
217

C H A P T E R

11
Using Dynamic Data Exchange

Overview of Dynamic Data Exchange (DDE) 217
DDE Syntax within SAS 217

Referencing the DDE External File 218

Using the DDE Triplet 218

Controlling Another Application Using DDE 219

DDE Examples 220
Using the X Command to Open a DDE Server 220

Using DDE to Write Data To Microsoft Excel 220

Using DDE to Write Data To Microsoft Word 220

Using DDE to Read Data from Microsoft Excel 221

Using DDE to Read Data from Microsoft Word 221

Using DDE and the SYSTEM Topic to Invoke Commands in an Application Using Excel 221
Using the NOTAB Option with DDE 222

Using the DDE HOTLINK 223

Using the !DDE_FLUSH String to Transfer Data Dynamically 224

Reading Missing Data 225

Overview of Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE) is a method of dynamically exchanging information
between Windows applications. DDE uses a client/server relationship to enable a client
application to request information from a server application. In Version 8, the SAS
System is always the client. In this role, the SAS System requests data from server
applications, sends data to server applications, or sends commands to server
applications.

You can use DDE with the DATA step, the SAS macro facility, SAS/AF applications,
or any other portion of the SAS System that requests and generates data. DDE has
many potential uses, one of which is to acquire data from a Windows spreadsheet or
database application.

Note: Many Windows programs, including the SAS System, now support OLE to
facilitate communication between applications. If you need to share data with an
application that supports OLE, you might prefer to use the OLE support that is built
into the SAS System. For more information, see “About OLE” on page 188. 4

DDE Syntax within SAS

To use DDE in SAS, issue a FILENAME statement with the following syntax:

218 Referencing the DDE External File 4 Chapter 11

FILENAME fileref DDE ’DDE-triplet’ <DDE-options>

where:

fileref
is a valid fileref (as described in “Referencing External Files” on page 106).

DDE
is the device-type keyword that tells the SAS System you want to use Dynamic
Data Exchange.

’DDE-triplet’
is the name of the DDE external file.

DDE-options
can be any of the following:

HOTLINK
instructs the SAS System to use the DDE HOTLINK. For an example of
using this option, see “Using the DDE HOTLINK” on page 223.

NOTAB
instructs the SAS System to ignore tab characters between variables. For an
example of using this option, see “Using the NOTAB Option with DDE” on
page 222.

COMMAND
allows remote commands to be issued to DDE server applications. For more
information, see “Controlling Another Application Using DDE” on page 219.

CAUTION:
Use caution when using DDE with data values that are blank or missing. For sample code,
see “Reading Missing Data” on page 225. 4

Referencing the DDE External File
When you define a fileref to use with DDE, the DDE-triplet argument refers to the

DDE external file.

Using the DDE Triplet
The DDE triplet is application-dependent and is different for every application you

run. For information on an application’s DDE triplet, see the application’s
documentation.

The triplet takes the following form:

’application-name|topic!item’

where:

application-name
is the executable filename of the server application. For example, the
application-name for Microsoft Word is winword, and for Microsoft Excel it is
excel.

topic
is the topic of conversation (between SAS and the DDE server application). This is
typically the full path filename of the document or spreadsheet with which you
want to share data.

Using DDE 4 Controlling Another Application Using DDE 219

item
is the range of conversation specified between the client and server applications.
In spreadsheet applications, this is usually a range of cells. For document-based
applications (for example, Microsoft Word), the item is something that defines a
location in the document, such as a bookmark.

Valid values for all of these arguments vary depending on the server application. A
software package supporting DDE as a server should list acceptable values for the
triplet information in documentation supplied with the application.

Note: The server application must be started before trying to communicate with it
using DDE. Also, the DDE triplet format might differ among different applications and
among different versions of the same application. 4

For example, in order to place text into a Microsoft Word document TESTDDE.DOC
located at C:\TEMP with a bookmark named NUMBER, you could use this code:

filename test dde ‘winword|"c:\temp\testdde.doc"
!NUMBER’ notab;

The application-name is winword, the topic is "c:\temp\testdde.doc", and the
range is !NUMBER.

