
327

C H A P T E R

17
Functions and CALL Routines

SAS Functions under Windows 327
SAS CALL Routines under Windows 327

BYTE 327

COLLATE 331

DMYTECHC 332

DMYTECWD 333
DMYTERVC 334

MCIPISLP 335

MCIPISTR 336

MODULExy 337

PEEK 339

RANK 340
SLEEP 341

TRANSLATE 342

WAKEUP 342

SAS Functions under Windows

A SAS function returns a value from a computation or system operation. Most
functions use arguments that are supplied by the user as input.

Most SAS functions are completely described in the SAS functions and CALL
routines portion of SAS Language Reference: Dictionary. The functions that are
described here have syntax or behavior specific to the Windows operating environment.

SAS CALL Routines under Windows

SAS System CALL routines are used to alter variable values or perform other system
functions. Most CALL routines are completely described in the functions and CALL
routines portion of SAS Language Reference: Dictionary. The CALL routines that are
described here have syntax or behavior specific to the Windows operating environment.

BYTE

Returns one character in the ASCII collating sequence

328 CALL DMYTECKS 4 Chapter 17

Windows specifics: Uses the ASCII code sequence

Syntax
BYTE(n)

n
is an integer that specifies which character in the ASCII collating sequence to return.
The value of n can range from 0 to 255.

Details
Because Windows is an ASCII system, the BYTE function returns the nth character in
the ASCII collating sequence. The value of n can range from 0 to 255.

Any programs using the BYTE function with characters above ASCII 127 (the
hexadecimal notation is ’7F’x) may return a different value when used on a PC from
another country as characters above ASCII 127 are national characters and they vary
from country to country.

See Also

� BYTE function in SAS Language Reference: Dictionary

CALL DMYTECKS

Calculates the checksum (exclusive OR) of all the characters in a DataMyte packet, excluding the
checksum itself

Window specifics all

Syntax
DMYTECKS (string, initial-cks, calculated-cks)

string
is the string for which the checksum is calculated. This argument can be a character
variable, a character literal enclosed in quotation marks, or another character
expression. A DataMyte can transmit a string of up to 256 characters.

initial-cks
is the initial checksum value. This value is ’’00’x if the string is under 200 characters.

calculated-cks
is the calculated checksum for string. This value is a 2–byte hexadecimal number.

Details
The CALL DMYTECKS routine calculates the checksum for a packet. The checksum is
the exclusive OR (XOR) of all the characters in the packet (including the start-of-text

Functions and CALL Routines 4 CALL SOUND 329

character, the character count, and end-of-transmission character), excluding the
checksum itself. Because the length of SAS character variables is limited to 200, if you
want to calculate the checksum for a packet that is longer than 200 characters, you
have to call the CALL DYMTECKS routine twice. Call it once for the first 200
characters of the packet. Then pass the remaining characters to the CALL DYMTECKS
routine using the calculated checksum from the first call as the initial checksum value
for the second call.

Example

In the following example, the final checksum is stored in CALC_CS2.

data _null_;
length string1 string2 $200 checksm1 checksm2 calc_cs1 calc_cs2; */

/* The string received from the DataMyte is longer than 200 */
/* characters, so it is split into two string, STRING1 and */
/* STRING2. However, you must calculate the checksum for the */
/* entire string (STRING1||STRING2). SAS statements reading */
/* in data from DataMyte until EOT is found. */
/* Initialize the first checksum. */

checksm1=’00’x;
call dmytecks(string1,ckecksm1,calc_cs1);
checksm2=calc_cs1;
call dmytecks(string2,checksm2,calc_cs2);

run;

See Also

� “Reading Data Using DataMyte Processing” on page 124

CALL SOUND
Generates a sound with a specific frequency and duration

Windows specifics: all

Syntax
CALL SOUND(frequency,duration)

frequency
specifies the sound frequency in terms of cycles per second. The frequency must be at
least 20 and no greater than 20,000.

duration
specifies the sound duration in 1/80ths of a second.

Example

Example 1: Producing a Tone The following statement produces a tone of frequency
523 cycles per second (middle C) lasting 2 seconds:

330 CALL SYSTEM 4 Chapter 17

data _null_;
call sound(523,160);

run;

CALL SYSTEM

Issues operating system commands

Windows specifics: command must be a valid Windows command

Syntax
CALL SYSTEM(command)

command
can be any of the following:

� an operating system command enclosed in quotes or the name of a Windows
application that is enclosed in quotes.

