
15

C H A P T E R

2
Fundamental Concepts for Using
Base SAS Procedures

Language Concepts 16
Temporary and Permanent SAS Data Sets 16

USER Data Library 16

SAS System Options 17

Data Set Options 17

Global Statements 18
Procedure Concepts 18

Input Data Sets 18

Output Delivery System 19

Creating Listing Output 20

Creating Printer Output 20

Creating HTML Output 21
Identifying Output Objects 23

Selecting Output Objects to Send to ODS Destinations 26

Creating an Output Data Set 28

Storing Links in the Results Folder 30

Customizing Procedure Output 31
A Gallery of HTML and Printer Output Produced by Base Procedures 36

PROC TABULATE: Summarizing Information with the Universal Class Variable ALL 37

PROC FREQ: Analyzing a 2�2 Contingency Table 37

PROC PRINT: Summing Numeric Variables with One BY Group 40

PROC REPORT: Specifying Style Elements for HTML Output in the PROC REPORT
Statement 41

Customizing the Style Definition That ODS Uses 42

What Is a Style Definition? 42

What Style Definitions Are Shipped with the Software? 43

How Do I Use Styles with Base Procedures? 43

What Style Attributes Can Base Procedures Specify? 43
RUN-Group Processing 53

Creating Titles That Contain BY-Group Information 54

Suppressing the Default BY Line 54

Inserting BY-Group Information into a Title 54

Example: Inserting a Value from Each BY Variable into the Title 55
Example: Inserting the Name of a BY Variable into a Title 56

Example: Inserting the Complete BY Line into a Title 57

Error Processing of BY-Group Specifications 58

Shortcuts for Specifying Lists of Variable Names 58

Formatted Values 59
Example: Printing the Formatted Values for a Data Set 59

Example: Grouping or Classifying Formatted Data 61

Example: Temporarily Associating a Format with a Variable 62

16 Language Concepts 4 Chapter 2

Example: Temporarily Dissociating a Format from a Variable 63
Formats and BY-Group Processing 64

Formats and Error Checking 64

Processing All the Data Sets in a Library 64

Operating Environment-Specific Procedures 64

Statistic Descriptions 65
Computational Requirements for Statistics 66

Language Concepts
This section highlights several concepts and tools that are useful with base SAS

procedures.

Temporary and Permanent SAS Data Sets
SAS data sets can have a one-level name or a two-level name. Typically, names of

temporary SAS data sets have only one level and are stored in the WORK data library.
The WORK data library is defined automatically at the beginning of the SAS session
and is automatically deleted at the end of the SAS session. Procedures assume that SAS
data sets that are specified with a one-level name are to be read from or written to the
WORK data library, unless you specify a USER data library (see “USER Data Library”
on page 16). For example, the following PROC PRINT steps are equivalent. The second
PROC PRINT step assumes that the DEBATE data set is in the WORK data library:

proc print data=work.debate;
run;

proc print data=debate;
run;

The SAS system options WORK=, WORKINIT, and WORKTERM affect how you
work with temporary and permanent libraries. See SAS Language Reference:
Dictionary for complete documentation.

Typically, two-level names represent permanent SAS data sets. A two-level name
takes the form libref.SAS-data-set. The libref identifies an external storage location
that stores SAS data sets in your operating environment. A LIBNAME statement
associates a libref with an external storage location. In the following PROC PRINT
step, PROCLIB is the libref and EMP is the SAS data set within the library:

libname proclib ’SAS-data-library’;
proc print data=proclib.emp;
run;

USER Data Library
You can use one-level names for permanent SAS data sets by specifying a USER data

library. You can assign a USER data library with a LIBNAME statement or with the
SAS system option USER=. After you specify a USER data library, the procedure
assumes that data sets with one-level names are in the USER data library instead of
the WORK data library. For example, the following PROC PRINT step assumes that
DEBATE is in the USER data library:

options user=’SAS-data-library’;
proc print data=debate;

Fundamental Concepts for Using Base SAS Procedures 4 Data Set Options 17

run;

Note: If you have a USER data library defined, you can still use the WORK data
library by specifying WORK.SAS-data-set.

SAS System Options
Some SAS system option settings affect procedure output. The following are the SAS

system options that you are most likely to use with SAS procedures:
BYLINE|NOBYLINE
DATE|NODATE
DETAILS|NODETAILS
FMTERR|NOFMTERR
FORMCHAR=
FORMDLIM=
LABEL|NOLABEL
LINESIZE=
NUMBER|NONUMBER
PAGENO=
PAGESIZE=
REPLACE|NOREPLACE
SOURCE|NOSOURCE

For a complete description of SAS system options, see SAS Language Reference:
Dictionary.

Data Set Options
Most of the procedures that read data sets or create output data sets accept data set

options. SAS data set options appear in parentheses after the data set specification.
Here is an example:

proc print data=stocks(obs=25 pw=green);

The individual procedure chapters contain reminders that you can use data set
options where it is appropriate.

SAS data set options are

ALTER= LABEL=

BUFNO= OBS=

BUFSIZE= OUTREP=

CNTLLEV= PW=

COMPRESS= PWREQ=

DLDMGACTION= READ=

DROP= RENAME=

ENCRYPT= REPLACE=

FILECLOSE= REUSE=

FILEFMT= SORTEDBY=

18 Global Statements 4 Chapter 2

FIRSTOBS= TRANTAB=

GENMAX= TYPE=

GENNUM= WHERE=

IN= WHEREUP=

INDEX= WRITE=

KEEP=

For a complete description of SAS data set options, see SAS Language Reference:
Dictionary.

Global Statements
You can use these global statements anywhere in SAS programs except after a

DATALINES, CARDS, or PARMCARDS statement:

comment ODS

DM OPTIONS

ENDSAS PAGE

FILENAME RUN

FOOTNOTE %RUN

%INCLUDE SKIP

LIBNAME TITLE

%LIST X

MISSING

For information on all but the ODS statement, refer to SAS Language Reference:
Dictionary. For some information on the ODS statement, refer to “Output Delivery
System” on page 19 and to The Complete Guide to the SAS Output Delivery System.

Procedure Concepts

This section contains background information on concepts and tools that are common
to many base SAS procedures.

Input Data Sets
Many base procedures require an input SAS data set. You specify the input SAS data

set using the DATA= option in the procedure statement, for example,

proc print data=emp;

If you omit the DATA= option, the procedure uses the value of the SAS system option
LAST=. The default of _LAST_= is the most recently created SAS data set in the
current SAS job or session. _LAST_= is described in detail in SAS Language Reference:
Dictionary.

Fundamental Concepts for Using Base SAS Procedures 4 Output Delivery System 19

Output Delivery System
Prior to Version 7, SAS procedures that produced printed output (that is, output that

was destined for the procedure output file) generated output that was designed for a
traditional line-printer. This type of output has limitations that prevent users from
getting the most value from their results:

� Traditional SAS output is limited to monospace fonts. In this day of desktop
document editors and publishing systems, users want more versatility in printed
output.

� Traditional SAS output provides no way for you to parse its contents. You cannot,
for example, know in advance in what column the values for the third variable in
a report begin.

� Quite a few commonly used procedures did not produce output data sets. Users
who wanted to use output from one of these procedures as input to another
procedure relied on PROC PRINTTO and the DATA step to retrieve results that
could not be stored in an output data set.

Beginning with Version 7, procedure output became much more flexible. The Output
Delivery System (ODS) has been designed to overcome the limitations of traditional
SAS output and to make it easy to make new formatting options available to users.
ODS is a method of delivering output in a variety of formats and of making the
formatted output easy to access. Important features of ODS include the following:

� ODS combines raw data with one or more table definitions to produce one or more
output objects. These objects can be sent to any or all ODS destinations. The
currently available ODS destinations can produce an output data set, traditional
monospace output, output that is formatted for a high-resolution printer, and
output that is formatted in HyperText Markup Language (HTML).

� ODS provides table definitions that define the structure of the output from
procedures and from the DATA step. You can customize the output by modifying
these definitions or by creating your own.

� ODS provides a way for you to choose individual output objects to send to ODS
destinations. For instance, PROC UNIVARIATE produces five output objects. You
can easily create HTML output, an output data set, traditional Listing output, or
Printer output from any or all of these output objects. You can send different
output objects to different destinations.

� ODS stores a link to each output object in the Results folder in the Results window.

In addition, ODS removes responsibility for formatting output from individual
procedures and from the DATA step. The procedure or DATA step supplies raw data
and the name of the table definition that contains the formatting instructions, and ODS
formats the output. Because formatting is now centralized in ODS, the addition of a
new ODS destination does not affect any procedures or the DATA step. As future
destinations are added to ODS, they will automatically become available to all
procedures that support ODS and to the DATA step.

This section briefly illustrates these features. For more information about the Output
Delivery System, see The Complete Guide to the SAS Output Delivery System.

