on using DISK files.

110 Debugging Code With DUMMY Devices 4 Chapter 5

Debugging Code With DUMMY Devices
You can substitute the DUMMY device type for any of the other device types. This

device type serves as a tool for debugging your SAS code without actually reading or
writing to the device. After debugging is complete, replace the DUMMY device name
with the proper device type, and your program will access the specified device type.

The FILENAME syntax for a DUMMY file is

FILENAME fileref DUMMY ’pathname’<options>;

Output to DUMMY devices is discarded.

Sending Output to PRINTER Devices
The PRINTER device type allows you to send output directly to a printer. The

FILENAME syntax to direct a file to a PRINTER is

FILENAME fileref PRINTER ’<printer> <printer-options>’ <options>;

For example, this SAS program sends the output file to the BLDG3 printer:

filename myfile printer ’bldg3’;

data test;
file myfile;
put ’This will appear in bldg3 .’;

run;

See “Using PRTFILE and PRINT with a Fileref” on page 131 and “Using the
PRINTTO Procedure” on page 133 for more information.

Using Temporary Files (TEMP Device Type)
The TEMP device type associates a fileref with a temporary file stored in the same

directory as the WORK data library. (See “WORK Data Library” on page 95.) Using the
TEMP device type enables you to create a file that lasts only as long as the SAS session.

The FILENAME syntax for a TEMP file is

FILENAME fileref TEMP <options>;

For example, this FILENAME statement associates TMP1 with a temporary file:

filename tmp1 temp;

Accessing TERMINAL Devices Directly
To access a terminal directly, use the TERMINAL device type. The FILENAME

syntax to associate a file with a terminal is

FILENAME fileref TERMINAL < ’terminal-pathname’> <options>;

The terminal-pathname must be a pathname of the special file associated with the
terminal. Check with your system administrator for details. Enclose the name in
quotes. If you omit the terminal pathname, the fileref is assigned to your terminal.

For example, this FILENAME statement associates the fileref HERE with your
terminal:

filename here terminal;

Using External Files and Devices 4 Assigning a Fileref to a Directory (Using Aggregate Syntax) 111

The following FILENAME statement associates the fileref THATFILE with another
terminal:

filename thatfile terminal ’/dev/tty3’;

Assigning Filerefs to Files on Other Systems (FTP and SOCKET access
types)

You can access files on other systems in your network by using the SOCKET and
FTP access methods. The forms of the FILENAME statement are

FILENAME fileref FTP ’external-file’ <ftp-options>;

FILENAME fileref SOCKET ’external-file’ <tcpip-options>;

FILENAME fileref SOCKET ’:portno’ SERVER <tcpip-options>;

These access methods are documented in SAS Language Reference: Dictionary.
Under UNIX, the FTP access method supports an additional option:

MACH=’machine’
identifies which entry in the .netrc file should be used to get the username and
password. Consult the UNIX man page for more information on the .netrc file.
You cannot specify the MACH option together with the HOST option in the
FILENAME statement.

The file that you want to transfer must be of type RECFM=U before you transfer it to
UNIX.

CAUTION:
When you use the FTP access method to create a remote file, the UNIX permissions for
that file are set to -rw-rw-rw-, which makes the file world-readable and world-writeable.
See the man page for chmod for information on changing file permissions. 4

Concatenating Filenames
You can concatenate filenames in the FILENAME, %INCLUDE, and INFILE

statements. Concatenating filenames allows you to read those files sequentially.

FILENAME fileref ("pathname-1" ... "pathname-n");

%INCLUDE ’("filename-1" ... "filename-n")’;

%INCLUDE "(’filename-1’ ... ’filename-n’)";

INFILE ’("filename-1" ... "filename-n")’;

INFILE "(’filename-1’ ... ’filename-n’)";

You can enclose the pathnames in single or double quotes and separate them with
commas or blank spaces. You can use the characters shown in Table 4.2 on page 88 and
the wildcards described in “Using Wildcards in Pathnames (Input Only)” on page 105 to
specify the pathnames.

