
335

C H A P T E R

16
Procedures

SAS Procedures under OpenVMS 335
CATALOG 335

CIMPORT 336

CONTENTS 337

CONVERT 339

CPORT 341
DATASETS 342

FORMAT 344

OPTIONS 344

PMENU 346

PRINTTO 346

SORT 348
VAXTOAXP 350

SAS Procedures under OpenVMS

Base SAS procedures allow you to perform statistical computations, create reports,
and manage your data. Most of the base SAS procedures are completely described in
SAS Procedures Guide. The procedures described here have syntax or behavior that is
specific to the OpenVMS operating environment.

CATALOG

Manages entries in SAS catalogs

Language element: procedure

OpenVMS specifics: FILE= option in the CONTENTS statement

Syntax
PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=etype> <KILL>;

CONTENTS <OUT=SAS-data-set> <FILE=fileref>;

336 CIMPORT 4 Chapter 16

Note: This is a simplified version of the CATALOG procedure syntax. For the
complete syntax and its explanation, see the CATALOG procedure in SAS Procedures
Guide. 4

fileref
names a file specification that is specific to the OpenVMS operating environment.

Details The CATALOG procedure manages entries in SAS catalogs.
The FILE= option in the CONTENTS statement of the CATALOG procedure accepts

a file specification that is specific to OpenVMS. If an unquoted file specification is given
in the FILE= option, but no FILENAME statement or DCL DEFINE command has
been issued to define the file specification, then the file is named according to the rules
for naming OpenVMS files. Consider the following example. If MYFILE is neither a
SAS fileref nor an OpenVMS logical name, then the file MYFILE.LIS, containing the
list of contents for SASUSER.PROFILE, is created in your default directory:

proc catalog catalog=sasuser.profile;
contents file=myfile;

run;

See Also

� CATALOG procedure in SAS Procedures Guide

CIMPORT

Restores a transport file created by the CPORT procedure

Language element: procedure
OpenVMS specifics: name and location of transport file; using a transport file on tape

Syntax
PROC CIMPORT destination=libref.member-name<option(s)>;

destination
specifies the name and location of a file to be transported.

Details The CIMPORT procedure imports a transfer file that was created (exported)
by the CPORT procedure.

If you have used the CPORT procedure, the CIMPORT procedure allows you to move
catalogs, data sets, and SAS data libraries from one operating environment to another.

Note: The CIMPORT procedure processes a transport file that was generated by
PROC CPORT, not a transport file that was generated by the XPORT engine. 4

Examples

Example 1: Importing an Entire Data Library from a Disk

libname newlib ’SAS-data-library’;
filename tranfile ’transport-file’;

Procedures 4 CONTENTS 337

proc cimport library=newlib infile=tranfile;
run;

PROC CIMPORT reads from disk the transport file TRANFILE that a previous
PROC CPORT created from a SAS data library and restores the transport file to the
SAS data library NEWLIB.

Example 2: Importing an Entire Data Library from a Tape

CAUTION:
You must use an unlabeled tape when reading from tape with the CIMPORT procedure. 4

Mount the tape onto the tape drive.

x ’alloc tape-drive sastape’;
x ’mount/for sastape’;
libname newlib ’SAS-data-library’;
filename tranfile ’sastape’;
proc cimport library=newlib infile=tranfile tape;
run;

PROC CIMPORT reads from tape the transport file TRANFILE that PROC CPORT
(using the TAPE option) created from a SAS data library and restores the transport file
to the SAS data library NEWLIB.

See Also

� CIMPORT procedure in SAS Procedures Guide
� Procedure: “CPORT” on page 341
� Moving and Accessing SAS Files across Operating Environments

CONTENTS

Prints descriptions of the contents of one or more files from a SAS data library

Language element: procedure
OpenVMS specifics: Engine/Host Dependent Information output

Syntax
PROC CONTENTS <option(s)>;

Note: For a complete listing and explanation of the available options, see the
CONTENTS procedure in SAS Procedures Guide. 4

option(s)
can be the following:

DIRECTORY
prints a list of information specific to the OpenVMS operating environment. This
information is the same as the PROC DATASETS directory information that is
written to the log.

338 CONTENTS 4 Chapter 16

Details The CONTENTS procedure shows the contents of a SAS data set and prints
the directory of the SAS data library.