Note: The examples in this section use filenames that may not be valid in all
operating environments. To successfully run the example in your operating
environment, you may need to change the file specifications. See Appendix 1, “Alternate
ODS HTML Statements for Running Examples in Different Operating Environments,”
in The Complete Guide to the SAS Output Delivery System. 4

20 Output Delivery System 4 Chapter 2

Creating Listing Output

You do not need to change your SAS programs to create Listing output. By default,
the Listing destination is open. Unless you specifically close the Listing destination
with the ODS LISTING CLOSE statement, you will continue to create Listing output.

Creating Printer Output

If you open the Printer destination, you can create output that is formatted for a
high-resolution printer. The first ODS PRINTER statement in the following SAS
program opens the Printer destination and directs the formatted output to the file
odsprinter.ps. The second ODS PRINTER statement closes the Printer destination.
You must close the Printer destination before you can print the file.

The data set STATEPOP is created in a DATA step on page 1418. The REGFMT.
format is created in a PROC FORMAT step on page 1200. The printer output appears
in Display 2.1 on page 20.

options nodate nonumber;
ods printer file=’odsprinter.ps’;
proc tabulate data=statepop;

class region state;
var citypop_80 citypop_90;
table region*state, citypop_80*sum=’ ’ citypop_90*sum=’ ’;
format region regfmt.;
where region=1;
label citypop_80=’1980’ citypop_90=’1990’;
title ’Metropolitan Population for the Northeast Region’;
title2 ’(measured in millions)’;

run;
ods printer close;

Display 2.1 Output Created by the Printer Destination

Metropolitan Population for the Northeast Region
(measured in millions)

1980 1990

Geographic region State

2.98 3.15Northeast CT

MA 5.53 5.79

ME 0.41 0.44

NH 0.54 0.66

NJ 7.37 7.73

NY 16.14 16.52

PA 10.07 10.08

RI 0.89 0.94

VT 0.13 0.15

Fundamental Concepts for Using Base SAS Procedures 4 Output Delivery System 21

Creating HTML Output
If you open the HTML destination, you can create output that is formatted in

HyperText Markup Language (HTML). You can browse these files with Internet
Explorer, Netscape, or any other browser that fully supports the HTML 3.2 tag set.

The ODS HTML statement, which generates the HTML files, can create
� an HTML file (called the body file) that contains the results from the procedure
� a table of contents that links to the body file
� a table of pages that links to the body file
� a frame that displays the table of contents, the table of pages, and the body file.

For example, the first ODS HTML statement in the following SAS program generates
four HTML files. ODS routes the results of the PROC UNIVARIATE step to the body
file as well as to the Listing destination. ODS also creates the associated contents,
page, and frame files. The second ODS HTML statement closes the HTML destination.
You must close the HTML destination before you can browse the HTML files.

/* Create HTML files. */
ods html file=’odshtml-body.htm’

contents=’odshtml-contents.htm’
page=’odshtml-page.htm’
frame=’ods-html-frame.htm’;

proc univariate data=statepop mu0=3.5;
var citypop_90 noncitypop_90;
title;

run;

/* Close the HTML destination. */
/* You must close this destination before */
/* you can browse the HTML files. */
ods html close;

The frame file appears in Display 2.2 on page 22.

22 Output Delivery System 4 Chapter 2

Display 2.2 First View of the Frame File

If you click on Extreme Observations under CityPop_90 in the Table of Contents,
the HTML table that contains that part of the procedure results appears at the top of
the frame that contains the body file. (See Display 2.3 on page 23.)

Fundamental Concepts for Using Base SAS Procedures 4 Output Delivery System 23

Display 2.3 Second View of the Frame File

For more information about creating HTML output, see the discussion of the ODS
HTML Statement in Chapter 3, “The ODS Statements” in The Complete Guide to the
SAS Output Delivery System. You can see many examples of HTML output in SAS
Procedures Guide online documentation.

Note: Procedure options that affect presentation may not affect HTML output. For
instance, the DOUBLE option in PROC PRINT, which inserts a blank line between
observations, has no effect on HTML output. 4

Identifying Output Objects
Several of the features of the Output Delivery System (such as selecting and

excluding output objects to send to ODS destinations or creating a data set from an
output object) require that you specify one or more particular output objects for the
system to process. You identify an output object by its name, its label, or its path. To
learn what these are, run your SAS program preceded by this statement:

ods trace on;

As long as the tracing feature is on, information about each output object that is
created appears in the SAS log.

Use this statement to stop sending the information to the log:

ods trace off;

For example, the following SAS program produces the SAS log that is shown in
Output 2.1 on page 24:

options nodate pageno=1 linesize=64 pagesize=60;
ods trace on;

24 Output Delivery System 4 Chapter 2

proc univariate data=statepop mu0=3.5;
var citypop_90 noncitypop_90;
title;

run;

ods trace off;

Fundamental Concepts for Using Base SAS Procedures 4 Output Delivery System 25

Output 2.1 SAS Log Produced by the ODS TRACE Statement

Compare the second output object that is created for CityPop_90 to the
second output object that is created for NonCityPop_90. These objects
are marked with an arrow (). The names and labels of these objects
are identical. Thus, using a name or a label can refer to multiple output
objects, which is sometimes useful. If you want to reference each output
object separately, you must use its path, which is unique.

36 options nodate pageno=1 linesize=64 pagesize=60;
37 ods trace on;
38
39 proc univariate data=statepop mu0=3.5;
40 var citypop_90 noncitypop_90;
41 title;
42 run;

Output Added:

Name: Moments
Label: Moments
Template: base.univariate.Moments
Path: Univariate.CityPop_90.Moments

Output Added:

Name: BasicMeasures <---
Label: Basic Measures of Location and Variability
Template: base.univariate.Measures
Path: Univariate.CityPop_90.BasicMeasures

Output Added:

Name: TestsForLocation

Label: Tests For Location
Template: base.univariate.Location
Path: Univariate.CityPop_90.TestsForLocation

Output Added:

Name: Quantiles
Label: Quantiles
Template: base.univariate.Quantiles
Path: Univariate.CityPop_90.Quantiles

Output Added:

Name: ExtremeObs
Label: Extreme Observations
Template: base.univariate.ExtObs
Path: Univariate.CityPop_90.ExtremeObs

26 Output Delivery System 4 Chapter 2

Output Added:

Name: Moments
Label: Moments
Template: base.univariate.Moments
Path: Univariate.NonCityPop_90.Moments

Output Added:

Name: BasicMeasures <---
Label: Basic Measures of Location and Variability
Template: base.univariate.Measures
Path: Univariate.NonCityPop_90.BasicMeasures

Output Added:

Name: TestsForLocation
Label: Tests For Location
Template: base.univariate.Location
Path: Univariate.NonCityPop_90.TestsForLocation

Output Added:

Name: Quantiles
Label: Quantiles
Template: base.univariate.Quantiles
Path: Univariate.NonCityPop_90.Quantiles

Output Added:

Name: ExtremeObs
Label: Extreme Observations
Template: base.univariate.ExtObs
Path: Univariate.NonCityPop_90.ExtremeObs

Output Added:

Name: MissingValues
Label: Missing Values
Template: base.univariate.Missings
Path: Univariate.NonCityPop_90.MissingValues

If you compare this SAS log to the Results Folder that appears in Display 2.6 on page
31, you can see that the string that identifies the output in the Results folder is its label.

For more information about the trace record, see the discussion of the contents of the
trace record in the documentation for the ODS TRACE statement in “The ODS
Statements” in The Complete Guide to the SAS Output Delivery System.

Selecting Output Objects to Send to ODS Destinations
Some procedures, such as PROC UNIVARIATE, produce multiple output objects. Any

procedure that uses ODS produces multiple output objects when you use BY-group
processing. ODS enables you to select which of these output objects go to the open ODS
destinations. ODS destinations include the Listing destination, the HTML destination,
the Printer destination, and the Output destination. For more information about ODS
destinations, see “Basic Concepts about the Output Delivery System” in The Complete
Guide to the SAS Output Delivery System.

Fundamental Concepts for Using Base SAS Procedures 4 Output Delivery System 27

You choose the objects to send to destinations with the ODS SELECT or the ODS
EXCLUDE statement. To select individual output objects, use this form of the ODS
SELECT statement:

ODS SELECT selection(s);

where each value of selection can be a full path, a name, or a label (see the trace record
in Output 2.1 on page 24). You can also use a partial path. A partial path consists of
any part of the full path that begins immediately after a period (.) and continues to the
end of the full path. For details about referencing output objects, see the discussion of
specifying an output object in the documentation of the ODS SELECT statement in
“The ODS Statements” in The Complete Guide to the SAS Output Delivery System.

For example, to select just the output objects that contain the basic measures and
the quantiles from the PROC UNIVARIATE output, use the following program.

/* Create HTML files. */
ods html file=’select-body.htm’

contents=’select-contents.htm’
page=’select-page.htm’
frame=’select-frame.htm’;

/* Select output objects by name. */
ods select BasicMeasures Quantiles;

/* Analyze the data. */
proc univariate data=statepop mu0=3.5;

var citypop_90 noncitypop_90;
title;

run;

/* Close the HTML destination. */
ods html close;

The frame file appears in Display 2.4 on page 28. The program also creates Listing
output, which is not shown. The Listing output contains the same information as the
HTML body file, but it is formatted with the traditional SAS monospace font.

