
275

C H A P T E R

14
Functions and CALL Routines

SAS Functions under OpenVMS 275
Using Terminal-Access Functions 275

SAS CALL Routines under OpenVMS 276

SAS Functions under OpenVMS
A SAS function returns a value from a computation or system operation. Most

functions use arguments that are supplied by the user as input.
Most SAS functions are completely described in SAS Language Reference: Dictionary.

The functions that are described here have syntax or behavior that is specific to the
OpenVMS operating environment.

Using Terminal-Access Functions
In the following sections, a category is listed immediately following the name and

short description of each function. Most of these categories are self-explanatory. For
terminal-access functions, which enable you to get information from and write
information to the terminal, please observe the following caution:

CAUTION:
Do not use the terminal-access functions in the windowing environment. Terminal-access
functions work in the windowing environment, but they can either overwrite the
display or be overwritten by the display. (The REFRESH (CTRL-R) command can be
used to restore your display.) For details about the REFRESH command, see the SAS
online Help. 4

Under OpenVMS, the following SAS functions are terminal-access functions:

SETTERM

TERMIN

TERMOUT

TTCLOSE

TTCONTRL

TTOPEN

TTREAD

TTWRITE

276 SAS CALL Routines under OpenVMS 4 Chapter 14

SAS CALL Routines under OpenVMS

SAS CALL routines are used to alter variable values or perform other system
functions. Most CALL routines are completely described in SAS Language Reference:
Dictionary. The CALL routines that are described here have syntax or behavior that is
specific to the OpenVMS operating environment.

ASCEBC

Converts an input character string from ASCII to EBCDIC

Language element: function

Category: character-string translation

OpenVMS specifics: All aspects are host-specific

Syntax
ASCEBC (in-string)

in-string
is any ASCII string, and can be a character variable, a character literal enclosed in
double quotation marks, or another character expression. The value of in-string is
limited to 200 characters.

Details The return value is the EBCDIC translation of in-string.

BYTE

Returns one character in the ASCII collating sequence

Language element: function

Category: character

OpenVMS specifics: ASCII collating sequence

Syntax
BYTE(n)

n
is an integer representing a specific ASCII character. Under OpenVMS, n can range
from 0 to 255.

Functions and CALL Routines 4 CALL FINDEND 277

Details Because OpenVMS is an ASCII system, the BYTE function returns the nth
character in the ASCII collating sequence.

See Also

� BYTE function in SAS Language Reference: Dictionary

CALL FINDEND

Releases resources that are associated with a directory search

Language element: CALL routine
Category: general purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
CALL FINDEND(context)

context
is the same as the context variable that is used by the FINDFILE function to
maintain the search context between executions of FINDFILE. The context argument
must be initialized before FINDFILE is called. Also, the value of context must not be
manipulated before it is used in the CALL FINDEND routine; if it is, channels and
resources cannot be freed to the process until the process terminates.

Details Like the LIB$FIND_FILE_END Run Time Library Call, the CALL
FINDEND routine releases resources that were associated with a directory search. Use
the CALL FINDEND routine with the FINDFILE function.

Example

In the following example, FINDFILE is used to search the user’s directories for a
filename that matches MYPROG*.SAS. If it finds a file named MYPROG12.SAS, for
example, then FN is set to myprog12.sas. The CALL FINDEND routine is then called
to terminate the directory search and to release the associated resources.

context=0;
fn=findfile("myprog*.sas",context);
do while (fn ^= ’ ’);

put fn;
fn=findfile("myprog*.sas",context);

end;
call findend(context);

278 CALL SYSTEM 4 Chapter 14

See Also

� Function: “FINDFILE” on page 290

CALL SYSTEM

Issues operating environment commands

Language element: CALL routine

Category: special

OpenVMS specifics: Issues DCL commands; some commands execute in a subprocess,
others in the parent process

Syntax
CALL SYSTEM(DCL-command)

DCL-command
can be any of the following under OpenVMS:

� a DCL command enclosed in single or double quotation marks

� an expression whose value is a DCL command

� the name of a character variable whose value is a DCL command.

Details In the windowing environment, a new window is displayed when the
command executes. Any output from the command is displayed (for example, a
directory listing). Select the File menu and click on Exit to remove this window.

Note that some DCL commands execute in the parent OpenVMS process and some
execute in a subprocess. For more information, see “Issuing DCL Commands during a
SAS Session” on page 36.

Comparisons The CALL SYSTEM routine is similar to the X statement, the X
command, the %SYSEXEC macro, and the VMS function; however it can be called
conditionally. In most cases, the X statement, the X command, or the %SYSEXEC
macro are preferable because they require less overhead. However, the CALL SYSTEM
routine can be useful in certain situations because it is executable, and because it
accepts expressions as arguments. The benefit of the CALL SYSTEM routine being
callable is that it is not executed unconditionally at DATA step compile time, whereas
other methods are.

Example

The following is an example of the CALL SYSTEM routine:

data _null_;
call system(’define mylib [mydir.datasets]’);

run;

Functions and CALL Routines 4 COLLATE 279

See Also

� CALL SYSTEM routine in SAS Language Reference: Dictionary

� “Issuing DCL Commands during a SAS Session” on page 36

� Command: “X” on page 238

� Function: “VMS” on page 318

� Statement: “X” on page 383

� %SYSGET macro in “Macro Functions” on page 464

COLLATE

Generates an ASCII collating sequence character string

Language element: function

Category: character

OpenVMS specifics: ASCII collating sequence

Syntax
COLLATE(start-position< ,end-position>) | (start-position< ,,length>)

start-position
specifies the ASCII character where the collating sequence is to begin.

end-position
specifies the ASCII character where the collating sequence is to end.

length
specifies the number of characters in the returned string.

Details The COLLATE function returns a string of ASCII characters, which can
range in value from 0 to 255. The string returned by the COLLATE function begins
with the ASCII character specified by start-position. (Characters 128 to 255 are usually
special control characters such as special fonts, but the COLLATE function returns
them.) If end-position is specified, the string returned by the COLLATE function
contains all the ASCII characters between start-position and end-position. If length is
specified instead of end-position, then the COLLATE function returns a string of length.
The returned string ends, or truncates, with the character having the value 255 if you
request a string length that contains characters exceeding this value.

If you specify both end-position and length, the COLLATE function ignores length. If
you request a string longer than the remainder of the sequence, COLLATE returns a
string through the end of the sequence.

Unless you assign the return value of the COLLATE function to a variable with a
defined length of less than 200, the ASCII collating sequence string is padded with
blanks to a length of 200. If you request more than 200 characters, the returned string
is truncated to a length of 200.

280 DELETE 4 Chapter 14

See Also

� COLLATE function in SAS Language Reference: Dictionary

DELETE

Deletes a file

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
DELETE(’file-specification’)

’file-specification’
is the name of the file to be deleted. It can be a character variable, a character literal
enclosed in double quotation marks, or another character expression. The value for
file-specification must be enclosed in single or double quotation marks.

Details If the DELETE function executes successfully, the return value is 0.
Otherwise, the return value is any of the OpenVMS error codes that indicate why it
failed.

The following are two common error codes:

98962 File not found.

98970 Insufficient privilege or file protection violation.

The text of the error codes is retrieved using the GETMSG function.

