
207

C H A P T E R

13
Informats

Informats Under UNIX 207

Informats Under UNIX
This chapter describes SAS informats that have behavior or syntax this is specific to

UNIX environments. Each informat description includes a brief “UNIX specifics”
section that tells which aspect of the informat is specific to UNIX. All of these informats
are described in both this documentation and in SAS Language Reference: Dictionary.

HEXw. informat

Converts hexadecimal positive binary values to fixed- or floating-point binary

Numeric

Width range: 1 to 16
Default width: 8
UNIX specifics: floating-point representation

Details
The HEXw. informat converts the hexadecimal representation of positive binary
numbers to real floating-point binary values. The width value of the HEXw. informat
determines whether the input represents an integer (fixed-point) or real (floating-point)
binary number. When you specify a width of 1 through 15, the informat interprets the
input hexadecimal as an integer binary number. When your specify 16 for the with
value, the informat interprets the input hexadecimal as a floating-point value.

For more details, see “Reading and Writing Binary Data” on page 159 .

$HEXw. informat

Converts hexadecimal data to character data

Character

208 IBw.d informat 4 Chapter 13

Width range: 1 to 32767
Default width: 2
UNIX specifics: values are interpreted as ASCII values

Details
The $HEXw. informat converts every two digits of hexadecimal data into one byte of
character data. Use the $HEXw. informat to encode hexadecimal values into a
character variable when your input data is limited to printable characters. The SAS
System under UNIX interprets values that are read with this informat as ASCII values.

IBw.d informat

Reads integer binary (fixed-point) values

Numeric

Width range: 1 to 8
Default width: 4
Decimal range: 0 to 10
UNIX specifics: byte values

Details
The IBw.d informat reads fixed-point binary values. For integer binary data, the
high-order bit is the value’s sign: 0 for positive values, 1 for negative. Negative values
are represented in two’s-complement notation. If the informat includes a d value, the
data value is divided by 10d.

For more details, see “Reading and Writing Binary Data” on page 159 .

PDw.d informat

Reads packed decimal data

Numeric

Width range: 1 to 16
Default width: 1
Decimal range: 0 to 31
UNIX specifics: data representation

Details
The PDw.d informat reads packed decimal data. Although it is usually impossible to
type in packed decimal data directly from a console, many programs write packed
decimal data.

Informats 4 RBw.d informat 209

Each byte contains two digits in packed decimal data. The value’s sign is the first
byte. Because the entire first byte is used for the sign, you should specify at least a
width of 2.

For more details, see “Reading and Writing Binary Data” on page 159 .

PIBw.d informat

Reads positive integer binary (fixed-point) values

Numeric

Width range: 1 to 8
Default width: 1
Decimal range: 0 to 10
UNIX specifics: byte order

Details
The PIBw.d informat reads integer binary (fixed-point) values. Positive integer binary
values are the same as integer binary (see “IBw.d informat” on page 208), except that all
values are treated as positive. Thus, the high-order bit is part of the value rather than
the value’s sign. If the informat includes a d value, the data value is divided by 10d.

For more details, see “Reading and Writing Binary Data” on page 159 .

RBw.d informat

Reads real binary (floating-point) data

Numeric

Width range: 2 to 8
Default width: 4
Decimal range: 0 to 10
UNIX specifics: floating-point representation; supports single-precision numbers only for
those applications that truncate numeric data

Details
The RBw.d informat reads numeric data that are stored in real binary (floating-point)
notation. The SAS System stores all numeric values in floating-point.

It is usually impossible to type in floating-point binary data directly from a console,
but many programs write floating-point binary data. Use caution if you are using the
RBw.d informat to read floating-point data created by programs other than the SAS
System because the RBw.d informat is designed to read only double-precision data.

All UNIX systems that are currently supported by the SAS System use the IEEE
standard for floating-point representation. This representation supports both
single-precision and double-precision floating-point numbers. Double-precision

210 RBw.d informat 4 Chapter 13

representation has more bytes of precision, and the data within the representation is
interpreted differently. For example, for single-precision, the value of 1 in hexadecimal
representation is 3F800000. For double-precision, the hexadecimal representation of 1
is 3FF0000000000000.

The RBw.d informat is designed to read only double-precision data. It supports
widths less than 8 only for applications that truncate numeric data for space-saving
purposes. RB4. does not expect a single-precision floating-point number; it expects a
double-precision number truncated to four bytes. Using the example of 1 above, RB4.
expects 3FF00000 to be the hexadecimal representation of the four bytes of data to be
interpreted as 1. If given 3F800000, the single-precision value of 1, a different number
results.

External programs such as those written in C and FORTRAN can only produce
single- or double-precision floating-point numbers. No length other than four or eight
bytes is allowed. RBw.d allows a length of 3 through 8, depending on the storage you
need to save.

The FLOAT4. informat has been created to read a single-precision floating-point
number. If you read 3F800000 with FLOAT4., the result is a value of 1.

To read data created by a C or FORTRAN program, you need to decide on the proper
informat to use. If the floating-point numbers require an eight-byte width, you should
use the RB8. informat. If the floating point numbers require a four-byte width, you
should use FLOAT4.

Consider this C example:

#include <stdio.h>

main() {

FILE *fp;
float x[3];

fp = fopen("test.dat","wb");
x[0] = 1; x[1] = 2; x[2] = 3;

fwrite((char *)x,sizeof(float),3,fp);
fclose(fp);
}

The file test.dat contains 3f8000004000000040400000 in hexadecimal
representation.

The following statements read test.dat correctly:

data _null_;
infile ’test.dat’;
input (x y z) (float4.);

run;

Also available is the IEEEw.d informat, which reads IEEE floating-point data. On
UNIX systems, IEEE8. is equivalent to RB8., and IEEE4. is equivalent to FLOAT4.
IEEEw.d can be used on any platform, as long as the original IEEE binary data
originated on a platform that uses the IEEE representation.

For more details, see “Reading and Writing Binary Data” on page 159 .

Informats 4 ZDw.d informat 211

ZDw.d informat

Reads zoned decimal data

Numeric

Width range: 1 to 32
Default width: 1
UNIX specifics: last byte includes the sign; data representation

Details
The ZDw.d informat reads zoned decimal data; it is also known as overprint trailing
numeric format. Under UNIX, the last byte of the field includes the sign along with the
last digit. The conversion table for the last byte is as follows:

Digit ASCII Character Digit ASCII Character

0 { -0 }

1 A -1 J

2 B -2 K

3 C -3 L

4 D -4 M

5 E -5 N

6 F -6 O

7 G -7 P

8 H -8 Q

9 I -9 R

For more details, see “ZDw.d format” on page 196 and “Reading and Writing Binary
Data” on page 159 .

212 ZDw.d informat 4 Chapter 13

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for UNIX Environments, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Companion for UNIX Environments, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–502–7
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