Assigning a Fileref to a Directory (Using Aggregate Syntax)
Aggregate syntax allows you to assign a fileref to a directory and then work with

any file in that directory by specifying its filename in parentheses after the fileref.

112 Assigning a Fileref to Several Directories 4 Chapter 5

FILENAME fileref directory-name;

Aggregate syntax is especially useful when you have to refer to several files in one
directory.

To refer to a file in the directory, specify the fileref followed by the individual
filename in parentheses. For example, you can refer to the file cars.dat in the
directory /users/pat as shown in this example:

filename prices ’/users/pat’;
data current.list;

file prices(cars);
...other SAS statements...

run;

You can also use aggregate syntax with filerefs that have been defined using
environment variables (see “Using Environment Variables to Assign Filerefs” on page
112). For example:

x setenv PRICES /users/pat;
data current.list;

file prices(cars);
...other SAS statements...

run;

Assigning a Fileref to Several Directories
In the FILENAME statement, you can concatenate directory names and use the

fileref to refer to any file within those directories:

FILENAME fileref ("directory-1" ... "directory-n");

When you concatenate directory names, you can use aggregate syntax to refer to a file
in one of the directories. For example, assume that the report.sas file resides in the
directory associated with the MYPROGS environment variable. When the SAS System
executes the following code, it searches for report.sas in the pathnames that are
specified in the FILENAME statement and it executes the program.

filename progs ("$MYPROGS" "/users/mkt/progs");
%inc progs(report);

The SAS System searches the pathnames in the order specified in the FILENAME
statement until

� it finds the first file with the specified name. Even if you use wildcards (see “Using
Wildcards in Pathnames (Input Only)” on page 105) in the filename, SAS matches
only one file.

� it encounters a filename in the list of pathnames that you specified in the
FILENAME statement.

Using Environment Variables to Assign Filerefs

An environment variable can also be used as a fileref to refer to DISK files. The
variable name must be in all uppercase characters, and the variable value must be the
full pathname of the external file; that is, the filename must begin with a slash.

Using External Files and Devices 4 Filerefs Assigned by the SAS System 113

Suppose that you want to read the data file /users/myid/educ.dat, but you want
to refer to it with the INED environment variable. You can define the variable at two
times:

� before you invoke the SAS System. See “Defining Environment Variables” on page
17. For example, in the Korn shell, you use

export INED=/users/myid/educ.dat

� after you invoke the SAS System by using the X statement (see “Executing
Operating System Commands from Your SAS Session” on page 12) and the SAS
setenv command:

x setenv INED /users/myid/educ.dat;

After INED is associated with the file /users/myid/educ.dat, you can use INED as a
fileref to refer to the file in the INFILE statement:

infile ined;

The same method applies if you want to write to an external file. For example, you
can define OUTFILE before you invoke the SAS System:

OUTFILE=/users/myid/scores.dat
export OUTFILE

Then, use the environment variable name as a fileref to refer to the file:

file outfile;

Note: If a variable and a fileref have the same name but refer to different files, the
SAS System uses the fileref. For example, the %INCLUDE statement below refers to
file /users/myid/this_one. 4

filename ABC ’/users/myid/this_one’;
x setenv ABC /users/myid/that_one;
%include ABC;

Filerefs Assigned by the SAS System

Often a command’s arguments or options tell the command what to use for input and
output, but in case they do not, the shell supplies you with three standard files: one for
input (standard input), one for output (standard output), and one for error messages
(standard error). By default, these files are all associated with your terminal: standard
input with your keyboard, and both standard output and standard error with your
terminal’s display. When you invoke the SAS System, it assigns a fileref to each file that
it opens, including the three standard files. SAS assigns the filerefs STDIN, STDOUT,
and STDERR to standard input, standard output, and standard error, respectively.

Each file has an internal file descriptor assigned to it. By default, 0 is the file
descriptor for standard input, 1 is the file descriptor for standard output, and 2 is the
file descriptor for standard error. As other files are opened, they get other file
descriptors. In the Bourne shell and in the Korn shell, you can specify that data be
written to or be read from a file using the file descriptor as described in “File
Descriptors in the Bourne and Korn Shells” on page 114.

