
623

C H A P T E R

24
The MEANS Procedure

Overview 624
Procedure Syntax 626

PROC MEANS Statement 627

BY Statement 634

CLASS Statement 635

FREQ Statement 639
ID Statement 639

OUTPUT Statement 640

TYPES Statement 646

VAR Statement 646

WAYS Statement 647

WEIGHT Statement 648
Concepts 649

Using Class Variables 649

Ordering the Class Values 649

Computational Resources 650

Statistical Computations 652
Confidence Limits 652

Student’s t Test 653

Quantiles 653

Results 654

Missing Values 654
Column Width for the Output 654

The N Obs Statistic 655

Output Data Set 655

Examples 657

Example 1: Computing Specific Descriptive Statistics 657

Example 2: Computing Descriptive Statistics with Class Variables 658
Example 3: Using the BY Statement with Class Variables 660

Example 4: Using a CLASSDATA= Data Set with Class Variables 662

Example 5: Using Multi-label Value Formats with Class Variables 665

Example 6: Using Preloaded Formats with Class Variables 668

Example 7: Computing a Confidence Limit for the Mean 671
Example 8: Computing Output Statistics 672

Example 9: Computing Different Output Statistics for Several Variables 674

Example 10: Computing Output Statistics with Missing Class Variable Values 676

Example 11: Identifying an Extreme Value with the Output Statistics 677

Example 12: Identifying the Top Three Extreme Values with the Output Statistics 680
References 684

624 Overview 4 Chapter 24

Overview
The MEANS procedure provides data summarization tools to compute descriptive

statistics for variables across all observations and within groups of observations. For
example, PROC MEANS

� calculates descriptive statistics based on moments
� estimates quantiles, which includes the median
� calculates confidence limits for the mean
� identifies extreme values
� performs a t test.

By default, PROC MEANS displays output. You can also use the OUTPUT statement to
store the statistics in a SAS data set.

PROC MEANS and PROC SUMMARY are very similar; see Chapter 36, “The
SUMMARY Procedure,” on page 1149 for an explanation of the differences.

Output 24.1 on page 624 shows the default output that PROC MEANS displays. The
data set that PROC MEANS analyzes contains the integers 1 through 10. The output
reports the number of observations, the mean, the standard deviation, the minimum
value, and the maximum value. The statements that produce the output follow:

proc means data=OnetoTen;
run;

Output 24.1 The Default Descriptive Statistics

The SAS System 1

The MEANS Procedure

Analysis Variable : Integer

N Mean Std Dev Minimum Maximum
--
10 5.5000000 3.0276504 1.0000000 10.0000000
--

Output 24.2 on page 624 shows the results of a more extensive analysis of two
variables, MoneyRaised and HoursVolunteered. The analysis data set contains
information about the amount of money raised and the number of hours volunteered by
high-school students for a local charity. PROC MEANS uses six combinations of two
categorical variables to compute the number of observations, the mean, and the range.
The first variable, School, has two values and the other variable, Year, has three values.
For an explanation of the program that produces the output, see Example 11 on page
677.

The MEANS Procedure 4 Overview 625

Output 24.2 Specified Statistics for Class Levels and Identification of Maximum Values

Summary of Volunteer Work by School and Year 1

The MEANS Procedure

N
School Year Obs Variable N Mean Range

47.33 26 1 MoneyRaised 0 . .

HoursVolunteered 0 . .

Kennedy 1992 15 MoneyRaised 15 29.0800000 39.7500000
HoursVolunteered 15 22.1333333 30.0000000

1993 20 MoneyRaised 20 28.5660000 23.5600000
HoursVolunteered 20 19.2000000 20.0000000

1994 18 MoneyRaised 18 31.5794444 65.4400000
HoursVolunteered 18 24.2777778 15.0000000

Monroe 1992 16 MoneyRaised 16 28.5450000 48.2700000
HoursVolunteered 16 18.8125000 38.0000000

1993 12 MoneyRaised 11 26.2972727 52.4600000
HoursVolunteered 11 14.9090909 18.0000000

1994 28 MoneyRaised 28 29.4100000 73.5300000
HoursVolunteered 28 19.1428571 26.0000000

Best Results: Most Money Raised and Most Hours Worked 2

Most Most Money Hours
Obs School Year _TYPE_ _FREQ_ Cash Time Raised Volunteered

1 . 0 110 Willard Tonya 78.65 40
2 26 1 1 . .
3 1992 1 31 Tonya Tonya 55.16 40
4 1993 1 32 Cameron Amy 65.44 31
5 1994 1 46 Willard L.T. 78.65 33
6 47.33 . 2 1 . .
7 Kennedy . 2 53 Luther Jay 72.22 35
8 Monroe . 2 56 Willard Tonya 78.65 40
9 47.33 26 3 1 . .

