
123

C H A P T E R

5
Using SAS Files

Introduction 123
SAS Data Libraries 124

Accessing SAS Files 124

Advantages of Using Librefs Rather than OpenVMS Logical Names 124

Assigning Librefs 124

Using the LIBNAME Statement 125
Using the LIBNAME Function 125

Using the LIBASSIGN Command 125

Using the SAS Explorer Window 125

Multiple SAS Data Libraries in a Single Directory 126

Multiple Librefs for a Single SAS Data Library 126

Assigning OpenVMS Logical Names 126
Using an OpenVMS Logical Name as a Libref 127

Using an OpenVMS Logical Name in the LIBNAME Statement 127

Using a Search-String Logical Name to Concatenate SAS Data Libraries 128

Concealed Logical Names 128

Accessing Files in Concatenated SAS Data Libraries 129
Accessing Data Sets That Have the Same Name 129

How SAS Assigns an Engine When No Engine Is Specified 130

Clearing Librefs 130

Listing Your Current Librefs 131

Estimating the Size of a SAS Data Set 131
Using the CONTENTS Procedure to Determine Page Size 131

Sharing Data between OpenVMS Platforms 133

Multiuser Access to SAS Files 133

Accessing SAS Files on Tape 134

DCL Commands for Tape Access 134

Accessing Multivolume Tapes 135
Reading and Writing SAS Files on Tape 135

Notes on Tape Usage 136

Generation Data Sets 137

Introduction
This section discusses the concept of a SAS data library in the OpenVMS operating

environment, sharing data between OpenVMS platforms, and accessing SAS files
(including assigning librefs and logical names) on tape.

124 SAS Data Libraries 4 Chapter 5

SAS Data Libraries
An OpenVMS directory can contain many different types of files, including SAS files.

All SAS files in a directory that are accessed by the same engine belong to a SAS data
library. Thus, under OpenVMS, a SAS data library is a logical concept rather than a
physical one.

Any OpenVMS directory can become a SAS data library when SAS files are stored in
that directory; a single OpenVMS directory can contain several SAS data libraries. (See
“Multiple SAS Data Libraries in a Single Directory” on page 126.) Also, under
OpenVMS, several directories can constitute a single SAS data library if a search-string
logical name is assigned to the series of directories. In Version 8, you can have
concatenated libraries using a LIBNAME statement or LIBNAME function. (See “Using
a Search-String Logical Name to Concatenate SAS Data Libraries” on page 128.)

Accessing SAS Files
In order to access an individual SAS file in Version 6 of the SAS System, you had to

first assign a libref or an OpenVMS logical name to the SAS data library. You could
then refer to individual SAS files as libref.member (or logical-name.member), where
member is the filename of the individual SAS file.

In Version 8, you can still use librefs or logical names as a convenient way of
referring to a SAS data library in SAS programs. However, you can also fully specify
individual SAS files in most SAS statements and procedures that access SAS files. If
portable SAS code is an issue, then using librefs is the recommended method.

Advantages of Using Librefs Rather than OpenVMS Logical Names
Although you can use an OpenVMS logical name to identify a SAS data library to the

SAS System, you may want to use a SAS libref instead for the following reasons:
� You cannot assign an engine nor specify any engine/host options with the DCL

DEFINE command. SAS uses the procedure described in “How SAS Assigns an
Engine When No Engine Is Specified” on page 130 to determine which engine to
use. However, it is more efficient to specify an engine explicitly in a LIBNAME
statement. Also, the following SAS engines must be specified in a LIBNAME
statement because they are not assigned by default: XPORT, SPSS, OSIRIS, and
REMOTE.

� OpenVMS logical names are not included in the list that is produced by the
LIBNAME LIST statement until after they have been used as librefs in your SAS
session. (See “Listing Your Current Librefs” on page 131.)

Assigning Librefs
You can use any of the following methods to assign a SAS libref:
� the LIBNAME statement
� the LIBNAME function
� the LIBASSIGN command
� the SAS Explorer window.

Using SAS Files 4 Using the SAS Explorer Window 125

A libref assignment remains in effect for the duration of the SAS job, session, or
process unless you either clear the libref or use the same libref in another LIBNAME
statement or LIBNAME function.

If you assign a libref from a SAS process, that libref is valid only within that SAS
process.

If you clear a libref from within a SAS process, that libref is not cleared from other
SAS processes. For information about clearing librefs, see “Clearing Librefs” on page
130.