28 Output Delivery System 4 Chapter 2

Display 2.4 View of the Frame File for Selected Output Objects

The contents file shows that for each variable in the analysis, PROC UNIVARIATE produces
two output objects: one that contains basic measures and one that contains quantiles. All four
output objects are in the body file because the ODS SELECT statement used names to identify
the objects. If the ODS SELECT statement had used paths, which are unique, it could have
selected output objects for the individual variables.

For more information about selecting output objects, see the documentation for the
ODS SELECT statement in “The ODS Statements” in The Complete Guide to the SAS
Output Delivery System.

Creating an Output Data Set
The Output Delivery System enables you to create a data set from an output object.
To create a data set, use the ODS OUTPUT statement. In this statement, you identify

� one or more output objects from which to create a data set

� the names of the data sets to create.

To create a single output data set, use this simplified form of the ODS OUTPUT
statement:

ODS OUTPUT output-object=SAS-data-set;

Specify the output object as you do in the ODS SELECT statement: with a path, a
name, a label, or a partial path. For example, to generate and print an output data set
from each output object that contains the basic measures that PROC UNIVARIATE
produces, use the following SAS program.

Fundamental Concepts for Using Base SAS Procedures 4 Output Delivery System 29

/* Turn off the generation of Listing output */
/* because you want to create a data set, not */
/* see the results. */
ods listing close;

/* Specify the data set to create. */
ods output BasicMeasures=measures;

/* When PROC UNIVARIATE runs, ODS */
/* creates a data set named MEASURES */
/* from the output object named */
/* BasicMeasures. */
proc univariate data=statepop mu0=3.5;

var citypop_90 noncitypop_90;
title;

run;

/* Open the HTML destination for PROC PRINT. */
ods html body=’measures-body.htm’

contents=’measures-contents.htm’
frame=’measures-frame.htm’;

/* Print the output data set. */
proc print data=measures noobs headings=horizontal;

title ’Output Data Set Produced from’;
title2 ’PROC UNIVARIATE Basic Measures’;

run;

/* Reset the destinations to their defaults. */
/* Close the HTML destination. */
ods html close;
/* Open the Listing destination. */
ods listing;

You can use the resulting data set as input to another SAS program. This program
simply prints the data set to illustrate its structure. The HTML output from PROC
PRINT appears in Display 2.5 on page 30.

30 Output Delivery System 4 Chapter 2

Display 2.5 PROC PRINT Report of the Data Set Created by PROC UNIVARIATE and ODS

The data set contains observations for each of the variables in the VAR statement in PROC
UNIVARIATE.

For more information about creating output data sets, see the discussion of the ODS
OUTPUT statement in “The ODS Statements,” in The Complete Guide to the SAS
Output Delivery System.

Storing Links in the Results Folder
When you run a procedure that supports ODS, SAS automatically stores a link to the

ODS output in the Results folder in the Results window. It marks the link with an icon
that identifies the output destination that created the output.

Consider the following SAS program, which generates Listing, HTML, and Printer
output as well as an output data set (Output output). The data set STATEPOP contains
information about the distribution of the United States’ population in metropolitan and
nonmetropolitan areas for 1980 and 1990. A DATA step on page 1418 creates this data
set.

options nodate pageno=1 linesize=80 pagesize=34;

ods html file=’results-body.htm’;
ods printer file=’results.ps’;
ods output basicmeasures=measures;

proc univariate data=statepop mu0=3.5;
var citypop_90 noncitypop_90;
title;

run;

ods html close;
ods printer close;

Fundamental Concepts for Using Base SAS Procedures 4 Output Delivery System 31

The Results folder (see Display 2.6 on page 31) shows the folders and output objects
that the procedure produces.

Display 2.6 View of the Results Folder

PROC UNIVARIATE generates a folder called Univariate in the Results folder. Within this
folder are two more folders: one for each variable in the VAR statement. These folders each
contain a folder for each output object. Within the folder for each output object is a link to each
piece of output. The icon next to the link indicates which ODS destination created the output.
You can see that the Moments object was sent to the Listing, HTML, and Printer destinations
while the Basic Measures of Location and Variability was sent to the Listing, HTML, Printer,
and Output destinations.

Customizing Procedure Output
Many procedures that fully support ODS provide table definitions that enable you to

customize each output object that the procedure produces. You do so by creating an
alternate table definition for the procedure to use. This section illustrates how to make
an alternative table definition. The explanation here focuses on the structure of the
table. For detailed explanations of all the statements and attributes that the program
uses, see the section on the TEMPLATE procedure in The Complete Guide to the SAS
Output Delivery System.

For example, the following SAS program creates a customized table definition for the
BasicMeasures output object from PROC UNIVARIATE. (The trace record provides the
name of the table definition that each object uses. See Output 2.1 on page 24.) In the
customized version

� the measures of variability precede the measures of location

32 Output Delivery System 4 Chapter 2

� the column headers are modified

� statistics are displayed in a bold, italic font with a 7.3 format.

The customized HTML output object appears in Display 2.7 on page 35. The customized
Listing output appears in Output 2.2 on page 35. The customized Printer output
appears in Display 2.8 on page 36.

/* These four options all affect the Listing output. */
/* NODATE and NONUMBER also affect the Printer output.*/
/* None of them affects the HTML output. */
options nodate nonumber linesize=80 pagesize=60;

/* This PROC TEMPLATE step creates a table definition */
/* base.univariate.Measures in the SASUSER template */
/* store. Table definitions that are provided */
/* by SAS Institute are stored in a template */
/* store in the SASHELP library. By default, ODS */
/* searches for a table definition in SASUSER before */
/* SASHELP, so when PROC UNIVARIATE calls for a */
/* table definition by this name, ODS uses the one */
/* from SASUSER. */
proc template;

define table base.univariate.Measures;

notes "Basic measures of location and variability";

translate _val_ = ._ into ’’;

/* The HEADER statement determines the order */
/* in which the table definition uses the */
/* headers, which are defined later. */
header h1 h2 h3;

/* The COLUMN statement determines the order */
/* in which the variables appear. PROC */
/* UNIVARIATE names the variables. */
column VarMeasure VarValue LocMeasure LocValue;

/* These DEFINE blocks define the headers. */
/* They specify the text for each header. By */
/* default, a header spans all columns, so */
/* H1 does so. H2 spans the variables */
/* VarMeasure and VarValue. H3 spans */
/* LocMeasure and LocValue. */
define h1;

text "Basic Statistical Measures";
spill_margin=on;
space=1;

end;

define h2;
text "Measures of Variability";

Fundamental Concepts for Using Base SAS Procedures 4 Output Delivery System 33

start=VarMeasure
end=VarValue;

end;

define h3;
text "Measures of Location";
start=LocMeasure
end=LocValue;

end;

/* These DEFINE blocks specify characteristics */
/* for each of the variables. There are two */
/* differences between these DEFINE blocks and */
/* the ones in the table definition in SASHELP. */
/* These blocks use FORMAT= to specify a format */
/* of 7.3 for LocValue and VarValue. They also */
/* use STYLE= to specify a bold, italic font */
/* for these two variables. The STYLE= option */
/* does not affect the Listing output. */
define LocMeasure;

print_headers=off;
glue=2;
space=3;
style=rowheader;

end;

define LocValue;
print_headers=off;
space=5;
format=7.3;
style=data{font_style=italic font_weight=bold};

end;

define VarMeasure;
print_headers=off;
glue=2;
space=3;
style=rowheader;

end;

define VarValue;
print_headers=off;
format=7.3;
style=data{font_style=italic font_weight=bold};

end;

/* End the table definition. */
end;

/* Run the procedure. */
run;

34 Output Delivery System 4 Chapter 2

/* Begin the program that uses the */
/* customized table definition. */

/* The ODS HTML statement opens the HTML */
/* destination and identifies the files to */
/* write to. */
ods html file=’statepop-body.htm’

contents=’statepop-contents.htm’
page=’statepop-page.htm’

frame=’statepop-frame.htm’;

/* The ODS PRINTER statement opens the */
/* Printer destination and identifies the */
/* file to write to. */
ods printer file=’statepop.ps’;

/* The ODS SELECT statement selects just the */
/* output object that contains the basic measures. */
ods select BasicMeasures;

/* PROC UNIVARIATE produces one object for each */
/* variable. It uses the customized table */
/* definition to format the data because the */
/* customized definition is in SASUSER. (See the */
/* explanation with the PROC TEMPLATE statement in */
/* this example. */
title;
proc univariate data=statepop mu0=3.5;

var citypop_90 noncitypop_90;
run;

/* Close the HTML destination. */
ods html close;
/* Close the Printer destination. */
ods printer close;

Fundamental Concepts for Using Base SAS Procedures 4 Output Delivery System 35

Display 2.7 Customized HTML Output from PROC UNIVARIATE (partial output)

Output 2.2 Customized Listing Output from PROC UNIVARIATE

The UNIVARIATE Procedure
Variable: CityPop_90 (1990 metropolitan pop in millions)

Basic Statistical Measures

Measures of
Measures of Variability Location

Std Deviation 5.165 Mean 3.877
Variance 26.674 Median 2.423
Range 28.665 Mode .
Interquartile Range 3.600

The UNIVARIATE Procedure
Variable: NonCityPop_90 (1990 nonmetropolitan pop in million)

Basic Statistical Measures

Measures of
Measures of Variability Location

Std Deviation 0.660 Mean 1.040
Variance 0.436 Median 0.961
Range 2.756 Mode 0.608
Interquartile Range 1.127

36 A Gallery of HTML and Printer Output Produced by Base Procedures 4 Chapter 2

Display 2.8 Customized Printer Output from PROC UNIVARIATE (page 1)

The UNIVARIATE Procedure
Variable: CityPop_90 (1990 metropolitan pop in millions)

Basic Statistical Measures

Measures of Variability Measures of Location

Std Deviation 5.165 Mean 3.877

Variance 26.674 Median 2.423

Range 28.665 Mode .

