Approximately Periodic Solutions of the Elastic String Equations

Communicated by R. D. Diperna

JOSEPH D. FEBRIBACH
Department of Mathematics & Statistics, University of Alabama
in Huntsville, Huntsville, Alabama 35899

MICHAEL SHEARER
Department of Mathematics, North Carolina State University
Raleigh, North Carolina 27695

AMS(MOS): 35L65, 73C50

Abstract Glimm's method is used to compute solutions of initial-boundary value problems for the nonlinear system of equations describing the motion of an elastic string. For certain initial data, numerical results suggest the existence of a stable, approximately periodic solution containing no shocks. This solution consists of two new exact solutions which are patched together by the numerical algorithm.

KEY WORDS: Elastic string, periodic solutions, numerical solutions.

INTRODUCTION

Consider an elastic string in the plane whose configuration in \mathbb{R}^2 at time t is specified by a function $r(t) : [-1, 1] \rightarrow \mathbb{R}^2$. The interval $[-1, 1]$ is the reference configuration, each point of which identifies a material point in the string. Let $\xi = |r_t(x,t)|$ be the local elongation, and let $T(\xi)$ be the tension, where $T : (0, \infty) \rightarrow \mathbb{R}$ is a smooth function. In the absence of external forces, assuming constant density and fixed endpoints a distance L apart, the initial boundary value problem for the string is formulated as follows\(^1\).
\[\begin{align*}
\left\{ \begin{array}{l}
\frac{T(\xi)}{\xi} r_z(x,t) = r_{tt}, \quad -1 < x < 1, \quad t > 0, \\
r(-1,t) = (0,0), \quad r(1,t) = (L,0), \quad t > 0, \\
\end{array} \right.
\end{align*} \]
\tag{1.1}

\[\begin{align*}
r(x,0) = f(x), \quad r_t(x,0) = g(x), \quad -1 < x < 1.
\end{align*} \]
\tag{1.3}

In this paper, the tension is taken to satisfy

(a) \(T(1) = 0, \)

(b) \(T'(\xi) > T(\xi)/\xi > 0, \quad 1 \leq \xi \leq \xi_{\text{max}}, \)

(c) \(T''(\xi) < 0, \quad 1 < \xi < \xi_{\text{max}}. \)

Conditions (1.4) guarantee that (1.1) is a strictly hyperbolic system for \(1 < \xi < \xi_{\text{max}}, \) with two genuinely nonlinear characteristic families and two linearly degenerate characteristic families. For numerical calculations, the tension function \(T(\xi) = 4\xi_0^2, \) with \(\xi_{\text{max}} = \xi_0, \) was used.

In §2, we present two families of new exact solutions of (1.1). (Other explicit solutions have been given by Rosenau and Rubin.9,10 Each of our solutions corresponds to a vertical motion of the string. In the first solution, the string is straight and accelerates around a single fixed point (cf. Fig. 1a). In the second, the string is curved and its shape does not change in time; the string accelerates due to its curvature and nonzero tension (cf. Fig. 1b). The significance of these solutions is that when they are combined to form a periodic function by matching, the periodic function is an approximate solution of (1.1), (1.2) that resembles numerical solutions that are approximately periodic.

Numerical solutions are obtained from a deterministic version of Glimm's numerical method.4 In Glimm's method, the Riemann problem plays a central role. (The Riemann problem for (P) consists of (1.1), (1.3), with \(f'(x) \) and \(g(x) \) constant on each side of a single jump discontinuity.) For large systems, it is generally inefficient to compute solutions of Riemann problems, even when the Riemann problem has been solved analytically. For the elastic string, however, the solution is com

11 Shearer.11 Glimm's method display used to detect the formation of shock

In the numerical experiments data which would yield a mode of

and observe the formation of shock nonlinear problem. However, with s

oscillations of the string are observed evidence of a time periodic solution

mately periodic numerical solutions of system (1.1) described in §2.

The approximately periodic solutions as follows. Near its fixed
tates; the central portion of the st

the string is at its maximum amplitu

two types of solutions are at the t

tion extends along the entire string

horizontal configuration, the bound

the string. The entire solution de

roughly the amplitude of the vibrati

ions match only to first order in th

seems to adjust for the higher order

tal velocities, without the adjustme

formation.

