
353

C H A P T E R

17
Statements

SAS Statements under OpenVMS 353
ABORT 353

ATTRIB 354

FILE 355

FILENAME 357

FOOTNOTE 373
%INCLUDE 374

INFILE 375

LENGTH 377

LIBNAME 378

SYSTASK 380

TITLE 382
X 383

WAITFOR 384

SAS Statements under OpenVMS
A SAS statement is a directive to the SAS System that either requests that SAS

perform a certain operation or provides information to the system that might be
necessary for later operations.

All SAS statements are completely described in SAS Language Reference: Dictionary.
Those that are described here have syntax and usage that is specific to the OpenVMS
operating environment.

ABORT

Stops executing the current DATA step, SAS job, or SAS session

Language element: statement
Valid: in a DATA step
OpenVMS specifics: action of ABEND and RETURN; maximum value of n

Syntax
ABORT <ABEND | RETURN> <n>;

354 ATTRIB 4 Chapter 17

Note: This is a simplified explanation of the ABORT statement syntax. For the
complete explanation, see SAS Language Reference: Dictionary. 4

no argument
stops processing the current DATA step. Additional actions and results depend on
the method of operation.

ABEND
causes abnormal termination of the current SAS job or session. Results depend on
the method of operation.

RETURN
causes the immediate normal termination of the current SAS job or session. Results
depend on the method of operation.

n
is an integer value that enables you to specify a condition code that SAS returns to
OpenVMS when it stops executing. The value of n can range from −2,147,483,648 to
2,147,483,647.

Details If you specify ABORT ABEND, the symbol SAS$STATUS is set to 999. If you
specify ABORT RETURN, the symbol SAS$STATUS is set to 12. Both the ABEND and
RETURN arguments terminate the SAS job or session.

The value of n can range from −2,147,483,648 to 2,147,483,647.

See Also

� ABORT statement in SAS Language Reference: Dictionary
� “Determining the Completion Status of a SAS Job” on page 43

ATTRIB

Associates a format, informat, label, or length or all four with one or more variables

Language element: statement
Valid: in a DATA step
OpenVMS specifics: length specification

Syntax
ATTRIB variable-list-1 attribute-list-1

< . . . variable-list-n attribute-list-n>;

variable-list
names the variables that you want to associate with the attributes.

attribute-list
specifies one or more attributes to assign to variable-list. Specify one or more of these
attributes in the ATTRIB statement:

Statements 4 FILE 355

FORMAT=format
associates a format with variables in variable-list.

INFORMAT=informat
associates an informat with variables in variable-list.

LABEL=’label’
associates a label with variables in variable-list.

LENGTH=<$>length
specifies the length of variables in variable-list. A dollar sign ($) is required in
front of the length of character variables. For character variables, the value of
length is 1 to 32,767.

Details Under OpenVMS Alpha, the minimum length that you can specify for a
numeric variable is 3 bytes.

Under OpenVMS VAX, the minimum length that you can specify for a numeric
variable is 2 bytes.

See Also

� ATTRIB statement in SAS Language Reference: Dictionary

FILE

Specifies the current output file for PUT statements

Language element: statement
Valid: in a DATA step
OpenVMS specifics: valid values for file-specification; valid values for host-option-list

Syntax
FILE file-specification <option-list>

<host-option-list>;

file-specification
can be any type of file specification discussed in “Identifying External Files to the
SAS System” on page 166.

option-list
specifies portable options for the FILE statement. For information about these
options, see the FILE statement in SAS Language Reference: Dictionary.

host-option-list
specifies external I/O statement options that are specific to the OpenVMS
environment. These options can be any of the following:

ALQ=

CC=

DEQ=

356 FILE 4 Chapter 17

FAC=

GSFCC=

KEY=

KEYVALUE=

LINESIZE=

LRECL=

MBC=

MBF=

MOD

NEW

OLD

PAGESIZE=

RECFM=

SHR=

For information about these options, see “Host-Specific External I/O Statement
Options” on page 361 in the FILENAME statement.

Many of the DCL print qualifiers are also supported as host options in the FILE
and FILENAME statements. For details, see “Printer Options in the FILENAME
and FILE Statements” on page 371 in the FILENAME statement.

You can intersperse options from option-list and host-option-list in any order.

Note: When using the PIPE device with the FILE statement, only the LRECL host
option is supported. 4

Details By default, PUT statement output is written to the SAS log. Use the FILE
statement to route this output to either the same external file to which procedure
output is written or to a different external file. You can indicate whether or not carriage
control characters should be added to the file.

You can use the FILE statement in conditional (IF-THEN) processing because it is
executable. You can also use multiple FILE statements to write to more than one
external file in a single DATA step.

Example

The following is an example of a FILE statement:

file prices;

This FILE statement uses the default filename form of the file specification (PRICES
has not been assigned as a SAS fileref or OpenVMS logical name). Therefore, the SAS
System looks for the file PRICES.DAT in the current directory.

When the SAS System writes a file, it creates a new version by default. For example,
if your default directory contains versions 1 and 2 of the file PRICES.DAT, then this
FILE statement writes PRICES.DAT;3 in your default directory.

Statements 4 FILENAME 357

If you want to append output lines to the most recent version of an external file, use
the MOD option in the FILE statement. For instance, from the previous example your
default directory contains three versions of PRICES.DAT. The following statement
appends data lines to PRICES.DAT;3:

file prices mod;

To reference an explicit version of a file, use the version number as part of the file
specification within a quoted string. For example, the following FILE statement writes
to version 1 of the file:

file ’prices.dat;1’;

See Also

� FILE statement in SAS Language Reference: Dictionary

� Statement: “FILENAME” on page 357

� “Identifying External Files to the SAS System” on page 166

� Command: “FILE” on page 228

FILENAME

Associates a SAS fileref with an external file

Language element: statement

Valid: anywhere in a SAS program

OpenVMS specifics: valid values for device-type; valid values for external-file; valid values
for host-option-list

Syntax
FILENAME fileref <device-type>

’external-file’ <host-option-list>;

FILENAME fileref device-type <’external-file’>

<host-option-list>;

Note: This is a simplified version of the FILENAME statement syntax. For the
complete syntax and its explanation, see the FILENAME statement in SAS Language
Reference: Dictionary. 4

fileref
is any valid fileref and can be up to eight characters long. The first character must
be a letter (A to Z), an underscore (_), a dollar sign ($), a pound sign (#), or an at sign
(@). Subsequent characters can be any of these characters, or they can be numbers.
Neither OpenVMS nor the SAS System distinguishes between uppercase and
lowercase letters in filerefs or in filename specifications. This is a required argument.
See “Reading from and Writing to OpenVMS Commands (Pipes)” on page 179 for

358 FILENAME 4 Chapter 17

information on assigning a fileref to a pipe to read from and write to OpenVMS
commands.

The following are some examples of valid filerefs:

� TEST_1

� MYFILE

� abc123
The following are some examples of invalid filerefs:

� ALONGFILENAME (longer than eight characters)

� 123_test (begins with a number)

� TEST%X (contains an invalid character (%)).

device-type
specifies an output device. For details about device types, see “Device-Type
Keywords” on page 360. The device-type keyword must follow fileref and must
precede external-file (if an external file is used).

’external-file’
can be any valid file specification in quotation marks. The file specification must be a
valid OpenVMS pathname to the external file that you want to access; therefore, the
level of specification depends on your location in the directory structure. The number
of characters in the quoted string must not exceed the maximum filename length
that OpenVMS allows (255 characters).

