
321

C H A P T E R

15
Informats

SAS Informats under OpenVMS 321
Reading Binary Data 321

SAS Informats under OpenVMS
A SAS informat is an instruction or template that the SAS System uses to read data

values into a variable. Most SAS informats are described completely in SAS Language
Reference: Dictionary. The informats that are described here have behavior that is
specific to the SAS System under OpenVMS.

Many of the SAS informats that have details that are specific to the OpenVMS
operating environment are used to read binary data. For more information, see
“Reading Binary Data” on page 321.

Reading Binary Data
Different computers store numeric binary data in different forms. IBM 370 and

Hewlett-Packard 9000 computers store bytes in one order. Microcomputers that are
IBM compatible and some computers manufactured by Digital Equipment Corporation
store bytes in a different order called byte-reversed.

Binary data that are stored in one order cannot be read by a computer that stores
binary data in the other order. When you are designing SAS applications, try to
anticipate how your data will be read and choose your formats and informats
accordingly.

The SAS System provides two sets of informats for reading binary data and
corresponding formats for writing binary data.

� The IBw.d, PDw.d, PIBw.d, and RBw.d informats and formats read and write in
native mode, that is, using the byte-ordering system that is standard for the
machine.

� The S370FIBw.d, S370FPDw.d, S370FRBw.d, and S370FPIBw.d informats and
formats read and write according to the IBM 370 standard, regardless of the
native mode of the machine. These informats and formats allow you to write SAS
programs that can be run in any SAS environment, regardless of how numeric
data are stored.

If a SAS program that reads and writes binary data runs on only one type of
machine, you can use the native mode informats and formats. However, if you want to
write SAS programs that can be run on multiple machines using different byte-storage

322 HEXw. 4 Chapter 15

systems, use the IBM 370 formats and informats. The purpose of the IBM 370
informats and formats is to enable you to write SAS programs that can be run in any
SAS environment, no matter what standard you use for storing numeric data.

For example, suppose you have a program that writes data with the PIBw.d format.
You execute the program on a microcomputer so that the data are stored in
byte-reversed mode. Then you run another SAS program on the microcomputer that
uses the PIBw.d informat to read the data. The data are read correctly because both of
the programs are run on the microcomputer using byte-reversed mode. However, you
cannot upload the data to a Hewlett-Packard 9000-series machine and read the data
correctly because they are stored in a form native to the microcomputer but foreign to
the Hewlett-Packard 9000. To avoid this problem, use the S370FPIBw.d format to write
the data; even on the microcomputer, this causes the data to be stored in IBM 370
mode. Then read the data using the S370FPIBw.d informat. Regardless of what type of
machine you use when reading the data, they are read correctly.

HEXw.

Converts hexadecimal positive binary values to either integer-binary (fixed-point) or real-binary
(floating-point) values

Language element: informat
Category: numeric
Width range: 1 to 16
Default width: 8
OpenVMS specifics: ASCII character-encoding system

Syntax
HEXw.

w
specifies the field width of the input value. If you specify a w value of 1 through 15,
the input hexadecimal value is converted to an fixed-point number. If you specify 16
for the w value, the input hexadecimal value is converted to a floating-point number.

Details
Under OpenVMS, the hexadecimal format of the number is stored in ASCII
representation.

For more information about OpenVMS floating-point representation, see Architecture
Reference Manual for Alpha and Architecture Reference Manual for VAX.

Informats 4 IBw.d 323

See Also

� Informats: HEXw. in SAS Language Reference: Dictionary and “$HEXw.” on page
323

� Format: “HEXw.” on page 264

$HEXw.

Converts hexadecimal data to character data

Language element: informat
Category: character
Width range: 1 to 32767
Default width: 2
OpenVMS specifics: ASCII character-encoding system

Syntax
$HEXw.

w
specifies width of the input value.

Details
The $HEXw. informat is similar to the HEXw. informat. The $HEXw. informat
converts character values that are stored as the hexadecimal equivalent of ASCII
character codes to the corresponding character values. The conversion is based on the
ASCII character-encoding system.

In the ASCII system, the conversion for 8-bit hexadecimal input (x’80’ and above) is
for the Multinational Character Set, which includes national characters such as Ä and
ß. For more information about the Multinational Character Set, see Guide to Using
OpenVMS.