Using the LIBNAME Statement
The LIBNAME statement identifies a SAS data library to the SAS System, associates

an engine with the library, allows you to specify options for the library, and assigns a
libref to it. For details about LIBNAME statement syntax, see “LIBNAME” on page 378.

Using the LIBNAME Function
The LIBNAME function takes the same arguments and options as the LIBNAME

statement. For more information about the LIBNAME function, see “LIBNAME” on
page 302.

Using the LIBASSIGN Command
Perform the following steps to assign a libref using the LIBASSIGN command:

1 Issue the LIBASSIGN command in the command window. The New Library dialog
box opens.

2 Specify the libref in the Name: field.

3 Specify an engine for the libref in the Engine: field by selecting the default
engine or another engine from the drop-down menu. Depending on the engine that
you specify, the fields in the Library Information: area may change.

4 Click on the Enable at startup box to assign this libref when you invoke SAS.
5 Specify the necessary information for the desired SAS data library in the Library

Information: area. Depending on the engine selected, there may or may not be
a Path:field available for input.

6 Specify LIBNAME options in the Options: field. These options can be specific to
your host or engine, including options that are specific to a SAS engine that
accesses another software vendor’s relational database system.

7 Select OK .

Using the SAS Explorer Window
Perform the following steps to assign a libref from the SAS Explorer window:

1 From the File pull-down menu, select New when the Libraries node in the tree
structure is active. The New dialog box opens.

2 Select Library, and then select OK . The New Library dialog box opens.

3 Fill in the fields in the New Library dialog box, described in “Using the
LIBASSIGN Command” on page 125.

4 Select OK .

126 Multiple SAS Data Libraries in a Single Directory 4 Chapter 5

Multiple SAS Data Libraries in a Single Directory
A SAS data library consists of all the SAS files in the same OpenVMS directory (or in

a group of directories—see “Using a Search-String Logical Name to Concatenate SAS
Data Libraries” on page 128) that are accessed by the same engine. If a directory
contains SAS files that are accessed by different engines, then you have more than one
SAS data library in the directory, and you should therefore have a different libref for
each engine-directory combination. (You cannot assign the same libref to more than one
engine-directory combination. The second assignment merely overrides the first
assignment.)

For example, suppose that the directory [MYDIR] contains SAS files that were
created by the V8 engine as well as SAS files that were created by the CONCUR
engine. You could use the following LIBNAME statements to assign different librefs to
the two engines:

libname one v8 ’[mydir]’;
libname two concur ’[mydir]’;

Data sets that are subsequently referenced by the libref ONE are created and
accessed using the V8 engine. Data sets that are referenced by the libref TWO are
created and accessed using the CONCUR engine. You can then concatenate librefs ONE
and TWO and access all files:

libname concat (one two);

Multiple Librefs for a Single SAS Data Library
You can assign multiple librefs to the same SAS data library (or engine-directory

combination), and you can use those librefs interchangeably. For example, suppose that
in two different programs you used different librefs for the same data sets. Later you
develop a new program from parts of the two old programs, or you use the %INCLUDE
statement to include two different programs. In the new program, you could simply
assign the two original librefs to each data library and proceed.

The following LIBNAME statements assign the librefs MYLIB and INLIB to the
same SAS data library:

libname mylib v8 ’[mydir.datasets]’;
libname inlib v8 ’[mydir.datasets]’;

Because the engine names and SAS data library specifications are the same, the
librefs MYLIB and INLIB are identical and interchangeable.

Assigning OpenVMS Logical Names

There are some advantages to using the LIBNAME statement to identify your SAS
data libraries to the SAS System. (See “Advantages of Using Librefs Rather than
OpenVMS Logical Names” on page 124.) However, you can also use an OpenVMS
logical name for the same purpose. To assign an OpenVMS logical name, use the DCL
DEFINE command.