Under OpenVMS, you can specify concatenations of files when reading and writing
external files from within the SAS System. Concatenated files consist of two or more
file specifications, enclosed in quotation marks and separated by commas. The
following is an example of a valid concatenation specification:

filename alldata ’test.data1, test.data2,
test.data3’;

For a complete discussion, see “Using OpenVMS Pathnames to Identify External
Files” on page 168

For Version 8, if you specify a version number for the file in a FILENAME
statement, the version number of the file is not increased. For example, the following
FILENAME statement will produce only one file, test.dat;1:

filename myfile ’test.dat;1’;
data;
file myfile;
put ’hello’;
run;
data;
file myfile;
put ’hello again’;
run;

For more details, see “Using OpenVMS Pathnames to Identify External Files” on
page 168. For more information about valid OpenVMS pathnames, refer to
OpenVMS User’s Manual.

host-option-list
names any of the following external I/O statement options:

ALQ=

CC=

DEQ=

Statements 4 FILENAME 359

FAC=

GSFCC=

KEY=

KEYVALUE=

LINESIZE=

LRECL=

MBC=

MBF=

MOD

NEW

OLD

PAGESIZE=

RECFM=

SHR=

These options control how the external file is processed and are specific to the
OpenVMS environment. For information about these options, see “Host-Specific
External I/O Statement Options” on page 361.

Many of the DCL print qualifiers are also supported as host options in the
FILENAME and FILE statements. For details, see “Printer Options in the
FILENAME and FILE Statements” on page 371.

Note: When using the PIPE device, only the LRECL= host option is supported. 4

Details The FILENAME statement is significantly different from the LIBNAME
statement. The FILENAME statement is for external files only and references a specific
filename. The LIBNAME statement is for SAS files only, and it generally specifies
directory- and subdirectory-level information only (except when you are assigning a
libref for use with the XPORT, OSIRIS, or SPSS engines). Also, unlike a libref, you can
associate a fileref with a file that does not yet exist; when you use the fileref in a FILE
statement or command, the file is created according to your specifications.

You can choose to use only a directory name in the FILENAME statement (the
directory must exist, except when doing a concatenation). You must then use the fileref
and the filename in subsequent statements as discussed in “Using Aggregate Syntax to
Identify External Files” on page 169. The SAS System supplies a default file type.

Reserved Filerefs Under OpenVMS, the following are reserved filerefs (the items in
parentheses are the SAS statements to which each applies):

DATALINES (INFILE)
specifies that input data immediately follow a DATALINES statement in your SAS
stream. The only time you need to use the INFILE DATALINES fileref is when
you want to use INFILE statement options to read in stream data.

LOG (FILE)
specifies that output lines produced by PUT statements are written to the SAS log.
LOG is the default destination for output lines.

PRINT (FILE)
specifies that output lines produced by PUT statements are written to the
procedure output file, the external file to which SAS procedure output is written.

360 FILENAME 4 Chapter 17

Device-Type Keywords When you specify a device-type in a FILENAME statement,
the external-file argument is optional. If you do specify an external file, its meaning
depends on which device type you specified. For example, the following SAS program
sends the output file to the printer that is associated with the SYS$PRINT queue:

filename myfile printer;

data test;
file myfile;
put ’This is spooled to a printer.’;

run;

The following are the valid device-type keywords and their meanings:

DISK
sends the output to or reads the input from a disk device. This is the default
behavior if you do not specify any device-type keywords in the FILENAME
statement. You must specify an external file with this keyword.

TERMINAL
sends the output to or reads the input from a terminal device. If you do not specify
an external file, the output goes to the SYS$OUTPUT output stream. If you do
specify an external file, the file specification is ignored and SYS$OUTPUT is still
used.

If you want to display and enter data in the same step, then issue two
FILENAME statements and use one fileref for input and one for output.

PRINTER
spools the output to a printer queue. If you do not specify an external file, the
output is sent first to a temporary file on disk and then to the SYS$PRINT queue.
Then the disk file is deleted. If you do specify a file, the output is sent to that file
and then sent to the SYS$PRINT queue. In this case, the disk file is not deleted.
To send the output to a printer queue other than SYS$PRINT, use the QUEUE=
option in the FILENAME or FILE statement. For information about printer
options, see “Printer Options in the FILENAME and FILE Statements” on page
371.

PLOTTER
spools the output to a printer queue that has been assigned to a plotter. This
keyword works the same as the PRINTER keyword except that the file format is
valid for a plotter device. The file that is created is an OpenVMS print file; it has
a variable record format, with a 2-byte, fixed-length control field.

For every record, the 2-byte control field is set to NULL, indicating no carriage
control.

TAPE
sends the output to or reads the input from a tape device. You are responsible for
allocating the tape drive and mounting the tape before output is sent to the device.
If you do not specify an external file, the output is sent to the tape device that is
associated with the logical name SASTAPE. If you do specify a file, the device
portion of the filename must be a valid tape device.

TEMP
is a temporary file that can only be accessed through the logical name and is only
available while the logical name exists. If a physical pathname is specified, an
error is returned. Files manipulated by the TEMP device can have the same
attributes and behave identically to DISK files.

Statements 4 FILENAME 361

DUMMY
sends the output to NLA0: (the null device). If you specify an external file, the file
specification is ignored. This device-type keyword is useful when you are debugging
SAS programs. You can test your algorithms without actually writing output files.

PIPE
sends the output to or reads the input from an OpenVMS command. For more
information, see “Reading from and Writing to OpenVMS Commands (Pipes)” on
page 179.

These keywords are valid only in the FILENAME statement. However, a fileref for
which you specified a device-type keyword can be used in the SAS windowing
environment commands and in the FILE, INFILE, and %INCLUDE statements. In
order to use these devices correctly, you must specify the device-type keyword in the
FILENAME statement. (If you use a device specification only in the quoted file
specification of a FILE or INFILE statement, the results are unpredictable.) For
example, to correctly send output to the display, use the following statements:

filename myfile terminal;

data test;
file myfile;
put ’This is my test’;

run;

By contrast, the following lines are incorrect and may yield unpredictable results:

data test2;
file ’sys$output’;
put ’This may not work in all cases.’;

run;

When you use the TERMINAL device type with the INFILE statement, you
terminate input by pressing CTRL-Z.

Host-Specific External I/O Statement Options The following external I/O statement
options can be used in the FILE, INFILE, and FILENAME statements. Note that some
of these options, such as ALQ=, have the same names as SAS data set options. Do not
confuse the two types of options. You cannot use data set options with external files.

This list includes only options that are specific to the OpenVMS environment. For a
complete list of external I/O statement options, see “Summary of External I/O
Statement Options” on page 370 and the statements chapter in SAS Language
Reference: Dictionary.

The following descriptions include an explanation of the option, its valid and default
values, and whether it is used for input, output, or both.

If the same option is used in both the FILENAME and FILE statements or in both
the FILENAME and INFILE statements, the FILE or INFILE value takes precedence
over the value used in the FILENAME statement.

ALQ=
specifies the number of blocks initially allocated to an external file when it is
created. The value can range from 0 to 2,147,483,647. If the value is 0 (the
default), the minimum number of blocks required for the given file format is used.

The ALQ= option (allocation quantity) is used for output and corresponds to the
FAB$L_ALQ field in OpenVMS Record Management Services (RMS). For
additional details, refer to Guide to OpenVMS File Applications.