10 Kennedy 1992 3 15 Thelma Jay 52.63 35
11 Kennedy 1993 3 20 Bill Amy 42.23 31
12 Kennedy 1994 3 18 Luther Che-Min 72.22 33
13 Monroe 1992 3 16 Tonya Tonya 55.16 40
14 Monroe 1993 3 12 Cameron Tyra 65.44 23
15 Monroe 1994 3 28 Willard L.T. 78.65 33

In addition to the report, the program also creates an output data set (located on
page 2 of the output) that identifies the students who raised the most money and who
volunteered the most time over all the combinations of School and Year and within the
combinations of School and Year:

� The first observation in the data set shows the students with the maximum values
overall for MoneyRaised and HoursVolunteered.

� Observations 2 through 4 show the students with the maximum values for each
year, regardless of school.

� Observations 5 and 6 show the students with the maximum values for each school,
regardless of year.

626 Procedure Syntax 4 Chapter 24

� Observations 7 through 12 show the students with the maximum values for each
school-year combination.

Procedure Syntax
Tip: Supports the Output Delivery System, see Chapter 2, “Fundamental Concepts for
Using Base SAS Procedures,” on page 15
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, "Statements with the Same Function in Multiple Procedures," for details.
You can also use any global statements as well. See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures," for a list.

PROC MEANS <option(s)> <statistic-keyword(s)>;
BY <DESCENDING> variable-1 <… <DESCENDING> variable-n><NOTSORTED>;
CLASS variable(s) </ option(s)>;
FREQ variable;
ID variable(s);
OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>

<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ option(s)> ;

TYPES request(s);
VAR variable(s) < / WEIGHT=weight-variable>;
WAYS list;
WEIGHT variable;

To do this Use this statement

Calculate separate statistics for each BY group BY

Identify variables whose values define subgroups for the analysis CLASS

Identify a variable whose values represent the frequency of each
observation

FREQ

Include additional identification variables in the output data set ID

Create an output data set that contains specified statistics and
identification variables

OUTPUT

Identify specific combinations of class variables to use to subdivide
the data

TYPES

Identify the analysis variables and their order in the results VAR

The MEANS Procedure 4 PROC MEANS Statement 627

To do this Use this statement

Specify the number of ways to make unique combinations of class
variables

WAYS

Identify a variable whose values weight each observation in the
statistical calculations

WEIGHT

PROC MEANS Statement
See also: Chapter 36, “The SUMMARY Procedure,” on page 1149

PROC MEANS <option(s)> <statistic-keyword(s)>;

To do this Use this option

Specify the input data set DATA=

Disable floating point exception recovery NOTRAP

Specify the amount of memory to use for data summarization with
class variables

SUMSIZE=

Control the classification levels

Specify a secondary data set that contains the combinations of
class variables to analyze

CLASSDATA=

Create all possible combinations of class variable values COMPLETETYPES

Exclude from the analysis all combinations of class variable
values that are not in the CLASSDATA= data set

EXCLUSIVE

Use missing values as valid values to create combinations of
class variables

MISSING

Control the statistical analysis

Specify the confidence level for the confidence limits ALPHA=

Exclude observations with nonpositive weights from the
analysis

EXCLNPWGTS

Specify the sample size to use for the P2 quantile estimation
method

QMARKERS=

Specify the quantile estimation method QMETHOD=

Specify the mathematical definition used to compute quantiles QNTLDEF=

Select the statistics statistic-keyword

Specify the variance divisor VARDEF=

Control the output

Specify the field width for the statistics FW=

Specify the number of decimal places for the statistics MAXDEC=

628 PROC MEANS Statement 4 Chapter 24

To do this Use this option

Suppress reporting the total number of observations for each
unique combination of the class variables

NONOBS

Suppress all displayed output NOPRINT

Order the values of the class variables according to the
specified order

ORDER=

Display the output PRINT

Display the analysis for all requested combinations of class
variables

PRINTALLTYPES

Display the values of the ID variables PRINTIDVARS

Control the output data set

Specify that the _TYPE_ variable contain character values. CHARTYPE

Order the output data set by descending _TYPE_ value DESCENDTYPES

Select ID variables based on minimum values IDMIN

Limit the output statistics to the observations with the highest
TYPE value

NWAY

Options

ALPHA=value
specifies the confidence level to compute the confidence limits for the mean. The
percentage for the confidence limits is (1−value)�100. For example, ALPHA=.05
results in a 95% confidence limit.
Default: .05
Range: between 0 and 1
Interaction: To compute confidence limits specify the statistic-keyword CLM,