Although most of the printed output that the CONTENTS procedure generates is the
same on all operating environments, the Engine/Host Dependent Information
output is specific to your operating environment. Output 16.1 on page 338 shows the
Engine/Host Dependent Information generated for the V8 engine from the
following statements:

proc contents data=oranges;
run;

Output 16.1 Engine/Host Dependent Information from PROC CONTENTS Using the V8 Engine

The CONTENTS Procedure

Data Set Name: WORK.ORANGES Observations: 1
Member Type: DATA Variables: 5
Engine: V8 Indexes: 0
Created: 10:54 Friday, May 29, 1999 Observation Length: 40
Last Modified: 10:54 Friday, May 29, 1999 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

−−−−−Engine/Host Dependent Information−−−−−

Data Set Page Size: 8192
Number of Data Set Pages: 1
First Data Page: 1
Max Obs per Page: 203
Obs in First Data Page: 1
Number of Data Set Repairs: 0
Filename: SASDISK:[SASDEMO.SAS$WORK2040F93A]ORANGES.SAS7BDAT
Release Created: 8.00.00P
Host Created: OpenVMS
File Size (blocks): 32

−−−−−Alphabetic List of Variables and Attributes−−−−−

Variable Type Len Pos
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 flavor Num 8 0
4 looks Num 8 16
3 texture Num 8 8
5 total Num 8 24
1 variety Char 8 32

Procedures 4 CONVERT 339

The engine name is listed in the header information. The Engine/Host Dependent
Information describes the size of the data set, as well as the physical name of the
data set.

See Also

� CONTENTS procedure in SAS Procedures Guide

� “Starting with SAS Data Sets” in SAS Language and Procedures: Usage

CONVERT

Converts OSIRIS and SPSS system files to SAS data sets

Language element: procedure
OpenVMS specifics: All aspects are host-specific

Syntax
PROC CONVERT product-specification <option(s)>;

product-specification
is required and can be one of the following:

OSIRIS=fileref-1 DICT=fileref-2
specifies a fileref or libref for the OSIRIS file to be converted into a SAS data set.
If you use this product specification, you must also use the DICT= option, which
specifies the OSIRIS dictionary to use.

SPSS=fileref
specifies a fileref or libref for the SPSS file to be converted into a SAS data set.
The SPSS file can have the following formats:

� SPSS-X format (whose originating operating environment is OpenVMS)
� Portable File Format (from any operating environment).

option(s)
can be one or more of the following:

FIRSTOBS=n
specifies the number of the observation where the conversion is to begin. This
option enables you to skip over observations at the beginning of the OSIRIS or
SPSS system file.

OBS=n
specifies the number of the last observation to convert. This option enables you to
exclude observations at the end of the file.

OUT=SAS-data-set
names the SAS data set that is created to hold the converted data. If the OUT=
option is omitted, the SAS System still creates a data set and automatically names
it DATAn, as if you omitted a data set name in a DATA statement. If it is the first
such data set created in a job or session, the SAS System names it DATA1; the

340 CONVERT 4 Chapter 16

second is named DATA2, and so on. If the OUT= option is omitted, or if you do not
specify a two-level name in the OUT= option, then the converted data set is stored
in your WORK data library and by default is not permanent.

Details The CONVERT procedure converts an OSIRIS or SPSS data file to a SAS
data set. It produces one output data set but no printed output. The new data set
contains the same information as the input system file; exceptions are noted in “Output
Data Sets” on page 340. The OSIRIS and SPSS engines provide more extensive
capabilities.

Because the OSIRIS and SPSS products are maintained by other companies or
organizations, changes may be made that make the system files incompatible with the
current version of PROC CONVERT. SAS Institute upgrades PROC CONVERT to
support changes made to these products only when a new version of the SAS System is
available.

Missing Values If a numeric variable in the input data set has no value, or if it has a
system missing value, PROC CONVERT assigns a missing value to it.

Output Data Sets This section describes the attributes of the output SAS data set for
each product-specification value.