BLKSIZE= | BLK=
is no longer supported in the OpenVMS operating environment.

362 FILENAME 4 Chapter 17

CC=
specifies the carriage-control format of the SAS log and listing file. This option has
three possible values:

FORTRAN
indicates FORTRAN carriage-control format. This is the default for print files.

PRINT
indicates OpenVMS print format.

CR
indicates OpenVMS carriage-return, carriage-control format. This is the
default for nonprinting files.

Only SAS print files are affected by the CC= option. The CC= option is used for
output.

The CC= option also exists as a SAS system option (see “CC=” on page 403). If
you specify this option both as a system option and in the FILENAME or FILE
statement, then SAS uses the value that you specified in the FILENAME or FILE
statement.

DEQ=
specifies the number of blocks added when OpenVMS RMS automatically extends
an external file during a write operation. The value can range from 0 to 65,535.
The default value is 0, telling OpenVMS RMS to use the process’s default value. A
large value results in fewer file extensions over the life of the file; a small value
results in numerous file extensions over the life of the file. A file with numerous
file extensions may be noncontiguous, thereby slowing record access.

The DEQ= option (default file extension quantity) is used for output and
corresponds to the FAB$W_DEQ field in OpenVMS RMS. For additional details,
see Guide to OpenVMS File Applications.

FAC=
overrides the default file access attributes used for external files. Use this option
to indicate the level of access you want to allow for an external file. You can allow
read, write, update, and delete access (as well as no access). By default with
external files, files opened for input allow read access, files opened for output allow
write access, and files opened for update allow read and write access. The form of
the FAC= option is

FAC=access-option-list

where access-option-list can be one of the following:

DEL specifies delete access.

GET specifies read access.

PUT specifies write access.

UPD specifies update access.
You can combine these values in any order. For example, specifying the

following indicates you want delete, read, and write access:

fac=(del,get,put)

By also specifying the SHR= option, you can allow other users concurrent access
to an external file, either through a separate SAS session or with another
application. To allow sharing, you must include the values for FAC= in the list of
values for SHR= (but the reverse is not true). For more information, see the
description of the SHR= option later in this section.

The FAC= option (file access) can be used for both input and output and
corresponds to the FAB$B_FAC field in OpenVMS RMS or the ACCESS attribute

Statements 4 FILENAME 363

when using File Definition Language (FDL). For additional details on file sharing,
see Guide to OpenVMS File Applications.

GSFCC=
specifies the file format of graphic stream files (GSF files). When specified on the
FILENAME statement, it affects only the GSF files created using that fileref. The
accepted values are

PRINT creates a GSF file. It is a VFC format file with carriage control
set to null. These files can be used with most utilities with the
exception of some file transfer protocols, such as Kermit. This
is the default value for this option.

CR creates a carriage return carriage control file.

NONE creates a file with no carriage control. This format is useful if
you plan to download the file to a personal computer.

KEY=
specifies which key the SAS System uses to read the records in an RMS file with
indexed organization. The KEY= option is always used with the KEYVALUE=
option. For details, see “Using the KEY= Option” on page 366 and “Using the
KEYVALUE= Option” on page 367.

KEYVALUE=
specifies the key value with which to begin reading an indexed file. For details, see
“Using the KEYVALUE= Option” on page 367.

LINESIZE=
specifies the line size for input or output. The value can range from 10 to 32,767.
The default is 80 for interactive jobs (interactive line mode and the SAS
windowing environment) and 132 for noninteractive and batch jobs for print files.

This option also exists as a SAS system option (see “LINESIZE=” on page 418).
If this option is used both as a system option and in the INFILE or FILE
statement, the SAS System uses the value given in the INFILE or FILE statement.

LRECL=
specifies the record length of the output file. If you do not specify a record length,
the default is varying length records. For input, the existing record length is used
by default. If the LRECL= option is used, the input records are padded or
truncated to the specified length.

The maximum record size for OpenVMS is 32,767. LRECL values greater than
32,767 are valid only when reading and writing to tape. If an LRECL value
greater than 32,767 is specified when writing to a non-tape device, the LRECL
value is set 32,767. You should use the maximum LRECL values for the various
file types provided in Table 17.1 on page 364.

Because the FLOWOVER option on the FILE statement is the default, lines
that are longer than the length specified by the LRECL= option are split.

When accessing unlabeled tapes, you must use LRECL=. The minimum value
in this case is 14. For more information, see “Reading from an Unlabeled Tape” on
page 177.

The LRECL= option is used for both input and output.

364 FILENAME 4 Chapter 17

Table 17.1 Maximum LRECL Values for File Types

File Organization Record Format Maximum LRECL
Value

Sequential Fixed length 32,767

Sequential (disk) Variable length 32,765

Sequential (disk) VFC 32,767-FSZ

Sequential (disk) Stream 32,767

Sequential (disk) Stream-CR 32,767

Sequential (disk) Stream-LF 32,767

Sequential (ANSI Tape) Variable length 9,995

Sequential (ANSI Tape) VFC 9,995-FSZ

Relative Fixed length 32,255

Relative Variable length 32,253

Relative VFC 32,253-FSZ

Indexed, Prolog 1 or 2 Fixed length 32,234

Indexed, Prolog 1 or 2 Variable length 32,232

Indexed, Prolog 3 Fixed length 32,224

Indexed, Prolog 3 Variable length 32,224

FSZ represents the size, in bytes, of the fixed control area in a record with VFC
record format.

MBC=
specifies the size of the I/O buffers that OpenVMS RMS allocates for a particular
file. The value can range from 0 to 127 and represents the number of blocks used
for each buffer. By default, this option is set to 0 and the default values for the
process are used.

The MBC= option (multiblock count) is used for both input and output to control
the allocation for a particular file. If you want to control the allocation size for all
the external files used during the current SAS session, you can use the MBC=
option in every FILE, FILENAME, or INFILE statement. You can also use the
DCL SET RMS_DEFAULT command to specify a process default, and let the SAS
System value default to the process’s default values.

The MBC= option corresponds to the RAB$B_MBC field in OpenVMS RMS or
the CONNECT MULTIBLOCK_COUNT attribute when using FDL. This option is
not supported for DECnet operations. For additional details, see Guide to
OpenVMS File Applications.

MBF=
specifies the number of I/O buffers you want OpenVMS RMS to allocate for a
particular file. The value can range from 0 to 127 and represents the number of
buffers used. By default, this option is set to 2 buffers. If a value of 0 is specified,
the default value for the process is used.

The MBF= option (multibuffer count) is used for both input and output to control
the number of buffers allocated for a particular file. If you want to control the
number of buffers allocated for all the external files used during the SAS session,
you can use the MBF= option in every FILE, FILENAME, or INFILE statement.

Statements 4 FILENAME 365

The DCL SET RMS_DEFAULT command can be used to specify a process default.
Then, you can let the SAS System value default to the process’s default values.

The MBF= option corresponds to the RAB$B_MBF field in OpenVMS RMS or
the CONNECT MULTIBUFFER_COUNT attribute when using FDL. This option
is not supported for DECnet operations. For additional details, see Guide to
OpenVMS File Applications.

MOD
opens the file referenced for append. This option does not take a value. An
existing file of the name given in the FILENAME or FILE statement is opened
and new data appended to the end.

NEW
opens a new file for output. This option does not take a value. This is the default
action for files referenced by a FILE statement. Under OpenVMS, this option is
synonymous with the OLD option.