LCLM, or UCLM.
See also: “Confidence Limits” on page 652
Featured in: Example 7 on page 671

CHARTYPE
specifies that the _TYPE_ variable in the output data set is a character
representation of the binary value of _TYPE_. The length of the variable equals the
number of class variables.
Main discussion: “Output Data Set” on page 655
Interaction When you specify more than 32 class variables, _TYPE_ automatically

becomes a character variable.
Featured in: Example 10 on page 676

CLASSDATA=SAS-data-set
specifies a data set that contains the combinations of values of the class variables
that must be present in the output. Any combinations of values of the class variables
that occur in the CLASSDATA= data set but not in the input data set appear in the
output and have a frequency of zero.
Restriction: The CLASSDATA= data set must contain all class variables. Their

data type and format must match the corresponding class variables in the input
data set.

The MEANS Procedure 4 PROC MEANS Statement 629

Interaction: If you use the EXCLUSIVE option, PROC MEANS excludes any
observation in the input data set whose combination of class variables is not in the
CLASSDATA= data set.

Tip: Use the CLASSDATA= data set to filter or to supplement the input data set.
Featured in: Example 4 on page 662

COMPLETETYPES
creates all possible combinations of class variables even if the combination does not
occur in the input data set.
Interaction: The PRELOADFMT option in the CLASS statement ensures that

PROC MEANS ouputs all user-defined format ranges or values for the
combinations of class variables, even when a frequency is zero.

Tip: Using COMPLETETYPES does not increase the memory requirements.
Featured in: Example 6 on page 668

DATA=SAS-data-set
identifies the input SAS data set.
Main discussion: “Input Data Sets” on page 18

DESCENDTYPES
orders observations in the output data set by descending _TYPE_ value.
Alias: DESCENDING | DESCEND
Interaction: Descending has no effect if you specify NWAY.
Tip: Use DESCENDTYPES to make the overall total (_TYPE_=0) the last

observation in each BY group.
See also: “Output Data Set” on page 655
Featured in: Example 9 on page 674

EXCLNPWGTS
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC MEANS treats observations with negative weights like
those with zero weights and counts them in the total number of observations.
Alias: EXCLNPWGT
See also: WEIGHT= on page 647 and “WEIGHT Statement” on page 648

EXCLUSIVE
excludes from the analysis all combinations of the class variables that are not found
in the CLASSDATA= data set.
Requirement: If a CLASSDATA= data set is not specified, this option is ignored.
Featured in: Example 4 on page 662

FW=field-width
specifies the field width to display the statistics in the output.
Default: 12
Tip: If PROC MEANS truncates column labels in the output, increase the field

width.
Featured in: Example 1 on page 657, Example 4 on page 662, and Example 5 on

page 665

IDMIN
specifies that the output data set contain the minimum value of the ID variables.
Interaction: Specify PRINTIDVARS to display the value of the ID variables in the

output.
See: “ID Statement” on page 639

630 PROC MEANS Statement 4 Chapter 24

MAXDEC=number
specifies the maximum number of decimal places to display the statistics in the
output.

Default: BEST. width for columnar format, typically about 7. (This does not apply
to the PROBT statistic. The SAS system option PROBSIG= determines its format.
See SAS system options in SAS Language Reference: Concepts for details.)

Range: 0-8
Featured in: Example 2 on page 658 and Example 4 on page 662

MISSING
considers missing values as valid values to create the combinations of class variables.
Special missing values that represent numeric values (the letters A through Z and
the underscore (_) character) are each considered as a separate value.

Default: If you omit MISSING, PROC MEANS excludes the observations with a
missing class variable value from the analysis.

See also: SAS Language Reference: Concepts for a discussion of missing values that
have special meaning.

Featured in: Example 6 on page 668

NONOBS
suppresses the column that displays the total number of observations for each unique
combination of the values of the class variables. This column corresponds to the
FREQ variable in the output data set.
See also: “The N Obs Statistic” on page 655

Featured in: Example 5 on page 665 and Example 6 on page 668

NOPRINT
See PRINT | NOPRINT.

NOTRAP
disables floating point exception (FPE) recovery during data processing. By default,
PROC MEANS traps these errors and sets the statistic to missing.

