
227

C H A P T E R

12
Using Unnamed and Named
Pipes

Overview of Pipes 227
Using Unnamed Pipes 228

Unnamed Pipe Syntax 228

Using Redirection Sequences 229

Unnamed Pipe Example 229

Using Named Pipes 230
Named Pipe Syntax 230

Using the CALL RECONNECT Routine 231

Using Named Pipes in SCL 232

Named Pipe Examples 232

Simple Named Pipes: One Client Connected to One Server 232

One Server Connected to Several Clients 233
The NOBLOCK Option 235

The CALL RECONNECT Routine 237

Overview of Pipes

A pipe is a channel of communication between two processes. A process with a
handle to one end can communicate with another process that has a handle to the other
end. With the SAS System and Windows NT, this means that you can use a specialized
Windows application to provide information to your SAS session or vice versa.

Note: Pipes and named pipes are supported in SAS only under Windows NT.
Windows 98 and Windows 95 can support named pipes, but only as a client. 4

Pipes can be one-way or two-way. With a one-way pipe, one application can only
write data to the pipe while the other application reads from it. With a two-way pipe,
both applications can read and write data. There are two types of pipes:

unnamed pipe
handles one way communication. Also called an anonymous pipe (or simply pipe),
it is typically used to communicate between a parent process and a child process.
Within SAS, the SAS System is the parent process that invokes (and reads data
from) a child process.

named pipe
handles one-way or two-way communication between two unrelated processes.
That is, one process is not started by the other. In fact, it is possible to have two
applications communicating over a pipe on a network. You can use named pipes
within SAS to communicate with other applications or even with another SAS
session.

228 Using Unnamed Pipes 4 Chapter 12

Using Unnamed Pipes
Unnamed pipes enable you to invoke a program outside the SAS System and

redirect the program’s input, output, and error messages to the SAS System. This
capability enables you to capture data from a program external to the SAS System
without creating an intermediate data file.

For unnamed pipes to work with Windows NT applications external to the SAS
System, the application program must read data from standard input (STDIN), write
output to standard output (STDOUT), and write errors to standard error (STDERR).
These files have numeric file handles associated with them, as follows:

File File Handle

STDIN 0

STDOUT 1

STDERR 2

When the SAS System captures STDERR from another application, the error
messages are routed by default to the SAS log. If you want to write to STDIN in
another application, you can use a PUT statement in a SAS DATA step. Because the
SAS System can write to STDIN and capture from STDOUT in the same application,
unnamed pipes can be used to send data to an external program, as well as to capture
the output and error messages of the same program. You can use redirection sequences
to redirect STDIN, STDOUT, and STDERR. For more information, see “Using
Redirection Sequences” on page 229. You can also refer to your Windows NT
documentation.

Unnamed Pipe Syntax
To use an unnamed pipe, issue a FILENAME statement with the following syntax:

FILENAME fileref PIPE ’program-name’ option-list

You can use the following arguments with this syntax of the FILENAME statement:

fileref
is any valid fileref, as described in “Referencing External Files” on page 106.

PIPE
is the device-type keyword that tells the SAS System you want to use an unnamed
pipe.

program-name
specifies the external Windows application program. This argument must fully
specify the pathname to the program, or the path to the directory containing the
program must be contained in the Windows NT PATH environment variable. This
argument can also contain program options. For example, you can specify the
following argument to indicate you want to invoke the STOCKMKT program on all
stocks:

’stockmkt.exe -all’

option-list
can be any of the options valid in the FILENAME statement, such as the LRECL=
or RECFM= options. For a complete list of options available for the FILENAME
statement under Windows, see “FILENAME” on page 374 .