OLD
opens a new file for output. This option does not take a value. This is the default
action for files referenced by a FILE statement. Under OpenVMS, this option is
synonymous with the NEW option.

PAGESIZE=
specifies the page size for output. The default is the display setting for interactive
jobs (interactive line mode and the SAS windowing environment) and 60 for
noninteractive and batch jobs. The value can range from 15 to 32767.

This option also exists as a SAS system option (see “PAGESIZE=” on page 429).
If this option is used both as a system option and in the FILE statement, the SAS
System uses the value given in the FILE statement.

RECFM=
specifies the record format of the output file. Values for the RECFM= option are

F specifies fixed length.

V specifies variable length.

D specifies you are accessing unlabeled tapes with the PUT and
INPUT DATA step statements. For more information, see
“Reading from an Unlabeled Tape” on page 177.

If the RECFM= option is not used, the value defaults to V for output files. For
input files, the default value is the record format of the file.

This option is used for both input and output.

SHR=
overrides the default file-sharing attributes used for external files. With this
option, you can indicate the access level you want to give other users. You can
allow read, write, update, and delete access (as well as no access). By default with
external files, files opened for input allow shared read access, and files opened for
output or update do not allow shared access.

However, you can allow other users to have read and write access to a file that
you are opening for input only. To accomplish this, use the SHR= option. The
syntax of the SHR= option is

SHR=share-option-list

where share-option-list can be one of the following:

DEL specifies delete access.

GET specifies shared read access.

366 FILENAME 4 Chapter 17

NONE specifies no shared access.

PUT specifies shared write access.

UPD specifies update access.
You can combine these values in any order. For example, specifying the

following indicates you want shared delete, read, and write access:

shr=(del,get,put)

To allow shared access, the values for FAC= must be included in the list of
values for SHR= (but the reverse is not true).

This option corresponds to the FAB$B_SHR field in OpenVMS RMS or the
SHARING attribute when using FDL. For more information about file sharing, see
Guide to OpenVMS File Applications.

The SHR= option is used for both input and output.

Note: When using the PIPE device, only the LRECL= host option is
supported. 4

Using the KEY= Option The KEY= option is used for input. It is always used with the
KEYVALUE= option. A key is a record field that identifies the record to help you
retrieve the record in an indexed file. The two types of keys are primary and alternate.
Data records are stored in the file in the order of their primary key. Alternate keys (also
called secondary keys) create alternate indexes in the file. The alternate index can then
be used to process the records in order of the alternate key. The only difference between
the primary key and the alternate key is that the records are actually stored in the
order of the primary key, whereas the alternate key provides a means of accessing them.

The key number is zero-based, so KEY=0 (the default) specifies that the records be
read in sorted order by the primary key. KEY=1 specifies the use of the first secondary
key to access the records.

To use the SAS System to write to an indexed file, you can either create an empty
indexed file or use any existing indexed file. If you create an empty indexed file, use
FDL to specify the file characteristics, including the type and location of primary and
secondary keys. (For more information on FDL, see OpenVMS File Definition Language
Facility Manual.) The following is an example program:

/*---*/
/* This SAS program accesses an empty */
/* indexed file that has been previously */
/* created. The data are appended to the */
/* file. Primary key #0 is of type character */
/* and is in bytes 0-2. Secondary key #1 is */
/* of type character and is in bytes 3-5. */
/*---*/
filename myfile ’indexed.dat’;

/* Load the indexed file, primary key in */
/* sorted order. */

data _null_;
file myfile mod;
put ’aaaccc’;
put ’bbbaaa’;

run;
/* Print out in primary key sorted order. */

data _null_;
/* Key=0 is the default. */

infile myfile;
input first $3. second $3.;

Statements 4 FILENAME 367

put first= second=;
run;

This program produces the following output:

first=aaa second=ccc
first=bbb second=aaa

In contrast, consider setting KEY=1 as in the following example:

/* Print out in secondary key sorted order. */
data _null_;

infile myfile key=1;
input first $3. second $3.;
put first= second=;

run;

This program produces the following output:

first=bbb second=aaa
first=aaa second=ccc

All keys are defined in RMS when the file is created. For more information about
defining and using keys in an indexed file, see Guide to OpenVMS File Applications.

Using the KEYVALUE= Option The KEYVALUE= option is always used with the KEY=
option, which specifies the key used by the SAS System to read the records in an RMS
file with indexed organization. When you use the KEYVALUE= option, the file is input
sequentially, beginning with the value you specified. It is similar to the FIRSTOBS=
option used with a sequential-format file. You can specify a SAS variable name with the
KEYVALUE= option to drive random reads from the file. The KEYVALUE= option is
used for input.

Valid forms of the KEYVALUE= option are

KEYVALUE operator value
AND KEYVALUE operator value

KEYVALUE=SAS-variable

where operator can be one of the following:

< less than

<= less than or equal to

> greater than

>= greater than or equal to.

where value can be one of the following data types:
� integer
� quoted string
� quadword (signed or unsigned)
� packed decimal
� date/time.

The key specified in the KEY= option is used with the KEYVALUE= option. The
defined order of the key specified must match the direction of the operator given in the
KEYVALUE= option. For example, if the key is an ascending order key, the < and <=
operators are invalid operators. When the value of KEYVALUE= is a constant value, the

368 FILENAME 4 Chapter 17

file is processed sequentially by key, beginning with the given value. When the value of
KEYVALUE= is a SAS variable, the first record with a key satisfying the criterion of
the KEYVALUE expression is read from the file. Note that the SAS variable value must
match the key value of one of the records exactly or an end-of-file condition occurs.

The data type of the key specified in the KEY= option must also correspond to the
type given as the value for the KEYVALUE= option. The following RMS data types are
supported by the KEYVALUE= option:

� unsigned 2-byte binary
� unsigned 4-byte binary
� unsigned 8-byte binary
� signed 2-byte binary
� signed 4-byte binary
� signed 8-byte binary
� left-justified string of characters
� packed decimal string of characters.

The SAS System converts an integer value to the correct format of the supported
numeric types. Character string values are not changed when used for the character
type.

When you use date-time values, the data are stored in signed 8-byte binary RMS key
fields. Use the VMSTIMEF. format to convert SAS date-time values to signed 8-byte
binary values. When you access records through a date-time value key using the
KEYVALUE=SAS-variable option, the SAS variable must have one of the following SAS
formats or informats associated with it:

DATEw.
DATETIMEw.
DDMMYYw.
JULIANw.
MMDDYYw.
MONYYw.
YYMMDDw.
YYQw.

A format or informat must be associated with the SAS variable because neither the
variable value nor the field value within the record indicates that the data represent
date-time values. For more information about these formats and informats, refer to
SAS Language Reference: Dictionary.

Suppose you want to input an indexed file that has an alternate key defined as a
signed 4-byte integer in descending sort order. You can process only the records with
the values less than 5,000 with the following DATA step:

filename in ’indexed.dat’ key=2 keyvalue<5000;
data _null_;

infile in;
input name $9. num;
put name num;

run;

Using Compound Expressions You may further restrict the number of records read by
using a compound KEYVALUE expression. For example, suppose you want to input an
indexed file that has a primary key defined as a signed 2-byte integer in ascending sort
order. You can retrieve records with key values between −10 and 10 inclusive with the
following FILENAME statement:

Statements 4 FILENAME 369

filename in ’indexed.dat’ keyvalue>=-10 and
keyvalue<=10;

When given a compound KEYVALUE expression, the SAS System reads records from
the input file until a record is read with a key exceeding the upper boundary, which is
10 in this example, or until the end of file is reached. Note that the AND construct has
an associative property; the order of the KEYVALUE options can be reversed and the
meaning preserved. However, the operators still must match the key sort order, so the
following DATA step using the same indexed file described in the earlier example
generates an error:

data wrong;
infile ’indexed.dat’ keyvalue<=-10 and

keyvalue>=10;
input num name $9.;
put name num;

run;

This DATA step generates the following error and warning messages:

ERROR: Specified key on indexed file is
defined as ascending but <, <= or
= was used in KEYVALUE option.

