
209

C H A P T E R

10
Controlling the SAS System from
Another Application Using OLE

Introduction to Automating the SAS System 209
Creating an Instance of the SAS System 209

Getting Feedback from the SAS Session 210

Examples of Automating SAS with OLE 210

Creating a SAS Automation Object 211

Determine Whether the SAS Session is Busy 211
Toggle the SAS Session between Visible and Invisible 211

Set the Main SAS Window Title of the SAS Session 211

Assign a SAS Data Library and Run a SAS Procedure 211

End the SAS Session 212

Methods and Properties for Use with a SAS OLE Automation Object 212

Command Method 212
QueryWindow Method 212

Quit Method 213

Submit Method 213

Top Method 214

Introduction to Automating the SAS System

The SAS System can perform as an OLE automation server. This means that you
can use an application that can act as an OLE automation controller (such as Visual
Basic) to create a SAS session and control it using the methods and properties that the
SAS System makes available.

Many Windows applications use Visual Basic or Visual Basic for Applications as the
scripting language for automation. All examples that are provided in this document use
Visual Basic, but you can achieve the same results with any application that can act as
an OLE automation controller.

Creating an Instance of the SAS System

To create an instance of the SAS System (that is, invoke a SAS session), you must
create an OLE object by using the SAS System program identifier as it is listed in the
Windows registry. The SAS program identifier is SAS.Application. Here is a Visual
Basic example that instantiates (creates an instance of) a SAS session:

Dim OleSAS as Object
Set OleSAS = CreateObject("SAS.Application")



210 Getting Feedback from the SAS Session 4 Chapter 10

This example sets the identifier OleSAS to the new SAS session. You can then use this
identifier to access the methods and properties that the SAS System makes available.

If you want to control an existing SAS automation object by using OLE automation,
you can use your automation controlling language. In Visual Basic, you can use the
following:

Dim OleSAS as Object
Set OleSAS = GetObject(,"SAS.Automation")

Note that this code does not create an instance of SAS if one does not already exist.
Also, the existing SAS session must have been created as an OLE automation object
(for example, using CreateObject in Visual Basic). You cannot use OLE automation to
control a SAS session you invoked by using another method (for example, by using the
Start menu).

Getting Feedback from the SAS Session

The SAS System provides two properties, RC and ResultString, that make it
possible to pass information from the SAS session that you are automating back to the
application that is controlling it. RC can contain a number; ResultString can contain a
text string.

To set the values of these properties from within the SAS session, use the SETRC
function with this syntax:

error=SETRC("result-string", rc-number);

where result-string is the value to be assigned the ResultString property, and rc-number
is the value to be assigned to the RC property.

For example, you can use the Submit method to submit DATA step code that returns
an error code as part of its processing. You can then check the value of that error using
the RC or ResultString property. Here is a Visual Basic example of this:

Dim OleSAS as Object
Set OleSAS = CreateObject("SAS.Application")
OleSAS.Wait = True
OleSAS.Submit("data _null_;

error=setrc(’Error string’, 2.0);
put error; run;")

If (OleSAS.RC <> 0) Then
Response = MsgBox(OleSAS.ResultString,

vbOKOnly, "Error message is",
0, 0)

EndIf

Note that the Wait property is set to True in this example. This ensures that the DATA
step finishes processing before the automation controller checks the value of the RC
property.

Examples of Automating SAS with OLE

The following examples use Visual Basic as the scripting language to control the SAS
System with OLE automation. You can use any scripting language from any Windows
application that can act as an OLE automation controller.



Automating the SAS System 4 Assign a SAS Data Library and Run a SAS Procedure 211

Creating a SAS Automation Object
This Visual Basic code defines an object and creates an instance of the SAS System

to associate with that object.

Dim OleSAS As Object
Set OleSAS = CreateObject("SAS.Application")

Determine Whether the SAS Session is Busy
This Visual Basic code queries the SAS session (using the Busy property) to test

whether the session is busy processing code.

If (OleSAS.Busy) Then
Response = MsgBox("SAS Session is Busy",

vbOKOnly, "SAS Session", 0, 0)
Else

Response = MsgBox("SAS Session is Idle",
vbOKOnly, "SAS Session", 0, 0)

End If

Toggle the SAS Session between Visible and Invisible
This Visual Basic code hides or unhides the SAS session based on its current state.

OleSAS.Visible = Not OleSAS.Visible

Set the Main SAS Window Title of the SAS Session
This Visual Basic code assigns a title to the main SAS window of the SAS session

and then displays the title in a message box.

OleSAS.Title = "Automation Server"
Response = MsgBox(OleSAS.Title, vbOKOnly,

"Title Is", 0, 0)

Assign a SAS Data Library and Run a SAS Procedure
This Visual Basic code submits SAS code to the SAS session, assigning a SAS data

library and running the INSIGHT procedure on sample data.

OleSAS.Submit("libname insamp
’c:\sas\insight\sample’;

proc insight data=insamp.drug;
run;")



212 End the SAS Session 4 Chapter 10

End the SAS Session
This Visual Basic code ends the SAS session provided that there are no other OLE

automation controllers making use of it.