See Also

� Function: “GETMSG” on page 297

DINFO

Returns information about a directory

Language element: function
Category: external-file
OpenVMS specifics: valid values for info-item; returned values

Syntax
DINFO(directory-id,info-item)

Functions and CALL Routines 4 DOPEN 281

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

info-item
specifies the information item to be retrieved.

Details The DINFO function returns the value of a system-dependent directory
parameter.

See Also

� DINFO function in SAS Language Reference: Dictionary
� Function: “DOPEN” on page 281
� Function: “DOPTNAME” on page 282
� Function: “DOPTNUM” on page 282

DOPEN

Opens a directory and returns a directory identifier value

Language element: function
Category: external-file
OpenVMS specifics: valid values for fileref

Syntax
DOPEN(’fileref’)

’fileref’
specifies the SAS fileref assigned to the directory. The value for fileref must be
enclosed in single or double quotation marks.

Details The DOPEN function opens a directory and returns a directory identifier
value (a number greater than 0) that is used to identify the open directory in other SAS
external file access functions. If the directory could not be opened, DOPEN returns a
value of 0. The directory to be opened must be identified by a SAS fileref.

282 DOPTNAME 4 Chapter 14

See Also

� DOPEN function in SAS Language Reference: Dictionary
� Function: “DINFO” on page 280
� Function: “DOPTNAME” on page 282
� Function: “DOPTNUM” on page 282

DOPTNAME

Returns directory attribute information

Language element: function
Category: external-file
OpenVMS specifics: valid values for nval; number of options available

Syntax
DOPTNAME(directory-id,nval)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.
Restriction: To use DOPTNAME on a directory, the directory must have been

previously opened by using the DOPEN function.

nval
specifies the sequence number of the directory-information item (as listed by the
DOPTNUM function).

Details The number, names, and nature of the directory information varies between
operating environments. The number of options available for a directory varies
depending on the operating environment.

See Also

� DOPTNAME function in SAS Language Reference: Dictionary
� Function: “DINFO” on page 280
� Function: “DOPEN” on page 281
� Function: “DOPTNUM” on page 282

DOPTNUM

Returns the number of information items available for a directory

Language element: function

Functions and CALL Routines 4 EBCASC 283

Category: external-file

OpenVMS specifics: valid values for directory-id; number of options available

Syntax
DOPTNUM(directory-id)

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

Details The number, names, and nature of the directory information vary between
operating environments. The number of options available for a directory varies
depending on the operating environment.

The directory specified by directory-id must have been previously opened by using
the DOPEN function.

See Also

� DOPTNUM function in SAS Language Reference: Dictionary

� Function: “DINFO” on page 280

� Function: “DOPEN” on page 281

� Function: “DOPTNAME” on page 282

EBCASC

Converts an input character string from EBCDIC to ASCII

Language element: function

Category: character-string translation

OpenVMS specifics: All aspects are host-specific

Syntax
EBCASC(in-string)

in-string
is any EBCDIC string, and can be a character variable, a character literal enclosed
in double quotation marks, or another character expression. The value of in-string is
limited to 200 characters.

Details The return value is the ASCII translation of in-string.

284 FDELETE 4 Chapter 14

FDELETE

Deletes an external file or an empty directory

Language element: function
Category: external-file
OpenVMS specifics: valid values for directory

Syntax
FDELETE(’fileref’ | directory)

fileref
specifies the SAS fileref that you assign to the external file. The value for fileref must
be enclosed in single or double quotation marks.

directory
specifies an empty directory that you want to delete.

Details The FDELETE function allows you to delete an external file or an empty
directory. Under OpenVMS, filerefs can be assigned by environment variables and by
system commands.

Note: The fileref used with the FDELETE function must be associated with an
empty directory. 4

See Also

� FDELETE function in SAS Language Reference: Dictionary

FEXIST

Verifies the existence of an external file associated with a SAS fileref and returns a value

Language element: function
Category: external-file
OpenVMS specifics: valid values for fileref

Syntax
FEXIST(“fileref”)

“fileref”
specifies the SAS fileref assigned to an external file. The fileref must have been
previously assigned. The value for fileref must be enclosed in single or double
quotation marks.

Functions and CALL Routines 4 FILEEXIST 285

Details The FEXIST function returns a value of 1 if the external file that is
associated with fileref exists, and a value of 0 if the file does not exist. You can assign
filerefs by using the FILENAME statement or the FILENAME function.

See Also

� FEXIST function in SAS Language Reference: Dictionary
� Statement: “FILENAME” on page 357
� Function: “FILENAME” on page 286

FILEATTR
Returns the attribute information for a specified file

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
FILEATTR(file-specification,item)

file-specification
is the file for which you are requesting information. It can be a character variable, a
character literal enclosed in double quotation marks, or another character
expression. You must have access to the file that you are referencing.

item
specifies which attribute of the file you are requesting. It can be a character variable,
a character literal enclosed in double quotation marks, or another character
expression. If the item is more than 16 characters long, it is truncated. The items
that can be requested are the same as the items that can be requested using the
DCL lexical function F$FILE_ATTRIBUTE.

Details The FILEATTR function returns information about a file based on the type of
information that is requested with the item parameter. Numeric values are returned as
character values.

The FILEATTR function closely resembles the F$FILE_ATTRIBUTE lexical function
of DCL. For more information about DCL lexical functions, refer to OpenVMS DCL
Dictionary or to the SAS online Help.

You cannot request the following attribute information:
� after-image journaling (AI)
� before-image journaling (BI)
� recovery-unit journaling (RU).

FILEEXIST
Verifies the existence of an external file by its physical name and returns a value

286 FILENAME 4 Chapter 14

Language element: function
Category: external-file
OpenVMS specifics: valid values for file-specification

Syntax
FILEEXIST(“filename”)

“file-specification”
specifies a fully qualified physical filename of an OpenVMS file. The value for
file-specification must be enclosed in single or double quotation marks.

Details The FILEEXIST function returns a value of 1 if the external file exists and a
value of 0 if the external file does not exist.

You must always use fully qualified physical names with the FILEEXIST function.

See Also

� FILEEXIST function in SAS Language Reference: Dictionary
� Function: “FILENAME” on page 286

FILENAME

Assigns or deassigns a SAS fileref for an external file, directory, or an output device and returns a
value

Language element: function
Category: external-file
OpenVMS specifics: valid values for file-specification, device, and dir-ref

Syntax
FILENAME(fileref,filename

<,device< ,host-options<,dir-ref>>>)

fileref
in a DATA step, specifies the SAS fileref to assign to an external file. (For details, see
the FILENAME function in SAS Language Reference: Dictionary.) In Version 8, you
can specify the version number of the file, for example, myfile.dat;1.

file-specification
specifies the external file. Specifying a blank file-specification deassigns one that was
previously assigned.

device
specifies the type of device if the SAS fileref points to an output device rather than to
a physical file:

Functions and CALL Routines 4 FILENAME 287

DISK
specifies a disk.

DUMMY
specifies that the output to the file is discarded.

GTERM
specifies the graphics on the user’s terminal.

PIPE
specifies an OpenVMS command. For more information, see “Reading from and
Writing to OpenVMS Commands (Pipes)” on page 179.