Interquartile Range 3.600

Display 2.9 Customized Printer Output from PROC UNIVARIATE (page 2)

The UNIVARIATE Procedure
Variable: NonCityPop_90 (1990 nonmetropolitan pop in million)

Basic Statistical Measures

Measures of Variability Measures of Location

Std Deviation 0.660 Mean 1.040

Variance 0.436 Median 0.961

Range 2.756 Mode 0.608

Interquartile Range 1.127

A Gallery of HTML and Printer Output Produced by Base Procedures
This section illustrates the HTML and Printer output that you can get from routing

selected examples from the documentation on individual procedures through the HTML
and Printer destinations. Each piece of HTML output was created by running the
specified example with this ODS HTML statement preceding it:

ods html body=’external-file’;

If Printer output is shown, the specified example was run with this ODS PRINTER
statement preceding it:

ods printer file=’external-file’;

You must execute the following statement before you can view the resulting HTML files
in a browser:

ods html close;

You must execute the following statement before you can print Printer output:

ods printer close;

Fundamental Concepts for Using Base SAS Procedures 4 A Gallery of HTML and Printer Output Produced by Base Procedures 37

PROC TABULATE: Summarizing Information with the Universal Class Variable
ALL

The SAS program that produces this output is in Example 6 on page 1212.

Display 2.10 HTML Output from PROC TABULATE

Display 2.11 Printer Output from PROC TABULATE

Energy Expenditures for Each Region 1
(millions of dollars)

Customer Base All Customers

Residential Customers Business Customers

Region Division

7,477 5,129 12,606Northeast New England

Middle Atlantic 19,379 15,078 34,457

Subtotal 26,856 20,207 47,063

West Division

5,476 4,729 10,205Mountain

Pacific 13,959 12,619 26,578

Subtotal 19,435 17,348 36,783

Total for All Regions $46,291 $37,555 $83,846

PROC FREQ: Analyzing a 2�2 Contingency Table

The SAS program that produces this output is in Example 4 on page 580.

38 A Gallery of HTML and Printer Output Produced by Base Procedures 4 Chapter 2

Display 2.12 HTML Output from PROC FREQ

Fundamental Concepts for Using Base SAS Procedures 4 A Gallery of HTML and Printer Output Produced by Base Procedures 39

Display 2.13 Printer Output from PROC FREQ (page 1)

Case-Control Study of High Fat/Cholesterol Diet 1

The FREQ Procedure
Frequency
Percent
Row Pct
Col Pct

Table of Exposure by Response

Exposure

Response(Heart Disease)

TotalYes No

High Cholesterol Diet 11
 47.83
 73.33
 84.62

4
 17.39
 26.67
 40.00

15
 65.22

Low Cholesterol Diet 2
 8.70
 25.00
 15.38

6
 26.09
 75.00
 60.00

8
 34.78

Total 13
 56.52

10
 43.48

23
 100.00

Statistics for Table of Exposure by Response

Statistic DF Value Prob

Chi-Square 1 4.9597 0.0259

Likelihood Ratio Chi-Square 1 5.0975 0.0240

Continuity Adj. Chi-Square 1 3.1879 0.0742

Mantel-Haenszel Chi-Square 1 4.7441 0.0294

Phi Coefficient 0.4644

Contingency Coefficient 0.4212

Cramer’s V 0.4644

WARNING: 50% of the cells have expected counts less than 5.
 (Asymptotic) Chi-Square may not be a valid test.

Pearson Chi-Square Test

Chi-Square 4.9597

DF 1

Asymptotic Pr > ChiSq 0.0259

Exact Pr >= ChiSq 0.0393

40 A Gallery of HTML and Printer Output Produced by Base Procedures 4 Chapter 2

Display 2.14 Printer Output from PROC FREQ (page 2)

Case-Control Study of High Fat/Cholesterol Diet 2

The FREQ Procedure
Fisher’s Exact Test

Cell (1,1) Frequency (F) 11

Left-sided Pr <= F 0.9967

Right-sided Pr >= F 0.0367

Table Probability (P) 0.0334

Two-sided Pr <= P 0.0393

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

Case-Control (Odds Ratio) 8.2500 1.1535 59.0029

Cohort (Col1 Risk) 2.9333 0.8502 10.1204

Cohort (Col2 Risk) 0.3556 0.1403 0.9009

Odds Ratio (Case-Control Study)

Odds Ratio 8.2500

Asymptotic Conf Limits

95% Lower Conf Limit 1.1535

95% Upper Conf Limit 59.0029

Exact Conf Limits

95% Lower Conf Limit 0.8677

95% Upper Conf Limit 105.5488

Sample Size = 23

PROC PRINT: Summing Numeric Variables with One BY Group
The SAS program that produces this output is in Example 4 on page 803.

Fundamental Concepts for Using Base SAS Procedures 4 A Gallery of HTML and Printer Output Produced by Base Procedures 41

Display 2.15 HTML Output from PROC PRINT

PROC REPORT: Specifying Style Elements for HTML Output in the PROC
REPORT Statement

The SAS program that produces this output is in Example 15 on page 996.

42 Customizing the Style Definition That ODS Uses 4 Chapter 2

Display 2.16 HTML Output from PROC REPORT

Customizing the Style Definition That ODS Uses

What Is a Style Definition?
A style definition determines the overall look of the document that uses it. Each style

definition is a collection of style elements, each of which affects a particular part of the
document. Procedures may use different style elements in different parts of their
output. For example, a procedure can use one style element for column headers and
another for data. Each style element is, in turn, a collection of attributes and values.
The attributes determine the size, face, and weight of the type that is used, the color of
the foreground and background, and other such features.

For a list of the attributes, see “What Style Attributes Can Base Procedures Specify?”
on page 43.

Fundamental Concepts for Using Base SAS Procedures 4 Customizing the Style Definition That ODS Uses 43

What Style Definitions Are Shipped with the Software?
SAS Institute ships a number of style definitions with the SAS System. To see a list

of these styles,

1 Select

View I Results

2 In the Results window, select the Results folder. With your cursor on this folder,
use your right mouse button to open the Templates window.

3 In the Templates window, select and open Sashelp.tmplmst.

4 Select Styles, and use your right mouse button to open this folder, which contains
a list of available style definitions. If you want to view the underlying SAS code
for a style definition, select it and open it.

Operating Environment Information: For information on navigating in the Explorer
window without a mouse, see the section on “Window Controls and General Navigation”
in the SAS documentation for your operating environment. 4

You can also, submit this PROC TEMPLATE step to see the SAS code for a style
definition:

proc template;
source style-name;

run;

where style-name is the path to the style from the template store (for example
styles.default or styles.beige).

The HTML destination uses the style that is called Default unless you specify an
alternative style with the STYLE= option in the ODS HTML statement (see the
documentation for the ODS HTML statement in The Complete Guide to the SAS Output
Delivery System). The Printer destination uses the style that is called Printer unless
you specify an alternative style with the STYLE= option in the ODS PRINTER
statement (see the documentation for the ODS PRINTER statement in The Complete
Guide to the SAS Output Delivery System).

In most cases, if you want to alter the style of a file that ODS produces, you must
make a copy of the style that is used, alter that copy, and store it so that ODS will find
it and use it before it finds the style that SAS Institute provides. (For information on
this process, see The Complete Guide to the SAS Output Delivery System.)

How Do I Use Styles with Base Procedures?
A procedure uses one or more table definitions to produce output objects. These

table definitions include definitions for table elements: columns, headers, and footers.
Each table element can specify the use of one or more style elements for various parts
of the output.

However, procedures that build reports that are based on information that the user
provides do not use the same templates. Two of these procedures, PROC REPORT and
PROC TABULATE, provide a way for you to customize the HTML and Printer output
directly from the PROC step that creates the report. Information on how to do this is
provided with the syntax for these procedures.