Note: Because you cannot specify an engine name in the DCL DEFINE command,
the SAS System uses the procedure described in “How SAS Assigns an Engine When
No Engine Is Specified” on page 130 to determine which engine to use. 4

Using SAS Files 4 Using an OpenVMS Logical Name in the LIBNAME Statement 127

To use an OpenVMS logical name to refer to a SAS data library, you must define the
logical name either outside the SAS System or from your SAS session using the SAS X
statement. For example, you can assign the OpenVMS logical name MYLIB to the
directory [MYDIR] in either of the following ways:

� $ DEFINE MYLIB [MYDIR]

� $ sas8 x ’define mylib [mydir]’;

Using an OpenVMS Logical Name as a Libref
After assigning an OpenVMS logical name to a directory, you can use the logical

name in a SAS job in the same way you would use a libref. For example, if you
assigned the OpenVMS logical name MYLIB to a SAS data library, you could then use
MYLIB as a libref in a SAS data step:

data mylib.a;
set mylib.b;

run;

Similarly, you could use the logical name as a libref in a SAS procedure:

proc contents data=mylib._all_;
run;

Because the OpenVMS logical name is being used as a SAS name, it must follow the
SAS naming conventions. For details about SAS naming conventions, see SAS
Language Reference: Concepts.

The first time an OpenVMS logical name is used in this manner, SAS assigns it as a
libref for the SAS data library. The logical name is not listed by the LIBNAME LIST
statement until after you have used it in a SAS statement. (See “Listing Your Current
Librefs” on page 131.)

Note: OpenVMS logical names that are defined in a subprocess are not recognized
by the current SAS session. However, OpenVMS logical names that are defined in the
OpenVMS parent process are available for use during the current session. For
information about how to use the X statement or the X command to define an
OpenVMS logical name in the OpenVMS parent process, see “Issuing DCL Commands
during a SAS Session” on page 36. 4

Using an OpenVMS Logical Name in the LIBNAME Statement
Because you cannot specify an engine in the DCL DEFINE command, you may want

to use the LIBNAME statement to specify an engine for a SAS data library to which
you previously assigned an OpenVMS logical name. You can use the logical name in
place of the libref in a LIBNAME statement, as in this example, which associates the
BASE engine with the logical name MAIL:

libname mail base;

Alternatively, if you specify the logical name in place of the SAS-data-library
argument of the LIBNAME statement, then you can associate both a libref and an
engine with the logical name. The following example associates the libref IN and the
BASE engine with the data library that is referred to by the logical name MAIL:

libname in base ’mail’;

You can also use the LIBNAME statement to specify portable library options or
engine/host options for a SAS data library to which you previously assigned an

128 Using a Search-String Logical Name to Concatenate SAS Data Libraries 4 Chapter 5

OpenVMS logical name. The following LIBNAME statement associates the libref MAIL
and the V6TAPE engine with a path that includes the logical name MYDISK. It also
specifies the portable library option ACCESS=:

libname mail v6tape ’mydisk:[mylib]’
access=readonly;

Using a Search-String Logical Name to Concatenate SAS Data Libraries
If you have several directories that you want to use as a single SAS data library, you

can define an OpenVMS search-string logical name to the list of libraries, and then use
that logical name in your SAS programs. The list of libraries can include both
directories and other logicals. For example, the following X statement assigns the
search-string logical name MYSEARCH to the directories [DIR1], [DIR2], [DIR3], and
MYLIB2:

x ’define mysearch [dir1],[dir2],[dir3],mylib2’;

When you reference the data set MYSEARCH.TEST1, the SAS System searches
[DIR1], [DIR2], [DIR3], and then the directory pointed to by MYLIB2 for the TEST1
data set:

data new;
set mysearch.test1;
if total>10;

run;

You could also use a LIBNAME statement to assign the libref INLIBS to this series of
directories. You use the search-string logical name as the SAS-data-library specification:

libname inlibs ’mysearch’;

Files that are opened for input or update are opened from the first directory in which
they are found. Files that are created or opened for output are always created in the
first directory in the search list. For example, if a filename that you specify exists in
both [DIR1] and [DIR3], SAS opens the file that is in [DIR1].

From the SAS Explorer’s New Library dialog box, you can also specify a search-string
logical name to assign a libref. To do this, type the search-string logical name in the
Path: field.

For additional examples of how SAS files in concatenated SAS data libraries are
accessed, see “Accessing Files in Concatenated SAS Data Libraries” on page 129.

For more information about search-string logical names, refer to OpenVMS User’s
Manual.

Concealed Logical Names

By default, SAS translates concealed logical names to their full physical
specifications when they are used in LIBNAME statements. For example, consider the
following definition for the logical name MYDISK:

$ DEFINE/TRANSLATION=CONCEALED -
_$ MYDISK 1DUA100:[MYDISK.]