In operating environments where the overhead of FPE recovery is significant,
NOTRAP can improve performance. Note that normal SAS System FPE handling is
still in effect so that PROC MEANS terminates in the case of math exceptions.

NWAY
specifies that the output data set contain only statistics for the observations with the
highest _TYPE_ and _WAY_ values. When you specify class variables, this
corresponds to the combination of all class variables.
Interaction: If you specify a TYPES statement or a WAYS statements, PROC

MEANS ignores this option.
See also: “Output Data Set” on page 655
Featured in: Example 10 on page 676

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the sort order to create the unique combinations for the values of the class
variables in the output, where

DATA
orders values according to their order in the input data set.
Interaction: If you use PRELOADFMT in the CLASS statement, the order for the

values of each class variable matches the order that PROC FORMAT uses to
store the values of the associated user-defined format. If you use the
CLASSDATA= option, PROC MEANS uses the order of the unique values of

The MEANS Procedure 4 PROC MEANS Statement 631

each class variable in the CLASSDATA= data set to order the output levels. If
you use both options, PROC MEANS first uses the user-defined formats to order
the output. If you omit EXCLUSIVE, PROC MEANS appends after the
user-defined format and the CLASSDATA= values the unique values of the class
variables in the input data set based on the order that they are encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user defined format
in the order that you define them.

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment.
Alias: FMT | EXTERNAL

FREQ
orders values by descending frequency count so that levels with the most
observations are listed first.
Interaction: For multiway combinations of the class variables, PROC MEANS

determines the order of a class variable combination from the individual class
variable frequencies.

Interaction: Use the ASCENDING option in the CLASS statement to order values
by ascending frequency count.

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment.
Alias: UNFMT | INTERNAL

Default: UNFORMATTED
See also: “Ordering the Class Values” on page 649

PRINT | NOPRINT
specifies whether PROC MEANS displays the statistical analysis. NOPRINT
suppresses all the output.
Default: PRINT
Tip: Use NOPRINT when you want to create only an OUT= output data set.
Featured in: For an example of NOPRINT, see Example 8 on page 672 and

Example 12 on page 680

PRINTALLTYPES
displays all requested combinations of class variables (all _TYPE_ values) in the
output. Normally, PROC MEANS shows only the NWAY type.
Alias: PRINTALL
Interaction: If you use the NWAY option, the TYPES statement, or the WAYS

statement, PROC MEANS ignores this option.
Featured in: Example 4 on page 662

PRINTIDVARS
displays the values of the ID variables in output.
Alias: PRINTIDS
Interaction: Specify IDMIN to display the minimum value of the ID variables.
See: “ID Statement” on page 639

QMARKERS=number
specifies the default number of markers to use for the P2 quantile estimation method.
The number of markers controls the size of fixed memory space.

632 PROC MEANS Statement 4 Chapter 24

Default: The default value depends on which quantiles you request. For the median
(P50), number is 7. For the quartiles (P25 and P50), number is 25. For the
quantiles P1, P5, P10, P90, P95, or P99, number is 105. If you request several
quantiles, PROC MEANS uses the largest value of number.

Range: an odd integer greater than 3
Tip: Increase the number of markers above the defaults settings to improve the

accuracy of the estimate; reduce the number of markers to conserve memory and
computing time.

Main Discussion “Quantiles” on page 653

QMETHOD=OS|P2
specifies the method PROC MEANS uses to process the input data when it computes
quantiles. If the number of observations is less than or equal to the QMARKERS=
value and QNTLDEF=5, both methods produce the same results.

OS
uses order statistics. This is the same method that PROC UNIVARIATE uses.

Note: This technique can be very memory-intensive. 4

P2
uses the P2 method to approximate the quantile.

Default: OS
Restriction: When QMETHOD=P2, PROC MEANS will not compute weighted

quantiles.
Tip: When QMETHOD=P2, reliable estimations of some quantiles (P1,P5,P95,P99)

may not be possible for some data sets.
Main Discussion: “Quantiles” on page 653

QNTLDEF=1|2|3|4|5
specifies the mathematical definition that PROC MEANS uses to calculate quantiles
when QMETHOD=OS. To use QMETHOD=P2, you must use QNTLDEF=5.
Default: 5
Alias: PCTLDEF=
Main discussion: “Calculating Percentiles” on page 1404

statistic-keyword(s)
specifies which statistics to compute and the order to display them in the output.
The available keywords in the PROC statement are

Descriptive statistic keywords

CLM RANGE

CSS SKEWNESS|SKEW

CV STDDEV|STD

KURTOSIS|KURT STDERR

LCLM SUM

MAX SUMWGT

MEAN UCLM

MIN USS

N VAR

NMISS

The MEANS Procedure 4 PROC MEANS Statement 633

Quantile statistic keywords

MEDIAN|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keyword

PROBT T

Default: N, MEAN, STD, MIN, and MAX

Requirement: To compute standard error, confidence limits for the mean, and the
Student’s t test you must use the default value of VARDEF= which is DF. To
compute skewness or kurtosis you must use VARDEF=N or VARDEF=DF.