2. Exact Solutions

In this section, we describe in detail

* Earlier solutions of Riemann problems w
M. SHEARER

\[x < 1, \ t > 0, \] \quad (1.1) \\
\[(L, 0), \ t > 0, \] \quad (1.2) \\
\[\gamma = g(x), \ -1 < x < 1. \] \quad (1.3)

\[\xi \leq \xi_{\text{max}}, \] \quad (1.4)

\[\xi \leq \xi_{\text{max}}. \]

\begin{align*}
\text{a strictly hyperbolic system for} \\
\text{characteristic families and two}
\end{align*}

\begin{align*}
\text{For numerical calculations, the}
\end{align*}

\[\varepsilon, \] \text{was used.}

\begin{align*}
\text{exact solutions of (1.1). (Other}
\end{align*}

\[\text{m} \text{nau and Rubin}^{4,10}. \] \text{Each of our}

\[\text{of the string. In the first solution,}
\end{align*}

\[\text{a single fixed point (cf. Fig.1a),}
\end{align*}

\[\text{shape does not change in time;}
\end{align*}

\[\text{and nonzero tension (cf. Fig.1b).}
\end{align*}

\[\text{When they are combined to form a}
\end{align*}

\[\text{function is an approximate solu-}
\end{align*}

\[\text{tions that are approximately}
\end{align*}

\[\text{a deterministic version of Glimm's}
\end{align*}

\[\text{Riemann problem plays a cen-}
\end{align*}

\[\text{consists of (1.1), (1.3), with } f'(x)
\end{align*}

\[\text{amp discontinuity.) For large sys-}
\end{align*}

\[\text{olution of Riemann problems,}
\end{align*}

\[\text{analytically. For the elastic}
\end{align*}

\[\text{string, however, the solution is computed}
\end{align*}

\[\text{by a simple algorithm outlined in}
\end{align*}

\[\text{Shearer}^{11}. \] \text{Glimm's method displays shocks sharply, and can}

\[\text{therefore be used to detect the formation}
\end{align*}

\[\text{of shock waves.}
\end{align*}

\[\text{In the numerical experiments described in} \quad \S 3, \text{we first choose initial}
\end{align*}

\[\text{data which would yield a mode of vibration for the linear wave equation,}
\end{align*}

\[\text{and observe the formation of shock waves in finite time, as expected for the}
\end{align*}

\[\text{nonlinear problem. However, with somewhat different initial data, persistent}
\end{align*}

\[\text{oscillations of the string are observed, which are interpreted as numerical}
\end{align*}

\[\text{evidence of a time periodic solution of } (P). \] \text{The structure of these}

\[\text{approximately periodic numerical solutions led to the discovery of the exact}
\end{align*}

\[\text{solutions of system (1.1) described in} \quad \S 2.
\end{align*}

\[\text{The approximately periodic numerical solution combines the explicit}
\end{align*}

\[\text{solutions as follows. Near its fixed endpoints, the string is straight and}
\end{align*}

\[\text{rotates; the central portion of the string is curved and accelerating.}
\end{align*}

\[\text{When the string is at its maximum amplitude of vibration, the boundaries}
\end{align*}

\[\text{between the two types of solutions are at the endpoints, and the curved central}
\end{align*}

\[\text{solution extends along the entire string. As the string moves towards a straig-}
\end{align*}

\[\text{h horizontal configuration, the boundaries move inward towards the center of}
\end{align*}

\[\text{the string. The entire solution depends upon a single parameter, which is}
\end{align*}

\[\text{roughly the amplitude of the vibration. Analytically, the two explicit solu-}
\end{align*}

\[\text{tions match only to first order in the amplitude, but the numerical solution}
\end{align*}

\[\text{seems to adjust for the higher order discrepancies by allowing small hori-}
\end{align*}

\[\text{zontal velocities, without the adjustments growing in time or leading to shock}
\end{align*}

\[\text{formation.}
\end{align*}

2. Exact Solutions

In this section, we describe in detail two families of exact solutions involving

Earlier solutions of Riemann problems were given by Mihalasec and Suliciu [7,8]. These papers have been overlooked in the recent literature.
only vertical motion of the string. We then combine the exact solutions to construct a time periodic approximate solution of (1.1), (1.2). It is convenient to write equation (1.1) as a 4 × 4 first order system. Let \(\mathbf{U} = (p, q, u, v) = (r_x, r_t) \), and let \(\xi = (p^2 + q^2)^{\frac{1}{2}} \). Then (1.1) becomes

\[
\mathbf{U}_t = \mathbf{F}(\mathbf{U})_x, \tag{2.1}
\]

where \(\mathbf{F}(p, q, u, v) = (u, v, pT(\xi)/\xi, qT(\xi)/\xi) \).