CAUTION:
Be sure that the translated names are unique. Variable names can sometimes be
translated by the SAS System. To ensure the procedure works correctly, be sure that
your variables are named in such a way that translation results in unique names. 4

OSIRIS Output For single-response variables, the V1–V9999 name becomes the SAS
variable name. For multiple-response variables, the suffix Rn is added to the variable
name, where n is the response number. For example, V25R1 is the first response of the
multiple-response variable V25. If the variable after V1000 has 100 or more responses,
responses above 99 are eliminated. Numeric variables that OSIRIS stores in character,
fixed-point binary, or floating-point binary mode become SAS numeric variables.
Alphabetic variables become SAS character variables; any alphabetic variable that is
longer than 200 is truncated to 200. The OSIRIS variable description becomes a SAS
variable label, and OSIRIS print formats become SAS formats.

SPSS Output SPSS variable names and variable labels become unchanged variable
names and labels. SPSS alphabetic variables become SAS character variables of length
4. SPSS blank values are converted into SAS missing values. SPSS print formats
become SAS formats, and the SPSS default precision of no decimal places becomes part
of the variables’ formats. SPSS value labels are not copied. DOCUMENT data are
copied so that PROC CONTENTS can display them.

Comparisons Using the CONVERT procedure is similar to using the OSIRIS and
SPSS engines. For example, the following two programs provide identical results:

/* using the CONVERT procedure */
filename xxx ’mybmdp.dat’;
proc convert osiris=xxx out=temp;
run;

/* using the OSIRIS engine */
libname xxx osiris ’myosiris.dat’;

Procedures 4 CPORT 341

data temp;
set xxx._first_;

run;

However, the OSIRIS and SPSS engines provide more extensive capability than
PROC CONVERT.

Example

The following is an example of converting an OSIRIS file to a SAS data set, using a
fileref named save:

filename save ’[mydir]osiris.dat’;

proc convert osiris=save;
run;

If you have more than one save file in the OSIRIS file referenced by fileref, then you
can use two additional options in parentheses after the fileref. The CODE= option lets
you specify the code of the save file that you want, and the CONTENT= option lets you
specify the save file’s content. For example, if a save file had CODE=JUDGES and
CONTENT=DATA, you could use the following statements to convert the save file to a
SAS data set:

filename save ’[mydir]osiris1.dat’;

proc convert osiris=save(code=judges content=data);
run;

See Also

� “Using the OSIRIS and SPSS Engines” on page 161

CPORT

Writes SAS data sets and catalogs into a special format in a transport file

Language element: procedure
OpenVMS specifics: name and location of transport file; creating a transport file on tape

Syntax
PROC CPORT source-type=libref< .member-name> <option-list>;

Note: This is a simplified version of the CPORT procedure syntax. For the complete
syntax and its explanation, see the CPORT procedure in SAS Procedures Guide. 4

libref
specifies the name and location of the file to be transported.

Details If you do not use the FILE= option and have not defined the reserved fileref
SASCAT, a file named SASCAT.DAT is created in your default directory.

342 DATASETS 4 Chapter 16

The CPORT procedure defaults to writing to a file on disk. If you want to write to a
file on tape, you must use the TAPE option in the PROC CPORT statement.

Note: You do not need to define the fileref SASCAT to your tape drive. You can
choose any fileref, or you can let the file default to SASCAT.DAT, as it does for disk
access. 4

You do not need to use the /BLOCKSIZE=8000 option in the DCL MOUNT command,
although it is recommended.

Examples

Example 1: Exporting Data Sets and Catalogs to Disk The following is an example of
using PROC CPORT to export all the data sets and catalogs from a data library on disk:

libname newlib ’SAS-data-library’;
filename tranfile ’transport-file’;
proc cport library=newlib file=tranfile;
run;

PROC CPORT writes the file TRANFILE to disk. This file contains the data sets and
catalogs in the SAS data library NEWLIB in transport format.

Example 2: Exporting Data Sets and Catalogs to Tape

CAUTION:
You must use an unlabeled tape when writing to tape with the CPORT procedure. 4

The following is an example of using PROC CPORT to export all the data sets and
catalogs in a data library on tape and then mount the tape onto the tape drive:

x ’alloc tape-drive sastape’;
x ’mount/for sastape’;
libname newlib ’SAS-data-library’;
filename tranfile ’sastape’;

proc cport library=newlib file=tranfile tape;
run;

PROC CPORT writes the file TRANFILE to tape. This file contains the data sets and
catalogs in the SAS data library NEWLIB in transport format.