114 File Descriptors in the Bourne and Korn Shells 4 Chapter 5

File Descriptors in the Bourne and Korn Shells
If you are using the Bourne shell or the Korn shell, the SAS System assigns filerefs

of the following form to files that have a file descriptor (see “Filerefs Assigned by the
SAS System” on page 113) larger than 2.

FILDESnumber

number is a two-digit representation of the file descriptor. You can use these filerefs in
your SAS applications.

For example, if you invoke SAS with the following command, then the operating
environment opens the file sales_data and assigns file descriptor 4 to it:

sas salespgm 4< sales_data

SAS assigns the fileref FILDES04 to the file and executes the application salespgm.
When the application reads input from FILDES04, it reads the file sales_data. Using
file descriptors as filerefs enables you to use the same application to process data from
different files without changing the application to refer to each file. In the command
that you use to invoke the application, you simply assign the appropriate file descriptor
to the file to be processed.

Reserved Filerefs
The following filerefs are reserved.

DATALINES fileref in the INFILE statement
specifies that input data immediately follow a DATALINES statement. You need
to use INFILE DATALINES only when you want to specify options in the INFILE
statement to read instream data.

LOG fileref in the FILE statement
specifies that output lines produced by PUT statements be written to the SAS log.
LOG is the default destination for output lines.

PRINT fileref in the FILE statement
specifies that output lines produced by PUT statements be written to the same
print file as output produced by SAS procedures.

Reading from and Writing to UNIX Commands (PIPE)
Under UNIX, you can use the FILENAME statement to assign filerefs not only to

external files and I/O devices, but also to a pipe. Pipes enable your SAS application to
receive input from any UNIX command that writes to standard output and to route
output to any UNIX command that reads from standard input. In UNIX commands, the
pipe is represented by a vertical bar (|). For example, to find the number of files in
your directory, you could redirect the output of the ls command through a pipe to the
wc (word count) command by entering

ls | wc -w

The syntax of the FILENAME statement is

FILENAME fileref PIPE ’UNIX-command’ <options>;

Using External Files and Devices 4 Using the Fileref for Reading 115

fileref
is the name by which you reference the pipe from the SAS System.

PIPE
identifies the device-type as a UNIX pipe.

’UNIX-command’
is the name of a UNIX command, executable program, or shell script to which you
want to route output or from which you want to read input. The command(s) must
be enclosed in either double or single quotes.

options
control how the external file is processed. See “FILENAME” on page 237 for an
explanation of these options.

Whether you are using the command as input or output depends on whether you use
the fileref in a reading or writing operation. For example, if the fileref is used in an
INFILE statement, then the SAS System assumes that the input comes from a UNIX
command; if the fileref is used in a FILE statement, then the SAS System assumes that
the output goes to a UNIX command.

Using the Fileref for Reading
When the fileref is used for reading, the specified UNIX command executes, and any

output sent to its standard output or standard error is read through the fileref. In this
case, the standard input of the command is connected to /dev/null.

For example, the following SAS program uses the PIPE device-type keyword to send
the output of the ps (process) command to a SAS DATA step. The resulting SAS data
set contains data about every process currently running the SAS System:

filename ps_list pipe "ps -e|grep ’sas’";
data sasjobs;

infile ps_list;
length process $ 80;
input process $ char80.;

run;
proc print data=sasjobs;
run;

The ps -e command produces a listing of all active processes on the system, including
the name of the command that started the task. In BSD-based UNIX systems, you use
the ps -ax command.

The operating environment uses pipes to send the output from ps to the grep
command, which searches for every occurrence of the string ’sas’. The FILENAME
statement connects the output of the grep command to the fileref PS_LIST. The DATA
step then creates a data set named SASJOBS from the INFILE statement that points to
the input source. The INPUT statement reads the first 80 characters on each input line.