� an expression whose value is an operating system command or the name of a
Windows application.

� the name of a character variable whose value is an operating system command
or the name of a Windows application.

Details
If you are running SAS interactively and the command that you run is a DOS-based
command or program, the command executes in a command prompt window. By
default, you must type exit to return to your SAS session.

Comparison
The CALL SYSTEM routine is similar to the X command. However, the CALL
SYSTEM routine is callable and can therefore be executed conditionally.

The values of the XSYNC and XWAIT system options affect how the CALL SYSTEM
routine works.

Examples

Example 1: Executing Operating System Commands Conditionally If you want to
execute operating system commands conditionally, use the CALL SYSTEM routine:

options noxwait;
data _null_;

input flag $ name $8.;
if upcase(flag)=’Y’ then

do;
command=’md c:\’||name;
call system(command);

end;

Functions and CALL Routines 4 COLLATE 331

cards;
Y mydir
Y junk2
N mydir2
Y xyz
;

This example uses the value of the variable FLAG to conditionally create directories.
After the DATA step executes, three directories have been created: C:\MYDIR,
C:\JUNK2, and C:\XYZ. The directory C:\MYDIR2 is not created because the value of
FLAG for that observation is not Y.

The X command is a global SAS statement. Therefore, it is important to realize that
you cannot conditionally execute the X command. For example, if you submit the
following code, the X statement is executed:

data _null_;
answer=’n’;
if upcase(answer)=’y’ then

do;
x ’md c:\extra’;

end;
run;

In this case, the directory C:\EXTRA is created regardless of whether the value of
ANSWER is equal to ’n’ or ’y’.

Example 2: Obtaining a Directory Listing You can use the CALL SYSTEM routine to
obtain a directory listing:

data _null_;
call system(’dir /w’);

run;

In this example, the /W option for the DIR command instructs Windows to print the
directory in the wide format instead of a vertical list format.

See Also

� CALL SYSTEM routine in SAS Language Reference: Dictionary

� Command: “X” on page 314

� System option: “XSYNC” on page 477
� System option: “XWAIT” on page 478

COLLATE

Generates a collating sequence character string

Windows specifics: Uses the ASCII code sequence

Syntax
COLLATE (start-position<,end-position>)

332 DMYTECHC 4 Chapter 17

COLLATE(start-position<,,length>)

start-position
specifies the numeric position in the collating sequence of the first character to be
returned.

end-position
specifies the numeric position in the collating sequence of the last character to be
returned.

length
specifies the number of characters you want (the length of the returned string).

Details
The COLLATE function returns a string of ASCII characters that range in value from 0
to 32,767. The string returned by the COLLATE function begins with the ASCII
character specified by the start-position argument. If the end-position argument is
specified, the string returned by the COLLATE function contains all the ASCII
characters between the start-position and end-position arguments. If the length
argument is specified instead of the end-position argument, then the COLLATE
function returns a string with a length of length. The returned string ends, or
truncates, with the character having the value 255 if you request a string length that
contains characters exceeding this value.

If you assign the return value of the COLLATE function to a variable with a length
less than 256, the ASCII collating sequence string is padded with blanks to a length of
256. If you request a length of more than 256 characters, the returned string is padded
to a length of length.

Note: Any programs using the COLLATE function with characters above ASCII 127
(the hexadecimal notation is ’7F’x) may return a different value when used on a PC
from another country as characters above ASCII 127 are national characters and they
vary from country to country. 4

See Also

� COLLATE function in SAS Language Reference: Dictionary

DMYTECHC

Calculates the character count for a DataMyte packet

Windows specifics: all

Syntax
DMYTECHC (’string’)

Functions and CALL Routines 4 DMYTECWD 333

string
specifies a text string.

Details
The DMYTECHC function accepts a text string as an argument and returns the
character count for that string. This count represents the number of characters in the
packet, excluding the STX (start-of-transmission) character, the character count itself,
and the checksum. The return value is a 2–byte, hexadecimal number.

