
461

C H A P T E R

19
Macro Facility

SAS Macro Facility under OpenVMS 461
Automatic Macro Variables 461

Macro Statements 463

Macro Functions 464

Example: Using the %SYSGET Function 464

Autocall Libraries 464
Creating an Autocall Macro 464

Specifying a User Autocall Library 465

Stored Compiled Macro Facility 465

Accessing Stored Compiled Macros 466

Controlling Memory Availability for Storing Macro Variables 466

Other Host-Specific Aspects of the Macro Facility 467
Collating Sequence for Macro Character Evaluation 467

SAS System Options Used by the Macro Facility 467

See Also 467

SAS Macro Facility under OpenVMS

In general, the SAS macro language is portable across operating environments. This
section discusses those components of the macro facility that have details that are
specific to OpenVMS. For more information, see the SAS online Help system for the
macro facility, SAS Macro Language: Reference, or SAS Macro Language: Reference.

Automatic Macro Variables

The following automatic macro variables have aspects that are specific to the
OpenVMS operating environment:

SYSCC

specifies a character string that can be passed to SAS programs. By default, the
value of SYSPARM is in uppercase in the OpenVMS operating environment. To
preserve the case of the string, enclose it in double quotation marks.

SYSDEVIC

gives the name of the current graphics device.

462 Automatic Macro Variables 4 Chapter 19

SYSENV

is provided for compatibility with the SAS System running on other operating
environments, but it is not relevant in the OpenVMS operating environment. In
the OpenVMS environment, its value is always FORE.

SYSJOBID

lists the OpenVMS process ID (PID) of the process that is running the SAS
System, (for example, 27A0D1D2).

SYSPARM

specifies a character string that can be passed to SAS programs. By default, the
value of SYSPARM is in uppercase in the OpenVMS operating environment. To
preserve the case of the string, enclose it in double quotation marks.

SYSRC

holds the OpenVMS status of DCL commands that were issued during your SAS
session. The variable holds a character string that is the text form of the decimal
value of the OpenVMS command status. For example, consider the following
statements:

x ’dirf’; /* an invalid OpenVMS command */
%put This OpenVMS status is &sysrc;

x ’dir’; /* a valid OpenVMS command */
%put The corrected OpenVMS status is &sysrc;

When these statements are issued, the following lines are written to the SAS log:

This OpenVMS status is 229520
The corrected OpenVMS status is 0

SYSSCP

in the OpenVMS Alpha operating environment, SYSSCP returns the value
VMS_AXP. In the OpenVMS VAX operating environment, SYSSCP returns the
value VMS.

SYSSCPL

returns the value OpenVMS for both the OpenVMS Alpha and VAX operating
environments.

SYSSESID

returns the client name of an application. The client name of a SAS session
consists of either the value of the xresources=’’name’’ or the word SAS plus
the SAS session ID. SAS is the default. The SAS session ID is incremented once
for each concurrent session that is started. For example, if you start a second SAS
session without ending the first session, then the default client name for the
second session is SAS2.

VMSSASIN

contains the value of the SYSIN= system option and provides you with the name
of the SAS job that is currently being run. When the SAS System is run in
interactive mode, the value of VMSSASIN is SYS$INPUT.

The following is an example using this macro variable:

data test;
infile ’[school]roster.dat’;

Macro Facility 4 Macro Statements 463

input name $ age grade $;
run;

proc print data=test;
title "Output generated by &vmssasin program.";

run;

Alternatively, you could put the value of the VMSSASIN macro variable into a
variable in your data set:

data test;
infile ’[school]roster.dat’;
input name $ age grade $;
job=symget("vmssasin");

run;

Macro Statements

The following macro statements have operating dependencies that are specific to the
OpenVMS environment:

%KEYDEF
is analogous to the KEYDEF command in the SAS windowing environment. It
enables you to define function keys. The syntax of this statement is

KEYDEF key-name | ’key-name’ < ’definition’>;

If you omit the definition, SAS prints a message in the log showing the current
definition of the key; otherwise, the key definition is changed to whatever you
specified. The value of key-name varies from terminal to terminal. You can define
any key that is listed in the KEYS window. Any keyname that is hyphenated or
contains a space, such as “CTRL-G” and “Gold 9”, must be enclosed in double
quotation marks.