SAS translates the MYDISK concealed logical name to its full physical specification,
resulting in the following libref definition:

Using SAS Files 4 Accessing Data Sets That Have the Same Name 129

1? LIBNAME MYLIB ’MYDISK:[MYDIRECTORY]’;
Note: Libref MYLIB was successfully assigned
as follows:
Engine: V8
Physical Name: 1DUA100:[MYDISK.MYDIRECTORY]

Note: The EXPANDLNM system option controls whether concealed logical names
are expanded and displayed. Use the NOEXPANDLNM form of this option if you do not
want your concealed logical names to be expanded and displayed. For more
information, see “EXPANDLNM” on page 411. 4

Accessing Files in Concatenated SAS Data Libraries
The SAS System uses a set of rules to determine the order in which concatenated

directories are accessed. The rules differ depending on whether you are opening a SAS
file for input, update, or output:

� When a SAS file is accessed for input or update, the first file found by that name is
the one that is accessed. In the following example, if the data set SPECIES exists
in both the [MYDIR] and [mydir.datasets] directories, the one in the [mydir]
directory is printed:

x ’define mysearch [mydir],[mydir.datasets]’;
libname mylib ’mysearch’;
proc print data=mylib.species;
run;

The same would be true if you used the FSEDIT procedure to open the
SPECIES data set for update.

� When a SAS file is accessed for output, it is always written to the first directory, if
that directory exists. If the first directory does not exist, then an error message is
displayed and SAS stops processing this step, even if a second directory exists. In
the following example, the SAS System writes the SPECIES data set to the first
directory, [mydir]:

x ’define mysearch [mydir], sas$samp:[sasdata]’;
libname mylib ’mysearch’;
data mylib.species;

x=1;
y=2;

run;

If a copy of the SPECIES data set exists in the second directory, it is not
replaced.

Accessing Data Sets That Have the Same Name
If you create a new SAS data set from a data set that has the same name, the DATA

statement uses the output rules and the SET statement uses the input rules. In this
example, the SPECIES data set originally exists only in the second directory,
mydisk:[mydir].

x ’define mysearch sys$disk:[sas],mydisk:[mydir]’;
libname test ’mysearch’;

130 How SAS Assigns an Engine When No Engine Is Specified 4 Chapter 5

data test.species;
set test.species;
if value1=’y’ then

value2=3;
run;

The DATA statement opens SPECIES for output according to the output rules, which
indicate that the SAS System opens a data set in the first of the concatenated
directories (sys$disk:[sas]).

The SET statement opens the existing SPECIES data set in the second
directory(mydisk:[mydir]), according to the input rules. Therefore, the original
SPECIES data set is not updated. After the DATA step is processed, two SPECIES data
sets exist, one in each directory.

How SAS Assigns an Engine When No Engine Is Specified

It is always more efficient to explicitly specify the engine name than to ask the SAS
System to determine which engine to use. To assign an engine name, use a LIBNAME
statement or LIBNAME function, or the LIBASSIGN command in the command
window. If you use the LIBASSIGN command the Default engine—that is, BASE—is
listed in the Engine: field of the New Library dialog box; when you select OK , you
automatically select this default engine.

If you do not assign an engine name, SAS looks at the OpenVMS file types of the files
that exist in the specified directory and uses the following rules to determine which
engine to assign:

� If the directory contains SAS data sets from only one of the native library engines
that are supported, then that engine is assigned to the libref.

� If the directory contains no SAS data sets, then the default engine is assigned to
the libref. The default engine is determined as follows:

� For SAS data libraries on disk, the default engine is determined by the value
of the ENGINE= system option. By default, the ENGINE= system option is
set to V8. However, you can change the value of this system option if you
prefer to use a different engine as the default engine for disk libraries. Other
valid values are V7, V6, and CONCUR. For more information about the
ENGINE= system option, see “ENGINE=” on page 410 and SAS Language
Reference: Dictionary.

� For sequential-format SAS data libraries (either on tape or disk), the default
engine is determined by the value of the SEQENGINE= system option. By
default, SEQENGINE= is set to TAPE. The other valid values are V8TAPE,
V7TAPE, and V6TAPE.

� A directory that contains SAS data sets from more than one engine is called a
mixed-mode library. The SAS System assigns the default engine to mixed-mode
libraries.

