
263

C H A P T E R

13
Formats

SAS Formats under OpenVMS 263
Writing Binary Data 263

SAS Formats under OpenVMS
A SAS format is an instruction or template that the SAS System uses to write data

values. Most SAS formats are described completely in SAS Language Reference:
Dictionary. The formats that are described here have behavior that is specific to the
SAS System under OpenVMS.

Many of the SAS formats that have details that are specific to the OpenVMS
operating environment are used to write binary data. For more information, see
“Writing Binary Data” on page 263.

Writing Binary Data
Different computers store numeric binary data in different forms. IBM 370 and

Hewlett-Packard 9000 computers store bytes in one order. Microcomputers that are
IBM compatible and some computers manufactured by Digital Equipment Corporation
store bytes in a different order called byte-reversed.

Binary data that are stored in one order cannot be read by a computer that stores
binary data in the other order. When you are designing SAS applications, try to
anticipate how your data will be read and choose your formats and informats
accordingly.

The SAS System provides two sets of informats for reading binary data and
corresponding formats for writing binary data.

� The IBw.d, PDw.d, PIBw.d, and RBw.d informats and formats read and write in
native mode, that is, using the byte-ordering system that is standard for the
machine.

� The S370FIBw.d, S370FPDw.d, S370FRBw.d, and S370FPIBw.d informats and
formats read and write according to the IBM 370 standard, regardless of the
native mode of the machine. These informats and formats allow you to write SAS
programs that can be run in any SAS environment, regardless of how numeric
data are stored.

If a SAS program that reads and writes binary data runs on only one type of
machine, you can use the native mode informats and formats. However, if you want to
write SAS programs that can be run on multiple machines using different byte-storage

264 HEXw. 4 Chapter 13

systems, use the IBM 370 formats and informats. The purpose of the IBM 370
informats and formats is to enable you to write SAS programs that can be run in any
SAS environment, no matter what standard you use for storing numeric data.

For example, suppose you have a program that writes data with the PIBw.d format.
You execute the program on a microcomputer so that the data are stored in
byte-reversed mode. Then you run another SAS program on the microcomputer that
uses the PIBw.d informat to read the data. The data are read correctly because both of
the programs are run on the microcomputer using byte-reversed mode. However, you
cannot upload the data to a Hewlett-Packard 9000-series machine and read the data
correctly because they are stored in a form native to the microcomputer but foreign to
the Hewlett-Packard 9000. To avoid this problem, use the S370FPIBw.d format to write
the data; even on the microcomputer, this causes the data to be stored in IBM 370
mode. Then read the data using the S370FPIBw.d informat. Regardless of what type of
machine you use when reading the data, they are read correctly.

HEXw.

Converts real-binary (floating-point) values to hexadecimal values

Language element: format

Category: numeric

Width range: 1 to 16

Default width: 8

Alignment: left

OpenVMS specifics: ASCII character-encoding system

Syntax

HEXw.

w
specifies the width of the output field. When you specify a w value of 1 through 15,
the real binary number is truncated to a fixed-point integer before being converted to
hexadecimal notation. When you specify 16 for the w value, the floating-point value
of the number is used; in other words, the number is not truncated.

Details Each byte requires two columns to represent the corresponding hexadecimal
digits. Under OpenVMS, the hexadecimal format of the number is stored in ASCII
representation. For example, the decimal integer 17 has a hexadecimal value of 11, so
the HEX2. format of 17 is 11.

If HEX16. is specified, the floating-point number is not converted to an integer, and
you receive the hexadecimal representation of the native floating-point representation.
The bytes of the number are printed so that the left-most byte is of the lowest
significance. For more information about OpenVMS floating-point representation, see
Architecture Reference Manual for Alpha and Architecture Reference Manual for VAX.

Formats 4 IBw.d 265

See Also

� Formats: HEXw. in SAS Language Reference: Dictionary and “$HEXw.” on page
265

� Informat: “HEXw.” on page 322

$HEXw.

Converts character values to hexadecimal values

Language element: format
Category: character
Width range: 1 to 32767
Default width: 4
Alignment: left
OpenVMS specifics: ASCII character-encoding system

Syntax
$HEXw.

w
specifies the width of the output field.

Details The $HEXw. format is like the HEXw. format in that it converts a character
value to hexadecimal notation, with each byte requiring two columns. Under
OpenVMS, the $HEXw. format produces hexadecimal representations of ASCII codes
for characters.

See Also

� Formats: $HEXw. in SAS Language Reference: Dictionary and “HEXw.” on page
264

� Informat: “$HEXw.” on page 323

IBw.d

Writes numbers in integer binary (fixed-point) format

Language element: format
Category: numeric
Width range: 1 to 8
Default width: 4
Decimal range: 0 to 10

266 PDw.d 4 Chapter 13

Alignment: left
OpenVMS specifics: twos-complement notation; overflow behavior

Syntax
IBw.d

w
specifies the width of the output field in bytes (not digits).

d
optionally specifies a scaling factor. When you specify a d value, the IBw.d format
multiplies the number by the 10d value, then applies the integer binary format to
that value.