Theorem 1: Equation (2.1) admits two families of solutions with zero horizontal velocity:

(i) If \(\mathbf{U} = \mathbf{U}_0(x, t) = (p(x, t), q(t), 0, 0) \) is a \(C^1 \) solution of (2.1), then there are constants \(p_0, q_0, v_0, \) and \(c \) such that

\[
\mathbf{U}_0(x, t) = (p_0 + ct, q_0, v_0, 0).
\]

(ii) If \(\mathbf{U} = \mathbf{U}_m(x, t) = (p(x, t), q(x), 0, v(t)) \) is a \(C^1 \) solution of (2.1) with \(q(0) = 0 \), then there are constants \(\alpha, \beta \) and \(v_1 \), and \(\beta > 0 \) such that

\[
\mathbf{U}_m(x, t) = (Q(x; \alpha, \beta), \alpha x Q(x; \alpha, \beta), 0, v_1 + \alpha \beta t).
\]

where

\[
Q(x; \alpha, \beta) = \frac{T(\xi)}{\xi} \frac{\beta \sqrt{1 + (\alpha x)^2}}{\sqrt{1 + (\alpha x)^2}}.
\]

Proof: (i) Substitute \(\mathbf{U}(x, t) = (p(x, t), q(t), 0, 0) \) into (2.1). The forms of \(q \) and \(v \) follow immediately since \(q_t = v_x \). Also \(p_t = u_x = 0 \). Now the third component of (2.1) becomes

\[
\left[\frac{T(\xi)}{\xi} p \right]_x = \left[\left(\frac{T(\xi)}{\xi} - \frac{T(\xi)}{\xi} \right) \frac{p^2}{\xi^2} + \frac{T(\xi)}{\xi} \right] p_x = u_t = 0.
\]

By assumption (1.4), the large bracketed expression is always positive; thus \(p_x = 0 \). Similarly, the fourth component of (2.1) is trivially satisfied since \(q_x = v_t = 0 \).

(ii) Substitute \(\mathbf{U}(x, t) = (p(x, t), q(t), 0, v(x)) \) of (1.2) when \(v_0 = c \) and the right b

\[\text{approximately} \]

The solution \(\mathbf{U} = \mathbf{U}_0(x, t) \) of (1.2) when \(v_0 = c \) and the right b

More generally, one could drop this s

Remark: For (ii) above, the assumption even in \(x \) and that \(q \) is odd. Hence

The solution \(\mathbf{U} = \mathbf{U}_0(x, t) \) of (1.2) when \(v_0 = c \) and the right b

a uniformly accelerating string havin

![FIGURE 1 Two exact sol

\(\alpha < 0 \) for the configuration sh
en combine the exact solutions to equation (1.1), (1.2). It is convenient to consider the system. Let \(U = (p, q, u, v) = (p(x,t), q(x), 0, v(x)) \) becomes

\[
\frac{\partial}{\partial t}.
\]

\(\beta \).

\(\sum, \setminus, \setminus (\delta) \) is a \(C^1 \) solution of (2.1), such that

\[
0, v(t) \text{ is a } C^1 \text{ solution of (2.1)}
\]

and \(v_1, \beta > 0 \) such that

\[
0, v_1 + a \beta t
\]

(2.4)

(2.5)

The forms of Also \(p_t = u_x = 0 \). Now the third

\[
\frac{T(\xi)}{\xi} p_{xx} = u_t = 0.
\]

\(\delta \) is always positive; thus of (2.1) is trivially satisfied since

(ii) Substitute \(U(x,t) = (p(x,t), q(x), 0, v(x)) \) into (2.1). Again \(p_t = u_x = 0 \). The fourth component of (2.1) implies that \(v_t = v_1 + \alpha t \) and considering the normalization \(q(0) = 0 \), that \(\frac{T(\xi)}{\xi} q = h x \), where \(v_1 \) and \(h \) are constant. Since \(\frac{T(\xi)}{\xi} p = \beta \) is constant and \(\xi^2 = p^2 + q^2 \), the expressions for \(p \) and \(q \) follow with \(h = \alpha \beta \). The proof is complete.