NOTE: The SAS System stopped processing
this step because of errors.

WARNING: The data set WORK.WRONG may be
incomplete. When this step was
stopped there were O observations
and 1 variables.

Using SAS Variables Using a SAS variable name as the value of the KEYVALUE=
option enables you to randomly access records in the indexed file. In the previous
examples of using the KEYVALUE= option, the input file was sequentially accessed.
You can use any SAS variable with the KEYVALUE= option that matches the type of
the key in question. When the SAS System reads from the file, it reads the first record
with the key value that matches the value of the SAS variable.

For example, suppose you have a SAS data set named SALES that has three
variables: SALESREP, ITEMNO, and QUANTITY. This data set contains the number of
items each salesperson sold during the last month. You also have an indexed file keyed
by the item numbers of the products the company sells. Stored in each record is the
price of the item. Using these two files, the SAS System can easily generate a report of
the revenue generated by each salesperson:

filename parts ’inventory.idx’ key=0;
filename report ’revenue.lis’;
data revenue;

set sales;
infile parts keyvalue=itemno;
input itemno price;
revenue=quantity*price;
output @5 salesrep @30 itemno

@50 revenue dollar3.2;
stop;

run;

This sample program match-merges the observations in SALES with the records in
the indexed file by item number to produce the reports. A KEYVALUE= option with a

370 FILENAME 4 Chapter 17

SAS variable name can be used only with the equal sign (=) operator and cannot be
used in compound KEYVALUE expressions.

Note that in the previous example, the DATA step is driven entirely by the SET
statement. The DATA step terminates when all records from the data set SALES have
been processed. It is possible to use the SAS variable form of the KEYVALUE= option
with other types of control mechanisms. In the following example, an iterative DO loop
determines the set of records read from an indexed file:

data example2;
do i=1 to 20 by 2;

infile myfile key=0 keyvalue=i;
input var1 var2 var3 ...;
/* variable processing ... */

output var1 var2 var3 ...;
end;
stop;

run;

In this example, the DO loop is used to read every other record from MYFILE. Note
that the STOP statement terminates the DATA step and closes the input file. Because
the KEYVALUE=I option reads only those records specified in the DO statement, the
SAS System cannot read an end-of-file indicator as it would if it were reading the file
sequentially. Without the STOP statement to end the DATA step, the SAS System can
get into an infinite loop by accessing the same index file repeatedly.

For more information about indexed files and keys, refer to Guide to OpenVMS File
Applications.

Summary of External I/O Statement Options The following table lists alphabetically all
available external I/O statement options, including both portable options and options
that are specific to the OpenVMS environment. The Use column indicates whether the
option is used for input, output, or both. The support of the option in the FILENAME
statement is host-specific. Options that are used with the FILENAME statement are
not documented in SAS Language Reference: Dictionary.

Table 17.2 Summary of External I/O Statement Options

Option Use Option Use

ALQ= ** output LINESIZE= * input, output

CC= ** output LRECL= * input, output

COLUMN= *** input, output MBC= ** input, output

DELIMITER= *** input MBF= ** input, output

DEQ= ** output MISSOVER *** input

DROPOVER *** output MOD * output

END= *** input N= *** input, output

EOF= *** input NEW ** output

EXPANDTABS *** input NOTITLES *** output

FAC= ** input, output OBS= *** input

FILENAME= *** input, output OLD * output

Statements 4 FILENAME 371

Option Use Option Use

FILEVAR *** input, output PAD *** input, output

FIRSTOBS= *** input PAGESIZE= * output

FLOWOVER *** input, output PRINT *** input, output

GSFCC ** output RECFM= * input, output

HEADER= *** output SHR= ** input, output

KEY= ** input SHAREBUFFERS *** input

KEYVALUE= ** input START= *** input

LENGTH= *** input STOPOVER *** input, output

LINE= *** output UNBUFFERED *** input

* This option is also documented in SAS Language Reference: Dictionary.
** All the information for this option is contained in this document.
***This option is completely documented in SAS Language Reference: Dictionary.

Printer Options in the FILENAME and FILE Statements Many of the DCL print
qualifiers are supported as host options in the FILE and FILENAME statements. If the
same option is used in both the FILE and FILENAME statements, the FILE statement
value overrides the FILENAME statement value. You send a file to a printer by using
the PRINTER or PLOTTER device-type keyword in the FILENAME statement.

A complete list of supported options follows. For more information about the
meanings of specific options, refer to OpenVMS DCL Dictionary.

AFTER=“quoted-string”
specifies a time after which the file can be printed. The time can be specified as
absolute time or a combination of absolute and delta times and must be enclosed
in double quotation marks.

BURST=<ALL | NO>
specifies a burst page or not. The default value is NO.

CHAR=(,,,)
lists characteristics for the printer. The list can be one item or a group of items
enclosed by parentheses. No spaces are allowed in the list.

COPIES=n
specifies the number of copies to print. The default value is 1.

FEED=<YES | NO>
specifies whether to perform a form feed at the end of the page. The default value
is YES.

FLAG=<ALL | NO>
specifies whether to print a flag page preceding each file. The default value is NO.

FORM=type
defines the form name or number used.

HDR=<YES | NO>
controls whether a header line is printed at the top of each page. The default
value is NO.

NAME=quoted-string
specifies the name of the submitted job shown when you issue a SHOW QUEUE
command. The default is the filename. The quoted-string argument can contain
spaces.

372 FILENAME 4 Chapter 17

NOTE=quoted-string
specifies a message to appear on the flag page. The quoted-string argument can
contain spaces.

NOTIFY=<YES | NO>
controls whether to notify the user when the job is finished. The default value is
NO.

PARAM=<“>(,,,)<”>
sends a list of up to eight parameters to the printer device. The PARAM= value
can be one item without parentheses, or a group of items enclosed by parentheses.
If the value contains blanks or nonalphanumeric characters, enclose the entire
value argument in single or double quotation marks.

PASSALL=<YES | NO>
specifies whether all formatting is bypassed and sent to the device driver with
formatting suppressed. The default value is NO.

QUEUE=<“>queue-name<”>
specifies the name of the printer queue to send the job to. If this option is not
used, the job is submitted to the SYS$PRINT queue. If the queue name contains
characters not recognized by the SAS System, it must be enclosed in single
quotation marks; for example, SYS$PRINT must be enclosed in quotation marks,
but CLXYJ31 does not need to be. The queue-name argument cannot contain any
spaces.

RESTART=<YES | NO>
restarts the job after a crash. The default value is YES.

SETUP=(,,,)
sets up module names to extract from the device control library. The list can be a
single item or a group of items enclosed by parentheses.

SPACE=<1 | 2>
specifies double- or single-spacing. The default value is single.

TRAILER=<ALL | NO>
prints a trailer page at the end of the file. The default value is NO.