See Also

� CPORT procedure in SAS Procedures Guide
� Procedure: “CIMPORT” on page 336
� Moving and Accessing SAS Files across Operating Environments

DATASETS

Lists, copies, renames, repairs, and deletes SAS files; also manages indexes for and appends
SAS data sets in a SAS data library; changes variable names and related variable information and
prints the contents

Language element: procedure

Procedures 4 DATASETS 343

OpenVMS specifics: directory information; CONTENTS statement output

Syntax
PROC DATASETS <option(s)>;

CONTENTS <option(s)>

Note: This is a simplified version of the DATASETS procedure syntax. For the
complete syntax and its explanation, see the DATASETS procedure in SAS Procedures
Guide. 4

CONTENTS option(s)
the value for option(s) can be the following:

DIRECTORY
prints a list of information specific to the OpenVMS operating environment.

Details The SAS data library information that the DATASETS procedure displays in
the SAS log is specific to your operating environment. Output 16.2 on page 343 shows
the information that the DATASETS procedure writes to the SAS log when the
following SAS statements are executed in the OpenVMS environment:

proc datasets library=work;
run;

Output 16.2 SAS Data Library Information from PROC DATASETS with the V8 Engine

1 proc datasets library=work;

−−−−−Directory−−−−−

Libref: WORK
Engine: V8
Physical Name: SASDISK:[SASDEMO.SAS$WORK2542293E]

Name Memtype Indexes
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 ORANGES DATA

2 quit;
$

344 FORMAT 4 Chapter 16

The output shows you the libref, engine, and physical name associated with the
library, as well as the names of the data sets that the library contains. It also shows
the names of any catalogs and valid memtype stored in the library.

The CONTENTS statement of the DATASETS procedure generates the same
Engine/Host Dependent Information as the CONTENTS procedure.

See Also

� DATASETS procedure in SAS Procedures Guide
� Procedure: “CONTENTS” on page 337
� “Modifying Data Set Names and Attributes” in SAS Language and Procedures:

Usage

FORMAT

Creates user-defined formats and informats

Language element: procedure
OpenVMS specifics: location of temporary formats and informats

Syntax
PROC FORMAT <options(s)>;

Note: This is a simplified version of the FORMAT procedure syntax. For the
complete syntax and its explanation, see the FORMAT procedure in SAS Procedures
Guide. 4

option(s)
specifies the options that control the behavior of and information about formats and
informats.

Details The FORMAT procedure enables you to define your own informats and
formats for variables.

Under OpenVMS, temporary formats and informats are stored in the temporary
catalog FORMATS.SASEB$CATALOG in your WORK data library.

See Also

� FORMAT procedure in SAS Procedures Guide

OPTIONS

Lists the current values of all SAS system options

Language element: procedure

Procedures 4 OPTIONS 345

OpenVMS specifics: host options listed

Syntax
PROC OPTIONS <options(s)>;

option(s)
controls the format of the list of system options and the number of items displayed.
The value for option(s) can be any of the following:

HOST | NOHOST
displays only host options (HOST) or only portable options (NOHOST).
PORTABLE is an alias for NOHOST.

LONG | SHORT
specifies the format for displaying the settings of the SAS system options. LONG
lists each system option on a separate line with an explanation. SHORT produces
a compressed listing without explanations.

OPTION=option-name <DEFINE> <VALUE>
displays a short description and the value (if any) of the option specified by
option-name. DEFINE and VALUE provide additional information about the
option.

option-name
specifies the option to use as input to the procedure.

DEFINE
displays the short description of the option, as well as its type and how to get,
set, and display its value.

VALUE
displays the option value and scope, as well as how the value was set.

Requirement: If a SAS system option uses an equals sign, such as PAGESIZE=, do
not include the equals sign when specifying the option to the OPTION=
procedure.

Details The OPTIONS procedure lists the current settings of the SAS system options.
The portable options (session and configuration) displayed by the OPTIONS

procedure are the same for every operating environment, although the default values
may differ slightly. However, the host options that PROC OPTIONS displays are
different for each operating environment.

Also, some option values depend on which mode of operation you use to run SAS. For
example, the default for the LOG= option is LOG under a windowing environment, but
in interactive line mode the default is SYS$OUTPUT. Finally, the way you set up your
process affects the default values of system options. For example, the default value of
the CONFIG= option depends on whether you have defined the OpenVMS logical name
SAS$CONFIG in your process.