Clearing Librefs

To disassociate a libref from a SAS data library, use the following forms of the
LIBNAME statement or the LIBNAME function, where libref is the libref of the data
library that you want to clear:

Using SAS Files 4 Using the CONTENTS Procedure to Determine Page Size 131

LIBNAME statement:

LIBNAME libref <CLEAR>;

LIBNAME function:

LIBNAME(libref)

In both cases, the libref is cleared only if there are no open files that are associated
with that libref, and the libref is cleared only for the SAS process or job from which you
submit the LIBNAME statement or function.

You can also use the SAS Explorer window to clear librefs, as follows:
1 With the tree structure activated, select the libref from the Libraries node.
2 With the cursor on the highlighted libref, click and hold the right mouse button

(MB3).
3 A pop-up menu opens.
4 Select Delete.

Listing Your Current Librefs
As in other operating environments, you can use the following form of the LIBNAME

statement under OpenVMS to list the attributes of all the librefs that are assigned for
your current SAS process:

LIBNAME _ALL_ LIST;

You can also use the SAS Explorer window to see information about your currently
assigned SAS data libraries, as follows:

1 From the tree structure, select Libraries to list all assigned librefs.
2 Select View and then select Details to list attributes of the assigned librefs.

You can also see the information using the Properties dialog box. Select the libref.
With the cursor on the highlighted libref, click and hold the right mouse button (MB3).
A pop-up menu opens. Select Properties.

In both cases, OpenVMS logical names that you have assigned to SAS data libraries
are also listed, but only after you have used them as librefs in your current SAS
process. (See “Using an OpenVMS Logical Name as a Libref” on page 127.)

Estimating the Size of a SAS Data Set
To obtain a rough estimate of how much space you need for a disk-format SAS data

set that was created by the V8 engine, follow these steps:

Note: This procedure is valid only for uncompressed native SAS data files that were
created with the V8 engine. 4

1 Use the CONTENTS procedure to determine the size of each observation. (See
“Using the CONTENTS Procedure to Determine Page Size” on page 131.)

2 Multiply the size of each observation by the number of observations.
3 Add 10 percent for overhead.

Using the CONTENTS Procedure to Determine Page Size
To determine the length of each observation in a Version 8 SAS data set, you can

create a Version 8 SAS data set that contains one observation. Then run the

132 Using the CONTENTS Procedure to Determine Page Size 4 Chapter 5

CONTENTS procedure to determine the observation length. The CONTENTS
procedure displays Engine/Host-Dependent Information, including page size and
the number of observations per page for uncompressed SAS data sets. For example, the
following input produces a SAS data set plus PROC CONTENTS output:

data oranges;
input variety $ flavor texture looks;
total=flavor+texture+looks;
datalines;

navel 9 8 6
;
proc contents data=oranges;
run;

The output is shown in Output 5.1 on page 132.

Output 5.1 CONTENTS Procedure Output

The CONTENTS Procedure

Data Set Name: WORK.ORANGES Observations: 1
Member Type: DATA Variables: 5
Engine: V8 Indexes: 0
Created: 10:54 Friday, May 29, 1999 Observation Length: 40
Last Modified: 10:54 Friday, May 29, 1999 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

−−−−−Engine/Host Dependent Information−−−−−

Data Set Page Size: 8192
Number of Data Set Pages: 1
First Data Page: 1
Max Obs per Page: 203
Obs in First Data Page: 1
Number of Data Set Repairs: 0
File Name: SASDISK:[SASDEMO.SAS$WORK2040F93A]ORANGES.SAS7BDAT
Release Created: 8.00.00P
Host Created: OpenVMS
File Size (bytes): 16384

−−−−−Alphabetic List of Variables and Attributes−−−−−

Variable Type Len Pos
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 flavor Num 8 0
4 looks Num 8 16
3 texture Num 8 8
5 total Num 8 24
1 variety Char 8 32

Using SAS Files 4 Multiuser Access to SAS Files 133

To determine page size, the only values that you need to pay attention to are

Observation Length
is the record size in bytes.

Compressed
has the value NO if records are not compressed, and the value YES if records are
compressed. (If the records are compressed, do not use the procedure given in
“Estimating the Size of a SAS Data Set” on page 131.)

Sharing Data between OpenVMS Platforms
SAS files that were created in an OpenVMS operating environment other than the

one on which the user is currently running are described as nonnative. For example,
data sets that were created on the VAX platform are defined as nonnative when they
are moved to an Alpha platform.