This following example assumes you are using Microsoft Excel 5.0 or greater.
Suppose you want to use SAS to populate the first 4 rows and 2 columns of the

Microsoft Excel spreadsheet named Sales Data stored in C:\EXCEL\SALES.XLS. You
would use the following code:

filename test dde ‘Excel|c:\excel\
[Sales.xls]Sales Data!R1C1:R4C2’

The application-name is Excel, the topic is c:\excel\[Sales.xls] Sales Data,
and the range is R1C1:R4C2.

If your server application will copy the DDE-triplet to the Windows clipboard, you
can display the DDE-triplet in the SAS System. You do this by selecting

Solutions I Accessories I DDE triplet

Controlling Another Application Using DDE
DDE server applications support certain commands that you can issue by using a

DDE link to control the application. To use these commands, use the special topic name
SYSTEM in the DDE triplet and leave the item name blank. You can then use the
INPUT statement for input from an application and the PUT statement to issue
commands to the server application.

For those DDE server applications that do not recognize the SYSTEM topic name,
you can specify the COMMAND option in the FILENAME statement you use to define
the DDE link. When you specify the COMMAND option, you do not specify the item
name in the DDE triplet.

Note: With SAS/AF software and OLE automation, you can automate any Windows
application that supports OLE 2.0 as a server. For more information about using SAS
and OLE, see “Automating OLE Objects and Applications” on page 196. 4

220 DDE Examples 4 Chapter 11

DDE Examples
This section provides several examples of using DDE with the SAS System under

Windows. These examples use Microsoft Excel and Microsoft Word as DDE servers, but
any application that supports DDE as a server can communicate with the SAS System.

Before you run these examples, you must first invoke Microsoft Excel and Microsoft
Word, and open the spreadsheet or document used in the example.

Note: DDE examples are included in the host-specific sample programs that you
access from the Help menu. 4

Using the X Command to Open a DDE Server
A DDE server application can be opened using the X command within SAS code. The

XWAIT and XSYNC options must be turned off.

options noxwait noxsync;
x ’excel’; /* you might need to specify */

/* the complete pathname */

Using DDE to Write Data To Microsoft Excel
The first example sends data from a SAS session to an Excel spreadsheet. The

target cells are rows 1 through 100 and columns 1 through 3. To do this, submit the
following program:

/* The DDE link is established using */
/* Microsoft Excel SHEET1, rows 1 */
/* through 100 and columns 1 through 3 */
filename random dde

’excel|sheet1!r1c1:r100c3’;
data random;

file random;
do i=1 to 100;

x=ranuni(i);
y=10+x;
z=x-10;
put x y z;

end;
run;

Using DDE to Write Data To Microsoft Word
This example sends a text string to a Micorosft Word document at a given bookmark.

Note the difference between using DDE with Microsoft Word and Microsoft Excel.

filename testit dde ‘winword|"c:\temp\testing.doc"
!MARK’ notab;

data _null_;
file testit;
put ‘ This is a test.’;

run;

Using DDE 4 Using DDE and the SYSTEM Topic to Invoke Commands in an Application Using Excel 221

Note: If you are writing to Microsoft Word97, use Visual Basic commands such as
FileOpen.Name, FileSave, FileClose, and Insert. If the PUT statement contains a
macro that Word97 does not understand, you will see this message:

Ambiguous name detected: TmpDDE

4

Using DDE to Read Data from Microsoft Excel
You can also use DDE to read data from an Excel application into the SAS System,

as in the following example:

/* The DDE link is established using */
/* Microsoft Excel SHEET1, rows 1 */
/* through 10 and columns 1 through 3 */
filename monthly

dde ’excel|sheet1!r1c1:r10c3’;
data monthly;

infile monthly;
input var1 var2 var3;

run;
proc print;
run;

Using DDE to Read Data from Microsoft Word
This example reads data from a Microsoft Word document at a given bookmark.

filename testit dde ’winword|"c:\temp\testing.doc"
!MARK’ notab;

libname workdir ‘c:\temp’;

/* Get ready to read the first bookmark. */

data workdir.worddata;
length wordnum $5;
infile testit;
input wordnum $;

run;

Using DDE and the SYSTEM Topic to Invoke Commands in an
Application Using Excel

You can issue commands to Excel or other DDE-compatible programs directly from
the SAS System using DDE. In the following example, the Excel application is invoked
using the X command; a spreadsheet called SHEET1 is loaded; data are sent from the
SAS System to Excel for row 1, column 1 to row 20, column 3; and the commands
required to select a data range and sort the data are issued. The spreadsheet is then
saved and the Excel application is terminated.

