
187

C H A P T E R

9
Using OLE in SAS/AF Software

About OLE 188
SAS/AF Catalog Compatibility 188

Inserting an OLE Object in a FRAME Entry 188

Inserting an OLE Object 189

Pasting an OLE Object from the Clipboard 189

Reading an OLE Object from an HSERVICE Entry 190
Inserting an OLE Object Using Drag and Drop 190

Dragging and Dropping OLE Objects During Run Time 191

Changing the Action of the Drag and Drop 191

Editing an OLE Object within a FRAME Entry 191

Invoking OLE Verbs 193

Using Linked OLE Objects 193
Updating a Linked Object with the Links Dialog Box 194

Updating a Linked Object Programmatically 194

Converting OLE Objects 195

Automating OLE Objects and Applications 196

Accessing Array Values Returned by the OLE Automation Server 197
Using Value Properties 197

Specifying Optional Parameters in OLE Server Methods 198

Creating an External OLE Automation Instance 198

Example: Populating a Microsoft Excel Spreadsheet with SAS Data 200

Using OLE Custom Controls (OCXs) in Your SAS/AF Application 202
Inserting an OLE Control in a FRAME Entry 202

Registering OLE Controls 203

Accessing OLE Control Properties 203

Accessing the OLE Control Properties Page 203

Accessing Properties Using SCL Code 204

Interacting with the OLE Control Using SCL Methods 204
Responding to OLE Control Events 204

Assigning SCL Code to an OLE Control Event 205

Retrieving Argument Values from Events 205

Example: Mapping OLE Control Events to SCL Code 206

Example: Subclassing an OLE Custom Control 206
Adding an Item to a Combo Box List 207

Finding an Item in a Combo Box 207

Retrieving the Text Value of the Control 208

188 About OLE 4 Chapter 9

About OLE

OLE is a means of integrating multiple sources of information from different
applications into a unified document. These objects can include text, graphics, charts,
sound, video clips, and much more.

OLE 1.0, which the SAS System under Windows has supported since Release 6.08,
allowed you to link and embed OLE objects into SAS/AF FRAME entries and SAS/EIS
applications. OLE 2.0, which Version 8 supports, provides many new features that you
can use to enhance your SAS/AF frames and SAS/EIS applications.

Note: The SAS System under Windows (and OLE 2.0 in general) still supports all
the features from OLE 1.0. 4

Version 8 of the SAS System under Windows can function as an object container or
client. The applications that create (and update) the objects you place in a FRAME
entry are known as servers. You can also use the SAS System as a server from within
other applications through OLE automation. For more information, see Chapter 10,
“Controlling the SAS System from Another Application Using OLE,” on page 209 .

For more information about OLE in general, see the documentation for the Microsoft
Windows operating system. For descriptions of the error messages you might receive
while using OLE features in SAS/AF software, see “Using OLE” on page 506.

SAS/AF Catalog Compatibility

SAS/AF catalogs that contain OLE HSERVICE entries can be ported from Release
6.09 for Windows NT and Release 6.10 or later for Windows transparently, just by
assigning libnames to those catalogs in your Version 8 SAS session.

Note: SAS/AF catalogs created in Version 8 that contain HSERVICE entries can be
ported back to Release 6.08 using the V608 option of the CPORT procedure, but the
features that are ported are limited to those available in Release 6.08. 4

HSERVICE entries are only usable on the host platform in which they were created.
That is, any OLE features that you include in your SAS/AF applications using the SAS
System under Windows cannot be ported to another host. (For portability purposes, all
variations of Microsoft Windows are considered a single platform.)

Inserting an OLE Object in a FRAME Entry
SAS provides three items on the object Selection List to facilitate OLE:

OLE - Insert Object
inserts an OLE object as a new object of the type associated with a registered
server application, as an object created from an existing file, or as an OLE control.

OLE - Paste Special
pastes an OLE object to the FRAME entry from the Windows clipboard.

OLE - Read Object
creates an object that references an existing HSERVICE entry in a SAS catalog.

These three items correspond to the three OLE classes in SAS/AF software: INSERT,
PASTE, and READOLE.

Using OLE in SAS/AF Software 4 Pasting an OLE Object from the Clipboard 189

In addition to using the Selection List to insert objects, you can select and drag
objects from other Windows applications and drop them onto an open FRAME entry (in
BUILD mode, or during run time if the frame or work area object is registered as a
drop site for the SAS_DND_OLEOBJ representation).

Inserting an OLE Object
To insert an OLE object in a FRAME entry:

1 From the COMPONENTS window, select the V6 objects item to expand the
object tree.

2 Scroll through the list of objects in the Selection List and select OLE - Insert
Object.

3 Select a position for the object in the FRAME entry. As you move the mouse, the
mouse pointer moves the outline of the object you want to insert. Click on the
mouse button to place the object. The Insert Object dialog box appears.

4 Select the type of object you want to insert. The list of objects available to you
depends on which OLE-capable applications are registered on your system.
Selecting a type of object will insert an object of that type into the FRAME entry.

Alternatively, you can create an object from a file by clicking on Create from
File. The file you specify must have been created by one of the applications you
have available to supply OLE objects. For example, if you have Microsoft Excel
installed on your system, you can create an object from an Excel spreadsheet file.
You also have the option of making it a linked object (instead of embedded). For
more information about linked objects, see “Using Linked OLE Objects” on page
193.

When you have selected the type of object or filename to insert, click on OK .
SAS then displays the OLE - Insert Object Attributes dialog box.

5 Enter a name for the object entry in the Entry field. Optionally, you can also
change the Name of the object. Two-level HSERVICE names are allowed,
defaulting to the current catalog.