By using PROC OPTIONS, you can check the values of all system options. For more
information about a particular host option, see the entry for the option in Chapter 18,
“System Options,” on page 387.

346 PMENU 4 Chapter 16

See Also

� OPTIONS procedure in SAS Procedures Guide

PMENU
Defines pull-down menu facilities for windows that were created with SAS software

Language element: procedure
OpenVMS specifics: Some options and statements are ignored in the OpenVMS
environment

Syntax
PROC PMENU <CATALOG=< libref.>catalog>

<DESC ’entry-description’>;

Note: This is a simplified version of the PMENU procedure syntax. For the complete
syntax and its explanation, see the PMENU procedure in SAS Procedures Guide. 4

CATALOG=<libref.>catalog
specifies the catalog in which you want to store PMENU entries. If you omit libref,
the PMENU entries are stored in a catalog in the SASUSER data library. If you omit
CATALOG=, the entries are stored in the SASUSER.PROFILE catalog.

DESC ’entry-description’
provides a description of the PMENU catalog entries created in the step.

Details The PMENU procedure defines pull-down menus that can be used in DATA
step windows, macro windows, SAS/AF and SAS/FSP windows, or in any SAS
application that allows you to specify menus.

Under OpenVMS, the following statements or statement options are ignored:
� SEPARATOR statement
� HELP= option in the DIALOG statement
� ACCELERATE= and MNEMONIC= options in the ITEM statement
� ATTR= and COLOR= options in the TEXT statement. (The colors and attributes

for text and input fields are controlled by the CPARMS colors. For details, see
“Customizing Colors” on page 103.

The GRAY option makes any unavailable menu items look different (usually bold)
from those that are available. On some displays, this visual distinction is not
supported; on these displays, all menu items appear the same.

See Also

� PMENU procedure in SAS Procedures Guide

PRINTTO
Defines destinations for SAS procedure output and for the SAS log

Procedures 4 PRINTTO 347

Language element: procedure
OpenVMS specifics: valid values for file-specification; UNIT= option

Syntax
PROC PRINTTO <option(s)>

Note: This is a simplified version of the PRINTTO procedure syntax. For the
complete syntax and its explanation, see the PRINTTO procedure in SAS Procedures
Guide. 4

option(s)

FILE=file-specification
specifies a fileref, a fully qualified OpenVMS pathname (in quotation marks), or an
OpenVMS logical name. This is an alias for the PRINT= option.

LOG=file-specification
specifies a fileref, a fully qualified OpenVMS pathname (in quotation marks), or an
OpenVMS logical name.

NAME=file-specification
specifies a fileref, a fully qualified OpenVMS pathname (in quotation marks), or an
OpenVMS logical name. This is an alias for the PRINT= option.

PRINT=file-specification
specifies a fileref, a fully qualified OpenVMS pathname (in quotation marks), or an
OpenVMS logical name.

UNIT=nn
sends output to the file FTnnF001.LIS, where nn represents the UNIT= value,
which can range from 1 to 99.

Details The PRINTTO procedure defines destinations for SAS procedure output and
for the SAS log.

To send output directly to a printer, use a FILENAME statement with the PRINTER
device-type keyword. This sends the output to the default SYS$PRINT queue. If you
want to override the default queue, use the QUEUE= option in the FILENAME
statement to specify a different queue.

Note: You cannot send the output directly to a member of a text library or to a
remote node or tape. 4

Examples

Example 1: Sending SAS Log Entries to an External File The following statements
send any SAS log entries that are generated after the RUN statement to the external
file that is associated with the fileref MYFILE:

filename myfile ’[mydir]mylog.log’;

proc printto log=myfile;
run;

Example 2: Sending Procedure Output to an External File The following statements
send the procedure output from the CONTENTS procedure (and any other subsequent

348 SORT 4 Chapter 16

procedure output from the SAS session) to the external file that is associated with the
OpenVMS logical name OUTPUT:

x ’define output [mydir]proc1.lis’;
proc printto print=output;
run;

proc contents data=oranges;
run;

Example 3: Sending Procedure Output to a System Printer The following statements
send the procedure output from the CONTENTS procedure directly to the system
printer:

filename myfile printer ’[mydir]proc2.lis’;

proc printto print=myfile;
run;

proc contents data=oranges;
run;

