
317

C H A P T E R

16
Formats

SAS Formats under Windows 317
Writing Binary Data 317

Converting User-Written Formats from Earlier Releases to Version 8 318

Converting Version 6 User-Written Formats 318

Converting Version 5 User-Written Formats 319

HEXw. 319
$HEXw. 320

IBw.d 320

PDw.d 321

PIBw.d 323

RBw.d 323

ZDw.d 324

SAS Formats under Windows
A SAS format is an instruction or template that the SAS System uses to write data

values. Most SAS formats are described completely in SAS Language Reference:
Dictionary. The formats that are described here have behavior that is specific to
Windows.

Many of the SAS formats that have details specific to the Windows operating
environment are used to write binary data. In using these formats, it is important that
you understand the concepts that are presented in “Writing Binary Data” on page 317.

If you have formats that you created for use in earlier releases of the SAS System,
see “Converting User-Written Formats from Earlier Releases to Version 8” on page 318
for information about how to convert those formats for use with Version 8.

Writing Binary Data
Different computers store numeric binary data in different forms. IBM 370,

Hewlett-Packard 9000, Data General ECLIPSE, and Prime computers store bytes in
one order. Microcomputers that are compatible with IBM microcomputers and some
computers manufactured by Digital Equipment Corporation store bytes in a different
order called byte-reversed.

Binary data stored in one order cannot be read by a computer that stores binary data
in the other order. When you are designing SAS applications, try to anticipate how your
data will be read and choose your formats and informats accordingly.

The SAS System provides two sets of informats for reading binary data and
corresponding formats for writing binary data.

318 Converting User-Written Formats from Earlier Releases to Version 8 4 Chapter 16

� The IBw.d, PDw.d, PIBw.d, and RBw.d informats and formats read and write in
native mode, that is, using the byte-ordering system that is standard for the
machine.

� The S370FIBw.d, S370FPDw.d, S370FRBw.d, and S370FPIBw.d informats and
formats read and write according to the IBM 370 standard, regardless of the
native mode of the machine. These informats and formats allow you to write SAS
programs that can be run in any SAS environment, regardless of how numeric
data are stored.

If a SAS program that reads and writes binary data runs on only one type of
machine, you can use the native mode informats and formats. However, if you want to
write SAS programs that can be run on multiple machines using different byte-storage
systems, use the IBM 370 formats and informats. The purpose of the IBM 370
informats and formats is to enable you to write SAS programs that can be run in any
SAS environment, no matter what standard you use for storing numeric data.

For example, suppose you have a program that writes data with the PIBw.d format.
You execute the program on a microcomputer so that the data are stored in
byte-reversed mode. Then on the microcomputer you run another SAS program that
uses the PIBw.d informat to read the data. The data are read correctly because both of
the programs are run on the microcomputer using byte-reversed mode. However, you
cannot upload the data to a Hewlett-Packard 9000-series machine and read the data
correctly because they are stored in a form native to the microcomputer but foreign to
the Hewlett-Packard 9000. To avoid this problem, use the S370FPIBw.d format to write
the data; even on the microcomputer, this causes the data to be stored in IBM 370
mode. Then read the data using the S370FPIBw.d informat. Regardless of what type of
machine you use when reading the data, they are read correctly.

Converting User-Written Formats from Earlier Releases to Version 8
You must convert Release 6.04, Release 6.06, and Release 6.08 user-written formats

to their Version 8 counterparts before you can use them in a Version 8 SAS program.
The only exception to this rule is user-written informats and formats created by Release
6.08 or later under Windows; these informats and formats can be read directly from
your Windows SAS session. *

Converting Version 6 User-Written Formats
You can convert Release 6.04, 6.06, and 6.08 SAS catalogs that contain user-written

informats and formats using one of the following methods:

Converting Release 6.04 catalogs
use the CNTLOUT= option in the PROC FORMAT statement in Release 6.04 to
create an output data set, and then use the CNTLIN= option in the PROC
FORMAT statement in Version 8 to create the Version 8 informats or formats. You
must use the V604 engine in your Version 8 SAS session to read the data set. This
method also works for converting from Release 6.06 or 6.08.