PLOTTER
specifies an unbuffered graphics output device.

PRINTER
specifies a printer or printer spool file.

TAPE
specifies a tape driver or tape device.

TEMP
specifies a temporary file that can only be accessed through the logical name and
is only available while the logical name exists. If a physical pathname is specified,
an error is returned. Files manipulated by the TEMP device can have the same
attributes and behave identically to DISK files.

TERMINAL
specifies the user’s terminal.

host-options
can be any of the following:

ALQ=
specifies how many disk blocks to allocate to a new external file. The value can
range from 0 to 2,147,483,647. If the value is 0 (the default), the minimum
number of blocks required for the given file format is used.

CC=
tells SAS what type of carriage control to use when it writes to external files.
Values for the CC= option are

FORTRAN indicates FORTRAN carriage-control format. This is the
default for print files.

PRINT indicates OpenVMS print format.

CR indicates OpenVMS carriage-return carriage-control format.
This is the default for nonprinting files.

DEQ=
tells OpenVMS how many disk blocks to add when it automatically extends an
external file during a write operation. The value can range from 0 to 65,535. The
default value is 0, telling OpenVMS RMS to use the process’s default value.

FAC=
overrides the default file access attributes used for external files. Values for the
FAC= option are

DEL specifies delete access.

GET specifies read access.

288 FILENAME 4 Chapter 14

PUT specifies write access.

UPD specifies update access.

GSFCC=
specifies the file format of graphic stream files (GSF files). The accepted values are

PRINT creates a GSF file. It is a VFC format file with carriage control
set to null. These files can be used with most utilities with the
exception of some file transfer protocols, such as Kermit. This
is the default value for this option.

CR creates a carriage return carriage control file.

NONE creates a file with no carriage control. This format is useful if
you plan to download the file to a personal computer.

KEY=
specifies which key the SAS System uses to read the records in an RMS file with
indexed organization. The KEY= option is always used with the KEYVALUE=
option.

KEYVALUE=
specifies the key value with which to begin reading an indexed file.

LINESIZE=
specifies the line size for input or output. The value can range from 10 to 32,768.
The default is 80 for interactive jobs (interactive line mode and the SAS
windowing environment) and 132 for noninteractive and batch jobs for print files.

LRECL=
specifies the record length of the output file. If you do not specify a record length,
the default is varying length records. For input, the existing record length is used
by default. If the LRECL= option is used, the input records are padded or
truncated to the specified length.

The maximum record size for OpenVMS is 32,767. LRECL values greater than
32,767 are valid only when reading and writing to tape. If an LRECL value
greater than 32,767 is specified when writing to a non-tape device, the LRECL
value is set 32,767. You should use the maximum LRECL values for the various
file types provided in Table 17.1 on page 364.

MBC=
specifies the size of the I/O buffers that OpenVMS RMS allocates for a particular
file. The value can range from 0 to 127 and represents the number of blocks used
for each buffer. By default, this option is set to 0 and the default values for the
process are used.

MBF=
specifies the number of I/O buffers you want OpenVMS RMS to allocate for a
particular file. The value can range form 0 to 127 and represents the number of
buffers used. By default, this option is set to 2 buffers. If a value of 0 is specified,
the default value for the process is used.

MOD
opens the file referenced for append. This option does not take a value.

NEW
opens a new file for output. This option does not take a value.

Functions and CALL Routines 4 FILENAME 289

OLD
opens a new file for output. This option does not take a value.

PAGESIZE=
specifies the page size for output. The default is the display setting for interactive
jobs (interactive line mode and the SAS windowing environment) and 60 for
noninteractive and batch jobs. The value can range from 20 to 500.

RECFM=
specifies the record format of the output file. Values for the RECFM= option are

F specifies fixed length.

V specifies variable length.

D specifies you are accessing unlabeled tapes with the PUT and
INPUT DATA step statements. For more information, see
“Reading from an Unlabeled Tape” on page 177.

SHR=
overrides the default file-sharing attributes used for external files. Values for the
SHR= option are

DEL specifies delete access.

GET specifies shared read access.

NONE specifies no shared access.

PUT specifies shared write access.

UPD specifies update access.

You can combine these values in any order. For additional details about these
options, see the discussion of host-specific external I/O statement options for the
FILENAME statement in “FILENAME” on page 357.

dir-ref
specifies the SAS fileref that is assigned to the directory in which the external file
resides.

Details Under OpenVMS, you can assign SAS filerefs using two methods. You can
use the DCL DEFINE command to assign a fileref before you invoke SAS. For example:

$ define myfile a.txt
$ sas;

data;
file myfile;
put ‘‘HELLO’’;
run;

This creates the file A.TXT.
You can use the X command to assign a fileref during your SAS session.

290 FILEREF 4 Chapter 14

See Also

� FILENAME function in SAS Language Reference: Dictionary
� Function: “FILEREF” on page 290
� Statement: “FILENAME” on page 357
� Data set option: “ALQ=” on page 249
� Data set option: “DEQ=” on page 256
� System option: “CC=” on page 403
� Command: “X” on page 238

FILEREF
Verifies that a SAS fileref has been assigned for the current SAS session and returns a value

Language element: function
Category: external-file
OpenVMS specifics: valid values for fileref

Syntax
FILEREF(fileref)

fileref
specifies the SAS fileref to be validated. Under OpenVMS, fileref can also be an
OpenVMS logical name that was assigned using the DCL DEFINE command.

Details Under OpenVMS, you can assign SAS filerefs using two methods. You can
use the DCL DEFINE command to assign a fileref before you invoke SAS. For example:

$ define myfile a.txt
$ sas;

data;
file myfile;
put ‘‘HELLO’’;
run;

This creates the file A.TXT.
You can use the X command to assign a SAS fileref during your SAS session.

See Also

� FILEREF function in SAS Language Reference: Dictionary
� Function: “FILENAME” on page 286
� Command: “X” on page 238

FINDFILE
Searches a directory for a file

Functions and CALL Routines 4 FINDFILE 291

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
FINDFILE(file-specification,context)

file-specification
specifies the file specification of the file that you are searching for. It can contain any
valid OpenVMS file specification, including wildcards. The value for file-specification
can be a character variable, a character literal enclosed in double quotation marks,
or another character expression. You must have access to the file that you are
searching for.

context
is a variable used internally by the SAS System to maintain the search context
between executions of FINDFILE. It must be initialized to 0 before the first
execution of FINDFILE for a given file-specification and must not be modified
between executions. Context must be a numeric variable initialized to 0; it cannot be
a literal 0. You can use FINDFILE for multiple search streams by specifying a
different context variable for each stream. For example, you can have variables
named CONTEXT1 and CONTEXT2.

Details The FINDFILE function searches all directories and subdirectories for
file-specification and returns the first filename that matches the file specification given.
Subsequent calls return other filenames that match the specification. For more
information, see the description of the CALL FINDEND routine in “CALL FINDEND”
on page 277.

The return value is the name of the file that matches file-specification. If no file
matches or if the last one in the list has already been returned, a blank is returned. The
target variable must be long enough to contain an OpenVMS pathname, which can be
up to 255 characters long. SAS character variables have a maximum length of 32767.