The following example of using the DMYTECHC function also uses the DMYTECKS
CALL routine, which is described later in this chapter.

data dmyte1;
length cs calccs $2;
cs=’00’x;
/* This is the start-of-transmission character */
stx=’02’x;
/* This is the end-of-transmission character */
eot=’04’x;
/* The character count includes the text */
/* string and the EOT. */
cmd=’?SETUP’||eot;
cc=dmytechc(cmd);
put cc=;
str=stx||cc||cmd;
/* Call DMYTECKS to determine the checksum */
/* (CALCCS) for the packet. */
call dmytecks(str,cs,calccs);
put calccs=;
dmytecmd=str||calccs;

run;

Next, you would send the value of the DMYTECMD variable to the DataMyte
machine via the communications port.

See Also

� “Reading Data Using DataMyte Processing” on page 124

DMYTECWD

Determines the total number of words in a DataMyte packet

Windows specifics: all

Syntax
DMYTECWD (first-string, second-string)

first-string
represents a fewer-than-200 character portion of the packet.

334 DMYTERVC 4 Chapter 17

second-string
represents the balance of the packet. If the packet is 200 or fewer characters long,
specify second-string as a null string (’’).

Details
The DMYTECWD function return the number of tokens, or words, in a packet. Because
data packets sent from DataMyte can be up to 256 characters long, but the SAS System
can only process strings up to 200 characters long, you may have to break the packet up
into two strings. Always break up the packet at a token delimiter, which is a semicolon
(;). Both the first-string and second-string arguments can be a character variable, a
character literal enclosed in quotes, or another character expression.

The following example counts words in the two character variables, FIRSTSTR and
STR.

data dmyte2;
length firststr str $ 200;
firststr=’07/16/83,14:00;M. Jones;Press 1;000;2.43;2.91’;
str=’2.83;2.80;’;
count=dymtecwd(firststr,str);
/* This sample packet contains 18 words. */
put count=;

run;

See Also

� “Reading Data Using DataMyte Processing” on page 124

DMYTERVC

Converts the DataMyte character count to an ASCII number

Windows specifics: all

Syntax
DMYTERVC (hex-number)

hex-number
specifies the 2–byte DataMyte character count in hexadecimal that is to be converted
to anASCII number.

Details
The DMYTERVC functions helps you convert a DataMyte character count, which is a
2–byte hexadecimal number, to an ASCII number. This number represents the number
of characters that DataMyte is transmitting. this number does not include the STX
(start-of-transmission) character, the 2–byte character count characters, or the 2–byte
checksum.

Functions and CALL Routines 4 MCIPISLP 335

In the following example, the DMYTERVC function calculates the character count.
Once the character count is know, it can be used to process the incoming data, such as
separating the data into words and store those words in SAS variables.

data dmyte3;
/* this is the start-of-transmission character */
stx=’02’x;
infile ’com1:’ lrecl=1 recfm=f;
input x $char1.;
if x eq stx then

do;
input cc $char2.;
datacnt=dmytervc(cc);

end;
/* The character count tells us how many characters */
/* are in the packet being sent from the data */
/* collector (DATANCT is number of characters */
/* calculated by the DMYTERVC function. */
do i = 1 to datacnt;

index+1;
input x $char1.;
substr(str,index,1)=x;

/* ...more data processing statements */
end;

run;

Some type of data you could expect in the packet include the data and time,
identification information such as the name of the operator, and data values.

See Also

� “Reading Data Using DataMyte Processing” on page 124

MCIPISLP

Causes the SAS System to wait for a piece of multimedia equipment to become active

Windows specifics: all

Syntax
rc=MCIPISLP(number-of-seconds)

rc
return code.

number-of-seconds
specifies the number of seconds you want the SAS System to wait. This number must
be an integer.

336 MCIPISTR 4 Chapter 17

Details
The MCIPISLP function is especially useful when you have used the MCIPISTR
function to open a piece of equipment, but you know it is going to take a few seconds for
the equipment to be ready.

The number-of-seconds argument must be an integer and represents how many
seconds you want to wait. The return value is the number of seconds slept.

The MCIPISLP function can be used in the DATA step and in SCL code.