Tip: Use CLM or both LCLM and UCLM to compute a two-sided confidence limit
for the mean. Use only LCLM or UCLM, to compute a one-sided confidence limit.

Main discussion: The definitions of the keywords and the formulas for the
associated statistics are listed in “Keywords and Formulas” on page 1458.

Featured in: Example 1 on page 657 and Example 3 on page 660

SUMSIZE=value
specifies the amount of memory that is available for data summarization when you
use class variables. value may be one of the following:

n|nK| nM| nG
specifies the amount of memory available in bytes, kilobytes, megabytes, or
gigabytes, respectively. If n is 0, PROC MEANS use the value of the SAS system
option SUMSIZE=.

MAXIMUM|MAX
specifies the maximum amount of memory that is available.

Default: The value of the SUMSIZE= system option.

Tip: For best results, do not make SUMSIZE= larger than the amount of physical
memory that is available for the PROC step. If additional space is needed, PROC
MEANS uses utility files.

See also: The SAS system option SUMSIZE= in SAS Language Reference:
Dictionary.

Main discussion: “Computational Resources” on page 650

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard deviation.
Table 24.1 on page 633 shows the possible values for divisor and associated divisors.

Table 24.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n

634 BY Statement 4 Chapter 24

Value Divisor Formula for Divisor

WDF sum of weights minus one (�i wi) − 1

WEIGHT
|WGT

sum of weights �i wi

The procedure computes the variance as CSS=divisor, where CSS is the corrected
sums of squares and equals

P
(xi � x)

2. When you weight the analysis variables,
CSS equals

P
wi (xi � xw)

2, where xw is the weighted mean.

Default: DF

Requirement: To compute the standard error of the mean, confidence limits for the
mean, or the Student’s t-test, use the default value of VARDEF=.

Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an
estimate of �2, where the variance of the ith observation is var (xi) = �2=wi and
wi is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of �2=w, where w is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: the example of weighted statistics“Example” on page 74

Main discussion: “Keywords and Formulas” on page 1458

BY Statement

Produces separate statistics for each BY group.

Main discussion: “BY” on page 68

See also: “Comparison of the BY and CLASS Statements” on page 638

Featured in: Example 3 on page 660

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n> <NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you omit the NOTSORTED option in the BY statement,
the observations in the data set must either be sorted by all the variables that you
specify, or they must be indexed appropriately. Variables in a BY statement are
called BY variables.

Options

The MEANS Procedure 4 CLASS Statement 635

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are sorted in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the
NOTSORTED option. In fact, the procedure does not use an index if you specify
NOTSORTED. The procedure defines a BY group as a set of contiguous observations
that have the same values for all BY variables. If observations with the same values
for the BY variables are not contiguous, the procedure treats each contiguous set as a
separate BY group.

Using the BY Statement with the SAS System Option NOBYLINE
If you use the BY statement with the SAS system option NOBYLINE, which

suppresses the BY line that normally appears in output that is produced with BY-group
processing, PROC MEANS always starts a new page for each BY group. This behavior
ensures that if you create customized BY lines by putting BY-group information in the
title and suppressing the default BY lines with NOBYLINE, the information in the
titles matches the report on the pages. (See “Creating Titles That Contain BY-Group
Information” on page 54“Suppressing the Default BY Line” on page 54.)

CLASS Statement

Specifies the variables whose values define the subgroup combinations for the analysis.

Tip: You can use multiple CLASS statements.

Tip: Some CLASS statement options are also available in the PROC MEANS
statement. They affect all CLASS variables rather than just to the one(s) you specify in
a CLASS statement.

See also: For information about how the CLASS statement groups formatted values, see
“Formatted Values” on page 59.