In the next example, the STDIN fileref is used to read input through a pipe into the
SAS command which in turn executes the SAS program. By placing the piping
operation outside the SAS program, the program becomes more general. The program
in the previous example has been changed and stored in file ps.sas:

data sasjobs;
infile stdin;
length process $ 80;
input process $ char80.;

run;
proc print data=sasjobs;

116 Using the Fileref for Writing 4 Chapter 5

run;

To run the program, use pipes to send the output of ps to grep and from grep into the
SAS command:

ps -e|grep ’sas’|sas ps.sas &

The output will be stored in ps.lst; the log in ps.log as described in “The Default
Routings for the SAS Log and Procedure Output” on page 126.

Using the Fileref for Writing
When the fileref is used for writing, the output from the SAS System is read in by

the specified UNIX command, which then executes.
In this example, any data sent to the MAIL fileref are piped to the mail command

and sent to user PAT:

filename mail pipe ’mail pat’;

Consider this FILENAME statement:

filename letterq pipe ’remsh alpha lp -dbldga3’;

Any data sent to the LETTERQ fileref are passed to the UNIX command, which starts a
remote shell on the machine named ALPHA.* The shell then prints the LETTERQ
output on the printer identified by the destination BLDGA3. Any messages produced by
the lp command are sent to the SAS log.

Sending Electronic Mail from Within the SAS System (EMAIL)

The SAS System lets you send electronic mail using SAS functions in a DATA step or
in SCL. Sending e-mail from within the SAS System allows you to

� use the logic of the DATA step or SCL to subset e-mail distribution based on a
large data set of e-mail addresses.

� send e-mail automatically upon completion of a SAS program that you submitted
for batch processing.

� direct output through e-mail based on the results of processing.

� send e-mail messages from within a SAS/AF frame application, customizing the
user interface.

Initializing Electronic Mail
Because of the wide range of e-mail programs available, the SAS System sends all

mail through an external shell script. The SAS System provides two scripts, located in
!SASROOT/utilities/bin:

sasmailer
does not support aliases or attachments.

sasm.elm.mime
supports aliases using ELM and attachments using MIME.

* The form of the command that starts a remote shell varies among the various UNIX operating systems.

Using External Files and Devices 4 Syntax of the FILENAME Statement for Electronic Mail 117

Note: You or your system administrator will probably have to customize these
scripts before you can use them with your specific e-mail program. 4

Specify the name of the script you will be using by setting the EMAILSYS system
option. You can specify the EMAILSYS system option in the CONFIG.SAS file or when
invoking your SAS session:

-EMAILSYS name-of-script

Using the DATA Step or SCL to Send Electronic Mail
In general, a DATA step or SCL code that sends electronic mail has the following

components:

� a FILENAME statement with the EMAIL device-type keyword

� options specified on the FILENAME or FILE statements indicating the e-mail
recipients, subject, and any attached files

� PUT statements that contain the body of the message

� PUT statements that contain special e-mail directives (of the form !EM_directive!)
that can override the e-mail attributes (TO, CC, SUBJECT, ATTACH) or perform
actions (such as SEND, ABORT, and start a NEWMSG).

Syntax of the FILENAME Statement for Electronic Mail
To send electronic mail from a DATA step or SCL, issue a FILENAME statement of

the following form:

FILENAME fileref EMAIL ’address’ <email-options>;

The FILENAME statement accepts the following email-options:

fileref
is a valid fileref.

’address’
is the destination e-mail address of the user to which you want to send e-mail. You
must specify an address here, but you can override its value with the TO e-mail
option.

email-options
can be any of the following:

TO=to-address
specifies the primary recipients of the electronic mail. If an address contains
more than one word, enclose it in single quotes. To specify more than one
address, enclose the group of addresses in parentheses and each address in
single quotes. For example, to=’joe@somplace.org’ and
to=(’joe@smplc.org’ ’jane@diffplc.org’) are valid TO values.

CC=cc-address
specifies the recipients you want to receive a copy of the electronic mail. If an
address contains more than one word, enclose it in single quotes. To specify
more than one address, enclose the group of addresses in parentheses and
each address in single quotes. For example, cc=’joe@somplace.org’ and
cc=(’joe@smplc.org’ ’jane@diffplc.org’) are valid CC values.