Note: The HSERVICE entry is not created until you Save or End the FRAME
editing session. 4

Click on OK . SAS inserts the object in the FRAME entry, displaying a
representation of the object at the position you selected. If you are creating the
object as new (that is, you are not creating it from an existing file), then the object
automatically enters an editing session with the server. If the object server
supports visual editing, then this editing session uses visual editing. For more
information about visual editing, see “Editing an OLE Object within a FRAME
Entry” on page 191.

Pasting an OLE Object from the Clipboard
To paste an OLE object from the Windows clipboard:

1 From another Windows application, copy or cut to the Windows clipboard the
object or data you want to include in your FRAME entry.

2 From the COMPONENTS window, select the V6 objects item to expand the
object tree.

3 Scroll through the list of objects in the Selection List and select OLE - Paste
Special. The Paste Special dialog box appears.

190 Reading an OLE Object from an HSERVICE Entry 4 Chapter 9

4 Select the type of OLE object you would like to insert based on the clipboard
contents. This is determined by the application from which you copied the data.
(For example, you would typically paste Microsoft Word data as a Microsoft Word
object.)

5 If you want the OLE object to link to the data instead of embed the actual data in
the FRAME entry, choose Paste Link on the Paste Special dialog box. For more
information about linked objects, see “Using Linked OLE Objects” on page 193.

Note: If you paste data from a temporary source (such as a document that you
did not save), SAS will be unable to locate the data source when it attempts to link
to it later when it no longer exists. You should save your data file before copying it
to the Windows clipboard. 4

6 After you select the type of object to paste, click on OK . SAS then displays the
OLE - Paste Special Attributes dialog box.

7 Enter a name for the object entry in the Entry field. Optionally, you can also
change the Name of the object. Two-level HSERVICE names are allowed,
defaulting to the current catalog. Note that the HSERVICE entry is not created
until you Save or End the FRAME editing session.

Click on OK . SAS pastes the object in the FRAME entry, displaying a
representation of the object at the position you selected.

Reading an OLE Object from an HSERVICE Entry
To read an existing OLE object stored as an HSERVICE entry in a SAS catalog:

1 From the COMPONENTS window, select the V6 objects item to expand the
object tree.

2 Scroll through the list of objects in the Selection List and select OLE - Read
Object. SAS displays the OLE - Read Object Attributes dialog box.

3 Enter the name of the HSERVICE entry in the Entry field. Two-level HSERVICE
names are allowed, defaulting to the current catalog. To use the Select window to
find the entry, click on the arrow next to the Entry field.

Click on OK . SAS inserts the object in the FRAME entry, displaying a
representation of the object at the position you selected.

Note: You cannot change the name of an HSERVICE entry that you read in. If
you want to assign a different name to the HSERVICE entry, copy the HSERVICE
entry to a new name before you read the object. 4

Inserting an OLE Object Using Drag and Drop
To insert an OLE object into a FRAME entry by dragging and dropping it:

1 Create the object using the server application. For example, if you want to embed
a Microsoft Excel chart object into your FRAME entry, use Microsoft Excel to
create the object. Or, you can select an OLE object that is embedded in another
application.

2 With both SAS and the server application running, arrange the application
windows so that both the server application (with the object) and the SAS BUILD:
DISPLAY window (with the FRAME entry) are visible on the screen.

3 Select the object in the server application. With the mouse button depressed, drag
the object from the server application to the position in the FRAME entry where
you want to place the object. The cursor changes to a box with an arrow,

Using OLE in SAS/AF Software 4 Editing an OLE Object within a FRAME Entry 191

indicating that the FRAME entry is a valid place to drop the object. Note that you
do not need to draw a region in the FRAME to insert the object. You can also use
drag modifier keys, as discussed in “Changing the Action of the Drag and Drop” on
page 191 to control the drag and drop behavior.

When you release the mouse button ("dropping" the object), SAS inserts the
object into the FRAME, automatically creating a name and an HSERVICE entry
for the OLE object. SAS displays a representation of the object at the position you
selected.

Dragging and Dropping OLE Objects During Run Time
You can allow the dragging and dropping of OLE objects while your SAS/AF

application is running. To enable this, you must register the OLE object type with a
valid drag and drop representation.

OLE objects must be registered with the SAS_DND_OLEOBJ representation. For
more information about registering objects for drag and drop, see SAS/AF Software:
FRAME Application Development Concepts and the Widget Class in SAS/AF Software:
FRAME Class Dictionary.

Changing the Action of the Drag and Drop
By default, dragging an OLE object from another application into SAS moves the

object (unless the object is of a type that can only be read and not removed). You can
override this default action by using a drag modifier; that is, a key press that indicates
that you want to perform a different drop action:

� To copy an object from the server application, hold down the Ctrl key when you
drop the object on the target window. When you press the Ctrl key, the cursor
changes to an arrow with a box and a plus (+) sign.

� To create a link to the data in a SAS/AF FRAME entry, hold down the Ctrl and
Shift keys when you drop the object on the BUILD window. When you press the
Ctrl and Shift keys, the cursor changes to an arrow with a box and an equal (=)
sign. (This feature might vary based on the other application.) Remember not to
paste a linked object from a temporary source, as SAS cannot locate a data source
when it no longer exists.

Alternatively, you can initiate a nondefault drag and drop action (if the server
application supports it). Use the right mouse button to select the object and drag and
drop it into the FRAME entry. When you release the mouse button, SAS displays a
pop-up menu allowing you to select whether to move, copy, or link to the object. The
choices in the pop-up menu might vary among different types of OLE objects.

Editing an OLE Object within a FRAME Entry
One of the most impressive features of OLE 2.0 is visual editing–the ability to edit

an embedded object in-place, without explicitly changing to another application.
To activate visual editing for an OLE object in your FRAME entry at build time, click

the right mouse button and select Edit. To activate visual editing at run time, simply
double-click on the object. If the object’s application supports visual editing as a server
application, then the following occurs:

� The object’s representation in the FRAME entry changes to an editing session of
the actual object. The object’s borders might change to accommodate the tools
supplied by the server application.