Example 4: Redirecting SAS Log and Procedure Output to the Default The following
statements (a PROC PRINTTO statement with no options) redirect the SAS log and
procedure output to the original default destinations:

proc printto;
run;

Example 5: Sending Procedure Output to a File The following statements send any
procedure output to a file named MYPRINT.DAT:

proc printto print=myprint;
run;

See Also

� PRINTTO procedure in SAS Procedures Guide
� Statement: “FILENAME” on page 357
� Chapter 8, “Routing the SAS Log and SAS Procedure Output,” on page 187

SORT

Sorts observations in a SAS data set by one or more variables, storing the resulting sorted
observations in a new SAS data set or replacing the original data set

Language element: procedure
OpenVMS specifics: available sort routines

Syntax
PROC SORT <option(s)> <collating-sequence-option>;

Procedures 4 SORT 349

Note: This is a simplified version of the SORT procedure syntax. For the complete
syntax and its explanation, see the SORT procedure in SAS Procedures Guide. 4

option(s)

NODUPKEY
under OpenVMS, the observation that is returned is unpredictable; that is, the
observation returned is not guaranteed to be the first observation that was
encountered for that BY variable. For further explanation of the NODUPKEY
option, see “NODUPKEY Option” on page 349.

SORTWKNO=n
specifies the number of sort work files to be used by the OpenVMS sort utility. The
value for n can be 0 through 6. For further explanation of the SORTWKNO=
option, see “SORTWKNO= Option” on page 349.

Details By default under OpenVMS, the SORT procedure uses the ASCII collating
sequence. Whenever the SORT procedure uses the HOST sort utility, it uses the
OpenVMS sort utility. (For information about how the sort utility is chosen, see the
discussion of the SORTPGM= system option in “SORTPGM=” on page 437.) The HOST
sort utility accepts all options that are available to the SAS sort utility. For a complete
list of options, see the SORT procedure in the SAS Procedures Guide.

NODUPKEY Option The SAS sort utility and the OpenVMS sort utility differ slightly
in their implementation of the NODUPKEY option. If you need to use both the
NODUPKEY and EQUALS options (that is, if you need to guarantee that the first
observation returned is the first observation that was input), then use the SAS sort
utility.

When you use the SAS sort utility, the NODUPKEY option implies the EQUALS
option by default. As a result, the observation that is returned for like BY values is the
first observation that was encountered for the key BY variable. That is, the
observations are returned in the order in which they were input.

By contrast, the OpenVMS sort utility does not support the EQUALS option in
conjunction with the NODUPKEY option. When NODUPKEY is used with the
OpenVMS sort utility, the EQUALS option is set to NOEQUALS unconditionally. As a
result, when NODUPKEY is specified with the OpenVMS sort utility, the observation
that is returned for observations with like BY values is not guaranteed to be the first
observation that was encountered for that BY variable. The observation that the
OpenVMS sort utility returns when NODUPKEY is in effect is unpredictable.

SORTWKNO= Option The SORT procedure also supports the SORTWKNO= option in
the PROC SORT statement. The SORTWKNO= option specifies the number of sort
work files to be used by the OpenVMS sort utility.

The OpenVMS sort utility can support up to 10 work files. If you set SORTWKNO=
to 0 and define the ten sort work files, the SAS System uses the ten files. To use the
sort work files, you must define a SORTWORK# logical name for each sort work area.
For example:

$DEFINE SORTWORK0 DISK1:[TEMP]
$DEFINE SORTWORK1 DISK2:[TEMP]
$DEFINE SORTWORK2 DISK3:[TEMP]

The following example uses the SORTWKNO= option to specify that four work files
should be used:

libname mylib ’[mydata]’;

350 VAXTOAXP 4 Chapter 16

proc sort data=mylib.june sortwkno=4;
by revenue;

run;

Customizing Collating Sequences The options EBCDIC, ASCII, NATIONAL,
DANISH, SWEDISH, and REVERSE specify collating sequences that are stored in the
HOST catalog.

If you want to provide your own collating sequences or change a collating sequence
provided for you, use the TRANTAB procedure to create or modify translation tables.
For complete details on the TRANTAB procedure, see SAS Procedures Guide. When you
create your own translation tables, they are stored in your PROFILE catalog, and they
override any translation tables that have the same names in the HOST catalog.