Converting Release 6.06 or Release 6.08 catalogs
use the CPORT and CIMPORT procedures to convert the informats and formats.
For more information on the CPORT and CIMPORT procedures, see SAS

* However, it is recommended that you use PROC CPORT and PROC CIMPORT to convert older Windows catalogs containing
user-written informats and formats to Version 8 if you no longer need to use them in previous releases.

Formats 4 HEXw. 319

Procedures Guide. This method works for converting from Release 6.06 or Release
6.08 only; it does not work for converting from Release 6.04.

Converting Version 5 User-Written Formats
You must also convert Version 5 user-written formats to their Version 8 counterparts

before you can use them in a Version 8 SAS program. (This implies that you are not
only converting these files, but you are also transferring them from a remote operating
system to your PC). You can convert them using one of the following methods:

� Use the V5TOV6 procedure on the remote operating system to convert the
informats and formats to Version 6 format. This implies that the remote operating
system has access to Version 6 SAS software. Then, transport the converted
informats and formats (as binary files) to your Windows operating environment
and use the CIMPORT procedure to complete the conversion.

Note: The V5TOV6 procedure is not available in Version 8 of the SAS System.
You must use this procedure in Release 6 of the SAS System. 4

� Use the SUGI supplemental procedure FMTLIB under Version 5 on the remote
operating system to create an output data set, transport that data set to your PC,
and then use the CNTLIN= option in the PROC FORMAT statement in Version 8
to create the Version 8 formats.

HEXw.

Converts real binary (floating-point) values to hexadecimal values

Category numeric
Width range: 1–16
Default width: 8
Alignment: left
Windows specifics: native floating–point representation

Syntax
HEXw.

w
specifies the width of the output field. When you specify a w value of 1 through 15,
the real binary number is truncated to a fixed-point integer before being converted to
hexadecimal notation. When you specify 16 for the w value, the floating-point value
of the number is used; in other words, the number is not truncated.

320 $HEXw. 4 Chapter 16

See Also

� Formats: HEXw. in SAS Language Reference: Dictionary and “$HEXw.” on page
320

� Informat: “HEXw.” on page 347

$HEXw.

Converts character values to hexadecimal values

Category character
Width range: 1–32767
Default width: 4
Alignment: left
Windows specifics: ASCII character–encoding system

Syntax
$HEXw.

w
specifies the width of the output field.

Details
The $HEXw. format is like the HEXw. format in that it converts a character value to
hexadecimal notation, with each byte requiring two columns. Under Windows, the
$HEXw. format produces hexadecimal representations of ASCII codes for characters.

See Also

� Formats: $HEXw. in SAS Language Reference: Dictionary and “HEXw.” on page
319

� Informat: “$HEXw.” on page 348

IBw.d

Writes integer binary (fixed-point) numbers

Category numeric
Width range: 1–8
Default width: 4
Decimal range: 0–10
Alignment: left
Windows specifics: native floating-point representation

Formats 4 PDw.d 321

Syntax
IBw.d

w
specifies the width of the output field in bytes (not digits).

d
optionally specifies a scaling factor. When you specify a d value, the IBw.d format
multiplies the number by 10d, and then applies the integer binary format to that
value.

Details
The IBw.d format converts a double-precision number and writes it as an integer
binary (fixed-point) value. Integers are stored in integer-binary (fixed-point) form.

For more information about microcomputer fixed-point values, see Intel Corporation’s
i486 Microprocessor Programmer’s Reference Manual.

Examples

Example 1: Processing a Positive Number If you format 1.0 as the double-precision
number, it is stored as an integer:

01 00 00 00 00 00 00 00

(Remember, Windows stores binary data in byte-reversed order.) The value written
depends on the w value you specify.

If you specify the IB4. format, you receive the following value:

01 00 00 00

If you specify the IB2. format, you receive the following value:

01 00

Example 2: Processing a Negative Number If you try to format −1 with the IB4.
format, you receive the following value:

FF FF FF FF

If you specify the IB2. format, you receive the following value:

FF FF

See Also

� Format: IBw.d in SAS Language Reference: Dictionary
� Informat: “IBw.d” on page 348
� “Writing Binary Data” on page 317

PDw.d
Writes packed decimal data

322 PDw.d 4 Chapter 16

Category numeric
Width range: 1–16
Default width: 1
Decimal range: 1–31
Alignment: left
Windows specifics: How the values are interpreted as negative or positive

Syntax
PDw.d

w
specifies the width of the output field in bytes (not digits).

d
optionally specifies a scaling factor. When you specify a d value, the PDw.d format
multiplies the number by 10d, and then applies the packed decimal format to that
value.