Examples

Example 1: Associating a Fileref with an External File In this example, the
FILENAME statement associates the fileref PGMSAS with an external file that
contains a SAS program. PGMSAS is then used as the fileref in the %INCLUDE
statement to read a file that contains SAS statements.

filename pgmsas ’[yourdir]prog1.sas’;
%include pgmsas;

Example 2: Using a File as Input to an INFILE Statement Consider the following
FILENAME statement:

filename myfile ’[mydir]’;

If you want to use a file in [MYDIR] named SCORES02.DAT as input to an INFILE
statement, issue the following statement:

infile myfile(scores02);

The SAS System assumes a file type of .DAT in the INFILE statement.

Statements 4 FOOTNOTE 373

If you do not specify a file type in the external file specification, the default file type
is .DAT. For example, the following FILENAME statement associates the fileref
MYFILE with a file named SURVEY.DAT:

filename myfile ’survey’;

Example 3: Using Printer Options The following statement sends a copy of the file
A.LIS to the CLXYJ31 queue, holds it until 2:00 p.m., and then prints two copies:

filename x printer ’a.lis’ queue=clxyj31
after="14:00:00" copies=2;

The following statement creates the file A.LIS but does not send it to the printer
because the PRINTER device-type keyword is not used. The AFTER= option is ignored.

filename x ’a.lis’ after="14:00:00";

The following statement sends the file A.LIS to the SYS$PRINT queue, holding it
until 2:30 p.m.:

filename x printer ’a.lis’ after="14:30:00";

The following statement creates a temporary file called SAS0000n and sends it to the
SYS$PRINT queue. The file is deleted after printing.

filename x printer;

The following statement creates the file CLXYJ31.DAT and sends it to the
SYS$PRINT queue. The file is not deleted after printing.

filename x printer ’clxyj31’;

As a final example, the following lines create a file A.LIS and send it to the
SYS$PRINT queue. The job name submitted is MYFILE.

filename x printer ’a.lis’;
data a;

file x name="myfile";
. . . more SAS statements . . .

run;

See Also

� FILENAME statement in SAS Language Reference: Dictionary
� Chapter 7, “Using External Files and Devices,” on page 165

FOOTNOTE

Prints up to ten lines of text at the bottom of the procedure output

Language element: statement
Valid: anywhere in a SAS program
OpenVMS specifics: maximum length of footnote

Syntax
FOOTNOTE <n> <’text’ | “text”>;

374 %INCLUDE 4 Chapter 17

no arguments
cancels all existing footnotes.

n
specifies the relative line to be occupied by the footnote.

’text’ | “text”
specifies the text of the footnote that is enclosed in single or double quotation marks.
For compatibility with previous releases, SAS accepts some text without quotation
marks. When writing new programs or updating existing programs, always surround
text with quotation marks.

Details Under OpenVMS, the maximum footnote length is 132 characters. If the
footnote length is greater than the value of the LINESIZE= system option, the footnote
is truncated to the line size.

See Also

� FOOTNOTE statement in SAS Language Reference: Dictionary
� System option: “LINESIZE=” on page 418

%INCLUDE

Includes SAS statements and data lines

Language element: statement
Valid: anywhere in a SAS program
OpenVMS specifics: valid values for source, if a file specification is used

Syntax
%INCLUDE source-1 < . . . source-n>

</option-list>;

source-1 < . . . source-n>
describes the location of the information that you want to access with the
%INCLUDE statement. The three possible sources are an external file specification,
previously entered SAS statements from your SAS session, or keyboard entry. The
file specification can be any of the file specification forms discussed in “Identifying
External Files to the SAS System” on page 166.

This section discusses only external file specifications. For information about
including lines from your terminal or from your SAS session, see “Recalling SAS
Statements” on page 29 and the SAS statements portion of SAS Language Reference:
Dictionary.

option-list
specifies portable options for the %INCLUDE statement. For more information about
these options, see the %INCLUDE statement in SAS Language Reference:

Statements 4 INFILE 375

Dictionary. The %INCLUDE statement has no options that are host-specific for the
OpenVMS environment.

Details When you execute a program that contains the %INCLUDE statement, the
SAS System executes your code, including any statements or data lines that you bring
into the program with %INCLUDE.

The %INCLUDE statement is most often used when running SAS in interactive line
mode, noninteractive mode, or batch mode. Although you can use the %INCLUDE
statement when running SAS using windows, it may be more practical to use the
INCLUDE and RECALL commands to access data lines and program statements, and
submit these lines again.

The %INCLUDE statement executes statements immediately.

Example

The following is an example of a %INCLUDE statement. Suppose you have issued
the following FILENAME statement:

filename mypgm ’[mydir]program1.sas’;

Then, in a SAS program you can issue the following %INCLUDE statement to copy
in and execute the SAS statements stored in the file PROGRAM1.SAS:

%include mypgm;

See Also

� %INCLUDE statement in SAS Language Reference: Dictionary
� Command: “INCLUDE” on page 230
� RECALL command in SAS online Help
� “Saving SAS Statements” on page 28
� “Recalling SAS Statements” on page 29

INFILE

Specifies an external file to read with an INPUT statement

Language element: statement
Valid: in a DATA step
OpenVMS specifics: valid values for file-specification; valid values for host-option-list

Syntax
INFILE file-specification <option-list>

<host-option-list>;

file-specification
identifies the source of input data records (usually an external file). It can be any of
the file specification forms discussed in “Identifying External Files to the SAS

376 INFILE 4 Chapter 17

System” on page 166. The reserved fileref DATALINES allows the INFILE statement
to read instream data.

option-list
names portable options for the INFILE statement. For information about these
options, see the INFILE statement in SAS Language Reference: Dictionary.

host-option-list
names external I/O statement options for the INFILE statement that are specific to
the OpenVMS environment. These options can be any of the following:

FAC=

KEY=

KEYVALUE=

LINESIZE=

LRECL=

MBC=

MBF=

RECFM=

SHR=

For an explanation of these options, see “Host-Specific External I/O Statement
Options” on page 361 in the FILENAME statement.

You can intersperse options from option-list and host-option-list in any order.

Note: When using the PIPE device with the INFILE statement, only LRECL is
supported. 4

Details Because the INFILE statement identifies the file to read, it must execute
before the INPUT statement that reads the input data records. You can use the INFILE
statement in conditional processing, such as an IF-THEN statement, because it is
executable. This allows you to control the source of the input data records.

When you use more than one INFILE statement for the same file specification and
you use options in each INFILE statement, the effect is additive. To avoid confusion,
use all the options in the first INFILE statement for a given external file.

Example

The following is an example of an INFILE statement:

infile food;

This INFILE statement uses the default filename form of the file specification (FOOD
has not been assigned as a SAS fileref or as an OpenVMS logical name). Therefore, the
SAS System looks for the file FOOD.DAT in the current directory.

When the SAS System reads a file, it uses the most recent version by default. For
example, if your default directory contains the files FOOD.DAT;1, FOOD.DAT;2, and
FOOD.DAT;3, this INFILE statement reads FOOD.DAT;3.

Statements 4 LENGTH 377

See Also

� INFILE statement in SAS Language Reference: Dictionary

� Chapter 7, “Using External Files and Devices,” on page 165
� Statement: “FILENAME” on page 357

LENGTH

Specifies how many bytes the SAS System uses to store a variable’s values

Language element: statement
Valid: in a DATA step
OpenVMS specifics: valid numeric variable lengths

Syntax
LENGTH <variable-specification-1>

<. . .variable-specification-n>< DEFAULT=n>;

length
can range from 3 to 8 bytes for numeric variables in the OpenVMS Alpha
environment.