192 Editing an OLE Object within a FRAME Entry 4 Chapter 9

� The SAS menu bar changes to accommodate the menu bar of the server
application. The File and Window menu remains the same, but the remainder of
the menu bar changes to that of the server application.

� If the server application normally provides any tools, such as toolbar icons or a
floating toolbox, those items also become available.

For example, Display 9.1 on page 192 shows a SAS/AF FRAME entry with a
Microsoft Word object activated.

Display 9.1 SAS/AF FRAME Entry with Word Object Activated

After this transformation, you can edit the object using all of the tools and menus
provided by the server application.

To end your visual editing session, click elsewhere inside the FRAME entry and
outside the object. SAS resumes control of the session, and returns to the default SAS
menus and tools.

Note:
1 The HSERVICE entry is automatically updated at the end of a visual editing

session only if the object has been saved previously (that is, an HSERVICE entry
has been created for it). Otherwise, you must select Save (or End) from the File
menu in SAS/AF software to create the HSERVICE entry.

Also, if you modify the object during TESTAF mode and you want to save the
modifications in the HSERVICE entry, you must update the object’s contents by
selecting Update from the Locals menu before returning to BUILD mode.

2 If you move the OLE object within the FRAME entry during visual editing (in
BUILD mode), the object returns to its original position when you click outside of
it (ending the visual editing session). If you want to move the object to another
position in the FRAME entry, end the visual editing session and then move the
object region.

3 Most OLE objects require that you double-click on them to activate them.
However, a few types of objects require only a single-click to activate them.

4 If you attempt to edit a linked object or an OLE object whose server application
does not support visual editing, the server application launches as a separate
instance and allows you to edit the object. This is known as open editing and is
consistent with the behavior of linked objects and all OLE 1.0 objects.

4

Using OLE in SAS/AF Software 4 Using Linked OLE Objects 193

Invoking OLE Verbs
Each OLE object (except OLE controls) has a default action that it performs when

you double-click on it. For many objects, the default action is Edit (invoking a visual
editing session for OLE 2.0 or an open editing session for linked objects and all OLE 1.0
objects). However, there are some objects for which the Edit action is secondary (for
example, a Media Clip object, where Play is the primary action). Also, many objects
have more than one action that they can perform, so they understand more than one
OLE verb. (Note that double-clicking on an OLE object in BUILD: DISPLAY mode does
not perform the default action, but double-clicking on the object in TESTAF mode does.)

To access the menu of OLE verbs for an OLE object in BUILD mode, click on the
object with the right mouse button. The name of the OLE object is located at the
bottom of the pop-up menu. In the cascading menu off that item, there is a list of valid
OLE verbs for the object. Select a verb from this menu to perform that action. The
default verb appears first in the list of verbs.

For example, a Microsoft Excel object understands Edit (for visual editing) and Open
(for open editing). A Media Clip object understands Play and Edit.

You can also access the list of valid verbs by clicking on the Associated Verbs...
item in the Object Attributes dialog box for the object. This list just contains the names
of the verbs; you cannot initiate the verbs from here. Again, the verb at the top of the
list is the default verb.

Using SCL, you can invoke any verb that a particular OLE object understands by
using the _EXECUTE_ method with the verb as an argument. For example, this code
would invoke the verb Play on the OLE object mediaobj:

call notify(’mediaobj’, ’_EXECUTE_’, ’Play’);

You can specify multiple verbs in a single call to _EXECUTE_. For more information
about the _EXECUTE_ method, see “_EXECUTE_” on page 496.

Using Linked OLE Objects
A linked OLE object contains information about the object’s server application and

points to the data file that resides on disk, but does not contain data for the object itself.
The object contains a static picture that represents the contents of the linked source.

Using the Links dialog box, you can specify to update a linked object:
� automatically, whenever you update the source file that the object points to. (You

must reload the FRAME entry before it reflects the change.)
� manually, by choosing Update Now in the Links dialog box or by using the

UPDATE method in SCL.
� manually, by pointing the object to a different source file using either the Links

dialog box or the _UPDATE_ method in SCL.

Linked OLE objects that you include in a FRAME entry:
� support open editing only (as opposed to visual editing, described in “Editing an

OLE Object within a FRAME Entry” on page 191). When you double-click on the
object’s representation in the FRAME, the server application is invoked in a
separate window with the object’s data file open.

You can also update the data of a linked object by using the server application
to open the data file the object points to.

� must point to existing data files. If you change the location of a data file to which
an object is linked, you must update the links information for the object.

194 Updating a Linked Object with the Links Dialog Box 4 Chapter 9

If you create a linked object using OLE - Paste Special, the data source that you
paste from must be permanent (that is, you must have saved it to disk). If you create a
linked object from a temporary data source, SAS will be unable to locate the data to
update the object when the data source no longer exists.

Updating a Linked Object with the Links Dialog Box
To update the links information with the Links dialog box (shown in Display 9.2 on

page 194):

1 Click on the object with the right mouse button. A pop-up menu appears, with the
object type listed as the bottom menu item.

2 Click on the bottom menu item. A cascading menu containing valid OLE verbs for
the object appears.

3 Click on Links.... The Links dialog box appears, containing link information for
all of the linked objects in the FRAME entry. (If there are no linked objects in the
FRAME, then the Links... item is disabled.)

4 Use the Links dialog box to change information about the object as necessary. For
example, if the data file resides in a different location, you can change the source
for the object link.