%SYSEXEC
issues DCL commands immediately and places the operating environment return
code in the automatic variable SYSRC. The syntax of the %SYSEXEC statement is

%SYSEXEC <DCL-command>;

where DCL-command can be any OpenVMS operating environment command or
any sequence of macro operations that generates an operating environment
command.

The %SYSEXEC statement is similar to the X statement, which is described in
“Issuing DCL Commands during a SAS Session” on page 36. You can use the
%SYSEXEC statement either inside a macro or in open code.

Omitting DCL-command puts you in an interactive OpenVMS subprocess and
sets the value of the SYSRC automatic variable to 0. To return to your SAS
session, type LOGOFF at the subprocess prompt.

The following is an example of %SYSEXEC:

%sysexec show time;

The output looks something like this:

12-JAN-1998 16:02:52

464 Macro Functions 4 Chapter 19

Macro Functions
The following macro function has details that are specific to the OpenVMS operating

environment:

%SYSGET
returns the character-string value of the OpenVMS symbol that you specified as
the argument. The syntax of this function is

%SYSGET(OpenVMS-symbol-name);

You can use %SYSGET to translate either local or global OpenVMS symbols. If
the symbol that you specify does not exist, SAS prints a warning message in the
log.

Example: Using the %SYSGET Function
The following example writes square brackets ([]) to the SAS log.
1 Issue the following command to define a global symbol, HERE, to be []:

$ HERE == "[]"

2 Invoke the SAS System, using the invocation command that is used at your site
(usually $ SAS).

3 In your SAS session, assign the value of the %SYSGET function to the macro
variable VAR1, using the symbol HERE as the argument.

%let var1=%sysget(here);
%put &var1;

Autocall Libraries
An autocall library contains files or members that define SAS macros. The autocall

facility enables you to invoke a macro without having previously defined that macro in
the same SAS program. In order to use the autocall facility, the SAS system option
MAUTOSOURCE must be in effect. (For information about the MAUTOSOURCE
system option, see SAS Language Reference: Dictionary.)

SAS Institute supplies some autocall macros. When the SAS System is installed, a
SASAUTOS logical name is defined. This OpenVMS logical name refers to the location
of the default macros that are supplied by SAS Institute. Whether this logical name is
placed in the system-level logical name table or in the process-level logical name table
is site-dependent.

You can also define your own autocall macros in a user autocall library.

Creating an Autocall Macro
To create an autocall macro, perform the following tasks:
1 Create either an OpenVMS directory or an OpenVMS text library to function as an

autocall library, or use an existing autocall library.
2 In the autocall library, create a file (filetype .SAS) or member (filetype .TLB) that

contains the source statements for the macro. The filename or member name must
be the same as the name of the macro. For example, if a file named

Macro Facility 4 Stored Compiled Macro Facility 465

PRTDATA.SAS is stored in an OpenVMS directory, then the file must define a
macro named PRTDATA. Similarly, if the text library MYLIB.TLB contains the
member DATACONT, then that member must define a macro named DATACONT.

Specifying a User Autocall Library
Use the SAS system option SASAUTOS to specify the location of one or more user

autocall libraries. (For more information about this option, see “SASAUTOS=” on page
434.) You can specify autocall libraries either when you invoke SAS or during a SAS
session, as follows:

� When you invoke SAS:

single autocall library:

SAS/MAUTOSOURCE/SASAUTOS=’[mydir]’
[dir]program

concatenated autocall library:

SAS/MAUTOSOURCE/SASAUTOS=(’[mydir1]’,
’[mydir2]’,sasautos) [dir]program

Note: Invocation options are separated by slashes following the SAS command. 4

� During a SAS session (using an OPTIONS statement in your program):

single autocall library:

options mautosource sasautos=’[mydir]’;

concatenated autocall library:

options mautosource sasautos=(’[mydir1]’,
’[mydir2]’,sasautos);

Stored Compiled Macro Facility
The stored compiled macro facility gives you access to permanent SAS catalogs that

contain compiled macros. In order for SAS to use stored compiled macros, the SAS
system option MSTORED must be in effect. In addition, you use the SAS system option
SASMSTORE= to specify the libref of a SAS data library that contains a catalog of
stored compiled SAS macros. For more information about these options, see SAS
Language Reference: Concepts.