118 Syntax of the FILENAME Statement for Electronic Mail 4 Chapter 5

SUBJECT=’subject’
specifies the subject of the message. If the subject text is longer than one
word, enclose it in single quotes. For example, subject=Sales and
subject=’June Report’ are valid subjects. Any subject not enclosed in
quotes is converted to upper case.

ATTACH=’pathname’
specifies the full pathname of one or more files to attach to the message.
Enclose pathname in single quotes. To attach more than one file, enclose the
group of file names in parentheses. For example, attach=’opinion.txt’
and attach=(’june98.txt’ ’july98.txt’) are valid file attachments.

Note: Not all external scripts support file attachments or all types of file
attachments. Scripts that do not accept attachments should not send mail if
an attachment is attempted. Otherwise, the message could say "here’s the
graph you wanted," but the graph would not be included. 4

You can also specify the email-options in the FILE statement inside the DATA step.
Options that you specify in the FILE statement override any corresponding options that
you specified in the FILENAME statement.

In your DATA step, after using the FILE statement to define your e-mail fileref as
the output destination, use PUT statements to define the body of the message.

You can also use PUT statements to specify e-mail directives that change the
attributes of your electronic message or perform actions with it. Specify only one
directive in each PUT statement; each PUT statement can contain only the text
associated with the directive it specifies.

The directives that change the attributes of your message are

!EM_TO! addresses
Replace the current primary recipient addresses with addresses. In the PUT
statement, specify addresses without single quotes.

!EM_CC! addresses
Replace the current copied recipient addresses with addresses. In the PUT
statement, specify addresses without single quotes.

!EM_SUBJECT! subject
Replace the current subject of the message with subject.

!EM_ATTACH! pathname
Replace the names of any attached files with pathname.

The directives that perform actions are

!EM_SEND!
Sends the message with the current attributes. By default, the message is
automatically sent at the end of the DATA step. If you use this directive, the SAS
System sends the message when it encounters the directive, and again at the end
of the DATA step.

!EM_ABORT!
Aborts the current message. You can use this directive to stop the SAS System
from automatically sending the message at the end of the DATA step.

!EM_NEWMSG!
Clears all attributes of the current message, including TO, CC, SUBJECT,
ATTACH, and the message body.

Using External Files and Devices 4 Example: Sending E-Mail from the DATA Step 119

Example: Sending E-Mail from the DATA Step

Suppose that you want to share a copy of your CONFIG.SAS file with your coworker
Jim, whose user ID is JBrown. If your e-mail program handles alias names and
attachments, you could send it by submitting the following DATA step:

filename mymail email ’JBrown’
subject=’My CONFIG.SAS file’
attach=’config.sas’;

data _null_;
file mymail;
put ’Jim,’;
put ’This is my CONFIG.SAS file.’;
put ’I think you might like the

new options I added.’;
run;

The following example sends a message and two attached files to multiple recipients.
It specifies the e-mail options in the FILE statement instead of the FILENAME
statement:

filename outbox email ’ron@acme.com’;

data _null_;
file outbox

to=(’ron@acme.com’ ’lisa@acme.com’)
/* Overrides value in */
/* filename statement */

cc=(’margaret@yourcomp.com’
’lenny@laverne.abc.com’)

subject=’My SAS output’
attach=(’results.out’ ’code.sas’)
;

put ’Folks,’;
put ’Attached is my output from the

SAS program I ran last night.’;
put ’It worked great!’;

run;

You can use conditional logic in the DATA step to send multiple messages and control
which recipients get which message. For example, suppose you want to send
customized reports to members of two different departments. If your e-mail program
handles alias names and attachments, your DATA step might look like the following:

filename reports email ’Jim’;

data _null_;
file reports;
infile cards eof=lastobs;
length name dept $ 21;
input name dept;
put ’!EM_TO!’ name;

/* Assign the TO attribute */

120 Example: Sending E-Mail Using SCL Code 4 Chapter 5

put ’!EM_SUBJECT! Report for ’ dept;
/* Assign the SUBJECT attribute */

put name ’,’;
put ’Here is the latest report for ’ dept ’.’;
if dept=’marketing’ then

put ’!EM_ATTACH! mktrept.txt’;
else

/* ATTACH the appropriate report */

put ’!EM_ATTACH! devrept.txt’;
put ’!EM_SEND!’;

/* Send the message */

put ’!EM_NEWMSG!’;
/* Clear the message attributes */

return;
lastobs: put ’!EM_ABORT!’;

/* Abort the message before the */
/* RUN statement causes it to */
/* be sent again.

datalines;
Susan marketing
Jim marketing
Rita development
Herb development
;
run;

The resulting e-mail message and its attachments are dependent on the department
to which the recipient belongs.