An alternate way to open the Links dialog box for a linked OLE object is to use the
DLGLINKS command from the command line. You can also use the _EXECUTE_
method in SCL to invoke the DLGLINKS command. For example:

call notify(’linkobj’,’_execute_’,’dlglinks’);

Display 9.2 Links Dialog Box

Updating a Linked Object Programmatically
To change the source of a linked object programmatically with SCL, use the

UPDATE method to specify a new HSERVICE entry to associate with the object. The
UPDATE method for OLE objects accepts the name of an HSERVICE entry as a third
argument. (This method overrides the Widget class _UPDATE_ method.) For the
syntax of the OLE _UPDATE_ method, see “_UPDATE_” on page 500.

Using OLE in SAS/AF Software 4 Converting OLE Objects 195

Converting OLE Objects

An OLE object can be associated with only one server application, but some OLE
objects can be converted for use with a different server application than the one that
created them.

You can convert an object by using the Convert dialog box (shown in Display 9.3 on
page 195). This dialog box lets you:

� change the object’s view from an icon to object content and vice-versa.

� change the object’s type from one server application to another. For example, you
can convert a Microsoft Excel object to a Lotus 1-2-3 object, provided that you have
the server application that can convert the object on your system. This type of
conversion is permanent.

� activate the object with a different server application than originally created it,
without altering the object type. For example, you can choose to activate a Lotus
1-2-3 object using Microsoft Excel as a server. This allows you to edit the object as
if it were an Excel object. The object continues to be a Lotus 1-2-3 object. All
subsequent Lotus 1-2-3 OLE objects you create will use Excel as an OLE server,
unless you change the conversion settings again.

Display 9.3 Convert Dialog Box

To convert an OLE object within a SAS/AF FRAME entry:

1 Click on the object with the right mouse button.

2 At the bottom of the pop-up menu, select the object’s name (thus revealing the
cascading menu).

3 In the cascading menu, select Convert.... The Convert dialog box appears,
listing the valid object types to which you can convert the selected object.

4 If you want to actually convert the object to another type, select the desired target
object type and click on OK .

If you want to toggle the object between icon view and content view, check
Display As Icon.

If you want to activate the object using another server, click on Activate as
and then select the server application to use.

5 Click on OK .

196 Automating OLE Objects and Applications 4 Chapter 9

An alternate way to open the Convert dialog box for an OLE object is to select the
object and issue the DLGCONVERT command on the command line. Also, you can use
the _EXECUTE_ method in SCL to invoke the DLGCONVERT command. For example:

call notify(’sheetobj’,’_execute_’,
’dlgconvert’);

Automating OLE Objects and Applications
Some Windows applications provide a scripting language that allows you to control

and update objects and external applications through automation. In SAS/AF software,
you can use SAS Component Language (SCL) for OLE automation. Using SCL code to
send instructions to the OLE object, you can update the object’s data based on a user’s
actions in your SAS/AF application.

In SAS/AF software, you can automate:
� OLE objects embedded in a FRAME entry, using the OLE class
� OLE objects linked to a FRAME entry, using the OLE class
� OLE applications not associated with a FRAME entry, using the OLE Automation

class.

Using SCL, you can communicate with any OLE object or application that supports
OLE automation as a server. In this communication, SAS acts as a client while the
automation application acts as a server. The server provides OLE automation objects,
which you can control with SCL code. Using SCL methods, you can send OLE methods
to the server for execution. You can also get and set the properties of the objects you
control. OLE automation servers can support multiple types of objects, each of which
can have a unique set of methods and properties. The SCL methods you can use are
listed in Table 9.1 on page 196 and described in detail in “Summary of OLE Class
Methods” on page 493.

Note: Do not confuse the SCL OLE automation methods (listed in the table) with
the methods provided by the OLE automation server. In SAS/AF software, the
COMPUTE and _DO_ SCL methods provide access to the methods supported by the
OLE automation server. Each OLE automation server supports different methods, but
you must always use the _COMPUTE_ or _DO_ method in SCL to invoke them. (You can
use subclassing to create new methods that encapsulate these. For an example, see .) 4

Table 9.1 OLE Automation Class Methods

OLE Automation Method Description

COMPUTE invokes a method supported by the OLE automation
server and returns a value

DO invokes a method supported by the OLE automation
server (with no return value)

_GET_PROPERTY_ retrieves the value of a property exposed by the OLE
automation server

_GET_REFERENCE_ID_ returns the reference identifier of an object provided
by the OLE automation server

_IN_ERROR_ returns an object’s ERROR status

Using OLE in SAS/AF Software 4 Using Value Properties 197

OLE Automation Method Description

NEW assigns an SCL identifier to an external instance of an
OLE automation server

_SET_PROPERTY_ sets the value of a property exposed by the OLE
automation server

Note: The return values and arguments passed between the automation server and
SAS using the OLE automation methods are passed by value, not by reference–including
those arguments that the server defines as pass-by-reference. That is, the arguments
contain actual static values, not pointers to values that you can modify. 4

Accessing Array Values Returned by the OLE Automation Server

The SAS System lets you access single-dimensional arrays that are passed back by
the OLE automation server as a property or as a result of one of its methods. When the
array is returned to SAS, SAS stores it in an SCL list.

For example, the following SCL code creates and populates a listbox in a Microsoft
Excel worksheet and stores the contents of the listbox in an SCL list:

list=makelist(); /* create the SCL list */
/* Add a Listbox in a worksheet */

call send(worksht, ’_COMPUTE_’, ’Listboxes’,
listbox);

call send(listbox, ’_DO_’, ’Add’, 20, 50,
40, 100);

call send(worksht, ’_COMPUTE_’, ’Listboxes’,
1, listone);

/* Fill the Listbox with a range of */
/* values from the worksheet */

call send(listone, ’_SET_PROPERTY_’,
’ListFillRange’, ’A1:A3’);

/* Get the contents of the Listbox */
call send(listone, ’_GET_PROPERTY_’,

’List’, list);

Note: The SAS System does not support passing arrays (or SCL lists) as arguments
to an OLE automation server; it supports only receiving the array values returned from
the server as a result of the _GET_PROPERTY_ or _COMPUTE_ methods. Also, SAS
does not support multidimensional arrays as values supplied to or returned by an OLE
automation server. 4

Using Value Properties

OLE automation servers (including OLE custom controls) can designate one of their
properties or methods as a value property, which is used as the default property or
method when the automation code accesses an object provided by the server without
explicitly specifying a property or method name.