Example

This example uses both the MCIPISTR and MCIPISLP functions to play a CD and a
video. The PUT statements display the return values of these functions. This allows
you to see in the SAS log whether there was a problem with any of your equipment.

data _null_;
/* Open a CD player. */
msg=mcipistr("open cdaudio alias mytunes");
put msg=;
/* Wait one second for the CD player */
/* to become active. */
slept=mcipislp(1);
/* Begin playing your favorite tunes */
/* from the beginning of the CD. */
msg=mcipistr("play mytunes");
put msg=;
/* Now open a video file. */
msg=mcipistr("open c:\movies\amovie.avs

alias myshow");
put msg=;
/* Begin the show and wait for it to */
/* complete. */
msg=mcipistr("play myshow wait");
put msg=;
/* When the show is complete, */
/* close the instance. */
msg=mcipistr("close myshow");
put msg=;
/* Stop and close the instance of the CD */
/* player. */
msg=mcipistr("stop mytunes");
put msg=;
msg=mcipistr("close mytunes");
put msg=;

run;

See Also

� Function: “MCIPISTR” on page 336

MCIPISTR
Submits an MCI string command to a piece of multimedia equipment

Functions and CALL Routines 4 MODULExy 337

Windows specifics: all

Syntax
rc=MCIPISTR(MCI-string-command)

rc
return code.

MCI-string-command
is any valid SAS string; that is, a character variable, a character literal enclosed in
quotes, or other character expression.

Details
The MCIPISTR function submits an MCI (Media Control Interface) string command.

You can use MCI to control many types of multimedia equipment, such as CD
players, mixers, videodisc players, and so on. Windows provides MCI support. For more
information about valid MCI string commands, refer to the Microsoft Win32 SDK and
your MCI-compliant device documentation.

The return value is a string that contains return information from the MCI string
command. Examples of return information include "invalid instance" and "1".

Note: Not all MCI commands supply return codes that are usable from the SAS
System 4

The MCIPISTR function can be used in the DATA step and in SCL code.

Example

To use a CD player, you could submit the following statements in your DATA step:

msg=mcipistr("open cdaudio alias cd");
msg=mcipistr("play cd");
msg=mcipistr("stop cd");
msg=mcipistr("close cd");

See Also

� Function: “MCIPISLP” on page 335

MODULExy

Calls a specific routine or module that resides in an external dynamic link library (DLL)

Windows specifics: all

Syntax
CALL MODULE(<cntl>,module,arg-1,arg-2. . . ,arg-n);

338 MODULExy 4 Chapter 17

num=MODULEN(<cntl>,module,arg-1,arg-2…,arg-n);

char=MODULEC(<cntl>,module,arg-1…,arg-2,arg-n);

Note: The following functions permit vector and matrix arguments; you can use
them within the IML procedure. 4

CALL MODULEI <cntl>,modulearg-1,arg-2. . . ,arg-n);

num=MODULEIN(<cntl>,module,arg-1,arg-2. . .,arg-n)

char=MODULEIC(<cntl>,module,arg-1,arg-2. . .,arg-n);

cntl
is an optional control string whose first character must be an asterisk (*), followed by
any combination of the following characters:

I prints the hexadecimal representations of all arguments to the
MODULExy function and to the requested DLL routine before
and after the DLL routine is called. You can use this option to
help diagnose problems that are caused by incorrect arguments or
attribute tables. If you specify the I option, the E option is
implied.

E prints detailed error messages. Without the E option (or the I
option, which supersedes it), the only error message that the
MODULExy function generates is "Invalid argument to function,"
which is usually not enough information to determine the cause of
the error.

Sx uses x as a separator character to separate field definitions. You
can then specify x in the argument list as its own character
argument to serve as a delimiter for a list of arguments that you
want to group together as a single structure. Use this option only
if you do not supply an entry in the SASCBTBL attribute table. If
you do supply an entry for this module in the SASCBTBL
attribute table, you should use the FDSTART option in the ARG
statement in the table to separate structures.

H provides brief help information about the syntax of the
MODULExy routines, the attribute file format, and the suggested
SAS formats and informats.

For example, the control string ’*IS/’ specifies that parameter lists be printed
and that the string ’/’ is to be treated as a separator character in the argument list.

module
is the name of the external module to use, specified as a DLL name and the routine
name or ordinal value, separated by a comma. The module must reside in a dynamic
link library (DLL) and it must be externally callable. For example, the value
’KERNEL32,GetProfileString’ specifies to load KERNEL32.DLL and to invoke
the GetProfileString routine. Note that while the DLL name is not case sensitive, the
routine name is based on the restraints of the routine’s implementation language, so
the routine name is case sensitive.