OleSAS.Quit
Set OleSAS = Nothing

Methods and Properties for Use with a SAS OLE Automation Object
Once instantiated, the SAS OLE automation object supports these methods as well

as several properties:
� “Command Method” on page 212
� “QueryWindow Method” on page 212
� “Quit Method” on page 213
� “Submit Method” on page 213
� “Top Method” on page 214
� “Properties for Controlling a SAS Automation Object” on page 215

Command Method

Invokes a command as if it was entered from the SAS command line

Syntax
Command(“sas-command”)

Details
By default, the active window receives the command. You can change which window
receives the command by changing the CommandWindow property.

Example

This Visual Basic code invokes a SAS session and opens the BUILD window:

Set OleSAS = CreateObject("SAS.Application")
OleSAS.Command("build")

QueryWindow Method

Queries whether a specified window exists within the SAS session



Automating the SAS System 4 Submit Method 213

Syntax
QueryWindow(“window-name”)

Details
QueryWindow returns either True or False based on whether the specified window is
open in the automated SAS session. If the window exists but is not visible,
QueryWindow still returns True.

The window name that you specify must match the exact spelling of the window
name in SAS. The window-name argument is not case sensitive.

Example

This Visual Basic code gets an existing SAS session and checks whether the BUILD
window is open. If the window is not open, this code invokes BUILD:

Dim OleSAS as Object
Set OleSAS = GetObject(,"SAS.Application")
If (Not OleSAS.QueryWindow("build")) Then

OleSAS.Command("build")
EndIf

Quit Method
Ends the SAS session

Syntax
Quit

Details
If the automation controller that issues the Quit method is the only controller that is
using that particular SAS session, then the SAS session ends. If at least one other
automation process is still using the SAS session, then the session remains running.

If you do not use the Quit method at the end of your automation sequence and the
Visible property for the SAS session is set to True, then the SAS session remains
running and is available for user interaction. If the Visible property is not set to True,
then the SAS session ends.

Submit Method
Submits DATA step or procedure code for processing



214 Top Method 4 Chapter 10

Syntax

Submit(“SAS-program-code”)

Details

The string of text that you specify as SAS-program-code can contain multiple SAS
statements separated by semicolons. The contents of the string are submitted to the
SAS System for processing.

Example

The following example references a data library and invokes a SAS/AF application:

Dim OleSAS as Object
Set OleSAS = CreateObject("SAS.Application")
OleSAS.Visible = True
OleSAS.Submit("libname afapp ’f:\sas\afapp’;")
OleSAS.Command("af c=afapp.bigapp.main.frame")

Top Method

Brings the SAS session to the foreground

Syntax

Top

Details

The Top method works only if the Visible property is set to True.

Example

The following example invokes a SAS session, makes it a visible window, and then
brings it to the foreground.

Dim OleSAS as Object
Set OleSAS = CreateObject("SAS.Application")
OleSAS.Visible = True
OleSAS.Top



Automating the SAS System 4 Properties for Controlling a SAS Automation Object 215

Properties for Controlling a SAS Automation Object

Specify various properties of the SAS automation object

Properties and Descriptions
Busy

indicates whether SAS is idle or working (for example, running a procedure, DATA
step, and so on). This property is read only.

CommandWindow
sets the window (based on the window title) to receive commands you specify using
the Command method. The name you specify must match the spelling of the
window name exactly (though this property is not case sensitive). Once set, the
window receives subsequent commands you specify with the Command method
until CommandWindow is changed or set to Null (by specifying ""). If Null, which
is the default, the currently active window receives the command. This property is
read/write.

CommandWindowVisible
controls whether the window specified by the CommandWindow property is visible.
If set to False, the window specified by the CommandWindow property is set to
invisible. If the CommandWindow property is Null, this property has no effect.
This property is read/write.

ConfirmExit
controls the behavior of how SAS exits. A value of 0 means that no confirmation
box is displayed before SAS exits. A value of 1 means that a confirmation box is
displayed before SAS exits. A value of 2 selects the default action, which is
controlled by an alternative method that defines how SAS exits; for example, the
Preferences dialog.

Height
sets the height, in pixels, of the SAS application window. This property is read/
write.

Parent
sets the name of the parent window that contains the SAS application window. If
you change this value to another window, the SAS application window resizes to fit
in the new frame. This property is read/write.

RC
returns the return code passed by a user function. You can set this property from
within the SAS session by using the SETRC function. This property is read-only
from the automation controller.

ResultString
returns a string passed by a user function. You can set this property from within
the SAS session by using the SETRC function. This property is read-only from the
automation controller.

Title
sets the main SAS window title. This property is read/write.

Visible
controls whether SAS is visible. This property is read/write.



216 Properties for Controlling a SAS Automation Object 4 Chapter 10

Width
sets the width, in pixels, of the SAS application window. This property is read/
write.

X
sets the horizontal coordinate, in pixels, for the top left corner of the SAS
application window. This property is read/write.

Y
sets the vertical coordinate, in pixels, for the top left corner of the SAS application
window. This property is read/write.



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Companion for the Microsoft Windows Environment, Version 8, Cary, NC: SAS Institute
Inc., 1999. pp.555.

SAS Companion for the Microsoft Windows Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–524–8
All rights reserved. Printed in the United States of America.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