Example

The following example uses the FINDFILE function:

context=0;
fn=findfile(’myprog*.sas’,context);
do while (fn ^= ’ ’);

put fn;
fn=findfile(’myprog*.sas’,context);

end;

This example searches the user’s directories for a filename that matches
MYPROG*.SAS; for example, if it finds a file named MYPROG12.SAS, then FN is set to
myprog12.sas.

292 FINFO 4 Chapter 14

See Also

� CALL routine: “CALL FINDEND” on page 277

FINFO

Returns the value of a file information item

Language element: function
Category: external-file
OpenVMS specifics: types of file information

Syntax
FINFO(file-id,info-item)

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

info-item
specifies the name of the file information item to be retrieved.

Details The FINFO function returns the value of a system-dependent information
item for an external file. FINFO returns a blank if the value given for info-item is
invalid.

See Also

� FINFO function in SAS Language Reference: Dictionary
� Function: “FOPEN” on page 292
� Function: “FOPTNAME” on page 293
� Function: “FOPTNUM” on page 294

FOPEN

Opens an external file and returns a file identifier value

Language element: function
Category: external-file
OpenVMS specifics: Files are not closed automatically after processing

Syntax
FOPEN(’fileref’< ,open-mode<,record-length <,record-format>>>)

Functions and CALL Routines 4 FOPTNAME 293

Note: This is a simplified version of the FOPEN function syntax. For the complete
syntax and its explanation, see the FOPEN function in SAS Language Reference:
Dictionary. 4

’fileref’
specifies the SAS fileref assigned to an external file. The value for fileref must be
enclosed in single or double quotation marks.

Details Under OpenVMS, you must close files with the FCLOSE function at the end
of a DATA step; files are not closed automatically after processing.

See Also

� FOPEN function in SAS Language Reference: Dictionary

� Function: “FILENAME” on page 286
� Function: “FILEREF” on page 290

FOPTNAME

Returns the name of an item of information about a file

Language element: function
Category: external-file
OpenVMS specifics: available information items

Syntax
FOPTNAME(file-id,nval)

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

nval
specifies the number of the information item.

Details The FOPTNAME function returns a blank if an error occurred.

294 FOPTNUM 4 Chapter 14

See Also

� FOPTNAME function in SAS Language Reference: Dictionary
� Function: “FILENAME” on page 286
� Function: “FOPEN” on page 292
� Function: “FOPTNUM” on page 294

FOPTNUM

Returns the number of information items available about a file

Language element: function
Category: external-file
OpenVMS specifics: available information items

Syntax
FOPTNUM(file-id)

file-id
specifies the identifier that was assigned when the file was opened, generally by the
FOPEN function.

Details The FOPTNUM function returns the number of information items available
about a file.

See Also

� FOPTNUM function in SAS Language Reference: Dictionary
� Function: “FINFO” on page 292
� Function: “FOPEN” on page 292
� Function: “FOPTNAME” on page 293

GETDVI

Returns a specified item of information from a device

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
GETDVI(device-name,item)

Functions and CALL Routines 4 GETJPI 295

device-name
specifies a physical device name or a logical name equated to a physical device name.
Specify the device name as a character-string expression.

After the device-name argument is evaluated, the F$GETDVI lexical function
examines the first character of the name. If the first character is an underscore (_),
the name is considered a physical device name. Otherwise, a single level of logical
name translation is performed, and the equivalence name, if any, is used.

item
is a character variable that contains any item accepted by the F$GETDVI lexical
function (for example, the physical device name). For more information about the
F$GETDVI lexical function, see OpenVMS DCL Dictionary.

Details The GETDVI function returns the device information as a character string. If
the device information string is longer than the length of the target variable, it is
truncated.

GETJPI

Retrieves job-process information

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
GETJPI(jpi-item,<pid>)

jpi-item
is a character variable that contains any item accepted by the F$GETJPI lexical
function, for example, a user process name. For more information about the
F$GETJPI lexical function, see OpenVMS DCL Dictionary.

pid
can be either character (process-name variable) or numeric (process-ID variable). If
the PID parameter is a character variable, GETJPI looks up information for a
process whose name matches the value of the character variable. However, because
of the way in which character variables are passed to functions, the GETJPI function
must trim trailing blanks from the character variable. For this reason, you cannot
use character variables to specify a process name if the process name itself contains
trailing blanks. Instead, you should either use a numeric value to specify the process
ID, or you should omit the trailing blanks from the name of the desired process. If
you do not specify this argument, the current process is used.

Details The GETJPI function returns the job-process information as a character
string. If the job-process information string is longer than the length of the target
variable, it is truncated.

296 GETLOG 4 Chapter 14

GETLOG

Returns information about a DCL logical name

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
GETLOG(logical-name,<table>,< index>,

<mode>,<case>,< item>)

logical-name
can be a character variable, character literal enclosed in double quotation marks, or
another character expression. This required argument is the DCL logical name that
you want information about.

table
is an optional character parameter that is the name of a DCL logical name table. It
can be a character variable, a character literal enclosed in double quotation marks,
or another character expression. The default is “LNM$DCL_LOGICAL”. If the table
name is more than 31 characters long, it is truncated. If table is specified, the
GETLOG function searches only the specified table for the logical name.

If you specify “CASE_SENSITIVE” in the case argument, then you must use the
proper case in the table argument as well.

index
is an optional numeric parameter that indicates the number of the translation to
return if a logical name has multiple translations. This argument can be either a
numeric literal or numeric variable. The default value is 0.

mode
is an optional character parameter that contains the access mode to be used for
translation. It can be a character variable, a character literal enclosed in double
quotation marks, or another character expression. The default is “USER”. If the
mode name is more than 10 characters long, it is truncated. If mode is specified, the
GETLOG function searches only for a logical name created with the specified access
mode.

case
is an optional character parameter that determines the case to be used for
translation. It can be a character variable, a character literal enclosed in double
quotation marks, or another character expression. If the case name is more than 14
characters long, it is truncated.

“CASE_BLIND”
specifies to ignore the case of the characters for translation. This is the default.

Functions and CALL Routines 4 GETMSG 297

“CASE_SENSITIVE”
specifies to accept the case of the characters for translation.

If you specify “CASE_SENSITIVE” as the value for the case argument, then you
must also use the correct case in the table argument value.

item
is an optional character parameter that specifies what type of information is to be
returned about a logical name. It can be a character variable, a character literal
enclosed in double quotation marks, or another character expression. The default
value is “VALUE”. If item is more than 11 characters long, it is truncated.

Details The GETLOG function returns information about a DCL logical name. The
return string is always a character value. Numeric values are returned as character
values. The default return value is the equivalence name of a logical name.

The GETLOG function closely resembles the F$TRNLNM lexical function of DCL.
For more information about the syntax and arguments of the GETLOG function, such
as all valid values for a particular argument, refer to the F$TRNLNM lexical function
in OpenVMS DCL Dictionary or in the SAS online Help.

Note: You cannot skip any arguments when using the GETLOG function. For
example, in order to specify a value for item, you must also specify values for table,
index, mode, and case. If you do not want to change the values for these arguments,
then simply specify the default value. 4

GETMSG

Translates an OpenVMS error code into text

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
GETMSG(status)

status
is an OpenVMS status code. It is usually returned from one of the other functions
that return an OpenVMS status code on failure.