See Also

� Informats: $HEXw. in SAS Language Reference: Dictionary and “HEXw.” on page
322

� Format: “$HEXw.” on page 265

IBw.d

Reads integer-binary (fixed-point) values

Language element: informat

324 PDw.d 4 Chapter 15

Category: numeric
Width range: 1 to 8
Default width: 4
Decimal range: 0 to 10
OpenVMS specifics: native twos-complement notation

Syntax
IBw.d

w
specifies the width of the input field.

d
optionally specifies the power of 10 by which to divide the input value. If you specify
d, the IBw.d informat divides the input value by the 10d value. SAS uses the d value,
even if the input data contain decimal points.

Details
The IBw.d informat reads integer-binary (fixed-point) values that are represented in
the OpenVMS twos-complement notation. For information about OpenVMS native
fixed-point values, see Architecture Reference Manual for Alpha and Architecture
Reference Manual for VAX.

See Also

� Informat: IBw.d in SAS Language Reference: Dictionary
� Format: “IBw.d” on page 265
� “Reading Binary Data” on page 321

PDw.d

Reads packed decimal data

Language element: informat
Category: numeric
Width range: 1 to 16
Default width: 1
Decimal range: 0 to 10
OpenVMS specifics: How values are interpreted as negative or positive

Syntax
PDw.d

Informats 4 PIBw.d 325

w
specifies the width of the input field.

d
optionally specifies the power of 10 by which to divide the input value. If you specify
d, the PDw.d informat divides the input value by the 10d value. If the data contain
decimal points, then SAS ignores the d value.

Details
Under OpenVMS, the least significant 4 bits of the least significant byte in the PD
value are interpreted as follows:

� If the hexadecimal number in the 4 bits is D or F, then the value is interpreted as
negative.

� If the hexadecimal number in the 4 bits is C, then the value is interpreted as
positive.

See Also

� Informat: PDw.d in SAS Language Reference: Dictionary

� Format: “PDw.d” on page 266

� “Reading Binary Data” on page 321

PIBw.d

Reads positive integer-binary (fixed-point) values

Language element: informat

Category: numeric

Width range: 1 to 8

Default width: 1

Decimal range: 0 to 10

OpenVMS specifics: native integer-binary values; byte reversal

Syntax
PIBw.d

w
specifies the width of the input field.

d
optionally specifies the power of 10 by which to divide the input value. If you specify
d, the PIBw.d informat divides the input value by the 10d value. SAS uses the d
value even if the input data contain decimal points.

326 RBw.d 4 Chapter 15

Details
Under OpenVMS, the PIB informat reads native integer-binary values. However, this
informat ignores the negativity of data in twos-complement notation and reads it as
positive. For more information about OpenVMS native fixed-point values, see
Architecture Reference Manual for Alpha and Architecture Reference Manual for VAX.

See Also

� Informat: PIBw.d in SAS Language Reference: Dictionary

� Format: “PIBw.d” on page 267
� “Reading Binary Data” on page 321

RBw.d

Reads real-binary (floating-point) data

Language element: informat

Category: numeric
Width range: 2 to 8
Default width: 4

Decimal range: 0 to 10
OpenVMS specifics: native floating-point representation

Syntax
RBw.d

w
specifies the width of the input field.

d
optionally specifies the power of 10 by which to divide the input value. If you specify
d, the RBw.d informat divides the input value by the 10d value. SAS uses the d value
even if the input data contain decimal points.

Details
The RBw.d informat reads numeric data that are stored in native real-binary
(floating-point) notation. Numeric data for scientific calculations are often stored in
floating-point notation. (The SAS System stores all numeric values in floating-point
notation.) A floating-point value consists of two parts: a mantissa that gives the value
and an exponent that gives the value’s magnitude.

It is usually impossible to key in floating-point binary data directly from a terminal,
but many programs write floating-point binary data. Use caution if you are using the
RBw.d informat to read floating-point data created by programs other than the SAS
System because the RBw.d informat is designed to read only double-precision data.