Functions and CALL Routines 4 PEEK 339

Note: KERNEL32.DLL is an internal DLL provided by Windows; you cannot find
it by searching your disk. However, its routines are available for your use. 4

If the DLL supports ordinal-value naming, you can provide the DLL name followed
by a decimal number, such as ’XYZ,30’.

You do not need to specify the DLL name if you specified the MODULE attribute
for the routine in the SASCBTBL attribute table, as long as the routine name is
unique (that is, no other routines have the same name in the attribute file).

You can specify module as a SAS character expression instead of as a constant;
most often, though, you will pass it as a constant.

arg-1, arg-2, ...arg-n
are the arguments to pass to the requested routine. Use the proper attributes for the
arguments (that is, numeric arguments for numeric attributes and character
arguments for character attributes).

CAUTION:
Be sure to use the correct arguments and attributes. If you use incorrect arguments or
attributes for a DLL function, you can cause the SAS System, and possibly your
operating system, to crash. 4

Details

The MODULE functions execute a routine module that resides in an external (outside
the SAS System) dynamic link library with the specified arguments arg-1 through arg-n.

The MODULE call routine does not return a value, while the MODULEN and
MODULEC functions return a number num or a character char, respectively. Which
routine you use depends on the expected return value of the DLL function you want to
execute.

MODULEI, MODULEIC, and MODULEIN are special versions of the MODULExy
functions that permit vector and matrix arguments. Their return values are still scalar.
You can invoke these functions only from PROC IML.

Other than this name difference, the syntax for all six routines is the same.
The MODULExy function builds a parameter list by using the information in arg-1 to

arg-n and by using a routine description and argument attribute table that you define
in a separate file. Before you invoke the MODULExy routine, you must define the
fileref of SASCBTBL to point to this external file. You can name the file whatever you
want when you create it.

This way, you can use SAS variables and formats as arguments to the MODULExy
function and ensure that these arguments are properly converted before being passed to
the DLL routine.

See Also

� “The SASCBTBL Attribute Table” on page 240

PEEK

Accesses the data stored in a specific location in memory

Windows specifics: all

340 RANK 4 Chapter 17

Syntax
data=PEEKC(address,length);

data=PEEK(address,length);

data
is the value that is returned by the function.

address
specifies the name identifying a location (address) in memory.

length
specifies the length of the returned value.

Details
CAUTION:

Use the PEEK functions only to access information returned by one of the MODULExy
functions. The PEEK functions can directly access memory addresses. Improper use
of these functions can cause the SAS System, and your operating system, to fail. 4

The PEEK function returns to data a value of length length that contains the data
that start at memory address address.

The variations of the PEEK functions are:

PEEKC accesses character strings.

PEEK accesses numeric values.

Usually, when you need to use one of the PEEK functions, you will use PEEKC to
access a character string. The PEEK function is mentioned here for completeness.

RANK

Returns the position of a character in the ASCII collating sequence

Windows specifics: Uses the ASCII sequence

Syntax
RANK(x)

x
is a character in the ASCII collating sequence.

Details
Because Windows is an ASCII system, the RANK function returns an integer that
represents the position of a character in the ASCII collating sequence. The x argument

Functions and CALL Routines 4 SLEEP 341

must represent a character in the ASCII collating sequence. If the length of x is greater
than 1, you receive the rank of the first character in the string.

Note: Any program that uses the RANK function with characters above ASCII 127
(the hexadecimal notation is ’7F’x) is not portable because these are national
characters and they vary from country to country. 4

See Also

� RANK function in SAS Language Reference: Dictionary

SLEEP

Suspends execution of a SAS DATA step for a specified number of seconds

Windows specifics: all

Syntax
SLEEP(num-seconds)

num-seconds
specifies the number of seconds you want to suspend execution of a DATA step. The
num–seconds argument is a numeric constant that must be greater than or equal to
0. Negative or missing values for num–seconds are invalid.

Details
The SLEEP function suspends execution of a DATA step for a specified number of
seconds.

The return value of the num–seconds argument is the number of seconds slept. The
maximum sleep period for the SLEEP function is approximately 46 days.

When you submit a program that calls the SLEEP function, a pop-up window
appears telling you how long the SAS System is going to sleep. Your SAS session
remains inactive until the sleep period is over. If you want to cancel the call to the
SLEEP function, use the CTRL+BREAK attention sequence.