Details The return value is a character variable that receives the message text
corresponding to the status code. If the message string is longer than the length of the
target variable, it is truncated.

298 GETQUOTA 4 Chapter 14

See Also

� Function: “DELETE” on page 280

GETQUOTA

Retrieves disk quota information

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
GETQUOTA(dev,user,usage,perm,over,context)

dev
is the device that you want to gather disk quota information for.

user
receives your numeric user identification code (UIC) on the disk. The UICw. format
can be used to format the numeric value. This variable must be initialized to 0 before
the first execution.

usage
receives your current disk usage in blocks. This variable must be initialized to 0
before the first execution.

perm
receives your permanent quota. This variable must be initialized to 0 before the first
execution.

over
receives your allowed overdraft. This variable must be initialized to 0 before the first
execution.

context
is a numeric variable that must be initialized to 0 before the first execution and must
not be modified between calls.

Details Besides storing the quota information in the USER, USAGE, PERM, and
OVER variables, the GETQUOTA function also returns the OpenVMS status code that
is returned by SYS$QIO. The OpenVMS status code can have the following return codes:

1 indicates the GETQUOTA function was successful and more disk
quota remains.

996 indicates that no more quota information is available.

980 indicates that quotas are not enabled on the volume.

Any other value indicates an OpenVMS error.

Note: In order to use the GETQUOTA function, you must have either SYSPRV
privileges or read access to QUOTA.SYS on the volume. 4

Functions and CALL Routines 4 GETSYM 299

Example

The following example uses the GETQUOTA function:

data gquota;
dev="1DUA0:";
user=0;
usage=0;
perm=0;
over=0;
context=0;
do until (rc ^= 1);

rc=getquota(dev,user,usage,perm,over,context);
output;

end;
run;

proc print data=gquota;
run;

See Also

� Format: “UICw.” on page 269

GETSYM

Returns the value of a DCL symbol

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
GETSYM(symbol-name)

symbol-name
is the name of a DCL symbol defined in your process. It can be a character variable,
character literal enclosed in double quotation marks, or another character
expression. If symbol-name is more than 200 characters long, it is truncated.

Details The return value is the character string equivalent of the DCL symbol. If the
symbol is defined as both a local and global symbol, then the local value is returned. If
the symbol value string is longer than the length of the target variable, it is truncated.

300 GETTERM 4 Chapter 14

See Also

� Function: “SYSGET” on page 310

GETTERM
Returns the characteristics of your terminal device

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
GETTERM(characteristic-name)

characteristic-name
is the name of the terminal characteristic to be returned. The argument can be a
character variable, character literal enclosed in double quotation marks, or another
character expression. If characteristic-name is longer than 200 characters, it is
truncated.

Details The GETTERM function returns the characteristics of your terminal device
from within the SAS System. It can be called from either the DATA step or an SCL
program. This function eliminates the need to use the X command or statement to
return your terminal characteristics. The return value is a numeric code, which is the
current setting of a characteristic.

Characteristic values that are Boolean (on or off) are returned as 0 or 1.
Characteristic values that have integer values, such as page size, are returned as the
function value.

If an error occurs during the execution of the function, GETTERM returns a negative
result. Some common error return codes include the following:

−20 represents the OpenVMS symbolic name SS$_BADPARAM, which
means the characteristic name is not valid or was specified
ambiguously.

−2313 represents the OpenVMS symbolic name, SS$_NOSUCHDEV, which
means the current SYS$OUTPUT device is not a terminal device, or
does not exist.

Table 14.1 on page 300 lists in alphabetic order the characteristics that can be
returned by the GETTERM function.

Table 14.1 Terminal Characteristics

Characteristic Explanation

ALTTYPEAHEAD Alternate typeahead buffer enabled

ANSICRT Device is an ANSI CRT

APPLICATION Keypad is in application mode

Functions and CALL Routines 4 GETTERM 301

Characteristic Explanation

AUTOBAUD Automatic baud rate detection is enabled

AVO Terminal has advanced video option

BLOCK Terminal is in block transfer mode

BROADCAST Terminal accepts broadcast messages

BROADCASTMBX Broadcast messages sent via mailbox

DECCRT Terminal is a DEC CRT (VT100 or later)

DECCRT2 Terminal is a DEC CRT (VT200 or later)

DIALUP Terminal is on a dialup line

DISCONNECT Terminal disconnects when hangup occurs

DMA Terminal uses asynchronous DMA

DRCS Terminal has soft character font set

ECHO Terminal input is echoed

EDIT Terminal has editing capabilities

EDITING Terminal line editing is enabled

EIGHTBIT Terminal accepts 8-bit escape codes

ESCAPE Terminal validates escape sequences

FALLBACK Output is transformed by TFF

FORMFEED Terminal has mechanical form feed

HALFDUPLEX Terminal is in half-duplex mode

HANGUP Modem is hung up when terminal logs out

HOSTSYNC Host system is synchronized to terminal

INSERT Default mode is insert instead of overstrike

LINESIZE Sets terminal line size

LOCALECHO Command line read operations are echoed

LOWER Terminal accepts lowercase characters

MAILBOX Terminal does not use associated mailbox

MODEM Terminal is connected via a modem

MODHANGUP Modify hangup behavior

PAGESIZE Sets terminal page size

PASSTHROUGH Pass all characters unmodified/examined

PRINTER Device has a printer port

READSYNC Read synchronization is enabled

REGIS Device supports graphics

REMOTE Terminal is on a dialup line

SCOPE Terminal is a video display device

SECURE Device is on secure communication line

SIXEL Device supports graphics

302 LIBNAME 4 Chapter 14

Characteristic Explanation

SYSPASSWORD System password required at login

TAB Terminal has mechanical tab

TTSYNC Terminal is synchronized to host system

TYPEAHEAD Terminal accepts unsolicited input

WRAPCR/LF Inserted for line wrap

XON XON/XOFF handshaking used

See Also

� Function: “SETTERM” on page 307

LIBNAME

Assigns or deassigns a libref for a SAS data library and returns a value

Language element: function
Category: SAS file I/O
OpenVMS specifics: valid values for SAS-data-library

Syntax
LIBNAME(libref,< ,’SAS-data-library’< ,engine <,options>>>)

SAS-data-library
is the name of the directory that contains the SAS data library, enclosed in single or
double quotation marks. You can omit this argument if you are merely specifying the
engine for a libref or an OpenVMS logical name that you previously assigned.

If the directory that you specify does not already exist, then you must create it
before you attempt to use the libref that you have assigned to it.

Details The SAS-data-library has a value of ‘‘[]’’ (with no space) to assign a libref
to the current directory. (The behavior of the LIBNAME function when a single space is
specified for the SAS data library is host dependent.) If no value is provided for
SAS-data-library or if SAS-data-library has a value of ‘‘’’ (with no space), the
LIBNAME function dissociates the libref from the data library.

Under OpenVMS, OpenVMS logical names (assigned by using the DCL DEFINE
command) can also be used to refer to SAS data libraries. For more information, see
“Assigning OpenVMS Logical Names” on page 126.