Nonnative data must be converted before it can be accessed. There are two ways to
convert nonnative data:

� convert the data “transparently” between the OpenVMS VAX format and the
OpenVMS Alpha format each time you access the file. This method causes
performance degradation.

� convert the data to the local format one time only. This method is more efficient,
eliminating the need to convert the data each time you access it.

The following is an example of how you can convert a file:

data a;
set b;

run;

This code reads file B, which is in nonnative format, and creates a native version A.
A limitation of the one-time-only conversion is that the OpenVMS VAX platform

supports a minimum numeric variable length of 2 bytes. The OpenVMS Alpha platform
supports a minimum numeric variable length of 3 bytes. Therefore, using this method
to move data from the VAX platform, which supports 2-byte numeric storage, to the
Alpha platform, which supports 3-byte numeric storage, is not permitted. Instead, to
move data from the VAX platform to an Alpha platform, you must use the VAXTOAXP
procedure. Consequently, there is a potential loss of numeric precision when you move
data from a VAX platform to an Alpha platform. For more information, see Chapter 9,
“Data Representation,” on page 199. For more information about the VAXTOAXP
procedure, see “VAXTOAXP” on page 350.

Note: In Version 8, the VAXTOAXP procedure increases VAX numeric variables of
length two to seven characters by one character to minimize loss of precision. 4

Multiuser Access to SAS Files
Under certain circumstances, a SAS file can be accessed by more than one user

concurrently. This feature enables different users, or the same user from different
processes, to access the same SAS file at the same time without conflict. However, to
prevent problems of integrity or data conflict, multiple accesses of data are sometimes
blocked. The following rules summarize the conditions for allowing or disallowing
multiple access to the same SAS file with any engine except the CONCUR engine:

134 Accessing SAS Files on Tape 4 Chapter 5

� If a file is open for input, another user may also open that file for input. The same
process may also open the file for output, but all other access is denied.

� If a file is opened for update, all other access is denied.
� If a file is opened for output, the same process may also open the file for input if

the file previously existed, but all other access is denied.

The one exception to these rules is when an OpenVMS search-string logical name is
used as the physical path of a LIBNAME statement. In this case, when a SAS file is
opened for input, another user may open that file for input. If the file is opened for
update or output, all other access is denied, including access by the same process.

Under OpenVMS, the concurrency engine (CONCUR) allows concurrent read and
write access to native data sets. For details, see “Using the CONCUR Engine” on page
154.

Accessing SAS Files on Tape
This section discusses accessing, reading, and writing SAS files on tape. There are

also some notes on tape usage.

DCL Commands for Tape Access
In order to write to a tape in a SAS job, you can issue the following DCL commands

to allocate the tape drive and mount the appropriate tape volume. You must issue these
commands in the order shown:

$ ALLOCATE tape-device:
$ INITIALIZE tape-device: volume-label
$ MOUNT tape-device: volume-label

Note: If you are writing SAS files to tape with the TAPE engine, you must mount
the tape as a labeled Files-11 tape. A labeled Files-11 tape has header information
preceding each file. An unlabeled, or foreign, tape does not have this header
information. The TAPE engine can process only labeled Files-11 tapes. For more
information about Files-11 tapes, refer to Guide to OpenVMS Files and Devices. 4

CAUTION:
Issue the INITIALIZE command only if you are writing to a tape for the first time. When a
tape is initialized, any files that were previously stored on the tape are no longer
accessible. Therefore, use the ALLOCATE and MOUNT commands when you want to
read from a tape or write additional files to a tape; do not reinitialize the tape. 4

The volume label that you specify in the INITIALIZE command must be used
subsequently in the MOUNT command in order to access the tape. After you have
issued the appropriate commands to access the tape, you must then use the LIBNAME
statement to associate a libref with the tape.

When your SAS job finishes, issue the following commands to release the tape drive
from your terminal session:

$ DISMOUNT tape-device:
$ DEALLOCATE tape-device:

Any of these commands can also be issued in the X statement. However, if you use
the X statement, you must issue the INITIALIZE command before the ALLOCATE
command. The reverse order is not supported when you use the X statement.