Using Pipes 4 Unnamed Pipe Example 229

Using Redirection Sequences
Any Windows NT application that accommodates standard input, output, and error

commands can use the unnamed pipe feature. Because many Windows NT system
commands use standard input, output, and error commands, you can use these
commands with unnamed pipes within SAS. Unless you specify otherwise, an unnamed
pipe directs STDOUT and STDERR to two different files. To combine the STDOUT and
STDERR into the same file, use redirection sequences. The following is an example that
redirects STDERR to STDOUT for the Windows NT DIR command:

filename listing pipe ’dir *.sas 2>&1’;

In this example, if any errors occur in performing this command, STDERR (2) is
redirected to the same file as STDOUT (1). This is an example of the SAS System’s
ability to capitalize on operating environment capabilities. This feature of redirecting
file handles is a function of the Windows NT operating system rather than of the SAS
System.

Unnamed Pipe Example
In the following example, you use the unnamed pipes feature of the SAS System

under Windows NT to produce some financial reports. The example assumes you have a
stand-alone program that updates stock market information from a financial news
bureau. You need the SAS System to invoke a stock market report with the most
recently created data from the stock market program. The following is how you create
and use the pipe within your SAS session:

filename stocks pipe ’stockmkt.exe -all’ console=min;
data report;

infile stocks;
input stock $ open close change;

run;
proc print;

var stock open close change;
sum change;
title ’Stock Market Report’;

run;

In this example, the PIPE device-type keyword in the FILENAME statement
indicates that the fileref STOCKS is an unnamed pipe. The STOCKMKT.EXE reference
is the name of the stand-alone program that generates the stock market data. The
host-option CONSOLE=MIN indicates that the DOS window that is opened to run the
STOCKMKT.EXE program is opened minimized. The INFILE statement causes the
SAS System to invoke the STOCKMKT.EXE program and read the data in the pipe
from it. The STOCKMKT.EXE program completes without you being aware that it has
been implemented (except for the DOS window button on the Windows task bar).
Because the fileref STOCKS has already been defined as an unnamed pipe, the
standard output from STOCKMKT.EXE is redirected to the SAS System and captured
through the INFILE statement. The SAS program reads in the variables and uses the
PRINT procedure to generate a printed report. Any error messages generated by
STOCKMKT.EXE appear in the SAS log.

230 Using Named Pipes 4 Chapter 12

Using Named Pipes
The named pipes capability is one of the most powerful tools available in the SAS

System under Windows NT for communicating with other applications. The named
pipes feature enables bidirectional data or message exchange between applications on
the same machine or applications on separate machines across a network. Figure 12.1
on page 230 illustrates these two methods of communication.

Figure 12.1 Communication Using Named Pipes

First
Application

Second
Application

Network

Machine 1

First
Application

Machine 2

Second
Application

Multiple Workstations
across a NetworkSingle Workstation

The applications can be SAS sessions or other Windows NT applications. For
example, you can use the PRINTTO procedure to direct the results from SAS
procedures to another Windows NT application, using a named pipe. Therefore, you
have the choice of having multiple SAS sessions that communicate with each other or
one SAS session communicating with another Windows NT application.

Whether you are communicating between multiple SAS sessions or between a SAS
session and another Windows NT application that supports named pipes, the pipes are
defined in a client/server relationship. One process is defined as the server, while one or
more other processes are defined as clients. In this configuration, you can have multiple
clients send data to the server or the server send data to the various clients. Named
pipes enable you to coordinate processing between the server and clients using various
options.

Named Pipe Syntax
You can use a named pipe anywhere you use a fileref in the SAS System. To use a

named pipe, issue a FILENAME statement with the following syntax:

FILENAME fileref NAMEPIPE ’pipe-specification’ <named-pipe-options>;

You can use the following arguments with this syntax of the FILENAME statement:

fileref
is any valid fileref as described in “Referencing External Files” on page 106.

NAMEPIPE
is the device-type keyword that tells the SAS System you want to use a named
pipe.

pipe-specification
is the name of the pipe.

This argument has two mutually exclusive syntaxes:

\\.\PIPE\pipe-name
indicates you are establishing a pipe on a single PC or defining a server pipe
across a network. The pipe-name argument specifies the name of the pipe.