Details Negative values are stored in twos-complement notation. If a noninteger
value is formatted, rounding occurs. If the value to be formatted is too large to fit in a
field of the specified width, then the IBw.d format does the following:

� for positive values, it sets the output to the largest positive number that fits in the
given width

� for negative values, it sets the output to the negative number of greatest
magnitude that fits in the given width.

For more information about OpenVMS native fixed-point values, see Architecture
Reference Manual for Alpha and Architecture Reference Manual for VAX.

Example

If you format the value 300 using the IB1. format, you receive the following value:

127

which is the largest positive value that fits in a byte.

If you format the value -300 using the IB1. format, you receive the following value:

-128

See Also

� Format: IBw.d in SAS Language Reference: Dictionary
� Informat: “IBw.d” on page 323
� “Writing Binary Data” on page 263

PDw.d

Writes values in packed decimal format

Language element: format
Category: numeric

Formats 4 PIBw.d 267

Width range: 1 to 16
Default width: 1
Decimal range: 0 to 10
Alignment: left
OpenVMS specifics: overflow behavior

Syntax
PDw.d

w
specifies the width of the output field in bytes (not digits).

d
optionally specifies a scaling factor. When you specify a d value, the PDw.d format
multiplies the number by the 10d value, then applies the packed decimal format to
that value.

Details Under OpenVMS, if the value to be formatted is too large to fit in a field of
the specified width, then the PDw.d format does the following:

� for positive values, it sets the output to the largest positive number that fits in the
given width

� for negative values, it sets the output to the negative number of greatest
magnitude that fits in the given width.

Example

If you format the value 300 using the PD1. format, you receive the following
hexadecimal string:

’9C’x

which is the packed decimal representation for 9.

If you format the value -300 using the PD1. format, you receive the following
hexadecimal string:

’9D’x

which is the packed decimal representation for -9.

See Also

� Format: PDw.d in SAS Language Reference: Dictionary
� Informat: “PDw.d” on page 324
� “Writing Binary Data” on page 263

PIBw.d

Writes positive integer-binary fixed-point values

268 RBw.d 4 Chapter 13

Language element: format
Category: numeric
Width range: 1 to 8
Default width: 1
Decimal range: 0 to 10
Alignment: left
OpenVMS specifics: overflow behavior

Syntax
PIBw.d

w
specifies the width of the output field in bytes (not digits).

d
optionally specifies a scaling factor. When you specify a d value, the PIBw.d format
multiplies the number by the 10d value, then applies the positive integer binary
format to that value.

Details If the value to be formatted is too large to fit in a field of the specified width,
then this format does the following:

� for positive values, it sets the output to the largest positive number that fits in the
given width

� for negative values, it sets the output to the negative number of greatest
magnitude that fits in the given width.

If a noninteger value is formatted, rounding occurs.
For more information about OpenVMS native fixed-point values, see Architecture

Reference Manual for Alpha and Architecture Reference Manual for VAX.

Example

If you format the value 300 with the PIB1. format, you receive the following value:

255

which is the largest unsigned value that fits in a 1-byte field.

See Also

� Format: PIBw.d in SAS Language Reference: Dictionary
� Informat: “PIBw.d” on page 325
� “Writing Binary Data” on page 263

RBw.d

Writes numeric data in real-binary (floating-point) notation

Formats 4 UICw. 269

Language element: format
Category: numeric
Width range: 2 to 8
Default width: 4
Decimal range: 0 to 10
Alignment: left
OpenVMS specifics: native floating-point representation

Syntax
RBw.d

w
specifies the width of the output field.

d
optionally specifies a scaling factor. When you specify a d value, the RBw.d format
multiplies the number by the 10d value, then applies the real binary format to that
value.

Details Under OpenVMS, the RBw.d format causes floating-point numbers to be
formatted in the native floating-point representation. Numeric data for scientific
calculations are commonly represented in floating-point notation. (The SAS System
stores all numeric values in floating-point notation.) A floating-point value consists of
two parts: a mantissa that gives the value and an exponent that gives the value’s
magnitude.

Real binary is the most efficient format for representing numeric values because the
SAS System already represents numbers this way and no conversion is needed.

For more information about OpenVMS floating-point representation, see Architecture
Reference Manual for Alpha and Architecture Reference Manual for VAX.

See Also

� Format: RBw.d in SAS Language Reference: Dictionary
� Informat: “RBw.d” on page 326
� “Writing Binary Data” on page 263

UICw.

Converts a SAS numeric value to an OpenVMS UIC string

Language element: format
Category: numeric
Width range: 16 to 31
Default width: 31
Alignment: left

270 VMSMSGw. 4 Chapter 13

OpenVMS specifics: All aspects are host-specific

Syntax
UICw.

w
is the width of the output field and must be 16 through 31 (numbers less than 16 or
greater than 31 are invalid). If no w value is specified, then UIC defaults to the
width of the resulting output string.