/* This code assumes that Excel */
/* is installed on the current */

222 Using the NOTAB Option with DDE 4 Chapter 11

/* drive in a directory called EXCEL. */

options noxwait noxsync;
x ’excel’; /* you might need to specify */

/* the entire pathname */

/* Sleep for 60 seconds to give */
/* Excel time to come up. */

data _null_;
x=sleep(60);

run;

/* The DDE link is established using */
/* Microsoft Excel SHEET1, rows 1 */
/* through 20 and columns 1 through 3 */

filename data
dde ’excel|sheet1!r1c1:r20c3’;

data one;
file data;
do i=1 to 20;

x=ranuni(i);
y=x+10;
z=x/2;
put x y z;

end;
run;

/* Microsoft defines the DDE topic */
/* SYSTEM to enable commands to be */
/* invoked within Excel. */

filename cmds dde ‘excel|system’;

/* These PUT statements are */
/* executing Excel macro commands */

data _null_;
file cmds;
put ’[SELECT("R1C1:R20C3")]’;
put ’[SORT(1,"R1C1",1)]’;
put ’[SAVE()]’;
put ’[QUIT()]’;

run;

Using the NOTAB Option with DDE

The SAS System expects to see a TAB character placed between each variable that is
communicated across the DDE link. Similarly, the SAS System places a TAB character
between variables when data are transmitted across the link. When the NOTAB option
is placed in a FILENAME statement that uses the DDE device-type keyword, the SAS
System accepts character delimiters other than tabs between variables.

Using DDE 4 Using the DDE HOTLINK 223

The NOTAB option also can be used to store full character strings, including
embedded blanks, in a single spreadsheet cell. For example, if a link is established
between the SAS System and the Excel application, and a SAS variable contains a
character string with embedded blanks, each word of the character string is normally
stored in a single cell. To store the entire string, including embedded blanks in a single
cell, use the NOTAB option as in the following example:

/* Without the NOTAB option, column1 */
/* contains ’test’ and column2 */
/* contains ’one’. */

filename test
dde ’excel|sheet1!r1c1:r1c2’;

data string;
file test;
a=’test one’;
b=’test two’;
put a $15. b $15.;

run;

/* You can use the NOTAB option to store */
/* each variable in a separate cell. To */
/* do this, you must force a tab */
/* (’09’x) between each variable, as in */
/* the PUT statement. */
/* After performing this DATA step, column1*/
/* contains ’test one’ and column2 */
/* contains ’test two’. */

filename test
dde ’excel|sheet1!r2c1:r2c2’ notab;

data string;
file test;
a=’test one’;
b=’test two’;
put a $15. ’09’x b $15.;

run;

Using the DDE HOTLINK
If the HOTLINK option is specified, the DDE link is activated every time the data in

the specified spreadsheet range are updated. In addition, DDE enables you to poll the
data when the HOTLINK option is specified to determine whether data within the
range specified have been changed. If no data have changed, the HOTLINK option
returns a record of 0 bytes. In the following example, row 1, column 1 of the spreadsheet
SHEET1 contains the daily production total. Every time the value in this cell changes,
the SAS System reads in the new value and outputs the observation to a data set. In
this example, a second cell in row 5, column 1 is defined as a status field. Once the user
completes data entry, typing any character in this field terminates the DDE link:

/* Enter data into Excel SHEET1 in */
/* row 1 column 1. When you */
/* are through entering data, place */
/* any character in row 5 */
/* column 1, and the DDE link is */

224 Using the !DDE_FLUSH String to Transfer Data Dynamically 4 Chapter 11

/* terminated. */

filename daily
dde ’excel|sheet1!r1c1’ hotlink;

filename status
dde ’excel|sheet1!r5c1’ hotlink;

data daily;
infile status length=flag;
input @;
if flag ne 0 then stop;
infile daily length=b;
input @;

/* If data have changed, then the */
/* incoming record length */
/* is not equal to 0. */

if b ne 0 then
do;

input total $;
put total=;
output;

end;
run;

It is possible to establish multiple DDE sessions. The previous example uses two
separate DDE links. When the HOTLINK option is used and there are multiple cells
referenced in the item specification, if any one of the cells changes, then all cells are
transmitted.