Informats 4 RBw.d 327

Since the RBw.d informat is designed to read only double-precision data, it supports
widths of less than 8 bytes only for those applications that truncate numeric data for
space-saving purposes. RB4. does not expect a single-precision number that is
truncated to 4 bytes.

External programs such as those written in C and FORTRAN can produce only
single- or double-precision floating-point numbers. No length other than 4 or 8 bytes is
allowed. The RBw.d informat allows a length of 3 through 8 bytes, depending on the
storage you need to save.

The FLOAT4. informat has been created to read a single-precision, floating-point
number. If you read the hexadecimal notation 3F800000with FLOAT4., the result is a
value of 1.

To read data created by a C or FORTRAN program, you need to decide on the proper
informat to use. If the floating-point numbers require an 8-byte width, you should use
the RB8. informat. If the floating-point numbers require a 4-byte width, you should use
FLOAT4.

For more information about OpenVMS floating-point representation, see Architecture
Reference Manual for Alpha and Architecture Reference Manual for VAX.

Examples

Example 1: Single- vs. Double-Precision Representation Consider how the value of 1
is represented in single-precision and double-precision notation. For single-precision,
the hexadecimal representation of the 4 bytes of data is 3F800000. For
double-precision, the hexadecimal representation is 3FF0000000000000. The digits at
the beginning of the data are different, indicating a different method of storing the data.

Example 2: Reading External Data Consider this C example:

#include <stdio.h>

main() {

FILE *fp;
float x[3];

fp = fopen(‘‘test.dat’’,’’wb’’);
x[0] = 1; x[1] = 2; x[2] = 3;

fwrite((char *)x,sizeof(float),3,fp);
fclose(fp);
}

The file TEST.DAT will contain, in hexadecimal notation,
3f8000004000000040400000.

328 VMSTIME. 4 Chapter 15

See Also

� Informat: RBw.d in SAS Language Reference: Dictionary

� Format: “RBw.d” on page 268

� “Reading Binary Data” on page 321

VMSTIME.

Converts an 8-byte binary value that is in OpenVMS date and time format to a SAS date-time value

Language element: informat

Category: date and time

Width range: 8

Default width: 8

OpenVMS specifics: All aspects are host-specific

Syntax
VMSTIME.

Details
The VMSTIME. informat is specific to the OpenVMS operating environment. You
cannot specify a width with this informat; the width is always 8 bytes.

OpenVMS date and time values that are read in with the VMSTIME. informat retain
precision up to 1/100 of a second, even though the SAS System cannot display anything
less than whole seconds. If you later use the VMSTIMEF. format to write out the
date-time value, the precision is retained.

See Also

� Format: “VMSTIMEF.” on page 271

VMSZNw.d

Reads VMS zoned numeric data

Language element: informat

Category: numeric

Width range: 1 to 32

Default width: 1

OpenVMS specifics: All aspects are host-specific

Informats 4 VMSZNw.d 329

Syntax
VMSZNw.d

w
specifies the width of the output field.

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The VMSZNw.d informat is similar to the ZDw.d informat. Both read a string of ASCII
digits, and the last digit is a special character denoting the magnitude of the last digit
and the sign of the entire number. The difference between the VMSZNw.d informat and
the ZDw.d informat is in the special character used for the last digit. The following
table shows the special characters used by the VMSZNw.d informat.

Desired

Digit

Special

Character

Desired

Digit

Special

Character

0 0 -0 p

1 1 -1 q

2 2 -2 r

3 3 -3 s

4 4 -4 t

5 5 -5 u

6 6 -6 v

7 7 -7 w

8 8 -8 x

9 9 -9 y

Data formatted using the VMSZNw.d informat are ASCII strings.

Examples

If you format the ASCII string 1234 using the VMSZNw.d informat in the following
SAS statement:

input @1 vmszn4.;

the result is 1234.

If you format the ASCII string 123t using the VMSZNw.d informat in the following
SAS statement:

input @1 vmszn4.;

the result is -1234.

330 ZDw.d 4 Chapter 15

See Also

� Informats: ZDw.d in SAS Language Reference: Dictionary and “ZDw.d” on page
330

� Format: “VMSZNw.d” on page 271

ZDw.d

Reads zoned decimal data

Language element: informat
Category: numeric
Width range: 1 to 32
Default width: 1
OpenVMS specifics: the last byte includes the sign

Syntax
ZDw.d

w
specifies the width of the input field.

d
optionally specifies the power of 10 by which to divide the input value. If you specify
d, the ZDw.d informat divides the input value by the 10d value. If the data contain
decimal points, then SAS ignores the d value.