You should use a null DATA step to call the SLEEP function; follow this DATA step
with the rest of the SAS program. Using the SLEEP function in this manner enables
you to use the CTRL+BREAK attention sequence to interrupt the SLEEP function and
to continue with the execution of the rest of your SAS program.

Example

This example of the SLEEP function tells the SAS System to delay the execution of
the program for 12 hours and 15 minutes:

data _null_;
/* argument to sleep must be expressed in seconds */

342 TRANSLATE 4 Chapter 17

slept= call sleep((60*60*12)+(60*15));
run;
data monthly;

/*... more data lines */
run;

TRANSLATE

Replaces specific characters in a character expression

Windows specifics: Required syntax; pairs of to and from arguments are optional

Syntax
TRANSLATE(source,to-1,from-1 <…to-n,from-n>)

source
specifies the SAS expression containing the original character value.

to
specifies the characters you want TRANSLATE to use as substitutes.

from
specifies the characters you want TRANSLATE to replace.

Details
Under Windows, you do not have to provide pairs of to and from arguments. However, if
you do not use pairs, you must supply a comma as a place holder.

See Also

� TRANSLATE function in SAS Language Reference: Dictionary

WAKEUP

Specifies the time a SAS DATA step begins execution

Windows specifics: all

Syntax
WAKEUP(until-when)

until-when
specifies the time when the WAKEUP function will be executed.

Functions and CALL Routines 4 WAKEUP 343

Details
Use the WAKEUP function to specify the time a DATA step begins to execute. The
return value is the number of seconds slept.

The until-when argument can be a SAS datetime value, a SAS time value, or a
numeric constant, as explained in the following list:

� If until-when is a datetime value, the WAKEUP function sleeps until the specified
date and time. If the specified date and time have already passed, the WAKEUP
function does not sleep, and the return value is 0.

� If until-when is a time value, the WAKEUP function sleeps until the specified
time. If the specified time has already passed in that 24-hour period, the
WAKEUP function sleeps until the specified time occurs again.

� If the value of until-when is a numeric constant, the WAKEUP function sleeps for
that many seconds before or after the next occurring midnight. If the value of
until-when is a positive numeric constant, the WAKEUP function sleeps for
until-when seconds past midnight. If the value of until-when is a negative numeric
constant, the WAKEUP function sleeps until until-when seconds before midnight.

Negative values for the until-when argument are allowed, but missing values are not.
The maximum sleep period for the WAKEUP function is approximately 46 days.

When you submit a program that calls the WAKEUP function, a pop-up window
appears telling you when the SAS System is going to wake up. Your SAS session
remains inactive until the waiting period is over. If you want to cancel the call to the
WAKEUP function, use the CTRL BREAK attention sequence.

You should use a null DATA step to call the WAKEUP function; follow this DATA
step with the rest of the SAS program. Using the WAKEUP function in this manner
enables you to use the CTRL+BREAK attention sequence to interrupt the waiting
period and continue with the execution of the rest of your SAS program.

Examples

Example 1: Delaying Program Execution until a Specified Date or Time The code in
this example tells the SAS System to delay execution of the program until 1:00 p.m. on
January 1, 1999:

data _null_;
slept=wakeup(’01JAN1999:13:00:00’dt);

run;
data compare;

/* ...more data lines */
run;

The following example tells the SAS System to delay execution of the program until
10:00 p.m.:

data _null_;
slept=wakeup("22:00:00"t);

run;
data compare;

/* ...more data lines */
run;

Example 2: Delaying Program Execution until a Specified Time Period after
Midnight The following example tells the SAS System to delay execution of the
program until 35 seconds after the next occurring midnight:

344 WAKEUP 4 Chapter 17

data _null_;
slept=wakeup(35);

run;
data compare;

/* ...more data lines */
run;

Example 3: Using a Variable as an Argument to the WAKEUP Function This example
illustrates using a variable as the argument of the WAKEUP function:

data _null_;
input x;
slept=wakeup(x);
cards;

1000
;
data compare;

input article1 $ article2 $ rating;
/* ...more data lines */

run;

Because the instream data indicate that the value of X is 1000, the WAKEUP
function sleeps for 1,000 seconds past midnight.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Companion for the Microsoft Windows Environment, Version 8, Cary, NC: SAS Institute
Inc., 1999. pp.555.

SAS Companion for the Microsoft Windows Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–524–8
All rights reserved. Printed in the United States of America.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, September 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