Functions and CALL Routines 4 MOPEN 303

See Also

� LIBNAME function in SAS Language Reference: Dictionary

� “Assigning Librefs” on page 124

� Statement: “LIBNAME” on page 378

LIBREF

Verifies that a libref has been assigned and returns a value

Language element: function

Category: SAS file I/O

OpenVMS specifics: syntax

Syntax
LIBREF(“libref”)

“libref”
specifies the libref to be verified. The value for libref must be enclosed in single or
double quotation marks.

Details The LIBREF function returns a value of 0 if the operation was successful and
a non-zero value if it was not successful.

See Also

� LIBREF function in SAS Language Reference: Dictionary

� Function: “LIBNAME” on page 302

MOPEN

Opens a file by directory ID and member name and returns either the file identifier or a 0

Language element: function

Category: external-file

OpenVMS specifics: valid values for directory-id

Syntax
MOPEN(directory-id,member-name<open-mode <,record-length<,record-format>>>)

304 NODENAME 4 Chapter 14

Note: This is a simplified version of the MOPEN function syntax. For the complete
syntax and its explanation, see the MOPEN function in SAS Language Reference:
Dictionary. 4

directory-id
specifies the identifier that was assigned when the directory was opened, generally
by the DOPEN function.

Details The MOPEN function returns the identifier for the file, or 0 if the file could
not be opened.

See Also

� MOPEN function in SAS Language Reference: Dictionary
� Function: “DOPEN” on page 281

NODENAME
Returns the name of the current node

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
NODENAME()

Details This function takes no arguments. The returned value can be up to 16 bytes
long. In the following example, executing the statement on a node with node name of
MYVAX assigns the value MYVAX to the variable THISNODE:

data _null_;
thisnode=nodename();

run;

PATHNAME
Returns the physical name of a SAS data library or of an external file or returns a blank

Language element: function
Category: SAS file I/O
OpenVMS specifics: fileref can be an OpenVMS logical name

Syntax
PATHNAME(’fileref’)

Functions and CALL Routines 4 PUTSYM 305

’fileref’
specifies the SAS fileref that was assigned to an external file or to a SAS data library.
Under OpenVMS, fileref can also be an OpenVMS logical name that was assigned
with a DCL DEFINE command. The value of fileref must be enclosed in single or
double quotation marks.

Details The PATHNAME function returns the physical name of an external file or
SAS library, or blank if fileref or libref is invalid. The default length of the target
variable in the DATA step is 200 characters.

See Also

� PATHNAME function in SAS Language Reference: Dictionary

PUTLOG

Creates an OpenVMS logical-name in your process-level logical name table

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
PUTLOG(logical-name,value)

logical-name
the name of the OpenVMS logical name that you want to create. It can be a
character variable, a character literal enclosed in double quotation marks, or another
character expression.

value
is the string to be assigned to the symbol. It can be a character variable, a character
literal enclosed in double quotation marks, or another character expression.

Details The PUTLOG function creates an OpenVMS logical name in your
process-level logical name table. If the PUTLOG function executes successfully, the
return value is 0. Otherwise, the return value is the OpenVMS error code indicating
why it failed.

PUTSYM

Creates a DCL symbol in your process

Language element: function

306 RANK 4 Chapter 14

Category: general-purpose OpenVMS

OpenVMS specifics: All aspects are host-specific

Syntax

PUTSYM(symbol-name,value,scope)

symbol-name
is the name of the DCL symbol that you want to create. It can be a character
variable value, a character literal enclosed in double quotation marks, or another
character expression.

value
is the string to be assigned to the symbol. It can be a character variable, a character
literal enclosed in double quotation marks, or another character expression.

scope
defines whether the symbol is a local or global symbol. If the value of scope is 1, the
symbol is defined as a local symbol. If the value of scope is 2, the symbol is defined as
a global symbol. The scope argument can be either a numeric literal or a numeric
variable.

Details The PUTSYM function creates a DCL symbol in your process. If the
PUTSYM function executes successfully, the return value is 0. Otherwise, the return
value is the OpenVMS error code that indicates why it failed.

RANK

Returns the position of a character in the ASCII collating sequence

Language element: function

Category: character

OpenVMS specifics: ASCII collating sequence

Syntax

RANK(x)

x
represents a character in the ASCII collating sequence.

Details Because OpenVMS is an ASCII system, the RANK function returns an
integer representing the position of a character in the ASCII collating sequence. If the
length of x is greater than 1, you receive the rank of the first character in the string.

Functions and CALL Routines 4 SETTERM 307

See Also

� RANK function in SAS Language Reference: Dictionary

RENAME

Renames a file

Language element: function

Category: general-purpose OpenVMS

OpenVMS specifics: All aspects are host-specific

Syntax
RENAME(old-name,new-name)

old-name
is the current name of the file. It can be a character variable, a character literal
enclosed in double quotation marks, or another character expression.

new-name
is the new name of the file. It can be a character variable, character literal enclosed
in double quotation marks, or another character expression.

Details You must have proper access to the file. If the RENAME function executes
successfully, the return value is 0. Otherwise, the return value is the OpenVMS error
code that indicates why it failed.

The following are two common error codes:

98962 File not found.

98970 Insufficient privilege or file protection violation.

The text of the error codes is retrieved using the GETMSG function.

See Also

� Function: “GETMSG” on page 297

SETTERM

Modifies a characteristic of your terminal device

Language element: function

Category: terminal-access

OpenVMS specifics: All aspects are host-specific

308 SETTERM 4 Chapter 14

Syntax
SETTERM(characteristic-name,new-value)

characteristic-name
is the name of the terminal characteristic to be modified. The argument can be a
character variable, a character literal enclosed in double quotation marks, or another
character expression.

new-value
is the new setting for the characteristic.

Details The SETTERM function modifies a terminal characteristic from within the
SAS System. The SETTERM function can be called from either the DATA step or an
SCL program. This function eliminates the need to use an X command or statement to
modify your terminal characteristics.

The return value is a numeric status code, which is the previous setting of the
characteristic, before the characteristic is changed by the function call.

Characteristic values that are Boolean (on or off) are returned as 1 or 0.
Characteristic values that have integer values, such as page size, are returned as the
function value.

If an error occurs during the execution of the SETTERM function, the result
returned is negative. Some common error return codes include the following:

−20 represents the OpenVMS symbolic name SS$_BADPARAM, which
means that the characteristic name is not valid or was specified
ambiguously.

−2313 represents the OpenVMS symbolic name, SS$_NOSUCHDEV, which
means the current SYS$OUTPUT device is not a terminal device, or
does not exist.

The characteristics that can be set with the SETTERM function are the same as
those that can be returned by the GETTERM function, and they are listed in Table 14.2
on page 308.