The value of length can range from 2 to 8 bytes for numeric variables in the
OpenVMS VAX environment.

DEFAULT=n
changes the default number of bytes used for storing the values of newly created
numeric variables from 8 to the value of n.

In the OpenVMS Alpha environment, n can range from 3 to 8 bytes.
In the OpenVMS VAX environment, n can range from 2 to 8 bytes.

Details The LENGTH statement specifies the number of bytes used for storing
variables.

In general, the length of a variable depends on
� whether the variable is numeric or character
� how the variable was created
� whether a LENGTH or ATTRIB statement is present.

Subject to the rules for assigning lengths, lengths that are assigned with the
LENGTH statement can be changed in the ATTRIB statement and vice versa.

378 LIBNAME 4 Chapter 17

See Also

� LENGTH statement in SAS Language Reference: Dictionary
� “Numeric Variables in the Alpha Environment” on page 199
� “Numeric Variables in the VAX Environment” on page 200
� Statement: “ATTRIB” on page 354

LIBNAME

Associates a libref with a SAS data library and lists file attributes for a SAS data library

Language element: statement
Valid: anywhere in a SAS program
OpenVMS specifics: valid values for engine-name; specifications for SAS-data-library; valid
values for engine/host-option-list

Syntax
LIBNAME libref <engine> ’SAS-data-library’

<portable-options> <engine/host-options>;

LIBNAME libref | _ALL_CLEAR;

LIBNAME libref | _ALL_ LIST;

Note: This is a simplified version of the LIBNAME statement syntax. For the
complete syntax and its explanation, see the LIBNAME statement in SAS Language
Reference: Dictionary. 4

For an explanation of the LIBNAME statement arguments in the OpenVMS
operating environment, see “Associating Librefs” on page 378.

Details The LIBNAME statement associates a libref with a permanent SAS data
library and lists the file attributes of a SAS data library.

Note: The LIBNAME statement is also used to clear a libref. For complete
documentation on this use, see the LIBNAME statement in SAS Language Reference:
Dictionary. 4

Associating Librefs Use the following form of the LIBNAME statement to associate a
libref, an engine, or engine/host options with a SAS data library:

LIBNAME libref <engine> ’SAS-data-library’
<portable-options> <engine/host-options>;

libref
is a SAS name that complies with SAS naming conventions and is used in SAS
statements to point to SAS-data-library. This argument is required.

The libref can also be an OpenVMS logical name or a search-string logical
name. For more information, see “Using an OpenVMS Logical Name in the

Statements 4 LIBNAME 379

LIBNAME Statement” on page 127 and “Using a Search-String Logical Name to
Concatenate SAS Data Libraries” on page 128.

Under OpenVMS, the only reserved librefs are those that are reserved by the
SAS System on all operating environments. For a list of reserved librefs, see the
LIBNAME statement in SAS Language Reference: Dictionary.

engine
tells SAS which engine to use for accessing the library. For a list of valid engine
names for OpenVMS, see “Engines Available under OpenVMS” on page 140. The
engine that is associated with a libref accesses only files that were created by that
engine, not other SAS files.

If you do not specify an engine, then SAS uses the procedures described in “How
SAS Assigns an Engine When No Engine Is Specified” on page 130 to assign an
engine for you.

SAS-data-library
is the name of the directory that contains the SAS data library, enclosed in quotes.
You can omit this argument if you are merely specifying the engine for a libref or
an OpenVMS logical name that you previously assigned.

If the directory that you specify does not already exist, then you must create it
before you attempt to use the libref that you have assigned to it. (Under
OpenVMS, the LIBNAME statement does not actually create directories.)

Use the following syntax for concatenated libraries:

LIBNAME libref (’SAS-data-library’ ’...’

Note that librefs can be used as part of a physical name or a previously assigned
libref.

The level of specification depends on your current location in the OpenVMS file
structure. For example, if you want to access a directory that is located on another
node in your OpenVMS network, then the file specification in the LIBNAME
statement must include the node, the device, and the directory levels.

The file specification generally must not extend beyond the directory or
subdirectory level (that is, it must not include a filename), because the libref/
directory association that is made in the LIBNAME statement gives you access to
all SAS files in the data library, not to a single file. However, this rule does not
apply if you are assigning a libref for use with the XPORT, OSIRIS, or SPSS
engines.

SAS-data-library can also be an OpenVMS logical name (or a path that contains
a logical name). In this case, you would be assigning a libref to the logical name,
and you would subsequently use the libref in your SAS program. For examples,
see “Using an OpenVMS Logical Name in the LIBNAME Statement” on page 127.

Note: Directory wildcard specifications are not supported in LIBNAME
statements. If you use an asterisk (*) or an ellipsis (...) in the SAS-data-library
argument, an error message tells you that the physical name of the library is
invalid. 4

portable-options
are LIBNAME statement options that are available in all operating environments.
For information about these options, see the LIBNAME statement in SAS
Language Reference: Dictionary.

engine/host-options
are one or more of the following host-specific options:

ALQ=
specifies how many disk blocks to allocate to a new SAS data set. For more
information, see the data set option “ALQ=” on page 249.

380 SYSTASK 4 Chapter 17

ALQMULT=
specifies the number of pages that are preallocated to a file. For more
information, see the data set option “ALQMULT=” on page 250.

BKS=
specifies the bucket size for a new data set. For more information, see the
data set option “BKS=” on page 251.

CACHENUM=
specifies the number of I/O data caches used per SAS file. For more
information, see the data set option “CACHENUM=” on page 253.

CACHESIZ=
controls the size of the I/O data cache that is allocated for a file. For more
information, see the data set option “CACHESIZ=” on page 253.

DEQ=
tells OpenVMS how many disk blocks to add when it automatically extends a
SAS data set during a ’write’ operation. For more information, see the data
set option “DEQ=” on page 256.

DEQMULT=
specifies the number of pages to extend a SAS file. For more information, see
the data set option “DEQMULT=” on page 257.

MBF=
specifies the multibuffer count for a data set. For more information, see the
data set option “MBF=” on page 260.

For a complete listing of the available external I/O statement options, see
“Summary of External I/O Statement Options” on page 370 in the FILENAME
statement.

Not every option is available with every engine. For information about which
engine or host options are available with each engine, see Chapter 6, “Using SAS
Engines,” on page 139.

All of these options correspond to a data set option of the same name and have
the same effect as the data set option. However, engine or host options apply to all
SAS data sets that are stored in the SAS data library.

Specify as many options as you need. Separate them with a blank space.

Listing Data Library Attributes You can use the LIBNAME statement to list attributes
of SAS data libraries by using the LIST option.

See Also

� LIBNAME statement in SAS Language Reference: Dictionary

� “Using the LIBNAME Statement” on page 125
� “Using an OpenVMS Logical Name in the LIBNAME Statement” on page 127
� Statement: “FILE” on page 355
� Statement: “FILENAME” on page 357

SYSTASK

Executes, lists, or kills asynchronous tasks

Statements 4 SYSTASK 381

Valid: anywhere in a SAS program

OpenVMS specifics: all

Syntax
SYSTASK COMMAND “host-command”

<XWAIT|NOXWAIT>
<TASKNAME=taskname>
<MNAME=name-var>

<STATUS=stat-var>

SYSTASK LIST <_ALL_ | taskname> <STATE> <STATVAR>;

SYSTASK KILL taskname <taskname...>;

COMMAND
executes the host-command.