Featured in: Example 2 on page 658, Example 4 on page 662, Example 5 on page 665,
Example 6 on page 668, and Example 10 on page 676

CLASS variable(s) </ options>;

Required Arguments

variable(s)
specifies one or more variables that the procedure uses to group the data. Variables
in a CLASS statement are referred to as class variables. Class variables are numeric
or character. Class variables can have continuous values, but they typically have a
few discrete values that define levels of the variable. You do not have to sort the data
by class variables.

636 CLASS Statement 4 Chapter 24

Interaction: Use the TYPES statement and the WAYS statement to control which
class variables that PROC MEANS uses to group the data.

Tip: To reduce the number of class variable levels, use a FORMAT statement to
combine variable values. When a format combines several internal values into one
formatted value, PROC MEANS outputs the lowest internal value.

See also: “Using Class Variables” on page 649

Options

ASCENDING
specifies to sort the class variable levels in ascending order.
Alias: ASCEND
Interaction: PROC MEANS issues a warning message if you specify both

ASCENDING and DESCENDING and ignores both options.
Featured in: Example 10 on page 676

DESCENDING
specifies to sort the class variable levels in descending order.
Alias: DESCEND
Interaction: PROC MEANS issues a warning message if you specify both

ASCENDING and DESCENDING and ignores both options.

EXCLUSIVE
excludes from the analysis all combinations of the class variables that are not found
in the preloaded range of user-defined formats.
Requirement: You must specify PRELOADFMT to preload the class variable

formats.
Featured in: Example 6 on page 668

GROUPINTERNAL
specifies not to apply formats to the class variables when PROC MEANS groups the
values to create combinations of class variables.
Interaction: If you specify the PRELOADFMT option, PROC MEANS ignores this

option and uses the formatted values.
Tip: This option saves computer resources when the numeric class variables contain

discrete values.
See also: “Computer Resources” on page 638

MISSING
considers missing values as valid values for the class variable levels. Special missing
values that represent numeric values (the letters A through Z and the underscore (_)
character) are each considered as a separate value.
Default: If you omit MISSING, PROC MEANS excludes the observations with a

missing class variable value from the analysis.
See also: SAS Language Reference: Concepts for a discussion of missing values with

special meanings.
Featured in: Example 10 on page 676

MLF
enables PROC MEANS to use the primary and secondary format labels for a given
range or overlapping ranges to create subgroup combinations when a multilabel
format is assigned to a class variable.

The MEANS Procedure 4 CLASS Statement 637

Requirement: You must use PROC FORMAT and the MULTILABEL option in the
VALUE statement to create a multilabel format.

Interaction: If you use the OUTPUT statement with MLF, the class variable
contains a character string that corresponds to the formatted value. Because the
formatted value becomes the internal value, the length of this variable is the
number of characters in the longest format label.

Interaction: Using MLF with ORDER=FREQ may not produce the order that you
expect for the formatted values.

Tip: If you omit MLF, PROC MEANS uses the primary format labels, which
corresponds to using the first external format value, to determine the subgroup
combinations.

See also: The MULTILABEL on page 442 option in the VALUE statement of the
FORMAT procedure.

Featured in: Example 5 on page 665
Note: When the formatted values overlap, one internal class variable value maps

to more than one class variable subgroup combination. Therefore, the sum of the N
statistics for all subgroups is greater the number of observations in the data set (the
overall N statistic). 4

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the order to group the levels of the class variables in the output, where

DATA
orders values according to their order in the input data set.
Interaction: If you use PRELOADFMT, the order for the values of each class

variable matches the order that PROC FORMAT uses to store the values of the
associated user-defined format. If you use the CLASSDATA= option in the
PROC statement, PROC MEANS uses the order of the unique values of each
class variable in the CLASSDATA= data set to order the output levels. If you
use both options, PROC MEANS first uses the user-defined formats to order the
output. If you omit EXCLUSIVE in the PROC statement, PROC MEANS
appends after the user-defined format and the CLASSDATA= values the unique
values of the class variables in the input data set based on the order that they
are encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user defined format
in the order that you define them.

Featured in: Example 10 on page 676

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment.

Alias: FMT | EXTERNAL
Featured in: Example 5 on page 665

FREQ
orders values by descending frequency count so that levels with the most
observations are listed first.
Interaction: For multiway combinations of the class variables, PROC MEANS

determines the order of a level from the individual class variable frequencies.
Interaction: Use the ASCENDING option to order values by ascending frequency

count.
Featured in: Example 5 on page 665

638 CLASS Statement 4 Chapter 24

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment. This sort sequence is
particularly useful for displaying dates chronologically.