Remark: For (ii) above, the assumption that \(q(0) = 0 \) implies that \(p \) is even in \(x \) and that \(q \) is odd. Hence the string is symmetric about \(x = 0 \). More generally, one could drop this assumption and consider a nonsymmetric string, then \(\frac{T(\xi)}{\xi} q = h x + \gamma \) where \(\gamma \) is an additional constant. Then \(U_k \) and \(U_m \) both constitute four-parameter families of solutions.

The solution \(U = U_k(x,t) \) of (2.2) satisfies the left boundary condition of (1.2) when \(v_0 = c \) and the right boundary condition when \(v_0 = -c \). With \(v_0 \) fixed at either of these values, this solution represents a straight string swinging about the endpoint with each point on the string moving vertically (cf. Fig. 1a). On the other hand, \(U = U_m(x,t) \) given by (2.3) represents a uniformly accelerating string having convex or concave shape, cf. Fig. (1b).

FIGURE 1 Two exact solutions. In (a) the string is contracting and swinging about a fixed point. The velocity is increasing in \(x \) and constant in time. In (b) the string is accelerating uniformly in time (\(\alpha < 0 \) for the configuration shown).
The acceleration results from the net force of tension (due to curvature) on the string segment.

A time periodic function U_p can now be created by matching U_b and U_m. To do so, take $U_p = U_b$ near each endpoint, $U_p = U_m$ near the middle of the string, then match the three functions to lowest order in the parameters. One finds the following function $U_p(x,t;a)$, defined over a quarter period $0 \leq t \leq \sqrt{\xi_0/T(\xi_0)}$ as

$$U_p(x,t;a) = \begin{cases} U_L(x,t;a), & -1 < x < t\sqrt{T(\xi_0)/\xi_0} - 1 \\ U_M(x,t;a), & t\sqrt{T(\xi_0)/\xi_0} - 1 < x < 1 - t\sqrt{T(\xi_0)/\xi_0} \\ U_R(x,t;a), & 1 - t\sqrt{T(\xi_0)/\xi_0} < x < 1 \end{cases}$$

where, in (p,q,u,v) coordinates,

$$U_L(x,t;a) = \xi_0(1,a(1 - t\sqrt{T(\xi_0)/\xi_0}),0,-a\sqrt{T(\xi_0)/\xi_0}(1 + x)),$$

$$U_M(x,t;a) = (Q(x;a,T(\xi_0)), -aQ(x;a,T(\xi_0)), 0, -aT(\xi_0)t),$$

$$U_R(x,t;a) = \xi_0(1,a(t\sqrt{T(\xi_0)/\xi_0} - 1),0,a\sqrt{T(\xi_0)/\xi_0}(x - 1)),$$

and $Q(x;a,\beta)$ is given by (2.4).

Remarks:

(i) The function $U_p(x,t;a)$ satisfies (2.1) away from $x_c = \pm(1 - t\sqrt{T(\xi_0)/\xi_0})$. The matching at these points is exact for the velocities and for the slope of the string, q/p. However, the elongation $\xi = (p^2 + q^2)^{1/2}$ (and hence the tension) experiences a jump of magnitude $O(a^2)$ at x_c. Thus $U_p(x,t;a)$ is not a weak solution of (2.1), since there is no corresponding jump in longitudinal velocity. Note that U_p is set up to satisfy the fixed endpoint boundary conditions (1.2): $v(\pm 1,t) = 0$.

(ii) At $t = 0$, the string starts from rest with slope $q/p = -ax$. At $t = \sqrt{\xi_0/T(\xi_0)}$,

$$U_p(x,t;a) = \begin{cases} (\xi_0,0,0,-a\sqrt{T(\xi_0)/\xi_0}(1 + x)), & -1 < x < 0 \\ (\xi_0,0,0,-a\sqrt{T(\xi_0)/\xi_0}(1 - x)), & 0 < x < 1 \end{cases}$$

so that the string is horizontal, and

(iii) While ξ_0 is determined by a second parameter a is arbitrary. In particular, for $a = 0$, Eq. (2.3) reduces to

$$U_p(x,t;0) = (\xi_0,0,0,0)$$

and reversing time in the obvious fashion for period, $\sqrt{\xi_0/T(\xi_0)} \leq t \leq 2\sqrt{\xi_0/T(\xi_0)}$,

$$U_p(x,t;a) = \begin{cases} U_L(x,t;a), & t(\sqrt{T(\xi_0)/\xi_0} - 1),0,a\sqrt{T(\xi_0)/\xi_0}(x - 1)), & 0 < x < 1 \end{cases}$$