What Style Attributes Can Base Procedures Specify?
The following list describes the style attributes that you can specify from the

TABULATE and REPORT procedures. Procedures that support the Output Delivery

44 Customizing the Style Definition That ODS Uses 4 Chapter 2

System can format their output for HTML or for a high-resolution printer. Their output
is in tabular form. Some of the style attributes apply to the table as a whole; others
apply to individual cells in the table. The procedure documentation tells you which
style attributes you can set from which statements in the procedure.

Note: The default value that is used for an attribute depends on the style definition
that is in use. For information on viewing the attributes in a style, see “What Style
Definitions Are Shipped with the Software?” on page 43. The implementation of an
attribute depends on the ODS destination that formats the output. In addition, if you
are creating HTML output, the implementation of an attribute depends on the browser
that you use. 4

Many values for style attributes are one of the following:

’string’
is a quoted character string.

dimension
is a nonnegative number, followed by one of the following units of measure

cm centimeters

in inches

mm millimeters

pt a printer’s point

px pixels (based on the size of a pixel on the target device)

Note: In Version 8 of the SAS System, only the Printer destination supports
units of measure on dimensions. However, if you specify CSS in the ODS HTML
statement, the HTML destination supports units of measure. The CSS option is
experimental in Version 8. 4

Default: For the HTML destination, pixels; for the Printer destination, units of 1/
150 of an inch

color
is a string that identifies a color. A color can be

� any of the color names that are supported by SAS/GRAPH. These names
include
� a predefined SAS color (for example, blue or VIYG)
� a red/green/blue (RGB) value (for example, CX0023FF)
� a hue/light/saturation (HLS) value (for example, H14E162D)
� a gray-scale value (for example, GRAYBB).

� An RGB value with a leading pound sign (#) rather than CX (for example,
#0023FF).

� One of the colors that exists in the SAS session when the style is used:

DMSBLUE

DMSRED

DMSPINK

DMSGREEN

DMSCYAN

Fundamental Concepts for Using Base SAS Procedures 4 Customizing the Style Definition That ODS Uses 45

DMSYELLOW

DMSWHITE

DMSORANGE

DMSBLACK

DMSMAGENTA

DMSGRAY

DMSBROWN

SYSBACK

SYSSECB

SYSFORE

Note: Use these colors only if you are running SAS in the windowing
environment. 4

� An English-like description of an HLS value. Such descriptions use a
combination of words to describe the lightness, the saturation, and the hue
(in that order). The words that you can use are shown in the following table:

Lightness Saturation Hue

black gray blue

very dark grayish purple

dark moderate red

medium strong orange | brown

light vivid yellow

very light green

white

You can combine these words to form a wide variety of colors. Some
examples are

light vivid green
dark vivid orange
light yellow

Note: The Output Delivery system first tries to match a color with a SAS/
GRAPH color. Thus, although brown and orange are interchangeable in the table,
if you use them as unmodified hues, they are different. The reason for this is that
ODS treats them like SAS colors, which are mapped to different colors. 4

You can also specify hues that are intermediate between two neighboring colors.
To do so, combine one of the following adjectives with one of its neighboring colors:

reddish

orangish

brownish

yellowish

greenish

bluish

46 Customizing the Style Definition That ODS Uses 4 Chapter 2

purplish

For example, you can use the following as hues:
bluish purple (which is the same as purplish blue)
reddish orange
yellowish green

See also: For information on SAS/GRAPH colors, see SAS/GRAPH Software:
Reference.

format
is a SAS format or a user-defined format.

reference
is a reference to an attribute that is defined in the current style or in the parent
(or beyond). In this case, the value that you use is the name of the style element
followed, in parentheses, by the name of an attribute name within that element.
For example, suppose that you create a style element called DATACELL that uses
the FOREGROUND= and BACKGROUND= style elements this way:

style datacell / background=blue
foreground=white;

Later, you can ensure that another style element, NEWCELL, uses the same
background color by defining it this way:

style newcell / background=datacell(background);

Similarly, suppose that you create a style element called HIGHLIGHTING that
defines three attributes this way:

style highlighting /
"go"=green
"caution"=yellow
"stop"=red;

Later, you can define a style element called MESSAGES that uses the colors that
are defined in HIGHLIGHTING:

style messages;
"note"=highlighting("go")
"warning"=highlighting("caution")
"error"=highlighting("stop");

In this way, multiple style elements could use the colors that you define in
HIGHLIGHTING. If you decide to change the value of ‘‘go’’ to blue, you simply
change its value in the definition of HIGHLIGHTING, and every style element
that references highlighting (“go”) will use blue instead of green.

Note: In the first example, the style attribute BACKGROUND= is a predefined
style attribute. Therefore, when you reference it, you do not put it in quotation
marks. However, in the second example, ‘‘go’’ is a user-defined attribute. You
define it with quotation marks, and when you reference it, you must use quotation
marks. (This section describes all the predefined style attributes that are
available.) 4

You can use a special form of reference to get a value for a style attribute from
the macro table at the time that the style element is used. For instance, the
following STYLE statement uses the current value of the macro variable bkgr for
the background color of the style element cell:

style cell / background=symget("bkgr");

Fundamental Concepts for Using Base SAS Procedures 4 Customizing the Style Definition That ODS Uses 47

font-definition
A value can also be a font definition. A font definition has the following general
format:

(“font-face-1 <… , font-face-n>”, font-size, keyword-list)

If you specify only one font face and if its name does not include a space character,
you can omit the quotation marks. If you specify more than one font face, the
browser or printer uses the first one that is installed on your system.

font-size specifies the size of the font. font-size can be a dimension or a number
without units of measure. If you specify a dimension, you must specify a unit of
measure. Without a unit of measure, the number becomes a size that is relative to
all other font sizes in the document.

keyword-list specifies the weight, font style, and font width. You can include one
value for each, in any order. The following table shows the keywords that you can
use:

Keywords for Font Weight Keywords for Font Style Keywords for Font Width1

MEDIUM ITALIC NORMAL*

BOLD ROMAN COMPRESSED*

DEMI_BOLD* SLANT EXTRA_COMPRESSED*

EXTRA_BOLD* NARROW*

LIGHT WIDE*

DEMI_LIGHT* EXPANDED*

EXTRA_LIGHT*

1
*
Most fonts do not honor these values.

Note: You can use the value _UNDEF_ for any style attribute. ODS treats an
attribute that is set to _UNDEF_ as if its value had never been set, even in the parent
or beyond. 4

In the list of style attributes that follows, any attribute that is not documented as
applying to a particular destination applies to all destinations that support the STYLE=
option in the ODS statement that opens the destination. In Version 8 of the SAS
System, the two destinations that support STYLE= are the HTML destination and the
Printer destination.

ASIS=ON|OFF
specifies how to handle leading spaces, trailing spaces, and line breaks.

ON
prints text with leading spaces, trailing spaces, and line breaks as they are.

OFF
trims leading spaces and trailing spaces. OFF ignores line breaks.

Applies to: cells

BACKGROUND=color
specifies the color of the background.
Tip: Generally, the background color of the cell overrides the background color of

the table. You see the background color for the table only as the space between
cells (see CELLSPACING= on page 48).

48 Customizing the Style Definition That ODS Uses 4 Chapter 2

Applies to: tables or cells

BACKGROUNDIMAGE=’string’
specifies an image to use as the background. Viewers that can tile the image as
the background for the HTML table that the procedure creates will do so. string is
the name of a GIF or JPEG file. You can use a simple file name, a complete path,
or a URL. However, the most versatile approach is to use a simple filename and to
place all image files in the local directory.

Applies to: tables or cells

ODS Destinations: HTML

BORDERCOLOR=color
specifies the color of the border if the border is just one color.

Applies to: tables or cells

BORDERCOLORDARK=color
specifies the darker color to use in a border that uses two colors to create a
three-dimensional effect.

Applies to: tables or cells

ODS Destinations: HTML

BORDERCOLORLIGHT=color
specifies the lighter color to use in a border that uses two colors to create a
three-dimensional effect.

Applies to: tables or cells

ODS Destinations: HTML

BORDERWIDTH=dimension
specifies the width of the border of the table.

Applies to: tables

Tip: Typically, when BORDERWIDTH=0, the ODS destination sets
RULES=NONE (see the discussion of RULES= on page 53) and FRAME=VOID
(see the discussion of FRAME= on page 50).

CELLHEIGHT=dimension|integer%
specifies the height of the cell. If you specify a percent, it represents a percentage
of the height of the table. A row of cells will have the height of the highest cell in
the row.

Tip: HTML automatically sets cell height appropriately. You should seldom need
to specify this attribute.

Applies to: cells

ODS Destinations: HTML

CELLPADDING=dimension | integer%
specifies the amount of white space on each of the four sides of the text in a cell.

Applies to: tables

CELLSPACING=dimension
specifies the thickness of the spacing between cells.

Applies to: tables

Interaction: If BORDERWIDTH= is nonzero, and if the background color of the
cells contrasts with the background color of the table, the color of the cell
spacing is determined by the table’s background.

Fundamental Concepts for Using Base SAS Procedures 4 Customizing the Style Definition That ODS Uses 49

CELLWIDTH=dimension | integer%
specifies the width of the cell. If you specify a percent, it represents a percentage
of the width of the table. A column of cells will have the width of the widest cell in
the column.
Applies to: cells
Tip: The ODS destination automatically sets cell width appropriately. You should

seldom need to specify this attribute.