In SCL, you can access the value property of a server by specifying an empty string
in place of the property name when invoking _GET_PROPERTY_ or
_SET_PROPERTY_, or in place of the method name when using _DO_ or _COMPUTE_.
For example, if the Text property is the value property, then the following code:

198 Specifying Optional Parameters in OLE Server Methods 4 Chapter 9

call notify(’sascombo’, ’_set_property_’, ’’,
’An excellent choice’);

is equivalent to:

call notify (’sascombo’, ’_set_property_’,
’Text’, ’An excellent choice’);

Both the SAS ComboBox and SAS Edit controls (supplied with the SAS System)
designate Text as their value property.

Specifying Optional Parameters in OLE Server Methods
Some OLE server applications expose methods that have optional parameters; that

is, if you do not specify a value for one or more of the parameters that a method
supports, the OLE server uses a default value for those parameters. Refer to the
documentation for the OLE server application you are using for information about
which parameters are optional.

The SAS System supports the use of optional parameters by letting you specify a SAS
missing value in place of the parameter you want to omit. The default missing value
character is a period (but that can be changed by using the MISSING system option).

For example, Microsoft Excel supports a ChartWizard method that accepts 11
arguments, most of which are optional. This SCL code invokes this method with all of
its arguments:

call send(chart, ’_DO_’, ’ChartWizard’, hcell,
-4098, 6, 1, 0, 0, 1,
"Automation at work!",
’Column’, ’Value’, ’Row’);

Here is the equivalent SCL code that omits the optional parameters (substituting the
missing value character):

call send(chart, ’_DO_’, ’ChartWizard’, hcell,
., ., ., ., ., .,
"Automation at work!",
., ., .);

Note: Your SCL code must still respect the position of the optional parameters when
invoking methods. When you specify a missing value character as an argument, it must
be in place of a parameter that is optional to the OLE server’s method. 4

Creating an External OLE Automation Instance
External OLE Automation Instances can be for an application on your local machine

or an application on a remote machine. Before you can automate an external OLE
application, you must create an instance of the OLE Automation class. (Note that this
is not necessary when you automate objects that you embed or link in your FRAME
entry, because placing them in the FRAME entry creates the instance for you.) Unlike
the OLE class, the OLE Automation class is not derived from the Widget class and,
therefore, has no visual component to include in a FRAME entry. Instead, you must
load an instance of the HAUTO class (using the LOADCLASS function) in the SCL code
that drives the automation. For example:

hostcl=loadclass(’sashelp.fsp.hauto’);

After you create an instance of the OLE Automation class, you must associate the
new instance with an SCL object identifier (which you need to use when calling

Using OLE in SAS/AF Software 4 Creating an External OLE Automation Instance 199

methods with CALL SEND) and an OLE server application. To obtain the identifier,
use the _NEW_ method on the newly created instance of the OLE Automation class.
This example stores the object identifier in oleauto and associates the object with
Microsoft Excel (which has the identifier Excel.Application.8 in the Windows
registry) on the local machine.

call send(hostcl, ’_NEW_’, oleauto, 0,
’Excel.Application.8’);

To create an instance of the OLE Automation class for a remote machine, the remote
machine must be configured to permit the user to start remote instances using
Distributed COM Configuration Properties (DCOMCNFG.EXE). In Windows NT,
DCOMDNFG.EXE is located in the \WINNT\SYSTEM32 folder. In Windows 95 and
Windows 98, DCOMDNFG.EXE is located in the \WIN9x\SYSTEM folder. For more
information on Distributed COM Configuration Properties, see your Windows
documentation. The following example creates an instance of Microsoft Excel on a
remote machine. Once created, the method and property calls to that instance work as
if it were on a local machine.

Init:
HostClass = loadclass(’sashelp.fsp.hauto’);
ExcelObj = 0;

/* Define the machine name and put it in a list */

machineName = ’\\Aladdin’;
inslist = makelist();
attrlist = makelist ();

rc = insertc (attrlist, machineName, -1, ’remoteServer’);
rc = insertl (inslist, attrlist, -1, ’_ATTRS_’);

/* Instantiate the Excel object and make it visible */

call send (HostClass, ’_NEW_’,ExcelObj, inslist,
’Excel.Application’);
call send (ExcelObj, ’_SET_PROPERTY_’, ’Visible’, -1);

return;

For more information about the _NEW_ method, see “_NEW_” on page 499.
After you create an instance of an OLE Automation object, you can automate that

object in much the same way you would automate an object that you have embedded or
linked in your frame. The following table notes some key differences between the types
of objects.

SAS OLE objects... SAS OLE Automation objects...

are derived from the Widget class. are derived from the Object class.

have a visual component (the object you place in
the FRAME entry).

have no visual component within the FRAME
entry.

are created by placing the object in a region in
the FRAME entry (using drag and drop).

are created by using the LOADCLASS
statement and the _NEW_ method in SCL.

200 Example: Populating a Microsoft Excel Spreadsheet with SAS Data 4 Chapter 9

SAS OLE objects... SAS OLE Automation objects...

represent the specific type of data object (which
you choose) supported by the OLE server.

represent the top-level application object
supported by the OLE server, which you then
might use to open objects of specific data types.

allow you to call methods with CALL NOTIFY
by passing in the object name from the FRAME
entry.

require you to call methods with CALL SEND,
passing in the object identifier returned by the
NEW, _GET_PROPERTY_, or _COMPUTE_
methods.