Details
The ZDw.d informat accepts true zoned decimal, trailing numeric strings with the
overpunch format; numeric strings of the form that is read by the standard numeric
informat; and hybrid strings. A hybrid string is a zoned decimal string that has an
explicit sign.

To achieve the same results as the Release 6.06 implementation of the ZDw.d
informat, use the ZDVw.d informat.

A zoned decimal, or trailing numeric string with overpunch format, is a character
string consisting of digits. The last character of the string is a special character that
specifies both the value of the last digit and the sign of the entire number. The special
characters are listed in the following table.

Digit

ASCII

Character Digit

ASCII

Character

0 { -0 }

1 A -1 J

2 B -2 K

Informats 4 ZDw.d 331

Digit

ASCII

Character Digit

ASCII

Character

3 C -3 L

4 D -4 M

5 E -5 N

6 F -6 O

7 G -7 P

8 H -8 Q

9 I -9 R

The data formatted using the ZDw.d informat are ASCII strings.

Examples

If you format the ASCII string 123{ using ZDw.d informat in the following SAS
statement:

input i zd4.;

the result is 1230.

If you format the ASCII string 123} using the ZDw.d informat in the following SAS
statement:

input i zd4.;

the result is -1230.

If you format the ASCII string 1230 using the ZDw.d informat in the following SAS
statement:

input i zd4.;

the result is 1230.

If you format the ASCII string -1230 using the ZDw.d informat in the following SAS
statement:

input i zd5.;

the result is -1230.

If you format the ASCII string +123{ using the ZDw.d informat in the following SAS
statement:

input i zd5.;

the result is 1230.

332 ZDVw.d 4 Chapter 15

See Also

� Informats: ZDw.d in SAS Language Reference: Dictionary and “ZDVw.d” on page
332

ZDVw.d

Reads zoned decimal data

Language element: informat
Category: Numeric
Width range: 1 to 32
Default width: 1
OpenVMS specifics: All aspects are host-specific

Syntax
ZDVw.d

w
specifies the width of the input field.

d
optionally specifies the power of 10 by which to divide the input value. If you specify
d, the ZDVw.d informat divides the input value by the 10d value. If the data contain
decimal points, then SAS ignores the d value.

Details
In Release 6.07 of the SAS System, the ZDVw.d informat replaced the ZDw.d informat
with one change: although the string must be a true trailing numeric with overpunch
format, it no longer needs to be right-justified within its field. Trailing blanks are
trimmed before the number is converted.

A zoned decimal, or trailing numeric string with overpunch format, is a character
string that consists of digits. The last character of the string is a special character that
specifies both the value of the last digit and the sign of the entire number. The special
characters are the same as those that are documented for the ZDw.d informat, as
shown in the following table.

Digit

ASCII

Character Digit

ASCII

Character

0 { -0 }

1 A -1 J

2 B -2 K

3 C -3 L

4 D -4 M

Informats 4 ZDVw.d 333

Digit

ASCII

Character Digit

ASCII

Character

5 E -5 N

6 F -6 O

7 G -7 P

8 H -8 Q

9 I -9 R

The data formatted using the ZDVw.d informat are ASCII strings.

Examples

If you format the ASCII string 123{ using ZDVw.d informat in the following SAS
statement:

input i zd4.;

the result is 1230.

If you format the ASCII string 123} using the ZDVw.d informat in the following SAS
statement:

input i zd4.;

the result is -1230.

If you format the ASCII string 1230 using the ZDVw.d informat in the following SAS
statement:

input i zd4.;

the result is invalid data.

If you format the ASCII string -1230 using the ZDVw.d informat in the following
SAS statement:

input i zd5.;

the result is invalid data.

See Also

� Informats: ZDw.d in SAS Language Reference: Dictionary and “ZDw.d” on page
330

334 ZDVw.d 4 Chapter 15

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OpenVMS Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
518 pp.

SAS® Companion for the OpenVMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–526–4
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