Details
The UIC value is a 32-bit value, where the upper 16 bits is the group value and the

lower 16 bits is the member value. The UIC values that are displayed as two numbers
are octal numbers. If alphanumeric values exist for the numbers, the alphanumerics
will be displayed. For example:

data_null_;
x=4194377;
put x uic.;
run;

produces

[HOSTVAX,MYIDENT]

A system manager assigns a user identification code (UIC) to each OpenVMS user
and stores the UIC in the user authorization file (UAF). Each UIC consists of a member
identifier and (optionally) a group identifier, enclosed in square brackets, as follows:

[<group-identifier,>member-identifier]

where member-identifier and group-identifier can be either names, numbers, or
hexadecimal representations.

See Also

� Function: “GETQUOTA” on page 298

VMSMSGw.
Writes numeric values as character strings that contain the equivalent OpenVMS message

Language element: format
Category: numeric
Width range: 16 to 200, where w is 16 to 20
Alignment: left
OpenVMS specifics: All aspects are host-specific

Syntax
VMSMSGw.

Formats 4 VMSZNw.d 271

w
specifies the width of the output field.

Details Data formatted using the VMSMSGw. format are ASCII strings.
Symbolic FAO (Formatted ASCII Output) substitution is not performed.

Example

If you format the value 1 using the VMSMSG. format in the following SAS statement:

put rc vmsmsg.;

the result is %SYSTEM-S-NORMAL, which is an ASCII string indicating normal
successful completion.

VMSTIMEF.

Converts a SAS date-time value to an 8-byte binary value in OpenVMS date and time format

Language element: format
Category: date and time
Width range: 8
Default width: 8
Alignment: left
OpenVMS specifics: All aspects are host-specific

Syntax
VMSTIMEF.

Details The VMSTIMEF. format is specific to OpenVMS. You cannot specify a width
with this format; the width is always 8 bytes.

OpenVMS date and time values that are read in with the VMSTIME. informat retain
precision up to 1/100 of a second, even though the SAS System cannot display anything
less than whole seconds. If you later use the VMSTIMEF. format to write out the
date-time value, the precision is retained.

See Also

� Informat: “VMSTIME.” on page 328

VMSZNw.d

Generates a string of ASCII digits

272 VMSZNw.d 4 Chapter 13

Language element: format

Category: numeric

Width range: 1 to 32

Default width: 1

Alignment: left

OpenVMS specifics: All aspects are host-specific

Syntax
VMSZNw.d

w
specifies the width of the output field

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details The VMSZNw.d format is similar to the ZDw.d format. Both generate a
string of ASCII digits, and the last digit is a special character that denotes the
magnitude of the last digit and the sign of the entire number. The difference between
these formats is in the special character that is used for the last digit. The following
table shows the special characters that are used by the VMSZNw.d format.

Desired

Digit

Special

Character

Desired

Digit

Special

Character

0 0 –0 p

1 1 -1 q

2 2 -2 r

3 3 -3 s

4 4 -4 t

5 5 -5 u

6 6 -6 v

7 7 -7 w

8 8 -8 x

9 9 -9 y

Data formatted using the VMSZNw.d format are ASCII strings.
If the value to be formatted is too large to fit in a field of the specified width, then

the VMSZNw.d format does the following:

� for positive values, it sets the output to the largest positive number that fits in the
given width

� for negative values, it sets the output to the negative number of greatest
magnitude that fits in the given width.

Formats 4 VMSZNw.d 273

Examples

Example 1: Using the VMSZNw.d Format in a SAS Statement If you format the value
1234 using the VMSZNw.d format in the following SAS statement:

put i vmszn4.;

the result is 1234, which is an ASCII string.
If you format the value 1234 using the VMSZNw.d format in the following SAS

statement:

put i vmszn5.1;

the result is 12340, which is an ASCII string.
If you format the value 1234 using the VMSZNw.d format in the following SAS

statement:

put i vmszn6.2;

the result is 123400, which is an ASCII string.
If you format the value -1234 using the VMSZNw.d format in the following SAS

statement:

put i vmszn5.;

the result is 123t, which is an ASCII string.

Example 2: Zoned-Numeric Representations If you format the value 300 using the
VMSZNw.d format, you receive the following value:

’9’

which is an ASCII string.
If you format the value -300 using the VMSZNw.d format, you receive the following

value:

’y’

which is an ASCII string that is the zoned-numeric representation of -9.

See Also

� Format: ZDw.d in SAS Language Reference: Dictionary

� Informats: “VMSZNw.d” on page 328 and “ZDw.d” on page 330

274 VMSZNw.d 4 Chapter 13

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OpenVMS Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
518 pp.

SAS® Companion for the OpenVMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–526–4
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