LIST
lists either a specific active task or all of the active tasks in the system.

KILL
forces the termination of the specified task(s).

host-command
specifies the name of an OpenVMS command (including any command-specific
options).

XWAIT | NOXWAIT
determines whether SYSTASK COMMAND suspends execution of the current SAS
session until the task has completed. NOXWAIT is the default. For tasks that are
started with the NOXWAIT option, you can use the WAITFOR statement when
necessary to suspend execution of the SAS session until the task has finished.

TASKNAME=taskname
specifies a name that identifies the task. Task names must be unique among all
active tasks. A task is active if it is running, or if it has completed and has not been
waited for using the WAITFOR statement. Duplicate task names generate an error in
the SAS log. If you do not specify a task name, SYSTASK will automatically generate
a name. If the task name contains a blank character, enclose the task name in quotes.

MNAME=name-var
specifies a macro variable in which you want SYSTASK to store the task name that
it automatically generated for the task. If you specify both the TASKNAME option
and the MNAME option, SYSTASK copies the name that you specified with
TASKNAME into the variable that you specified with MNAME.

STATUS=stat-var
specifies a macro variable in which you want SYSTASK to store the status of the
task. Status variable names must be unique among all active tasks.

ALL
specifies all active tasks in the system.

STATE
displays the status of the task, which can be Start, Failed, Running, or Complete.

382 TITLE 4 Chapter 17

STATVAR
displays the status variable associated with the task. The status variable is the
variable that you assigned with the STATUS option in the SYSTASK COMMAND
statement.

Details
SYSTASK allows you to execute host-specific commands from within your SAS session
or application. Unlike the X statement, SYSTASK runs these commands as
asynchronous tasks, which means that these tasks execute independently of all other
tasks that are currently running. Asynchronous tasks run in the background, so you
can perform additional tasks while the asynchronous task is still running.

The output from the command is displayed in the SAS log.

Note: Program steps that follow the SYSTASK statements in SAS applications
usually depend on the successful execution of the SYSTASK statements. Therefore,
syntax errors in some SYSTASK statements will cause your SAS application to abort. 4

There are two types of tasks that can be run with SYSTASK:

Task
All tasks started with SYSTASK COMMAND are of type Task. For these tasks, if
you do not specify STATVAR or STATE, then SYSTASK LIST displays the task
name, type, and state, and the name of the status macro variable. You can use
SYSTASK KILL to kill only tasks of type Task.

SAS/Connect Process
Tasks started from SAS/Connect with the SYSTASK BEGIN statement are of type
SAS/Connect Process. For SAS/Connect processes, SYSTASK LIST displays the
task name, type, and state. You cannot use SYSTASK KILL to kill a SAS/Connect
process. For information on starting SAS/Connect processes with SYSTASK, refer
to SAS/CONNECT User’s Guide.

The SYSRC macro variable contains the return code for the SYSTASK statement.
The status variable that you specify with the STATUS option contains the return code
of the process started with SYSTASK COMMAND. To ensure that a task executes
successfully, you should monitor both the status of the SYSTASK statement and the
status of the process that is started by the SYSTASK statement.

If a SYSTASK statement cannot execute successfully, the SYSRC macro variable will
contain a non-zero value. For example, there could be insufficient resources to complete
a task, or the SYSTASK statement could contain syntax errors. With the SYSTASK
KILL statement, if one or more of the processes cannot be killed, SYSRC is set to a
non-zero value.

When a task is started, its status variable is set to NULL. You can use the status
variables for each task to determine which tasks failed to complete. Any task whose
status variable is NULL did not complete execution.

Unlike the X statement, you cannot use the SYSTASK statement to start a new
interactive session.

TITLE

Specifies title lines for SAS output

Language element: statement

Statements 4 X 383

Valid: anywhere in a SAS program

OpenVMS specifics: maximum length of title

Syntax
TITLE <n> <’text’ | “text”>;

no arguments
cancels all existing titles.

n
specifies the relative line that contains the title line.

’text’ | “text”
specifies the text of the title that is enclosed in single or double quotation marks. For
compatibility with previous releases, SAS accepts some text without quotation
marks. When writing new programs or updating existing programs, always surround
text with quotation marks.

Details Under OpenVMS, the maximum title length is 132 characters. If the title
length is greater than the value of the LINESIZE= system option, then the title is
truncated to the line size.

See Also

� TITLE statement in SAS Language Reference: Dictionary

� System option: “LINESIZE=” on page 418

X

Issues an operating environment command from within a SAS session

Language element: statement

Valid: anywhere in a SAS program

OpenVMS specifics: operating environment command; OpenVMS subprocesses

Syntax
X <’DCL-command’>;

no argument
spawns an OpenVMS subprocess, where you can issue DCL commands.

’DCL-command’
specifies a single DCL command. The value for DCL-command must be enclosed in
quotation marks.

384 WAITFOR 4 Chapter 17

Details The X statement issues a DCL command from within a SAS session. The
SAS System executes the X statement immediately.

For complete information about the X statement, see “Issuing DCL Commands
during a SAS Session” on page 36.

WAITFOR

Suspends execution of the current SAS session until the specified tasks finish executing

Valid: anywhere in a SAS program
OpenVMS specifics: all

Syntax
WAITFOR <_ANY | _ALL_> taskname <taskname...> <TIMEOUT=seconds>;

taskname
specifies the name of the task(s) that you want to wait for. The task name(s) that you
specify must match exactly the task names assigned through the SYSTASK
COMMAND statement. You cannot use wildcards to specify task names.

ANY | _ALL_
suspends execution of the current SAS session until either one or all of the specified
tasks finishes executing. The default setting is _ANY_, which means that as soon as
one of the specified task(s) completes executing, the WAITFOR statement will finish
executing.

TIMEOUT=seconds
specifies the maximum number of seconds that WAITFOR should suspend the
current SAS session. If you do not specify the TIMEOUT option, WAITFOR will
suspend execution of the SAS session indefinitely.

Details
The WAITFOR statement suspends execution of the current SAS session until the
specified task(s) finish executing or until the TIMEOUT interval (if specified) has
elapsed. If the specified task was started with the XWAIT option, then the WAITFOR
statement ignores that task.

For example, the following statements start three different SAS jobs and suspend the
execution of the current SAS session until those three jobs have finished executing:

systask command "sas myprog1.sas" taskname=sas1;
systask command "sas myprog2.sas" taskname=sas2;
systask command "sas myprog3.sas" taskname=sas3;
waitfor _all_ sas1 sas2 sas3;

The SYSRC macro variable contains the return code for the WAITFOR statement. If
a WAITFOR statement cannot execute successfully, the SYSRC macro variable will
contain a non-zero value. For example, the WAITFOR statement may contain syntax
errors. If the number of seconds specified with the TIMEOUT option elapses, then the
WAITFOR statement finishes executing, and SYSRC is set to a non-zero value if

Statements 4 WAITFOR 385

� you specify a single task that does not finish executing

� you specify more than one task and the _ANY_ option (which is the default
setting), but none of the tasks finishes executing

� you specify more than one task and the _ALL_ option and any one of the tasks
does not finish executing.

Any task whose status variable is still NULL after the WAITFOR statement has
executed did not complete execution.

386 WAITFOR 4 Chapter 17

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OpenVMS Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
518 pp.

SAS® Companion for the OpenVMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–526–4
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