Note: You must use the !EM_NEWMSG! directive to clear the message attributes
between recipients. The !EM_ABORT! directive prevents the message from being
automatically sent at the end of the DATA step. 4

Example: Sending E-Mail Using SCL Code
The following example is the SCL code behind a frame entry design for e-mail. The

frame entry includes several text entry fields that let the user enter information:

mailto the user ID to send mail to

copyto the user ID to copy (CC) the mail to

attach the name of a file to attach

subject the subject of the mail

line1 the text of the message

The frame entry also contains a pushbutton called SEND that causes this SCL code
(marked by the send: label) to execute.

send:

/* set up a fileref */

Using External Files and Devices 4 Processing Files on TAPE 121

rc = filename(’mailit’,’userid’,’email’);

/* if the fileref was successfully set up
open the file to write to */

if rc = 0 then do;
fid = fopen(’mailit’,’o’);
if fid > 0 then do;

/* fput statements are used to
implement writing the
mail and the components such as
subject, who to mail to, etc. */

fputrc1 = fput(fid,line1);
rc = fwrite(fid);

fputrc2 = fput(fid,’!EM_TO! ’||mailto);
rc = fwrite(fid);
fputrc3 = fput(fid,’!EM_CC! ’||copyto);
rc = fwrite(fid);

fputrc4 = fput(fid,’!EM_ATTACH! ’||attach);
rc = fwrite(fid);
fputrc5 = fput(fid,’!EM_SUBJECT! ’||subject);
rc = fwrite(fid);

closerc = fclose(fid);
end;

end;
return;

cancel:
call execcmd(’end’);

return;

Processing Files on TAPE

Tape devices are inherently slow and should be used on a regular basis only for
archiving files or for transferring data from one system to another.

There are four UNIX commands that are frequently used to process tape files on
UNIX:

mt positions the tape (winds forward and rewinds). On AIX, this
command is tctl.

dd converts, reblocks, translates, and copies files.

cat concatenates, copies, and prints files.

tar saves and restores archive files.

remsh connects to the specified host and executes the specified command.

122 Using the TAPE Device Type 4 Chapter 5

For a complete description of these commands, refer to the man pages.
In addition, you will almost always need to use a no-rewind device and the SAS

system option TAPECLOSE=LEAVE to get the results you want. The example in this
section assume the use of a no-rewind device and TAPECLOSE=LEAVE.

You can use either the TAPE device type or the PIPE device type to process tape files.

Using the TAPE Device Type
To use the TAPE device type, enter the FILENAME statement as follows:

FILENAME fileref TAPE ’tape-device-pathname’ <options>;

The tape-device-pathname is the pathname of the special file associated with the tape
device. Check with your system administrator for details. Enclose the name in quotes.

For example, this FILENAME statement associates YR1999 with a file stored on a
tape that is mounted on device /dev/tp0:

filename yr1999 tape ’/dev/tp0’;

Using the PIPE Device Type
You can also use the PIPE device type together with UNIX dd command to process

the tape:

FILENAME fileref PIPE ’UNIX-commands’;

UNIX-commands are the commands needed to process the tape.
Using the PIPE device type and the dd command can process the tape more

efficiently than the TAPE device type, and it allows you to use remote tape drives.
However, using UNIX commands in your application means that the application will
have to be modifed if it is ported to a non-UNIX environment.