Using SAS Files 4 Reading and Writing SAS Files on Tape 135

Accessing Multivolume Tapes
When creating SAS files on multivolume tapes, you must initialize the tapes before

you write the files to the tapes. If you do not initialize the tapes first, the operating
environment will not recognize them as part of the same volume set. When you mount
the first volume of the set, use the following MOUNT command:

$ MOUNT/INITIALIZE=CONTINUATION -

_$ tape-device: label

This command instructs the OpenVMS system to add a continuation number to each
label as it creates the multivolume set. For example, if you have a series of tapes
initialized to MYTAPE and use drive MUA0:, use the following command:

$ MOUNT/INITIALIZE=CONTINUATION MUA0: MYTAPE

When the first volume is filled, the operating environment prompts the operator to
mount MYTA02. The OpenVMS system adds a sequencing number to the tape label. As
tape labels are limited to six characters, the original label, if it exceeds this number,
can be truncated when the continuation number is added.

Reading and Writing SAS Files on Tape
In addition to the appropriate DCL commands, use the LIBNAME statement or the

New Library dialog box to associate a libref with the tape when reading or writing SAS
files. The following is an example of the LIBNAME statement:

libname sample tape ’mua0:’;

Then use the libref SAMPLE in the appropriate SAS statements to refer to the tape.
The following is an example:

data sample.oldstat;
set status;

run;

A libref associated with a tape drive signals that the file to be read or written is in
sequential format.

Note: You can also write SAS files in sequential format on disk if you define the
libref to a disk location, but use the sequential engine (TAPE) in the LIBNAME
statement or in the New Library dialog box. 4

The tape can contain one or more SAS files. When you read or write a file on tape, you
use a two-level name; the first level is a libref that refers to the tape, and the second
level names the SAS file to be read or written. The following is an example of the
LIBNAME statement:

libname mytape ’mua0:’;
data diskds1;

set mytape.ds1;
run;

This program reads a data set with the filename DS1.SAS7SDAT from the tape
referenced by the libref MYTAPE.

You can write SAS files with duplicate names to the same tape. For example, you can
have more than one SAS data set named DS1 on a tape. When you read the data set
named DS1, the first (and possibly the oldest) version of DS1 found on the tape is the
version read. The first version found depends on the current position of the tape.

136 Notes on Tape Usage 4 Chapter 5

Notes on Tape Usage
Use the COPY procedure to copy existing SAS files from disk to tape. The following

is an example:

libname mydisk ’[dir1]’;
libname mytape tape ’mua0:’;
proc copy in=mydisk out=mytape;
run;

This procedure is often simpler to use than the DCL COPY command when moving
SAS files to tape. Also, SAS log notes document the files copied. You can also use the
DCL DIRECTORY command to list the SAS files on a labeled tape after it has been
created.

When you use the DCL COPY command to move sequential format files created on
disk to tape, you must create the files with a page size of 512 bytes and mount the tape
with a block size of 512 bytes. The following example creates a sequential format data
set on disk. It then shows how to copy it to tape and access it from within the SAS
System.

As a first step, create the data set on disk using the sequential engine, with a page
size of 512 bytes. Use the BUFSIZE= data set option to set the page size:

libname seqdisk tape ’[dir]’;
data seqdisk.a(bufsize=512);

... more DATA step statements ...
run;

Now mount the tape with a block size of 512 bytes and copy the file to tape by
issuing the following commands:

$ MOUNT/BLOCKSIZE=512 MUA0: MYTAPE
$ COPY A.SAS7SDAT MYTAPE:

You can now access this data set directly from within the SAS System, as in the
following statements:

libname seq tape ’mua0:’;
proc contents data=seq.a;
run;

If you can, it is far more efficient to create the data set on tape within the SAS
System, using the TAPE engine. Use the DCL COPY command only when you have no
other alternative. The advantage of using the TAPE engine instead of the DCL COPY
command is that when you use the TAPE engine, you can use larger page sizes and
block sizes. This means that I/O is more efficient because you can process the data in
larger chunks.

To convert the data sets currently in disk format to sequential format before using
the COPY command to move them to tape, you can use the following steps:

libname mydisk ’[dir1]’;
libname mytape tape ’[dir2]’;
data mytape.a;

set mydisk.a;
run;

If you store the files on an unlabeled tape, they must be restored to disk before the
SAS System can access them.

Using SAS Files 4 Generation Data Sets 137

Generation Data Sets

Generation data sets are not supported for Version 8 of the SAS System in the
OpenVMS operating environment. The GENMAX= and GENNUM= data set options
described in SAS Language Reference: Dictionary are not supported under OpenVMS.

138 Generation Data Sets 4 Chapter 5

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OpenVMS Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
518 pp.

SAS® Companion for the OpenVMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–526–4
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