Table 14.2 Terminal Characteristics

Characteristic Explanation

ALTTYPEAHEAD Alternate typeahead buffer enabled

ANSICRT Device is an ANSI CRT

APPLICATION Keypad is in application mode

AUTOBAUD Automatic baud rate detection is enabled

AVO Terminal has advanced video option

BLOCK Terminal is in block transfer mode

BROADCAST Terminal accepts broadcast messages

BROADCASTMBX Broadcast messages sent via mailbox

DECCRT Terminal is a DEC CRT (VT100 or later)

Functions and CALL Routines 4 SETTERM 309

Characteristic Explanation

DECCRT2 Terminal is a DEC CRT (VT200 or later)

DIALUP Terminal is on a dialup line

DISCONNECT Terminal disconnects when hangup occurs

DMA Terminal uses asynchronous DMA

DRCS Terminal has soft character font set

ECHO Terminal input is echoed

EDIT Terminal has editing capabilities

EDITING Terminal line editing is enabled

EIGHTBIT Terminal accepts 8-bit escape codes

ESCAPE Terminal validates escape sequences

FALLBACK Output is transformed by TFF

FORMFEED Terminal has mechanical form feed

HALFDUPLEX Terminal is in half-duplex mode

HANGUP Modem is hung up when terminal logs out

HOSTSYNC Host system is synchronized to terminal

INSERT Default mode is insert instead of overstrike

LINESIZE Sets terminal line size

LOCALECHO Command line read operations are echoed

LOWER Terminal accepts lowercase characters

MAILBOX Terminal does not use associated mailbox

MODEM Terminal is connected via a modem

MODHANGUP Modify hangup behavior

PAGESIZE Sets terminal page size

PASSTHROUGH Pass all characters unmodified/examined

PRINTER Device has a printer port

READSYNC Read synchronization is enabled

REGIS Device supports graphics

REMOTE Terminal is on a dialup line

SCOPE Terminal is a video display device

SECURE Device is on secure communication line

SIXEL Device supports graphics

SYSPASSWORD System password required at login

TAB Terminal has mechanical tab

TTSYNC Terminal is synchronized to host system

TYPEAHEAD Terminal accepts unsolicited input

310 SYSGET 4 Chapter 14

Characteristic Explanation

WRAPCR/LF Inserted for line wrap

XON XON/XOFF handshaking used

Example

In the following example, the purpose of the DATA step is to turn off broadcast
messages, and to force the terminal line width to be 80 characters. The old settings for
these values are stored in macro variables so that they can be reset easily at a later
time:

data _null_;
old_bc=setterm("broadcast",0);
old_ls=setterm("linesize",80);
call symput("saved_bc",put(old_bc,best.));
call symput("saved_ls",put(old_ls,best.));

run;

See Also

� Function: “GETTERM” on page 300

SYSGET
Returns the value of a specified operating-environment variable or symbol

Language element: function
Category: special
OpenVMS specifics: operating-environment-variable is the name of a DCL symbol

Syntax
SYSGET(“operating-environment-variable”)

“operating-environment-variable”
specifies the name of a DCL symbol under OpenVMS. The value for
operating-environment-variable must be enclosed in double quotation marks.

Details The specified DCL symbol must be defined in OpenVMS before it is
referenced in the SYSGET function. You can specify the symbol in a number of ways,
such as in a DCL .COM file or at the DCL prompt before you invoke a SAS session. You
cannot define a symbol either by using the SAS X command while you are in a SAS
session or by using a logical name in OpenVMS.

If the value of the symbol is truncated, or if the symbol is not defined under
OpenVMS, then SYSGET displays a warning message in the SAS log.

Example

This example defines two symbols in the OpenVMS environment:

Functions and CALL Routines 4 TERMIN 311

$ PATH="QC:[GOMEZ.TESTING]"
$ USER="[GOMEZ.MYTESTS]"

data _null_;
length result2 result3 $ 40;

SYMBOL2="PATH";
SYMBOL3="USER";
result2=sysget(trim(symbol2));
result3=sysget(trim(symbol3));
put result2= result3=;

run;

and then returns their values:

RESULT2=QC:[GOMEZ.TESTING]
RESULT3=[GOMEZ.MYTESTS]

See Also

� SYSGET function in SAS Language Reference: Dictionary
� Function: “GETSYM” on page 299
� Command: “X” on page 238

TERMIN

Allows simple input from SYS$INPUT

Language element: function
Category: terminal-access
OpenVMS specifics: All aspects are host-specific

Syntax
TERMIN(prompt)

prompt
is the prompt printed on the display. It can be a character variable, a character
literal enclosed in double quotation marks, or another character expression.

Details The TERMIN function is easier to use than the TTOPEN, TTREAD, and
TTCLOSE functions, but it does not offer the same flexibility. The return value is the
characters that the user entered at the terminal. The TERMIN function accepts a
maximum of 132 characters.

312 TERMOUT 4 Chapter 14

See Also

� Function: “TERMOUT” on page 312

� Function: “TTCLOSE” on page 313

� Function: “TTOPEN” on page 314

� Function: “TTREAD” on page 316

TERMOUT

Allows simple output to SYS$OUTPUT

Language element: function

Category: terminal-access

OpenVMS specifics: All aspects are host-specific

Syntax
TERMOUT(output)

output
is a character string to write to SYS$OUTPUT. It can be a character variable,
character literal enclosed in double quotation marks, or another character expression.

Details The TERMOUT function is easier to use than the TTOPEN, TTWRITE, and
TTCLOSE functions, but it does not offer the same flexibility. If the TERMOUT
function executes successfully, the return value is 0. Otherwise, the return value is the
OpenVMS error code that indicates why it failed.

See Also

� Function: “TERMIN” on page 311

� Function: “TTCLOSE” on page 313

� Function: “TTOPEN” on page 314

� Function: “TTWRITE” on page 317

TRANSLATE

Replaces specific characters in a character expression

Language element: function

Category: character

OpenVMS specifics: Pairs of to and from arguments are optional

Functions and CALL Routines 4 TTCONTRL 313

Syntax
TRANSLATE(source,to-1, from-1<,…to-n,from-n>)

source
specifies the SAS expression that contains the original character value.

to
specifies the characters that you want TRANSLATE to use as substitutes.

from
specifies the characters that you want TRANSLATE to replace.

Details Under OpenVMS, you do not need to provide pairs of to and from arguments.
However, if you do not use pairs, you must supply a comma as a place holder.

See Also

� TRANSLATE function in SAS Language Reference: Dictionary

TTCLOSE
Closes a channel that was previously assigned by TTOPEN

Language element: function
Category: terminal-access
OpenVMS specifics: All aspects are host-specific

Syntax
TTCLOSE(channel)

channel
is the channel variable returned from the TTOPEN function.

Details If the TTCLOSE function executes successfully, the return value is 0.
Otherwise, the return value is the OpenVMS error code that indicates why it failed.

See Also

� Function: “TTOPEN” on page 314

TTCONTRL
Modifies the characteristics of a channel that was previously assigned by TTOPEN

314 TTOPEN 4 Chapter 14

Language element: function

Category: terminal-access

OpenVMS specifics: All aspects are host-specific

Syntax
TTCONTRL(control-specification,channel)

control-specification
is the control string as described for the TTOPEN function. The syntax for
control-specification is the same as for TTOPEN, except that the DEVICE= attribute
cannot be changed. The new characteristics take effect on the next I/O operation.

channel
is the channel variable that was returned from the TTOPEN function.

Details If the TTCONTRL function executes successfully, the return value is 0.
Otherwise, the return value is the OpenVMS error code that indicates why it failed.