For example, the following DATA step writes an external file to tape:

options tapeclose=leave;
x ’mt -t /dev/rmt/0mn rewind’;
filename outtape pipe ’dd of=/dev/rmt/0mn 2> /dev/null’;
data _null_;

file outtape;
put ’1 one’;
put ’2 two’;
put ’3 three’;
put ’4 four’;
put ’5 five’;

run;

The following DATA step reads the file from tape:

options tapeclose=leave;
x ’mt -t /dev/rmt/0mn rewind’;
filename intape pipe ’dd if=/dev/rmt/0mn 2> /dev/null’;
data numbers;

infile intape pad;
input digit word $8.;

run;

If the tape drive that you want to access is a remote tape drive, you can access the
remote tape drive by adding remsh machine-name to the X and FILENAME

Using External Files and Devices 4 Example: Multi-volume, Standard Label Tapes 123

statements. For example, if the remote machine name is wizard, then you could read
and write tape files on wizard by modifiying the X and FILENAME statements as
follows:

x ’remsh wizard mt -t /dev/rmt/0mn rewind’;
filename intape pipe ’remsh wizard \

dd if=/dev/rmt/0mn 2> /dev/null’;

Working with External Files Created on the Mainframe
There are three main points to remember when dealing with tapes on UNIX that

were created on a mainframe:

� UNIX does not support IBM standard label tapes. IBM standard label tapes
contain user data files and labels, which themselves are files on the tape. To
process the user data files on these tapes, use a no-rewind device (such as /dev/
rmt/0mn) and the mt command with the fsf count subcommand to position the
tape to the desired user data file. The formula for calculating count is

count = (3 x user_data_file_number) - 2

� UNIX does not support multi-volume tapes. To process multi-volume tapes on
UNIX, the contents of each tape must be copied to disk using the dd command.
After all of the tapes have been unloaded, you can use the cat command to
concatenate all of the pieces in the correct order. You can then process the
concatenated file on disk.

� You must know the DCB characteristics of the file. The records in files that are
created on a mainframe are not delimited with end-of-line characters, so you must
specify the original DCB parameters on the INFILE or FILENAME statement. In
the INFILE statement, specify the record length, record format, and block size with
the LRECL, RECFM, and BLKSIZE host options. In the FILENAME statement, if
you use the PIPE device-type and the dd command, you must also specify the
block size with the ibs subcommand. For more information about host options on
the INFILE statement, see “INFILE” on page 242. For more information about the
ibs subcommand, refer to the man page for the dd command.

Example: Multi-volume, Standard Label Tapes
Suppose that you are given a two-reel, multi-volume, standard label tape set

containing a mainframe external file and told that the record length is 7 and the record
format is fixed. You will need to unload the data portion of each tape into disk files,
concatenate the two disk files, and process the resultant file.

Make sure that the first tape is in the tape drive, then use the mt command to rewind
the tape, skip over the label file, and position the tape at the beginning of the user data
file. In this case, the user data file that you want to access is the first (and only) user
data file on the tape. To skip over the label and position the tape at the beginning of
the user data file, use the fsf count subcommand. Using the formula in “Working
with External Files Created on the Mainframe” on page 123, the fsf count value is 1.

mt -t /dev/rmt/0mn rewind
mt -t /dev/rmt/0mn fsf 1
dd if=/dev/rmt/0mn of=/tmp/tape1 ibs=7

Repeat this process with the second tape, then concatenate the two disk files into one
file.

124 Example: Multi-volume, Standard Label Tapes 4 Chapter 5

mt -t /dev/rmt/0mn rewind
mt -t /dev/rmt/0mn fsf 1
dd if=/dev/rmt/0mn of=/tmp/tape2 ibs=7

cat /tmp/file1 /tmp/file2 > /tmp/ebcdic.numbers

You can then use the following DATA step to refer to the concatenated file (/tmp/
ebcdic.numbers) and to convert the data using the appropriate EBCDIC informats:

filename ibmfile ’/tmp/ebcdic.numbers’;
data numbers;

infile ibmfile lrecl=7 recfm=f;
length digit 8 temp $ 1 word $ 6;
input temp $ebcdic1. word $ebcdic6.;
digit=input(temp,8.);
drop temp;

run;

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for UNIX Environments, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Companion for UNIX Environments, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–502–7
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