Example: Populating a Microsoft Excel Spreadsheet with SAS Data
Table 9.2 on page 200 contains SCL code to populate a Microsoft Excel spreadsheet

with data from a SAS data set.

Table 9.2 SCL Code for Populating a Microsoft Excel Spreadsheet

Load an instance of the OLE
Automation class and invoke Excel.
Set the object to Visible so you can
see the automation in progress.

LAUNCHXL:

hostcl = loadclass(’sashelp.fsp.hauto’);
call send(hostcl, ’_NEW_’, excelobj, 0,
’Excel.Application’);
call send(excelobj, ’_SET_PROPERTY_’, ’Visible’, ’True’);
return;

Get the identifier for the current
Workbooks property and add a
worksheet. Then get the identifier
for the new worksheet.

CREATEWS:
call send(excelobj, ’_GET_PROPERTY_’, ’Workbooks’,
wbsobj);
call send(wbsobj, ’_DO_’, ’Add’);
call send(excelobj, ’_GET_PROPERTY_’, ’ActiveSheet’,
wsobj);

Open a SAS data set.
dsid=open(’sasuser.class’,’i’);

call set(dsid);
rc=fetch(dsid);
nvar=attrn(dsid, ’NVARS’);
nobs=attrn(dsid, ’NOBS’);

Using OLE in SAS/AF Software 4 Example: Populating a Microsoft Excel Spreadsheet with SAS Data 201

Traverse the data set and populate
the cells of the Excel worksheet
with its data, row by row.

do
col=1 to nvar;
call send(wsobj, ’_COMPUTE_’, ’Cells’,1,col,retcell);
var=varname(dsid,col);
call send(retcell,’_SET_PROPERTY_’, ’Value’,var);

end;
do while (rc ne -1);

do row = 1 to nobs;
do col = 1 to nvar;

r=row+1;
call send (wsobj, ’_COMPUTE_’, ’Cells’, r ,col,retcell);
if vartype(dsid,col) eq ’N’ then

var=getvarn(dsid,col);
else var=getvarc(dsid,col);

call send(retcell, ’_SET_PROPERTY_’, ’Value’ ,var);
end;
rc=fetch(dsid);

end;
end;
dsid=close(dsid);
return;

Close the worksheet and end the
Excel session. The _TERM_
method deletes the OLE
automation instance.

QUITXL:
call send(excelobj,’_GET_PROPERTY_’, ’ActiveWorkbook’,
awbobj);
call send(awbobj, ’_DO_’, ’Close’, ’False’);
call send(excelobj, ’_DO_’, ’Quit’);
call send(excelobj, ’_TERM_’);
return;

As you can see from this example, automating an application object requires some
knowledge of the object’s properties and methods. To help you decide which SCL
commands to use for an Excel automation object, you can use the Macro Recorder in
Excel to perform the task you want to automate, then look at the Visual Basic code that
is generated. It is then relatively simple to map the Visual Basic code to comparable
SCL statements and functions.

Table 9.3 on page 201 shows some excerpts of Visual Basic code and their SCL
equivalents.

Table 9.3 Visual Basic Code Samples and Their SCL Equivalents

Visual Basic Code OLE Automation in SCL

Launch Excel and make it visible

Set excelobj = CreateObject("Excel.Application")
excelobj.Visible = True

hostcl = loadclass(’sashelp.fsp.hauto’);

call send (hostcl, ’_NEW_’, excelobj, 0,
’Excel.Application’);

call send (excelobj,’_SET_PROPERTY_’,
’Visible’,’True’);

Create a new worksheet

Dim wbsobj, wsobj As Object
Set wbsobj = excelobj.Workbooks
wbsobj.Add
Set wsobj = excelobj.ActiveSheet

call send(excelobj,’_GET_PROPERTY_’,
’Workbooks’, wbsobj);

call send(wbsobj, ’_DO_’, ’Add’);
call send(excelobj,’_GET_PROPERTY_’,

’ActiveSheet’, wsobj);

202 Using OLE Custom Controls (OCXs) in Your SAS/AF Application 4 Chapter 9

Visual Basic Code OLE Automation in SCL

Set the value of a cell

wsobj.Cells(row + 1, col).Value
=var

r=row+1;
call send(wsobj,’_COMPUTE_’, ’Cells’, r, col,

retcell);
call send(retcell,’_SET_PROPERTY_’,

’Value’ ,var);

Close the Excel application object

excelobj.ActiveWorkbook.Close
("False")
excelobj.Quit

call send(excelobj,’_GET_PROPERTY_’,
’ActiveWorkbook’, awbobj);
call send(awbobj, ’_DO_’, ’Close’, ’False’);
call send(excelobj,’_DO_’, ’Quit’);
call send(excelobj,’_TERM_’);

Using OLE Custom Controls (OCXs) in Your SAS/AF Application

An OLE custom control is a special type of OLE object or collection of OLE objects
that has an interface to expose its own properties and methods. You can control these
objects through its graphical interface and with SCL code.

OLE custom controls differ from other OLE objects in these ways:

� They generate events based on user actions, which you can respond to in your
FRAME entry. Note that the object’s SCL label is not run by default when you
activate an OLE control.

� They assume ambient properties (such as color and font) based on the
environment in which they are used.

OLE controls are packaged in their own dynamic linked library (with a file extension
of OCX). Using SCL code, your FRAME entry can respond to events generated by the
OLE control (mouse clicks, key presses, and so on). The events exposed by OLE controls
vary among controls. For a list of events, see the documentation for the control you are
using. After inserting the control into the FRAME entry, you can view the event map
by selecting Object Attributes for the OLE control object and then Event Map.