Using Pipes 4 Using the CALL RECONNECT Routine 231

\\server-name\PIPE\pipe-name
indicates you are establishing a client pipe over a network named-pipe server.
Remember to include the double backslash (\\) in this situation. The
pipe-name argument specifies the name of the client pipe. The server-name
argument specifies the name of the named-pipe server.

named-pipe-options
can be any of the following. The default value is listed first:

SERVER | CLIENT
indicates the mode of the pipe. SERVER is the default.

BLOCK | NOBLOCK
indicates whether the client or server is to wait for data to be read if no data
are currently available. BLOCK indicates to wait and is the default.
NOBLOCK indicates not to wait. Control is returned immediately to the
program if no data are available in the pipe. Writing to the pipe always
implies BLOCK.

BYTE | MESSAGE
indicates the type of pipe. BYTE is the default. The difference between a
BYTE pipe and a MESSAGE pipe is that a MESSAGE pipe includes an
encoded record length, whereas a BYTE pipe does not.

RETRY=seconds
indicates the amount of time the client or server is to wait to establish the
pipe. The minimum value for seconds is 10. This option allows time for
synchronization of the client and server. The default waiting period is 10
seconds.

There are two values for the seconds argument that indicate special cases:

−2 indicates the client is to wait the amount of time defined
by the server’s RETRY= option. If this option is used, the
SERVER must always be active or the pipe connection
fails.

−1 indicates the client or server is to wait indefinitely for the
pipe connection.

EOFCONNECT
is valid only when defining the server and indicates that if an end-of-file
(EOF) is received from a client, the server is to try to connect to the next
client.

All of these options are consistent with terminology used in Windows NT
programmers’ reference guides such as those provided with the Microsoft Win32
SDK.

Using the CALL RECONNECT Routine

A special SAS CALL routine, CALL RECONNECT, enables the server to disconnect
the current client and try to connect to the next available client. Normally, a pipe
terminates when the client side of the pipe sends an end-of-file to the server. To break
the pipe connection at any time, the server SAS session can issue a CALL
RECONNECT statement. For an illustration of this routine, see “The CALL
RECONNECT Routine” on page 237.

232 Using Named Pipes in SCL 4 Chapter 12

Using Named Pipes in SCL
To establish named pipes using SCL code, you must use the FOPEN function to open

a file (or pipe) before you can access it. In doing so, you must specify the appropriate
open mode for both the client and server applications so that the two can communicate
over the pipe. Here is a summary of the different nodes you can use:

If the server accesses the pipe as... then the client must access it as...

I (input) O (output)

O (output) S (sequential)

U (update) O (output) or S (sequential)

Named Pipe Examples
The best way to understand named pipes is to examine several different examples

illustrating their use. In most of the examples in this section, the named pipe is
established between two SAS sessions. However, named pipes work between the SAS
System and other applications that support named pipes.

Simple Named Pipes: One Client Connected to One Server
The simplest named pipe configuration is one server connected to one client, as

shown in Figure 12.2 on page 232.

Figure 12.2 One Server Connected to One Client

Server
Application

Client
Application

In the following example, a named pipe called WOMEN is established between two
SAS sessions. The server SAS session selectively sends data to the client SAS session.
You can start the server or the client first; one waits 30 seconds for the other to connect.

In the first SAS session, create a named pipe as a server:

/* Creates a pipe called WOMEN, acting */
/* as a server. The server waits 30 */
/* seconds for a client to connect. */

filename women namepipe ’\\.\pipe\women’
server retry=30;

/* This code writes three records into */
/* the named pipe called WOMEN. */

data class;
input name $ sex $ age;
file women;
if upcase(sex)=’F’ then

Using Pipes 4 Named Pipe Examples 233

put name age;
cards;

MOORE M 15
JOHNSON F 16
DALY F 14
ROBERTS M 14
PARKER F 13
;

In the second SAS session, you can use SAS statements to exchange data between
the two SAS sessions. For example, you can submit the following program from the
client session:

/* Creates a pipe called WOMEN, acting */
/* as a client. The client waits 30 */
/* seconds for a server to connect. */

filename in namepipe ’\\.\pipe\women’ client
retry=30;

data female;
infile in;
input name $ age;

proc print;
run;

The following program is another example of a single client and server. This example
illustrates using the PRINTTO procedure to direct results from the SUMMARY
procedure to another Windows NT application, using a named pipe called RESULTS:

filename results namepipe ’\\.\pipe\results’
server retry=60;

proc printto print=results new;
run;
proc summary data=monthly;
run;

One Server Connected to Several Clients
You can choose to have one server connected to several clients. In this case, the

named pipe configuration looks like that shown in Figure 12.3 on page 234.

234 Named Pipe Examples 4 Chapter 12

Figure 12.3 One Server Connected to Several Clients

Server
Application

•
•
•

Client
Application

1

Client
Application

2

Client
Application

3

Client
n

In this configuration, the data connection is initially between the server and the first
client. When this connection is terminated, the server connects to the second client, and
so on. The connection can return to the first client after the last client’s connection is
broken if your program is set up to do so.

You must use the EOFCONNECT option to cause the connection to move properly
from one client to the next. Here is an example of using the EOFCONNECT option
with one server SAS session and two clients. The clients can be on the same PC or on a
PC connected across a network.

In the first SAS session, submit the following statements:

/* Creates a pipe called SALES, acting */
/* as a server. The server waits 30 */
/* seconds for a client to connect. */
/* After the client has disconnected, */
/* this server SAS session tries to */
/* connect to the next available client */

filename daily namepipe ’\\.\pipe\sales’
server eofconnect retry=30;

/* This program reads in the daily */
/* sales figures sent from each client.*/

data totsales;
infile daily;
input dept $ item $ total;

run;

In the second SAS session, submit the following statements:

Using Pipes 4 Named Pipe Examples 235

/* Creates a pipe called SALES, acting */
/* as a client. The client waits forever */
/* for a server to connect. After the */
/* first client has disconnected, the */
/* second client connects with the server.*/
/* The first client is the TOYS dept. */

filename dept1 namepipe ’\\.\pipe\sales’
client retry=-1;

data toys;
input item $ total;
dept=’TOYS’;
file dept1;
put dept item total;
cards;

DOLLS 100
MARBLES 10
BLOCKS 50
GAMES 60
CARS 40
;

/* The second client is the SPORTS dept.*/
/* These data could come from a separate */
/* SAS session. */

filename dept2 namepipe ’\\.\pipe\sales’
client retry=-1;

data sports;
input item $ total;
dept=’SPORTS’;
file dept2;
put dept item total;
cards;

BALLS 30
BATS 65
GLOVES 15
RACKETS 75
FISHING 20
TENTS 115
HELMETS 45
;

The NOBLOCK Option

In the following example, the NOBLOCK option is used to specify that if no data are
available when the pipe is read, then the program should continue performing. If the
default value of BLOCK had been used, then the pipe would wait indefinitely until data
were found in the pipe. The EOFCONNECT option is used to tell the server that when
a client sends an end-of-file, the server can connect with a new client. The RETRY=
option tells the server to look for any new clients for 20 seconds while the client waits
indefinitely on a server. The clients can be on the same PC or on a PC connected across
a network. A server connects to one client at a time, and the clients queue in a serial
order waiting to connect to the server.