FLYOVER=’string’
specifies the text to show in a tool tip for the cell.
Applies to: cells
ODS Destinations: HTML

FONT=font-definition
specifies a font definition to use. For more information, see the discussion of font
definition on page 47.
Applies to: cells

FONT_FACE=’string-1<... , string-n>’
specifies the font face to use. If you supply more than one string, the browser or
printer uses the first one that is installed on your system.

You cannot be sure what fonts are available to someone who is viewing your
output in a browser or printing it on a high-resolution printer. Most devices
support

� times
� courier
� arial, helvetica.

Applies to: cells

FONT_SIZE=dimension | size
specifies the size of the font. The value of size is relative to all other font sizes in
the document.
Applies to: cells
Range: 1 to 7, for size
Restriction: If you specify a dimension, you must specify a unit of measure.

Without a unit of measure, the number becomes a relative size.

FONT_STYLE=ITALIC | ROMAN | SLANT
specifies the style of the font. In many cases, italic and slant map to the same font.
Applies to: cells

FONT_WEIGHT=weight
specifies the font weight. weight can be any of the following:

MEDIUM
BOLD
DEMI_BOLD
EXTRA_BOLD
LIGHT
DEMI_LIGHT
EXTRA_LIGHT

Applies to: cells
Restriction: You cannot be sure what font weights are available to someone who

is viewing your output in a browser or printing it on a high-resolution printer.
Most devices support only MEDIUM and BOLD, and possibly LIGHT.

50 Customizing the Style Definition That ODS Uses 4 Chapter 2

FONT_WIDTH=relative-width
specifies the font width compared to the width of the usual design. relative-width
can be any of the following:

NORMAL
COMPRESSED
EXTRA_COMPRESSED
NARROW
WIDE
EXPANDED

Applies to: cells
Restriction: Most fonts do not honor these values.

FOREGROUND=color
specifies the color of the foreground, which is primarily the color of text.
Applies to: tables or cells

FRAME=frame-type
specifies the type of frame to use on a table. The following table shows the possible
values of frame-type and their meanings.

This value of frame-type Creates this kind of frame around the table

ABOVE a border at the top

BELOW a border at the bottom

BOX borders at the top, bottom, and both sides

HSIDES borders at the top and bottom

LHS a border at the left side

RHS a border at the right side

VOID no borders

VSIDES borders at the left and right sides

Applies to: tables

HREFTARGET=target
specifies the window or frame in which to open the target of the link. target can be

_BLANK
opens the target in a new, blank window. The window has no name.

_PARENT
opens the target in the window from which the current window was opened.

_SEARCH
opens the target in the browser’s search pane.
Restriction: Available only in Internet Explorer 5 or later.

_SELF
opens the target in the current window.

_TOP
opens the target in the topmost window.

’name’
opens the target in the specified window or the frame.

Fundamental Concepts for Using Base SAS Procedures 4 Customizing the Style Definition That ODS Uses 51

Default: _SELF
Applies to: cells
ODS Destinations: HTML

HTMLCLASS=’string’
specifies the name of the stylesheet class to use for the table or cell.
Applies to: tables and cells
ODS Destinations: HTML

HTMLID=’string’
specifies an id for the table or cell. The id is for use by a Java script.
Applies to: tables and cells
ODS Destinations: HTML

HTMLSTYLE=’string’
specifies individual attributes and values for the table or cell.
Applies to: tables and cells
ODS Destinations: HTML

JUST=justification
specifies justification, where justification can be

CENTER
specifies center justification.
Alias: C
Applies to: tables and cells

LEFT
specifies left justification.
Alias: L
Applies to: tables and cells

RIGHT
specifies right justification.
Alias: R
Applies to: tables and cells
Restriction: Not all contexts support RIGHT. If RIGHT is not supported, it is

interpreted as CENTER.

NOBREAKSPACE=ON | OFF
specifies how to handle space characters.

ON
does not allow SAS to break a line at a space character.

OFF
allows SAS to break a line at a space character if appropriate.

Applies to: cells

OUTPUTWIDTH=dimension | integer%
specifies the width of the table. If you specify a percent, it represents a percentage
of the width of the browser window.
Applies to: tables
Tip: Use OUTPUTWIDTH=100% to make the table as wide as the window that it

is open in.
ODS Destinations: HTML

52 Customizing the Style Definition That ODS Uses 4 Chapter 2

POSTHTML=’string’
specifies the HTML code to place after the table or cell.
Applies to: tables or cells
ODS Destinations: HTML

POSTIMAGE=’string’
specifies an image to place after the table or cell. string is the name of a GIF or
JPEG file. You can use a simple filename, a complete path, or a URL. However,
the most versatile approach is to use a simple filename and to place all image files
in the local directory.
Applies to: tables or cells
ODS Destinations: HTML

POSTTEXT=’string’
specifies text to place after the cell or table.
Applies to: tables or cells

PREHTML=’string’
specifies the HTML code to place before the table or cell.
Applies to: tables or cells
ODS Destinations: HTML

PREIMAGE=’string’
specifies an image to place before the table or cell. string is the name of a GIF or
JPEG file. You can use a simple filename, a complete path, or a URL. However,
the most versatile approach is to use a simple filename and to place all image files
in the local directory.
Applies to: tables or cells
ODS Destinations: HTML

PRETEXT=’string’
specifies text to place before the cell or table.
Applies to: tables or cells

PROTECTSPECIALCHARACTERS=ON | OFF | AUTO
determines how less-than signs (<), greater-than signs (>), and ampersands (&) are
interpreted. In HTML, these characters indicate the beginning of a markup tag,
the end of a markup tag, and the beginning of the name of a file or character entity.

ON
interprets special characters as the characters themselves. That is, when ON
is in effect the characters are protected before they are passed to the HTML
destination so that HTML does not interpret them as part of the markup
language. Using ON enables you to show HTML markup in your document.

OFF
interprets special characters as HTML code. That is, when OFF is in effect,
the characters are passed to the HTML destination without any protection so
that HTML interprets them as part of the markup language.

AUTO
interprets any string that starts with a < and ends with a > as HTML
(ignoring spaces that immediately precede the <, spaces that immediately
follow the >, and spaces at the beginning and end of the string). In any other
string, AUTO protects the special characters from their HTML meaning.

Applies to: tables or cells
ODS Destinations: HTML

Fundamental Concepts for Using Base SAS Procedures 4 RUN-Group Processing 53

RULES=rule-type
specifies the types of rules to use in a table. The following table shows the possible
values of rule and their meanings.

This value of rule Creates rules in these locations

ALL between all rows and columns

COLS between all columns

GROUP between the table header and the table and
between the table and the table footer, if
there is one

NONE no rules anywhere

ROWS between all rows

Applies to: tables

TAGATTR=’string’
specifies text to insert in the HTML. The string must be valid HTML for the
context in which the style element is rendered. Many style elements are rendered
between <TD> and </TD> tags. To determine how a style element is rendered,
look at the source for the output.

Applies to: cells

ODS Destinations: HTML

URL=’uniform-resource-locator’
specifies a URL to link to from the current cell.

Applies to: cells

ODS Destinations: HTML

VJUST=’justification’
specifies vertical justification, where justification can be

TOP
specifies top justification.

Alias: T

BOTTOM
specifies bottom justification.

Alias: B

MIDDLE
specifies center justification.

Alias: M

Applies to: cells

RUN-Group Processing
RUN-group processing enables you to submit a PROC step with a RUN statement

without ending the procedure. You can continue to use the procedure without issuing
another PROC statement. To end the procedure, use a RUN CANCEL or a QUIT
statement. Several base SAS procedures support RUN-group processing:

54 Creating Titles That Contain BY-Group Information 4 Chapter 2

CATALOG

DATASETS

PLOT

PMENU

TRANTAB

See the section on the individual procedure for more information.

Note: PROC SQL executes each query automatically. Neither the RUN nor RUN
CANCEL statement has any effect. 4

Creating Titles That Contain BY-Group Information
BY-group processing uses a BY statement to process observations that are ordered,

grouped, or indexed according to the values of one or more variables. By default, when
you use BY-group processing in a procedure step, a BY line identifies each group. This
section explains how to create titles that serve as customized BY lines.

Suppressing the Default BY Line
When you insert BY-group processing information into a title, you usually want to

eliminate the default BY line. To suppress it, use the SAS system option NOBYLINE.

Note: You must use the NOBYLINE option if you insert BY-group information into
titles for the following base SAS procedures:

MEANS

PRINT

STANDARD

SUMMARY.

If you use the BY statement with the NOBYLINE option, these procedures always start
a new page for each BY group. This behavior prevents multiple BY groups from
appearing on a single page and ensures that the information in the titles matches the
report on the pages. 4

Inserting BY-Group Information into a Title
The general form for inserting BY-group information into a title is

#BY-specification<.suffix>

BY-specification
is one of the following:

BYVALn | BYVAL(BY-variable)
places the value of the specified BY variable in the title. You specify the BY
variable with one of the following:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose value you want to insert in the
title.