Note: The OLE controls that SAS provides require 32-bit containers, which makes
them unusable with Windows applications that offer only 16-bit container support.
Also, because SAS is a 32-bit container, you cannot use 16-bit controls with it. 4

Inserting an OLE Control in a FRAME Entry
To insert an OLE control in a FRAME entry:

1 From the COMPONENTS window, select the V6 objects item to expand the
object tree.

2 Double-click on OLE - Insert Object from the Selection List. The Insert Object
dialog box opens. You can also drag OLE - Insert Object from the Selection List
to the BUILD window. When you release the mouse button the Insert Object
dialog box opens.

3 Select the Create Control radio button to display a list of registered OLE custom
controls. If the OLE control you want to use is not listed here and you have it on
your system, you need to register the control (see “Registering OLE Controls” on
page 203).

4 Select the name of the OCX control you want to insert.

Using OLE in SAS/AF Software 4 Accessing OLE Control Properties 203

Registering OLE Controls
Before you can use any OLE control in Windows, the control must be registered with

Windows. SAS ComboBox and SAS Edit, the two OLE controls provided with the SAS
System, are automatically registered when you install the SAS System.

If you want to install other controls for use with SAS or other applications, you must
register the control with Windows (unless the control was installed by a process that
performed the registration for you). The OLE control will not be available from the
Insert Object dialog box until it is registered.

To register an OLE control:

1 Complete steps 1-4 as described in “Inserting an OLE Control in a FRAME Entry”
on page 202 to invoke the Insert Object dialog box with the list of registered
controls.

2 Click on Add Control... to invoke the Browse file selection dialog box.

3 Use the dialog box to select the control (which usually has a file extension of OCX)
that you want to register.

When you click on OK , the control is added to the list of registered controls in
the Insert Object dialog box.

Accessing OLE Control Properties
OLE controls have properties that you can set or retrieve using SCL methods. Some

controls make some of their properties available through a properties page, which lets
you set or retrieve the data interactively.

Accessing the OLE Control Properties Page
To invoke the properties page for a control, click on the right mouse button within

the control’s region in the BUILD: DISPLAY window and then select Properties from
the pop-up menu. The properties page for the control appears. Display 9.4 on page 203
shows an example of a properties page for an OLE control.

OLE controls provide a Properties verb, which you can use with the _EXECUTE_
method in SCL to bring up the Properties page for the control. Or, you can access the
pop-up menu for the control, then choose the cascading menu with the control’s name.
The Properties verb is available off that cascading menu.

Display 9.4 An Example Properties Page

204 Interacting with the OLE Control Using SCL Methods 4 Chapter 9

You can use the properties page to view or change settings for some of the exposed
properties.

Note that the control is not active (that is, you cannot interact with its interface)
while you are in DISPLAY mode. The control becomes active in TESTAF mode.

Accessing Properties Using SCL Code
When you use OLE controls in a SAS/AF application, you may want to access the

properties of the control programmatically. Also, an OLE control might not expose all of
its properties in a properties page. You can access the properties of a control by using
the _SET_PROPERTY_ and _GET_PROPERTY_ methods.

Before you can access a property, you must know:
� the object label of the OLE control in your SAS/AF FRAME entry
� the name of the property you want to access
� the type of data that the property holds.

For example, suppose you have a combo box control named sascombo in your FRAME
entry, and you want to set the list style to simple (represented by the integer 1):

call notify (’sascombo’, ’_set_property_’,
’Style’, 1);

If you want to retrieve data from a property, you must use a variable that is of the
same type as the data you want to read. For example, if you want to learn what text
the user specified in the edit portion of a combo box, include the following code:

length text $ 200;
call notify (’sascombo’, ’_get_property_’,

’Text’, text);

Interacting with the OLE Control Using SCL Methods
OLE controls support methods that control their content and behavior. You use

either the _DO_ or _COMPUTE_ SCL methods to send a message to an OLE control
telling it to implement one of its methods.

� Use the _DO_ method in SCL when the OLE control method performs some action
but does not return a value. For example, the SAS ComboBox OLE control has a
method that clears all items from the list:

call notify(’sascombo’, ’_DO_’, ’Clear’);

� Use the _COMPUTE_ method in SCL when the OLE control method returns a
value. You specify a variable in the SCL code that will contain the return value
when the method ends. For example, the SAS ComboBox OLE control has a
method that returns an item at a specified position in the list:

length item $ 80;
call notify(’sascombo’, ’_COMPUTE_’,

’GetItem’, 2, item);

When this call returns, item contains the text of the item at position 2 (the third
item in the list).

Responding to OLE Control Events
OLE controls generate events that you can respond to in your SCL code. You can

create a label in your SCL code for OLE events just like you do for SAS/AF events.

Using OLE in SAS/AF Software 4 Responding to OLE Control Events 205

Assigning SCL Code to an OLE Control Event
To assign SCL code to run when an OLE control event occurs:

1 Select the OLE control object in the BUILD window.
2 Select Object Attributes from the pop-up menu for the object.

3 Select Event Map from the Object Attributes dialog box. The Event Map dialog
box appears (shown in Display 9.5 on page 205).

4 In the Event Map dialog box, select the event that you want to respond to using
SCL code.

5 Specify the SCL, FRAME, or PROGRAM source entry and (if applicable) the SCL
label where the event-handling code resides.