In the first SAS session, submit the following statements:

/* Defines a named pipe called LINE. */
/* Use the NOBLOCK option to specify */

236 Named Pipe Examples 4 Chapter 12

/* that if no data are available when */
/* the read is performed, then continue.*/
/* Use the EOFCONNECT option to tell */
/* the server to try to connect with a */
/* new client if an end-of-file is */
/* encountered. Use the RETRY= option */
/* to tell the server to look for any */
/* new clients for 20 seconds. */

filename data namepipe ’\\.\pipe\line’ server
noblock eofconnect retry=20;

/* This DATA step reads in all data */
/* from any clients connected to the */
/* named pipe called LINE. */

data all;
infile data length=len;
input @;

/* If the length of the incoming */
/* record is 0, then no data were */
/* found in the pipe; otherwise, */
/* read the incoming data. */

if len ne 0 then
do;

input machine $ width weight;
output;

end;
run;
proc print;
run;

Each of the following DATA steps below can be carried out on several different PCs
connected across a network:

/* Defines a named pipe called LINE. */
/* The RETRY= option is set such that */
/* the clients wait forever until a */
/* server is available */
/* (that is, RETRY=-1). */
filename data namepipe ’\\.\pipe\line’

client retry=-1;
/* This is information from the */
/* first machine/client. */

data machine1;
file data;
input width weight;
machine=’LINE_1’;
put machine width weight;
cards;

5.3 18.2
3.2 14.3
4.8 16.9
6.4 20.8
4.3 15.4
6.1 19.5
5.6 18.9
;

Using Pipes 4 Named Pipe Examples 237

/* This is information from the */
/* second machine/client. */

data machine2;
file data;
input width weight;
machine=’LINE_2’;
put machine width weight;
cards;

4.3 17.2
5.2 18.4
6.8 19.9
3.4 14.5
5.3 18.6
4.1 17.1
6.6 19.5
;

The CALL RECONNECT Routine

The following example demonstrates how to set up a named pipe server to establish
a connection with two clients. (For this example, you need three active SAS sessions.)
In this example, the CALL RECONNECT routine is used to reconnect to the next client
on the named pipe if it has been at least 30 seconds since the previous client has sent
any data. Each client is a data entry operator, sending data to the server SAS session.

In the server SAS session, submit the following statements:

filename data namepipe ’\\.\pipe\orders’
server noblock eofconnect retry=30;

data all;
infile data length=len missover;
input @;

/* If the length of the incoming */
/* record is 0, then no data were */
/* found in the pipe; otherwise, */
/* read the incoming data */

if len ne 0 then
do;

input operator $ item $ quantity $;
if item=’’ or quantity=’’ then

delete;
else

output;
put operator= item= quantity=;

end;
/* If no data are being transmitted,*/
/* try reconnecting to the next */
/* available client. */

else
do;

/* Use the named pipe fileref */
/* as the argument of */
/* CALL RECONNECT. */

call reconnect(’data’);
end;

run;

238 Named Pipe Examples 4 Chapter 12

In the second SAS session, which is the first data entry operator, submit the
following statements:

filename data namepipe ’\\.\pipe\orders’
client retry=-1;

data entry1;
if _n_=1 then

do;
window entry_1

#1 @2 ’ENTER STOP WHEN YOU ARE FINISHED’
#3 @5 ’ITEM NUMBER - ’ item $3.
#5 @5 ’QUANTITY - ’ quantity $3.;

end;
do while (upcase(_cmd_) ne ’STOP’);

display entry_1;
file data;
put ’ENTRY_1’ +1 item quantity;
item=’’;
quantity=’’;

end;
stop;

run;

In the third SAS session, which is the second data entry operator, submit the
following statements:

filename data namepipe ’\\.\pipe\orders’
client retry=-1;

data entry2;
if _n_=1 then

do;
window entry_2

#1 @2 ’ENTER STOP WHEN YOU ARE FINISHED’
#3 @5 ’ITEM NUMBER - ’ item $3.
#5 @5 ’QUANTITY - ’ quantity $3.;

end;
do while (upcase(_cmd_) ne ’STOP’);

display entry_2;
file data;
put ’ENTRY_2’ +1 item quantity;
item=’’;
quantity=’’;

end;
stop;

run;

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Companion for the Microsoft Windows Environment, Version 8, Cary, NC: SAS Institute
Inc., 1999. pp.555.

SAS Companion for the Microsoft Windows Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–524–8
All rights reserved. Printed in the United States of America.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