Fundamental Concepts for Using Base SAS Procedures 4 Creating Titles That Contain BY-Group Information 55

BYVARn | BYVAR(BY-variable)
places the label or the name (if no label exists) of the specified BY variable in
the title. You designate the BY variable with one of the following:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose name you want to insert in the
title.

BYLINE
inserts the complete default BY line into the title.

suffix
supplies text to place immediately after the BY-group information that you insert
in the title. No space appears between the BY-group information and the suffix.

Example: Inserting a Value from Each BY Variable into the Title
This example
1 creates a data set, GROC, that contains data for stores from four regions. Each

store has four departments. This data set is created in a DATA step“GROC” on
page 1504.

2 sorts the data by Region and Department.
3 uses the SAS system option NOBYLINE to suppress the BY line that normally

appears in output that is produced with BY-group processing.
4 uses PROC CHART to chart sales by Region and Department. In the first TITLE

statement, #BYVAL2 inserts the value of the second BY variable, Department, into
the title. In the second TITLE statement, #BYVAL(Region) inserts the value of
Region into the title. The first period after Region indicates that a suffix follows.
The second period is the suffix.

5 uses the SAS system option BYLINE to return to the creation of the default BY
line with BY-group processing.

data groc; u

input Region $9. Manager $ Department $ Sales;
datalines;

Southeast Hayes Paper 250
Southeast Hayes Produce 100
Southeast Hayes Canned 120
Southeast Hayes Meat 80
...more lines of data...
Northeast Fuller Paper 200
Northeast Fuller Produce 300
Northeast Fuller Canned 420
Northeast Fuller Meat 125
;

proc sort data=groc; v

by region department;
run;
options nobyline nodate pageno=1

linesize=64 pagesize=20; w

56 Creating Titles That Contain BY-Group Information 4 Chapter 2

proc chart data=groc; x

by region department;
vbar manager / type=sum sumvar=sales;
title1 ’This chart shows #byval2 sales’;
title2 ’in the #byval(region)..’;

run;
options byline; y

This partial output shows two BY groups with customized BY lines:

This chart shows Canned sales 1
in the Northwest.

Sales Sum

400 + ***** *****
| ***** *****

300 + ***** *****
| ***** ***** *****

200 + ***** ***** *****
| ***** ***** *****

100 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

This chart shows Meat sales 2
in the Northwest.

Sales Sum

75 + ***** *****
| ***** *****

60 + ***** *****
| ***** *****

45 + ***** *****
| ***** *****

30 + ***** ***** *****
| ***** ***** *****

15 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Example: Inserting the Name of a BY Variable into a Title
This example inserts the name of a BY variable and the value of a BY variable into

the title. The program

1 uses the SAS system option NOBYLINE to suppress the BY line that normally
appears in output that is produced with BY-group processing.

2 uses PROC CHART to chart sales by Region. In the first TITLE statement,
#BYVAR(Region) inserts the name of the variable Region into the title. (If Region
had a label, #BYVAR would use the label instead of the name.) The suffix al is
appended to the label. In the second TITLE statement, #BYVAL1 inserts the value
of the first BY variable, Region, into the title.

Fundamental Concepts for Using Base SAS Procedures 4 Creating Titles That Contain BY-Group Information 57

3 uses the SAS system option BYLINE to return to the creation of the default BY
line with BY-group processing.

options nobyline nodate pageno=1
linesize=64 pagesize=20; u

proc chart data=groc; v

by region;
vbar manager / type=mean sumvar=sales;
title1 ’#byvar(region).al Analysis’;
title2 ’for the #byval1’;

run;
options byline; w

This partial output shows one BY group with a customized BY line:

Regional Analysis 1
for the Northwest

Sales Mean

300 + *****
| *****

200 + ***** *****
| ***** ***** *****

100 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Example: Inserting the Complete BY Line into a Title
This example inserts the complete BY line into the title. The program
1 uses the SAS system option NOBYLINE to suppress the BY line that normally

appears in output that is produced with BY-group processing.
2 uses PROC CHART to chart sales by Region and Department. In the TITLE

statement, #BYLINE inserts the complete BY line into the title.
3 uses the SAS system option BYLINE to return to the creation of the default BY

line with BY-group processing.

options nobyline nodate pageno=1
linesize=64 pagesize=20; u

proc chart data=groc; v

by region department;
vbar manager / type=sum sumvar=sales;
title ’Information for #byline’;

run;
options byline; w

58 Shortcuts for Specifying Lists of Variable Names 4 Chapter 2

This partial output shows two BY groups with customized BY lines:

Information for Region=Northwest Department=Canned 1

Sales Sum

400 + ***** *****
| ***** *****

300 + ***** *****
| ***** ***** *****

200 + ***** ***** *****
| ***** ***** *****

100 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Information for Region=Northwest Department=Meat 2

Sales Sum

75 + ***** *****
| ***** *****

60 + ***** *****
| ***** *****

45 + ***** *****
| ***** *****

30 + ***** ***** *****
| ***** ***** *****

15 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Error Processing of BY-Group Specifications
The SAS System does not issue error or warning messages for incorrect #BYVAL,

#BYVAR, or #BYLINE specifications. Instead, the text of the item simply becomes part
of the title.

Shortcuts for Specifying Lists of Variable Names
Several statements in procedures allow multiple variable names. You can use these

shortcut notations instead of specifying each variable name:

Notation Meaning

x1-xn specifies variables X1 through Xn. The numbers must be
consecutive.

x: specifies all variables that begin with the letter X.

x--a specifies all variables between X and A, inclusive. This
notation uses the position of the variables in the data set.

x-numeric-a specifies all numeric variables between X and A, inclusive.
This notation uses the position of the variables in the data set.

Fundamental Concepts for Using Base SAS Procedures 4 Formatted Values 59

Notation Meaning

x-character-a specifies all character variables between X and A, inclusive.
This notation uses the position of the variables in the data set.

numeric specifies all numeric variables.

character specifies all character variables.

all specifies all variables.

Note: You cannot use shortcuts to list variable names in the INDEX CREATE
statement in PROC DATASETS. 4

See SAS Language Reference: Concepts for complete documentation.

Formatted Values
Typically, when you print or group variable values, base SAS procedures use the

formatted values. This section contains examples of how base procedures use formatted
values.

Example: Printing the Formatted Values for a Data Set
The following example prints the formatted values of the data set

PROCLIB.PAYROLL. (A DATA step“PROCLIB.PAYROLL” on page 1512 creates this
data set.) In PROCLIB.PAYROLL, the variable Jobcode indicates the job and level of
the employee. For example, TA1 indicates that the employee is at the beginning level
for a ticket agent.

libname proclib ’SAS-data-library’;

options nodate pageno=1
linesize=64 pagesize=40;

60 Formatted Values 4 Chapter 2

proc print data=proclib.payroll(obs=10)
noobs;

title ’PROCLIB.PAYROLL’;
title2 ’First 10 Observations Only’;

run;

This is a partial printing of PROCLIB.PAYROLL:

PROCLIB.PAYROLL 1
First 10 Observations Only

Id
Number Sex Jobcode Salary Birth Hired

1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89

The following PROC FORMAT step creates the format $JOBFMT., which assigns
descriptive names for each job:

proc format;
value $jobfmt

’FA1’=’Flight Attendant Trainee’
’FA2’=’Junior Flight Attendant’
’FA3’=’Senior Flight Attendant’
’ME1’=’Mechanic Trainee’
’ME2’=’Junior Mechanic’
’ME3’=’Senior Mechanic’
’PT1’=’Pilot Trainee’
’PT2’=’Junior Pilot’
’PT3’=’Senior Pilot’
’TA1’=’Ticket Agent Trainee’
’TA2’=’Junior Ticket Agent’
’TA3’=’Senior Ticket Agent’
’NA1’=’Junior Navigator’
’NA2’=’Senior Navigator’
’BCK’=’Baggage Checker’
’SCP’=’Skycap’;

run;

The FORMAT statement in this PROC MEANS step temporarily associates the
$JOBFMT. format with the variable Jobcode:

options nodate pageno=1
linesize=64 pagesize=60;

proc means data=proclib.payroll mean max;
class jobcode;
var salary;
format jobcode $jobfmt.;

Fundamental Concepts for Using Base SAS Procedures 4 Formatted Values 61

title ’Summary Statistics for’;
title2 ’Each Job Code’;

run;

PROC MEANS produces this output, which uses the $JOBFMT. format:

Summary Statistics for 1
Each Job Code

The MEANS Procedure

Analysis Variable : Salary

N
Jobcode Obs Mean Maximum

Baggage Checker 9 25794.22 26896.00

Flight Attendant Trainee 11 23039.36 23979.00

Junior Flight Attendant 16 27986.88 28978.00

Senior Flight Attendant 7 32933.86 33419.00

Mechanic Trainee 8 28500.25 29769.00

Junior Mechanic 14 35576.86 36925.00

Senior Mechanic 7 42410.71 43900.00

Junior Navigator 5 42032.20 43433.00

Senior Navigator 3 52383.00 53798.00

Pilot Trainee 8 67908.00 71349.00

Junior Pilot 10 87925.20 91908.00

Senior Pilot 2 10504.50 11379.00

Skycap 7 18308.86 18833.00

Ticket Agent Trainee 9 27721.33 28880.00

Junior Ticket Agent 20 33574.95 34803.00

Senior Ticket Agent 12 39679.58 40899.00

Note: Because formats are character strings, formats for numeric variables are
ignored when the values of the numeric variables are needed for mathematical
calculations. 4

Example: Grouping or Classifying Formatted Data
If you use a formatted variable to group or classify data, the procedure uses the

formatted values. The following example creates and assigns a format, $CODEFMT.,
that groups the levels of each job code into one category. PROC MEANS calculates
statistics based on the groupings of the $CODEFMT. format.