Unless the HOTLINK option is specified, DDE is performed as a single one–time
data transfer. That is, the values currently stored in the spreadsheet cells at the time
that the DDE is processed are values that are transferred.

Using the !DDE_FLUSH String to Transfer Data Dynamically
DDE also enables you to program when the DDE buffer is dumped during a DDE

link. Normally, the data in the DDE buffer are transmitted when the DDE link is
closed at the end of the DATA step. However, the special string ’!DDE_FLUSH’ issued
in a PUT statement instructs the SAS System to dump the contents of the DDE buffer.
This function allows you considerable flexibility in the way DDE is used, including the
capacity to transfer data dynamically through the DATA step, as in the following
example:

/* A DATA step window is displayed. */
/* Enter data as prompted. */
/* When you are finished, enter STOP */
/* on the command line. */

filename entry
dde ’excel|sheet1!r1c1:r1c3’;

dm ’pmenu off’;
data entry;

if _n_=1 then
do;

window ENTRY color=black

Using DDE 4 Reading Missing Data 225

#3 ’This is data for Row 1 Column 1’
c=cyan +2 var1 $10. c=orange

#5 ’This is data for Row 1 Column 2’
c=cyan +2 var2 $10. c=orange

#7 ’This is data for Row 1 Column 3’
c=cyan +2 var3 $10. c=orange;

end;
flsh=’!DDE_FLUSH’;
file entry;
do while (upcase(_cmd_) ne ’STOP’);

display entry;
put var1 var2 var3 flsh;
output;
VAR1=’’;
VAR2=’’;
VAR3=’’;

end;
stop;

run;
dm ’pmenu on’;

Reading Missing Data
This example illustrates reading missing data from an Excel spreadsheet called

SHEET1. This example reads the data in columns 1 through 3 and rows 10 through 20.
Some of the data cells may be blank. Here is an example of what some of the data look
like:

...
10 John Raleigh Cardinals
11 Jose North Bend Orioles
12 Kurt Yelm Red Sox
13 Brent Dodgers
...

Here’s the code that can read these data correctly into a SAS data set:

filename mydata
dde ’excel|sheet1!r10c1:r20c3’;

data in;
infile mydata dlm=’09’x notab

dsd missover;
informat name $10. town $char20.

team $char20.;
input name town team;

run;
proc print data=in;
run;

In this example, the NOTAB option tells the SAS System not to convert tabs that are
sent from the Excel application into blanks. Therefore, the tab character can be used as
the delimiter between data values. The DLM= option specifies the delimiter character,
and ’09’x is the hexadecimal representation of the tab character. The DSD option
specifies that two consecutive delimiters represent a missing value. The default
delimiter is a comma. For more information about the DSD option, see SAS Language
Reference: Dictionary. The MISSOVER option prevents a SAS program from going to a

226 Reading Missing Data 4 Chapter 11

new input line if it does not find values in the current line for all the INPUT statement
variables. With the MISSOVER option, when an INPUT statement reaches the end of
the current record, values that are expected but not found are set to missing.

The INFORMAT statement forces the DATA step to use modified list input, which is
crucial to this example. If you do not use modified list input, you receive incorrect
results. The necessity of using modified list input is not DDE specific. You would need
it even if you were using data in a CARDS statement, whether your data were blank- or
comma-delimited.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Companion for the Microsoft Windows Environment, Version 8, Cary, NC: SAS Institute
Inc., 1999. pp.555.

SAS Companion for the Microsoft Windows Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–524–8
All rights reserved. Printed in the United States of America.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