$$U_R(x,t;a), & 1 - t\sqrt{T(\xi_0)/\xi_0} < x < 1 \end{cases}$$

where

$$U_M(x,t;a) = \begin{cases} U_L(x,t;a), & t\sqrt{T(\xi_0)/\xi_0} - 1 < x < 1 - t\sqrt{T(\xi_0)/\xi_0} \\ U_M(x,t;a), & t\sqrt{T(\xi_0)/\xi_0} - 1 < x < 1 - t\sqrt{T(\xi_0)/\xi_0} \\ U_R(x,t;a), & 1 - t\sqrt{T(\xi_0)/\xi_0} < x < 1 \end{cases}$$

and

The period of U_p is $4\sqrt{\xi_0/T(\xi_0)}$. The period is full.

(v) By linearizing (2.1) about the classical wave equation for the string. If U_p is expanded in a, the classical wave equation. Also the general mode of vibration for the linearized

3. **Numerical Results:**

In this section, we discuss numerical boundary value problem (P) using
so that the string is horizontal, and the middle solution U_m has disappeared.

The equilibrium length L of the string is related to ξ_0 by $L = 2\xi_0$.

(iii) While ξ_0 is determined by the equilibrium length of the string, the
second parameter a is arbitrary and will be referred to as the amplitude. In
particular, for $a = 0$, Eq. (2.3) reduces to the equilibrium solution

$$U_p(x, t; 0) = (\xi_0, 0, 0, 0).$$

(iv) The function $U_p(x, t; a)$ may be extended for all time by shifting
and reversing time in the obvious fashion. For example, for the next quarter
period, $\sqrt{\xi_0/T(\xi_0)} \leq t \leq 2\sqrt{\xi_0/T(\xi_0)}$

$$U_p(x, t; a) = \begin{cases} U_L(x, t; a), & -1 < x < 1 - t\sqrt{T(\xi_0)/\xi_0} \\ U_M(x, t; a), & 1 - t\sqrt{T(\xi_0)/\xi_0} < x < t\sqrt{T(\xi_0)/\xi_0} - 1 \\ U_R(x, t; a), & t\sqrt{T(\xi_0)/\xi_0} - 1 < x < 1 \end{cases}$$

where

$$\dot{U}_M(x, t; a) = \left(Q(x; a, T(\xi_0)), axQ(x; a, T(\xi_0)), 0, aT(\xi_0)(t - 2\sqrt{\xi_0/T(\xi_0)})\right).$$

The period of U_p is $4\sqrt{\xi_0/T(\xi_0)}$. The graph of U_p is shown in Fig. 2 over
a full period.

(v) By linearizing (2.1) about the equilibrium solution (2.5), one obtains
the classical wave equation modeling small vertical vibrations of the
string. If U_p is expanded in a, the lowest order terms are the solution of
the classical wave equation. Also the period of U_p is the period of the principal
mode of vibration for the linearized solution.

3. Numerical Results:

In this section, we discuss numerical experiments conducted on the initial
boundary value problem (P) using the deterministic version of Glimm's
method. A detailed discussion of the particular version of Glimm’s method used is given in Fehribach. It is similar to the deterministic version of Glimm’s scheme proposed by Colella, in that it is based on a van der Corput sequence to define the sampling points. The interval $[-1, 1]$ is divided into 100 subintervals, so that the spacing between Riemann problem grid points is $\Delta x = 1/100$; for the tension function $T(\xi_0) = 4\xi_3^2 - 2\xi_1 - 1$, the choice $\Delta t = \Delta x/3$ satisfies the conditions of the code, and to explore simple shock wave interactions, shock formati endpoints. Here, we discuss the problem, with various choices of and to demonstrate numerical examples.

To discuss shock formation instic fields. These are described fields, each with two characteristics; consists of longitudinal waves; a strain) changes, but the slope remains nonlinear wave equation obtained proporional to a constant vector. 1 under condition (1.4). The second wave in which the slope of the constant. These are the transverse linearizing system (1.1) about a wave family that gives rise to the approximate small amplitude transverse.