Note: System managers can modify the HOST catalog by copying newly created
tables from the PROFILE catalog to the HOST catalog. Then all users can access the
new or modified translation table. 4

If you are using the SAS windowing environment and want to see the names of the
collating sequences that are stored in the HOST catalog, issue the following command
from any window:

CATALOG SASHELP.HOST

If you are not using the SAS windowing environment, then issue the following
statements to generate a list of the contents of the HOST catalog:

proc catalog catalog=sashelp.host;
contents;
run;

Entries of type TRANTAB are the collating sequences.
To see the contents of a particular translate table, use the following statements:

proc trantab table=table-name;
list;
run;

The contents of collating sequences are displayed in the SAS log.

See Also

� SORT procedure in SAS Procedures Guide
� TRANTAB procedure in SAS Procedures Guide
� System option: “SORTPGM=” on page 437
� “Working with Grouped or Sorted Observations” in SAS Language and Procedures:

Usage

VAXTOAXP

Converts the format of a SAS data set that was created in an OpenVMS VAX environment to the
format that SAS supports in the OpenVMS Alpha environment

Language element: procedure
OpenVMS Alpha specifics: All aspects are specific to the OpenVMS Alpha operating
environment

Procedures 4 VAXTOAXP 351

Syntax
PROC VAXTOAXP

DATA = <libref.>member

OUT = <SAS-data-set>;

DATA=libref.member
specifies a libref member, a fully qualified OpenVMS pathname (in quotes), or an
OpenVMS logical name. The DATA= option is required.

OUT=SAS-data-set
names the SAS data set that is created to hold the converted data. The OUT= option
is optional. If you do not specify a value for the OUT= option, then SAS creates a
temporary SAS data set called WORK.DATAn.

Details The only statement that is associated with the VAXTOAXP procedure is
PROC VAXTOAXP.

In the OpenVMS VAX operating environment, the SAS System stores numeric
variables as D-floating data types, which means that their length varies from 2 to 8
bytes. However, in the OpenVMS Alpha operating environment, numeric variables are
stored as IEEE T-floating data types, which means that their length varies from 3 to 8
bytes. If you attempt to move data with 2-byte numeric variables from an OpenVMS
VAX environment to an OpenVMS Alpha environment, you will get the following error
message:

ERROR: IEEE numbers with a length less than 3 are not supported.
This data set contains observations with numeric variables of length 2. The data
set cannot be created/translated.

If a SAS data set that was created in the OpenVMS VAX environment contains only
numeric variables with lengths of 3 bytes or greater, then the SAS System in the
OpenVMS Alpha environment can access the data set without the need for any
conversion process. However, if your OpenVMS VAX data set does contain numeric
variables with 2-byte lengths, your OpenVMS Alpha environment will be unable to
access the data set until you have converted it.

The VAXTOAXP procedure increases the length of all numeric variables by 1 byte up
to 8 bytes. Thus, a 2-byte numeric variable becomes 3 bytes, a 3-byte numeric variable
becomes 4 bytes, and so on.

If you run the VAXTOAXP procedure on a data set that does not contain numeric
variables with lengths less than 8 bytes, the conversion proceeds after the following
warning message is issued:

WARNING: No numeric variables had a length less than 8, so it was
unnecessary to invoke PROC VAXTOAXP.

However, the data set will still be copied as requested.

Example

Suppose you have a permanent SAS data set named CHARLIE that you created in
an OpenVMS VAX environment. You know that this data set contains numeric
variables with 2-byte lengths. To read that data set into the SAS System running in an
OpenVMS Alpha environment, use the following statements:

352 VAXTOAXP 4 Chapter 16

libname vlib v6 ’user$disk:[dir]’;
libname alib v8 ’[nwdir]’;

proc vaxtoaxp data=vlib.charlie out=alib.charlie;
run;

You can verify that all 2-byte numeric variables have been converted to 3 bytes by
running the CONTENTS procedure on the ALIB.CHARLIE data set. All numeric
variables that have lengths less than 8 bytes will have their lengths increased by 1 byte.

Note: If you attempt to use the VAXTOAXP procedure while running in an
OpenVMS VAX operating environment, you will receive the following error message:
ERROR: Procedure VAXTOAXP is not supported on the VAX. 4

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OpenVMS Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
518 pp.

SAS® Companion for the OpenVMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–526–4
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