Using stored compiled macros offers the following advantages over other methods of
making macros available to your session:

� SAS does not have to compile a macro definition when a macro call is made.
� Session-compiled macros and the autocall facility are also available in the same

session.

Because you cannot re-create the source statements from a compiled macro, you must
save the original macro source statements.

Note: Catalogs of stored compiled macros cannot be concatenated. 4

If you do not want to use the stored compiled macro facility, you can make macros
accessible to your SAS session or job by doing the following:

466 Accessing Stored Compiled Macros 4 Chapter 19

� placing all macro definitions in the program before calling them

� using a %INCLUDE statement to bring macro definitions into the program from
external files

� using the autocall facility to search predefined source libraries for macro
definitions.

Your most efficient choice may be to use the stored compiled macro facility.

Accessing Stored Compiled Macros
The following example illustrates how to create a stored compiled macro in one

session and then use the macro in a later session:

/* Create a Stored Compiled Macro */
/* in One Session */
libname mylib ’[dir]’;
options mstored sasmstore=mylib;

%macro myfiles / store;
filename file1 ’[dir]first.dat’;
filename file2 ’[dir]second.dat’;

%mend;

/* Use a Stored Compiled Macro */
/* in a Later Session */
libname mylib ’[dir]’;
options mstored sasmstore=mylib;
%myfiles
data _null_;

infile file1;
*statements that read input file FILE1;

file file2;
*statements that write to output file FILE2;

run;

Controlling Memory Availability for Storing Macro Variables
Two system options control the maximum amount of memory available for storage of

macro variables:

MVARSIZE=n
specifies the maximum number of bytes for any macro variable stored in memory
(0 <= n <= 32768). The default setting for this option in the OpenVMS operating
environment is 8192.

MSYMTABMAX=n
specifies the maximum amount of memory available to all symbol tables (global
and local combined). The value of n can be expressed as an integer or MAX (the
largest integer your operating environment can represent). The default setting for
this option in the OpenVMS operating environment is 51200.

You can specify these system options in the following places:

� at SAS invocation

� in the configuration file

Macro Facility 4 See Also 467

� during execution with an OPTIONS statement or in the System Options window

Other Host-Specific Aspects of the Macro Facility

Collating Sequence for Macro Character Evaluation
Under OpenVMS, the macro facility uses ASCII collating sequences for %EVAL,

%sysevalf, and for implicit evaluation of macro characters.

SAS System Options Used by the Macro Facility
Table 19.1 on page 467 lists the SAS system options that are used by the macro

facility and that have host-specific characteristics. The table also tells you where to look
for more information about these system options.

Table 19.1 SAS System Options Used by the Macro Facility That Have Host-Specific Aspects

System Option Description See

MSYMTABMAX= Specifies the maximum amount of memory available to
all symbol tables (global and local combined). Under
OpenVMS, the default value for this option is 51,200
bytes.

System option:
“MSYMTABMAX=” on page 424

MVARSIZE= Specifies the maximum number of bytes for any macro
variable stored in memory (0 <= n <= 32767). Under
OpenVMS, the default setting for this option is 8,192.

System option: “MVARSIZE=” on
page 425

SASAUTOS= Specifies the autocall library. System option: “SASAUTOS=” on
page 434 and “Specifying a User
Autocall Library” on page 465

See Also

� SAS Macro Language: Reference

� SAS Macro Facility Tips and Techniques

� the SAS online Help system.

468 See Also 4 Chapter 19

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OpenVMS Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
518 pp.

SAS® Companion for the OpenVMS Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–526–4
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