Since shock waves in a solv periodic solution necessarily would shown that there exists no pure since purely longitudinal motion transverse motion is included, or develop, grow, and lead to shock situation precisely. It is known data, provided the longitudinal c
APPAROXIMATELY PERIODIC SOLUTIONS

the choice $\Delta t = \Delta x / 3$ satisfies the Courant Friedrichs Lewy condition. In
Fehribach, we give numerical results for sample problems designed to test
t the code, and to explore simple properties of the equations, such as binary
wave interactions, shock formation, and repeated reflections of waves at the
endpoints. Here, we discuss numerical results for the initial boundary value
problem, with various choices of initial data, to illustrate shock formation
and to demonstrate numerical evidence of a stable time periodic solution.

To discuss shock formation, we first consider the families of characteristic fields. These are described in detail in11,12. There are two families of
fields, each with two characteristic speeds that differ only in sign. One family
consists of longitudinal waves; across these waves, the elongation (and tensi-
on) changes, but the slope remains constant. These waves satisfy the scalar
nonlinear wave equation obtained from (1.1) by taking r_s and r_x to be pro-
portional to a constant vector. Longitudinal waves are genuinely nonlinear
under condition (1.4). The second family of characteristic fields corresponds
to waves in which the slope of the string varies while the elongation remains
constant. These are the transverse waves; they are linearly degenerate. In
linearizing system (1.1) about an equilibrium solution, it is the transverse
wave family that gives rise to the familiar linear wave equation used to ap-
proximate small amplitude transverse vibration.

Since shock waves in a solution imply the dissipation of energy, a per-
odric solution necessarily would have no shocks. Keller and Ting5 have
shown that there exists no purely longitudinal periodic solution of (1.1),
since purely longitudinal motion leads to the formation of shocks. When
transverse motion is included, one still might expect longitudinal waves to
develop, grow, and lead to shocks. However, no analytic results cover this
situation precisely. It is known that for small compactly supported initial
data, provided the longitudinal component of the initial data is sufficiently
large in comparison to the transverse component, then shocks form in finite
time [6], but the analysis depends on wave interactions taking place over a
limited time. For the initial boundary value problem, the wave interactions
continue indefinitely, and the mechanism of shock formation is more subtle.

Computations shown in Fig. 3 illustrate shock formation. (Note that
only p, q and ξ are shown.) The initial data $U(x, 0) = (1.5, -2 \sin \pi x, 0, 0)$ is
shown in Fig. 3a. Note that the horizontal component of the local elongation
is initially constant. This initial data, if posed for the linear wave equation,
would produce the first harmonic of the fundamental mode. In Fig. 3b
($t \approx 1.707$), small discontinuities appear in ξ, indicating the formation of
shocks in the longitudinal family.

![Figure 3: Shock formation. The initial data is shown in (a). In
(b) the discontinuities in ξ imply the formation of shocks.](image)

While the special functions $U_p(x, t; \alpha)$ of §2 can be matched only to
lowest order in the amplitude α, numerical evidence indicates that a family
of approximately periodic solutions, parameterized by amplitude and resem-
bling $U_p(x, t; \alpha)$, exists for large amplitudes and persists for surprisingly
long times. The numerical algorithm seems to patch smoothly together the

exact solutions given in Theorem

p, q and ξ are shown.)

In Fig. 4, we display numerically

$\Delta t = \Delta x/3$. The initial data (showing)

$k(x, 0) = (Q(x; 2, T(1.5)))$.

This, of course, is exactly $U_0(x, 0)$

sizes of these configurations are si

t one quarter of a period. The per

t the period for $U_p(x, t; 2)$ with $\xi_0 = 1/2$. Calculations for this configu

tions, and although numerical of oscillation remain unchanged.

by $t \approx 1.707$.

As a second example, consi

in Fig. 5. These calculation

used. The initial data is

$U(x, 0) = (2, x, 0, 0)$
sent, then shocks form in finite iterations taking place over a problem, the wave interactions shock formation is more subtle. Shock formation. (Note that $(x, 0) = (1.5, -2 \sin \pi x, 0, 0)$ is a component of the local elongation d for the linear wave equation, fundamental mode. In Fig. 3b, ξ, indicating the formation of

![Diagram](image)

$t = 1.707$ (512 iterations)

The initial data is shown in (a). In formation of shocks,

of §2 can be matched only to evidence indicates that a family sized by amplitude and resembles and persists for surprisingly a patch smoothly together the exact solutions given in Theorem 1, and errors in the patching do not appear to grow with time. These approximately periodic solutions differ from $U_p(x, t; \alpha)$ in two ways: The horizontal velocity for these solutions, though small, is distinctly nonzero. Also the period of oscillation is somewhat less than the period for the corresponding $U_p(x, t; \alpha)$. Numerically both the horizontal velocity and the correction in the period of oscillation appear to be second order in the amplitude α. These results are consistent with the perturbation expansion given for periodic solutions of (1.1), (1.2) by Keller and Ting. In this expansion both quantities are exactly second order in amplitude.