Alias: UNFMT | INTERNAL
Default: UNFORMATTED

Tip: By default, all orders except FREQ are ascending. For descending orders, use
the DESCENDING option.

See also: “Ordering the Class Values” on page 649

PRELOADFMT
specifies that all formats are preloaded for the class variables.

Requirement: PRELOADFMT has no effect unless you specify either
COMPLETETYPES, EXCLUSIVE, or ORDER=DATA and you assign formats to
the class variables.

Interaction: To limit PROC MEANS output to the combinations of formatted class
variable values present in the input data set, use the EXCLUSIVE option in the
CLASS statement.

Interaction: To include all ranges and values of the user-defined formats in the
output, even when the frequency is zero, use COMPLETETYPES in the PROC
statement.

Featured in: Example 6 on page 668

Comparison of the BY and CLASS Statements
Using the BY statement is similar to using the CLASS statement and the NWAY

option in that PROC MEANS summarizes each BY group as an independent subset of
the input data. Therefore, no overall summarization of the input data is available.
However, unlike the CLASS statement, the BY statement requires that you previously
sort BY variables.

When you use the NWAY option, PROC MEANS may encounter insufficient memory
to the summarization all the class variables. You can move some class variables to the
BY statement. For maximum benefit, move class variables to the BY statement that are
already sorted or that have the greatest number of unique values.

You can use the CLASS and BY statements together to analyze the data by the levels
of class variables within BY groups. See Example 3 on page 660.

How PROC MEANS Handles Missing Values for Class Variables
By default, if an observation contains a missing value for any class variable, PROC

MEANS excludes that observation from the analysis. If you specify the MISSING
option in the PROC statement, the procedure considers missing values as valid levels
for the combination of class variables.

Specifying the MISSING option in the CLASS statement allows you to control the
acceptance of missing values for individual class variables.

Computer Resources
The total of unique class values that PROC MEANS allows depends on the amount of

computer memory that is available. See “Computational Resources” on page 650 for
more information.

The GROUPINTERNAL option can improve computer performance because the
grouping process is based on the internal values of the class variables. If a numeric

The MEANS Procedure 4 ID Statement 639

class variable is not assigned a format and you do not specify GROUPINTERNAL,
PROC MEANS uses the default format to format numeric values as character strings.
Then PROC MEAN groups these numeric variables by their character values, which
takes additional time and computer memory.

FREQ Statement

Specifies a numeric variable that contains the frequency of each observation.

Main discussion: “FREQ” on page 70

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer, the
SAS System truncates it. If n is less than 1 or is missing, the procedure does not use
that observation to calculate statistics.

The sum of the frequency variable represents the total number of observations.

Note: The FREQ variable does not affect how PROC MEANS identifies multiple
extremes when you use the IDGROUP syntax in the OUTPUT statement. 4

ID Statement

Includes additional variables in the output data set.

ID variable(s);

Required Arguments

variable(s)
identifies one or more variables from the input data set whose maximum values for
groups of observations PROC MEANS includes in the output data set.

Interaction: Use IDMIN in the PROC statement to include the minimum value of
the ID variables in the output data set.

Tip: Use the PRINTIDVARS option in the PROC statement to include the value of
the ID variable in the displayed output.

640 OUTPUT Statement 4 Chapter 24

Selecting the Values of the ID Variables

When you specify only one variable in the ID statement, the value of the ID variable
for a given observation is the maximum (minimum) value found in the corresponding
group of observations in the input data set. When you specify multiple variables in the
ID statement, PROC MEANS selects the maximum value by processing the variables in
the ID statement in the order that you list them. PROC MEANS determines which
observation to use from all the ID variables by comparing the values of the first ID
variable. If more than one observation contains the same maximum (minimum) ID
value, PROC MEANS uses the second and subsequent ID variable values as "tie
breakers". In any case, all ID values are taken from the same observation for any given
BY group or classification level within a type.

See “Sorting Orders for Character Variables” on page 1012 for information on how
PROC MEANS compares character values to determine the maximum value.

OUTPUT Statement

Outputs statistics to a new SAS data set.

Tip: You can use multiple OUTPUT statements to create several OUT= data sets.

Featured in: Example 8 on page 672, Example 9 on page 674, Example 10 on page 676,
Example 11 on page 677, and Example 12 on page 680

OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>
<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ option(s)>;

Options

OUT=SAS-data-set
names the new output data set. If SAS-data-set does not exist, PROC MEANS
creates it. If you omit OUT=, the data set is named DATAn, where n is the smallest
integer that makes the name unique.