Example

The following example prompts the user for the password, reads the password
(without echoing it to the terminal), and then writes out the password. The last step
closes the channel:

length string $ 80;
input=’ ’;
chan=0;
rc=ttopen("device=tt echo",chan);
rc=ttwrite(chan,"0D0A"X||"Enter password: ");
rc=ttcontrl("noecho",chan);
rc=ttread(chan,input);
rc=ttcontrl("echo",chan);
rc=ttwrite(chan,"0D0A"X11"Password was: "||input);
rc=ttclose(chan);

See Also

� Function: “TTOPEN” on page 314

TTOPEN

Assigns an I/O channel to a terminal

Language element: function

Category: terminal-access

OpenVMS specifics: All aspects are host-specific

Functions and CALL Routines 4 TTOPEN 315

Syntax
TTOPEN(control-specification,channel)

control-specification
is the control string that specifies the terminal and processing options, separated
from each other by blanks. It can be a character variable, a character literal enclosed
in double quotation marks, or another character expression. The value for
control-specification gives the device name and processing options and has the
following form:

DEVICE=name <processing-option-list>

Each argument can be abbreviated to the shortest unique spelling. There is no
default.

name
specifies the terminal name for subsequent I/O operations. DEVICE=name is
required.

processing-option-list
can be one or more of the following, separated by blanks:

BUFFERFULL | NOBUFFERFULL
If you specify BUFFERFULL as one of the processing options when you
enumerate the control string for the TTOPEN function, input terminates when
the buffer is full or when a terminating character (either the default character
or the character set with the TERMINATOR processing option) is read.

The following list enumerates the effects on input termination when you turn
on combinations of processing options:

BUFFERFULL and TERMINATOR=
causes input to be terminated when either of the following is true:

� the buffer is full
� the terminator string is encountered.

NOBUFFERFULL and TERMINATOR=
causes input to be terminated only when the terminator string is encountered.

BUFFERFULL (only)
causes input to be terminated when either of the following is true:

� the buffer is full
� you press RETURN.

NOBUFFERFULL (only)
causes input to be terminated only when you press RETURN.

TERMINATOR= (only)
causes input to be terminated only when the terminator string is encountered.

The default is NOBUFFERFULL.

ECHO | NOECHO
indicates whether data typed at the terminal are echoed on the display. If this
attribute is not set, the behavior is based on the LOCALECHO characteristic for
the terminal specified with DEVICE=. The following DCL command shows the
characteristics for the terminal:

316 TTREAD 4 Chapter 14

$ SHOW TERMINAL name

SIZE=n
sets the size of the input buffer (that is, the number of characters that can be
read at one time). The value can be no more than 32767, the maximum size of a
character variable in the SAS System. The default is 200 characters.

TERMINATOR=hex-string
specifies the list of characters that are considered to be terminating characters
for input. Hex-string consists of hexadecimal digit pairs that correspond to the
ASCII value of the characters used as terminators. Do not separate the digit
pairs with delimiters such as commas or spaces.

The terminator character is used only if NOBUFFERFULL is set. If
NOBUFFERFULL is in effect, the default terminator is a carriage return
(hexadecimal value is 0D). If BUFFERFULL is specified, there is no terminator
character and the input is terminated only when the buffer is full.

TIMEOUT=n
specifies how many seconds to wait for input from the terminal. If no input is
received in the time specified, the operation fails with a time-out error. By
default, there is no time limit and the input operation waits forever.

channel
is a numeric variable into which the TTOPEN function places the channel number.

Details The channel that the TTOPEN function assigns is used by the other
terminal-access functions to perform I/O to and from the terminal. If the TTOPEN
function executes successfully, the return value is 0. Otherwise, the return value is the
OpenVMS error code that indicates why it failed.

Example

The following example reads up to 20 characters, discarding extra characters when
the buffer is full and accepting either the carriage return or the horizontal tab
character (hexadecimal value is 09) as terminators. If the read is successful, the
program prints the string:

length string $ 20;
rc=ttopen("dev=TT: size=20 term=0D09",chan);
rc=ttread(chan,string,size);
if size>0 & rc=0 then put string;
rc=ttclose(chan);

See Also

� Function: “TTCLOSE” on page 313

TTREAD

Reads characters from the channel assigned by TTOPEN

Language element: function

Category: terminal-access

Functions and CALL Routines 4 TTWRITE 317

OpenVMS specifics: All aspects are host-specific

Syntax
TTREAD(channel,buffer,< size>)

channel
is the channel variable returned from the TTOPEN function.

buffer
is the character variable where the returned characters are stored.

size
is an optional numeric parameter which indicates the maximum number of
characters to read and receives the number of characters read. If you do not specify
size, the TTREAD function reads characters up to the size of buffer. The handling of
extra characters is determined by the BUFFERFULL option specified with the
TTOPEN function.

Details If the TTREAD function executes successfully, the return value is 0.
Otherwise, the return value is the OpenVMS error code that indicates why it failed.

See Also

� Function: “TTOPEN” on page 314

TTWRITE

Writes characters to the channel assigned by TTOPEN

Language element: function
Category: terminal-access
OpenVMS specifics: All aspects are host-specific

Syntax
TTWRITE(channel,buffer,<size>)

channel
is the channel variable returned from the TTOPEN function.

buffer
is the character string variable that contains the data to be written.

size
is an optional numeric parameter that specifies how many characters to write from
buffer. If you do not specify size, the entire buffer is sent, including any trailing
blanks.

318 VMS 4 Chapter 14

Details If the TTWRITE function executes successfully, the return value is 0.
Otherwise, the return value is the OpenVMS error code that indicates why it failed.

The TTWRITE function does not supply any carriage control. You must insert into
the buffer any carriage-control characters that you want.

See Also

� Function: “TTOPEN” on page 314

VMS

Spawns a subprocess and executes a DCL command

Language element: function
Category: general-purpose OpenVMS
OpenVMS specifics: All aspects are host-specific

Syntax
VMS(DCL-command)

DCL-command
is the DCL command that is passed to the subprocess. It can be a character variable,
a character literal enclosed in double quotation marks, or another character
expression.

Details The VMS function spawns a subprocess and executes the command that is
passed to it. Any output that is produced is sent to SYS$OUTPUT. If you are using the
SAS windowing environment, the results appear in a new window. To close the new
window, select the File menu and then select Exit. This is consistent with the
behavior of the X statement and the X command.

If the VMS function executes successfully, the return value is 0. Otherwise, the
return value is an OpenVMS error code that indicates why the function failed. If you
supply an invalid command, you will receive a return error code such as the following:

229520 %CLI-W-IVVERB, unrecognized command verb – check validity and
spelling.

Comparisons The VMS function is similar to the X statement, the X command, the
%SYSEXEC macro, and the CALL SYSTEM routine. In most cases, the X statement,
the X command, or the %SYSEXEC macro are preferable because they require less
overhead. However, the VMS function is useful for conditional processing because it
returns a return code. The CALL SYSTEM routine can be useful in certain situations
because it is executable, and because it accepts expressions as arguments.

Functions and CALL Routines 4 VMS 319

See Also

� “Issuing DCL Commands during a SAS Session” on page 36

� Statement: “X” on page 383

� Command: “X” on page 238
� CALL routine: “CALL SYSTEM” on page 278

� %SYSEXEC macro in “Macro Statements” on page 463

320 VMS 4 Chapter 14

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OpenVMS Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
518 pp.

SAS® Companion for the OpenVMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–526–4
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