Note: You can specify the same SCL source entry that is stored with the FRAME
entry; however, in addition to compiling the code with the FRAME entry, you must
also compile the SCL entry outside of the FRAME context (that is, outside of the
BUILD: SOURCE and BUILD: DISPLAY windows) in order for the event handler
to recognize the SCL label. Thus, it is more efficient to store event-handling code
for OLE controls in an SCL source entry that is not associated with a FRAME
entry. 4

Display 9.5 Event Map Dialog Box

Note: Many OLE controls include a LostFocus event, which they generate when the
control loses window focus. Because of the way that SAS/AF software communicates
with the control, mapping the LostFocus event sometimes has the effect of placing focus
back on the control that just lost it. Although you can still respond to the LostFocus
event in your FRAME entry, be aware that this might cause unusual focus behavior. 4

Retrieving Argument Values from Events
Some OLE control events also include parameters you might find useful. For

example, the SAS ComboBox control generates a KeyPress event that also reports the
ASCII value of the key that was pressed. If a particular event passes an argument back
to the FRAME entry, the type of value returned is indicated in the Event Map dialog
box. A numeric value is indicated with an N; a character value is indicated with a C.

To retrieve the value returned by an OLE control event, you must define a method
(using the METHOD statement in SCL) in the event-handling code. In the argument
list for the METHOD statement, specify a variable of the type that you expect the OLE
control to return. This variable contains the value returned by the event. You can then
use that variable as you wish inside your event-handler.

206 Responding to OLE Control Events 4 Chapter 9

For example, suppose you want to retrieve the value of the key that triggered the
KeyPress event in the SAS ComboBox control and then report it as an ASCII character.
The KeyPress event returns an integer that represents the ASCII value of the key
pressed. Your event-handling code would look like the following:

/* Label specified in Event Map dialog box */
KEYPRESS:

/* Define a method with an
integer argument */

method keyval 8;
/* Convert the integer to an

ASCII character */
keychar=byte(keyval);

put keychar=; /* Output the character */
endmethod;

Example: Mapping OLE Control Events to SCL Code
When mapping OLE control events, you can do one of the following:
� Map each event in the Event Map window to a different labeled section of SCL

code, with each piece of code performing different actions.
� Map all of the events in the Event Map window to a single labeled section of SCL

code, use the _GET_EVENT_ method to detect which event was triggered, and act
accordingly.

� Use a combination of these strategies by assigning one event (such as the Click
event) to SCL code that runs the object’s label (using the _OBJECT_LABEL_
method), and map the remaining events to a single label that uses the
_GET_EVENT_ method to determine the event and appropriate action. The
object’s label is not run by default for OLE controls.

The following example shows how to structure the SCL code when all events for an
OLE control are mapped to a single label, which in turn runs the object’s label to
determine the event and act accordingly:

length event $ 80;
/* All OLE control events are mapped to

this label */
RUNLABEL:

/* Call the object’s label */
call send(_self_, ’_OBJECT_LABEL_’);

return;
/* This is the label of the OLE control */

OBJ1:
/* Determine the last event */

call notify(’obj1’, ’_GET_EVENT_’, event);
select (event);

when(’Click’) put ’Click received’;
when(’DblClick’) put ’DblClick received’;
otherwise put event=;

end;
return;

Example: Subclassing an OLE Custom Control
If you create SAS/AF applications that make frequent use of one or more OLE

custom controls, you might want to write your own methods to abstract the methods

Using OLE in SAS/AF Software 4 Responding to OLE Control Events 207

that the control recognizes without having to specify the intermediate _DO_ and
COMPUTE methods in SCL.

You can achieve this by creating a subclass of the OLE class and adding methods to
your derived class. When you insert the OLE control into your FRAME entry, be sure to
insert it as an instance of the new class that you define (instead of OLE - Insert
Object). The examples provided here contain sample code you can use to abstract the
methods of a control. They do not include details about how to create subclasses. For
information about creating subclasses of a SAS/AF classes, see SAS/AF Software:
FRAME Class Dictionary.

Adding an Item to a Combo Box List

You can use this method to add a new item to the list portion of the SAS ComboBox
control. The SAS ComboBox control uses zero-based numbering to indicate the positions
of the list items (that is, the first item is at position 0, the second is at position 1, and
so on). The following method lets you specify the position numbers such that position 1
holds the first item.

/* Add a new item to a ComboBox list. */
ADDITEM:
method text $200 row 8 rc 8;

/* adjust for zero-based index */
ocxrow = row-1;
call send(_self_, ’_COMPUTE_’, ’AddItem’,

text, ocxrow, rc);
if (rc = 0) then

MSG="ERROR: Could not add item to list.";
endmethod;

Assuming you mapped this code to a new method called ADD_ITEM, you would use
this syntax to add a new item to the control:

/* Adds ’Item 1’ at the first position */
/* in the control */

length success 8;
call notify(’sascombo’, ’ADD_ITEM’,

’Item 1’, 1, success);

Finding an Item in a Combo Box

The following method finds the specified item and returns its position in the list. As
in the previous example, this method adjusts the position number to be one-based
instead of zero-based.

FINDITEM:
method text $200 row 8;

call send(_self_, ’_COMPUTE_’, ’FindItem’,
text, row);

row = row + 1; /* adjust for zero-based */
endmethod; /* index */

Assuming you mapped this code to the FIND_ITEM method, you would then use it as
in this example:

length position 8;
call notify(’sascombo’,’FIND_ITEM’,

’Lost Item’, position);

208 Responding to OLE Control Events 4 Chapter 9

Retrieving the Text Value of the Control

Both the SAS ComboBox and SAS Edit controls have Text properties, which you can
access using the _GET_PROPERTY_ method with the property name. For easier and
more intuitive access from your OLE subclass, you can override the _GET_TEXT_
method and map it to this code:

GETTEXT:
method text $200;

call send(_self_, ’_GET_PROPERTY_’,
’Text’, text);

endmethod;

You would then access the Text property of a control the same way you access the
text of other SAS/AF widget objects:

length text $ 200;
call notify(’sasedit’, ’_GET_TEXT_’, text);

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Companion for the Microsoft Windows Environment, Version 8, Cary, NC: SAS Institute
Inc., 1999. pp.555.

SAS Companion for the Microsoft Windows Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–524–8
All rights reserved. Printed in the United States of America.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