Details
The PDw.d format writes double-precision numbers in packed decimal format. In
packed decimal data, each byte contains two digits. The w value represents the number
of bytes, not the number of digits. The value’s sign is in the uppermost bit of the first
byte (although the entire first byte is used for the sign).

Examples

Example 1: Processing a Positive Number If you format 1143.0 using the PD2.
format, you receive the following value:

00 43

If you specify PD4., you receive the following value:

00 00 11 43

Example 2: Processing a Negative Number If you format −1143.0 using the PD2.
format, you receive the following value:

80 43

If you specify the PD4. format, you receive the following value:

80 00 11 43

Formats 4 RBw.d 323

See Also

� Format: PDw.d in SAS Language Reference: Dictionary
� Informat: “PDw.d” on page 350
� “Writing Binary Data” on page 317

PIBw.d

Writes positive integer binary data

Category numeric
Width range: 1–8
Default width: 1
Decimal range: 0–10
Alignment: left
Windows specifics: native byte-swapped integers

Syntax
PIBw.d

w
specifies the width of the output field in bytes (not digits).

d
optionally specifies a scaling factor. When you specify a d value, the PIBw.d format
multiplies the number by 10d, and then applies the positive integer binary format to
that value.

Details
The PIBw.d format converts a fixed-point value to an integer binary value. If the
fixed-point value is negative, the PIBw.d format writes the integer representation for −1.

For more information about microcomputer fixed-point values, see Intel Corporation’s
i486 Microprocessor Programmer’s Reference Manual.

See Also

� Format: PIBw.d in SAS Language Reference: Dictionary
� Informat: “PIBw.d” on page 351
� “Writing Binary Data” on page 317

RBw.d

Writes real binary (floating-point) data

324 ZDw.d 4 Chapter 16

Category numeric
Width range: 2–8
Default width: 4
Decimal range: 0–10
Alignment: left
Windows specifics: native floating–point representation

Syntax
RBw.d

w
specifies the width of the output field.

d
optionally specifies a scaling factor. When you specify a d value, the RBw.d format
multiplies the number by 10d, and then applies the real binary format to that value.

Details
The RBw.d format writes numeric data in real binary (floating-point) notation. Numeric
data for scientific calculations are commonly represented in floating-point notation.
(The SAS System stores all numeric values in floating-point notation.) A floating-point
value consists of two parts: a mantissa that gives the value and an exponent that gives
the value’s magnitude.

Real binary is the most efficient format for representing numeric values because the
SAS System already represents numbers this way and no conversion is needed.

For more information about Windows floating-point notation, see Intel Corporation’s
i486 Microprocessor Programmer’s Reference Manual.

See Also

� Format: RBw.d in SAS Language Reference: Dictionary

� Informat: “RBw.d” on page 352
� “Writing Binary Data” on page 317

ZDw.d

Writes zoned decimal data

Category numeric
Width range: 1–32
Default width: 1
Decimal range: 1–10
Alignment: left
Windows specifics: Last byte includes the sign.

Formats 4 ZDw.d 325

Syntax
ZDw.d

w
specifies the number of bytes (not the number of digits).

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Details
The ZDw.d format writes zoned decimal data. This is also known as an overprint
trailing numeric format. In the Windows operating environment, the last byte of the
field contains the sign information of the number. The following table gives the
conversion for the last byte.

Digit ASCII Character Digit ASCII Character

0 { −0 }

1 A −1 J

2 B −2 K

3 C −3 L

4 D −4 M

5 E −5 N

6 F −6 O

7 G −7 P

8 H −8 Q

9 I −9 R

See Also

� Format: ZDw.d in SAS Language Reference: Dictionary

� Informat: “ZDw.d” on page 353

326 ZDw.d 4 Chapter 16

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Companion for the Microsoft Windows Environment, Version 8, Cary, NC: SAS Institute
Inc., 1999. pp.555.

SAS Companion for the Microsoft Windows Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–524–8
All rights reserved. Printed in the United States of America.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