62 Formatted Values 4 Chapter 2

proc format;
value $codefmt

’FA1’,’FA2’,’FA3’=’Flight Attendant’
’ME1’,’ME2’,’ME3’=’Mechanic’
’PT1’,’PT2’,’PT3’=’Pilot’
’TA1’,’TA2’,’TA3’=’Ticket Agent’

’NA1’,’NA2’=’Navigator’
’BCK’=’Baggage Checker’
’SCP’=’Skycap’;

run;

options nodate pageno=1
linesize=64 pagesize=40;

proc means data=proclib.payroll mean max;
class jobcode;
var salary;
format jobcode $codefmt.;
title ’Summary Statistics for Job Codes’;
title2 ’(Using a Format that Groups the Job Codes)’;

run;

PROC MEANS produces this output:

Summary Statistics for Job Codes 1
(Using a Format that Groups the Job Codes)

The MEANS Procedure

Analysis Variable : Salary

N
Jobcode Obs Mean Maximum

Baggage Checker 9 25794.22 26896.00

Flight Attendant 34 27404.71 33419.00

Mechanic 29 35274.24 43900.00

Navigator 8 45913.75 53798.00

Pilot 20 72176.25 91908.00

Skycap 7 18308.86 18833.00

Ticket Agent 41 34076.73 40899.00

Example: Temporarily Associating a Format with a Variable
If you want to associate a format with a variable temporarily, you can use the

FORMAT statement. For example, the following PROC PRINT step associates the
DOLLAR8. format with the variable Salary for the duration of this PROC PRINT step
only:

options nodate pageno=1
linesize=64 pagesize=40;

proc print data=proclib.payroll(obs=10)
noobs;

format salary dollar8.;

Fundamental Concepts for Using Base SAS Procedures 4 Formatted Values 63

title ’Temporarily Associating a Format’;
title2 ’with the Variable Salary’;

run;

PROC PRINT produces this output:

Temporarily Associating a Format 1
with the Variable Salary

Id
Number Sex Jobcode Salary Birth Hired

1919 M TA2 $34,376 12SEP60 04JUN87
1653 F ME2 $35,108 15OCT64 09AUG90
1400 M ME1 $29,769 05NOV67 16OCT90
1350 F FA3 $32,886 31AUG65 29JUL90
1401 M TA3 $38,822 13DEC50 17NOV85
1499 M ME3 $43,025 26APR54 07JUN80
1101 M SCP $18,723 06JUN62 01OCT90
1333 M PT2 $88,606 30MAR61 10FEB81
1402 M TA2 $32,615 17JAN63 02DEC90
1479 F TA3 $38,785 22DEC68 05OCT89

Example: Temporarily Dissociating a Format from a Variable
If a variable has a permanent format that you do not want a procedure to use,

temporarily dissociate the format from the variable using a FORMAT statement.
In this example, the FORMAT statement in the DATA step permanently associates

the $YRFMT. variable with the variable Year. Thus, when you use the variable in a
PROC step, the procedure uses the formatted values. The PROC MEANS step, however,
contains a FORMAT statement that dissociates the $YRFMT. format from Year for this
PROC MEANS step only. PROC MEANS uses the stored value for Year in the output.

proc format;
value $yrfmt ’1’=’Freshman’

’2’=’Sophomore’
’3’=’Junior’
’4’=’Senior’;

run;
data debate;

input Name $ Gender $ Year $ GPA @@;
format year $yrfmt.;
datalines;

Capiccio m 1 3.598 Tucker m 1 3.901
Bagwell f 2 3.722 Berry m 2 3.198
Metcalf m 2 3.342 Gold f 3 3.609
Gray f 3 3.177 Syme f 3 3.883
Baglione f 4 4.000 Carr m 4 3.750
Hall m 4 3.574 Lewis m 4 3.421
;

options nodate pageno=1
linesize=64 pagesize=40;

proc means data=debate mean maxdec=2;
class year;
format year;
title ’Average GPA’;

64 Processing All the Data Sets in a Library 4 Chapter 2

run;

PROC MEANS produces this output, which does not use the YRFMT. format:

Average GPA 1

The MEANS Procedure

Analysis Variable : GPA

N
Year Obs Mean

1 2 3.75

2 3 3.42

3 3 3.56

4 4 3.69

Formats and BY-Group Processing
When a procedure processes a data set, it checks to see if a format is assigned to the

BY variable. If so, the procedure adds observations to the current BY groups until the
formatted value changes. If nonconsecutive internal values of the BY variable(s) have
the same formatted value, the values are grouped into different BY groups. This results
in two BY groups with the same formatted value. Further, if different and consecutive
internal values of the BY variable(s) have the same formatted value, they are included
in the same BY group.

Formats and Error Checking
If SAS cannot find a format, it stops processing and prints an error message in the

SAS log. You can suppress this behavior with the SAS system option NOFMTERR.
When you use NOFMTERR, and SAS cannot find the format, SAS uses a default format
and continues to process. Typically, for the default, SAS uses the BESTw. format for
numeric variables and the $w. format for character variables.

Note: To ensure that SAS can find user-written formats, use the SAS system option
FMTSEARCH=. How to store formats is described in “Storing Informats and Formats”
on page 456. 4

Processing All the Data Sets in a Library
You can use the SAS Macro Facility to run the same procedure on every data set in a

library. The macro facility is part of base SAS software.
Example 9 on page 815 shows how to print all the data sets in a library. You can use

the same macro definition to perform any procedure on all the data sets in a library.
Simply replace the PROC PRINT piece of the program with the appropriate procedure
code.

Operating Environment-Specific Procedures
Several base SAS procedures are specific to one operating environment or one

release. Appendix 2, “Operating Environment-Specific Procedures,” on page

Fundamental Concepts for Using Base SAS Procedures 4 Statistic Descriptions 65

1491contains a table with additional information. These procedures are described in
more detail in the SAS documentation for operating environments.

Statistic Descriptions
Table 2.1 on page 65 identifies common descriptive statistics that are available in

several base procedures. See “Keywords and Formulas” on page 1458 for more detailed
information about available statistics and theoretical information.

Table 2.1 Common Descriptive Statistics That Base Procedures Calculate

Statistic Description Procedures

confidence intervals FREQ, MEANS, UNIVARIATE

CSS corrected sum of
squares

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

CV coefficient of variation MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

goodness-of-fit tests FREQ, UNIVARIATE

KURTOSIS kurtosis MEANS/SUMMARY, UNIVARIATE

MAX largest (maximum)
value

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MEAN mean CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MEDIAN median (50th percentile) CORR (for nonparametric correlation measures),
MEANS/SUMMARY, TABULATE, UNIVARIATE

MIN smallest (minimum)
value

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MODE most frequent value (if
not unique, the
smallest mode is used)

UNIVARIATE

N number of observations
on which calculations
are based

CORR, FREQ, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

NMISS number of missing
values

FREQ, MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

NOBS number of observations MEANS/SUMMARY, UNIVARIATE

PCTN the percentage of a cell
or row frequency to a
total frequency

REPORT, TABULATE

PCTSUM the percentage of a cell
or row sum to a total
sum

REPORT, TABULATE

Pearson correlation CORR

percentiles FREQ, MEANS/SUMMARY, TABULATE, UNIVARIATE

66 Computational Requirements for Statistics 4 Chapter 2

Statistic Description Procedures

RANGE range CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

robust statistics trimmed means,
Winsorized means

UNIVARIATE

SKEWNESS skewness MEANS/SUMMARY, UNIVARIATE

Spearman correlation CORR

STD standard deviation CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

STDERR the standard error of
the mean

MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

SUM sum CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

SUMWGT sum of weights CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

tests of location UNIVARIATE

USS uncorrected sum of
squares

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

VAR variance CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

Computational Requirements for Statistics
The following requirements are computational requirements for the statistics that

are listed in Table 2.1 on page 65. They do not describe recommended sample sizes.

� N and NMISS do not require any nonmissing observations.
� SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one nonmissing

observation.

� VAR, STD, STDERR, and CV require at least two observations.
� CV requires that MEAN is not equal to zero.

Statistics are reported as missing if they cannot be computed.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–482–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