In Fig. 4, we display numerical results using 100 subintervals with $\Delta t = \Delta x/3$. The initial data (shown in Fig. 4a) is

$$U(x, 0) = (Q(x; 2, T(1.5)), 2xQ(x; 2, T(1.5)), 0, 0).$$

This, of course, is exactly $U_M(x, 0; -2)$ with $\zeta_0 = 1.5$. Note that the relative sizes of these configurations are similar to those in Fig. 3. Figure 4a-c shows one quarter of a period. The period is approximately 3.5. In comparison, the period for $U_p(x, t; 2)$ with $\zeta_0 = 1.5$ is 3.84679. Also note that the maximum value of u appears to occur near $t = 3$; this value is approximately $1/2$. Calculations for this configuration have been carried through four oscillations, and although numerical noise sets in, the pattern and the period of oscillation remain unchanged. Recall that in Fig. 3, shocks had formed by $t \approx 1.707$.

As a second example, consider the initial-boundary value problem shown in Fig. 5. These calculations were carried out on an IBM 3091 (all previous calculations were performed on PC's). Again 100 subintervals were used. The initial data is

$$U(x, 0) = (2, x, 0, 0)$$
FIGURE 4 The first quarter period of an approximately periodic solution. The initial conditions representing a convex string held above the horizontal axis are given in (a). In (b) the string is accelerating downward. In (c) it is nearly horizontal with the middle section moving downward with maximum speed.

which gives the string the initial parabolic profile \(r(x, 0) = (2x + 2, \frac{1}{2}(x^2 - 1)) \). This data corresponds approximately to \(U_p(x, t; -1) \) with \(\xi_0 = 2 \); the period for this \(U_p \) is 3.39729. The maximum value of \(v \) observed in this run lies between 0.1 and 0.15. The differ and that of the previous example amplitude. However, the correction to measure. By comparing Fig. 5:

FIGURE 5 A second \(\xi \) conditions are given in (a). below the horizontal axis. 1 complete oscillations respect the numerical solution is approx past the initial configuration.) No complete oscillations respectively. are obscured by numerical noise. reduce this noise and suggest the
APPROXIMATELY PERIODIC SOLUTIONS

between 0.1 and 0.15. The difference between this maximum value for \(u \) and that of the previous example is consistent with \(u \) being second order in amplitude. However, the correction to the period is so small as to be difficult to measure. By comparing Fig. 5a, 5b, and 5c, one sees that the period of

![Graphs showing approximate periodic solutions](image)

FIGURE 5 A second approximately period solution. The initial conditions are given in (a). Here the string is initially held concaved below the horizontal axis. Plots (b) and (c) represent one and sixteen complete oscillations respectively.

the numerical solution is approximately 3.4. (In Fig. 5c, the string is slightly past the initial configuration.) Note that Fig. 5b and 5c represent 1 and 16 complete oscillations respectively. The patterns continue to repeat until they are obscured by numerical noise. Calculations made using 300 subintervals reduce this noise and suggest that the oscillations persist indefinitely.
Acknowledgements:
We would like to thank the computer centers of the University of Alabama System, particularly Jean Bennett, and the graphics lab of the UA Mechanical Engineering Department, particularly Reggie Caudill and Tim King.

REFERENCES

Local Existence a Quasilinear H^1 Problem
Communicated by C. Pucci

MAURIZIO GRASSELLI (*)
Dipartimento di Matematica
AMS(MOS): 35R30, 35L70, 73D35
Abstract: An initial-boundary value problem for quasilinear hyperbolic equations, an unknown elastic string, and an initial condition is determined and an existence theorem is proved.
KEY WORDS: Inverse problems, solutions of an elastic string
(Received for Publication 29 July 19...)

1. INTRODUCTION

We consider the following quasilinear hyperbolic partial differential equation

$$u_{tt}(x,t) - q(t) \int_0^t |u_x(y,t)| dy$$

with the initial and boundary conditions

$$u(x,0) = u_0(x),$$
$$u_t(x,0) = u_1(x),$$
$$u(0,t) = u(1,t) = 0.$$

(*) The author is a member of...