Default: DATAn

Tip: You can use data set options with OUT=.

output-statistic-specification(s)
specifies the statistics to store in the OUT= data set and names one or more
variables that contain the statistics. The form of the output-statistic-specification is

statistic-keyword<(variable-list)>=<name(s)>

where

statistic-keyword
specifies which statistic to store in the output data set. The available statistic
keywords are

The MEANS Procedure 4 OUTPUT Statement 641

Descriptive statistics keyword

CSS RANGE

CV SKEWNESS|SKEW

KURTOSIS|KURT STDDEV |STD

LCLM STDERR

MAX SUM

MEAN SUMWGT

MIN UCLM

N USS

NMISS VAR

Quantile statistics keyword

MEDIAN|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keyword

PROBT T

By default the statistics in the output data set automatically inherit the
analysis variable’s format, informat, and label. However, statistics computed for
N, NMISS, SUMWGT, USS, CSS, VAR, CV, T, PROBT, SKEWNESS, and
KURTOSIS will not inherit the analysis variable’s format because this format may
be invalid for these statistics (for example, dollar or datetime formats).

Restriction: If you omit variable and name(s) then PROC MEANS allows the
statistic-keyword only once in a single OUTPUT statement, unless you also use
the AUTONAME option.

Featured in: Example 8 on page 672, Example 9 on page 674, Example 11 on page
677, and Example 12 on page 680

variable-list
specifies the names of one or more numeric analysis variables whose statistics you
want to store in the output data set.

Default: all numeric analysis variables

name(s)
specifies one or more names for the variables in output data set that will contain
the analysis variable statistics. The first name contains the statistic for the first
analysis variable; the second name contains the statistic for the second analysis
variable; and so on.

Default: the analysis variable name. If you specify AUTONAME, the default is the
combination of the analysis variable name and the statistic-keyword.

Interaction: If you specify variable-list, PROC MEANS uses the order that you
specify the analysis variables to store the statistics in the output data set
variables.

Featured in: Example 8 on page 672

642 OUTPUT Statement 4 Chapter 24

Default: If you use the CLASS statement and an OUTPUT statement without an
output-statistic-specification, the output data set contains five observations for
each combination of class variables: the value of N, MIN, MAX, MEAN, and STD.
If you use the WEIGHT statement or the WEIGHT option in the VAR statement,
the output data set also contains an observation with the sum of weights
(SUMWGT) for each combination of class variables.

Tip: Use the AUTONAME option to have PROC MEANS generate unique names
for multiple variables and statistics.

id-group-specification
combines the features and extends the ID statement, the IDMIN option in the PROC
statement, and the MAXID and MINID options in the OUTPUT statement to create
an OUT= data set that identifies multiple extreme values. The form of the
id-group-specification is

IDGROUP (<MIN|MAX (variable–list-1) <…MIN|MAX (variable–list-n)>>
<<MISSING> <OBS> <LAST>> OUT <[n]>
(id-variable–list)=<name(s)>)

MIN|MAX(variable-list)
specifies the selection criteria to determine the extreme values of one or more
input data set variables specified in variable-list. Use MIN to determine the
minimum extreme value and MAX to determine the maximum extreme value.

When you specify multiple selection variables, the ordering of observations for
the selection of n extremes is done the same way that PROC SORT sorts data with
multiple BY variables. PROC MEANS concatenates the variable values into a
single key. The MAX(variable-list) selection criterion is similar to using PROC
SORT and the DESCENDING option in the BY statement.
Default: If you do not specify MIN or MAX, PROC MEANS uses the observation

number as the selection criterion to output observations.
Restriction: If you specify criteria that are contradictory, PROC MEANS only uses

the first selection criterion.
Interaction: When multiple observations contains the same extreme values in all

the MIN or MAX variables, PROC MEANS uses the observation number to
resolve which observation to output. By default, PROC MEANS outputs the
first observation to resolve any ties. However, if you specify the LAST option
then PROC MEANS outputs the last observation to resolve any ties.

LAST
specifies that the OUT= data set contains values from the last observation. The
OUT= data set may contain several observations because in addition to the value
of the last observation, PROC MEANS outputs values from the last observation of
each subgroup level that is defined by combinations of class variable values.
Interaction: When you specify MIN or MAX and when multiple observations

contain the same extreme values, PROC MEANS use the observation number to
resolve which observation to output. If you specify LAST, PROC MEANS
outputs the last observation to resolve any ties.

MISSING
specifies that missing values be used in selection criteria.
Alias: MISS

OBS
includes an _OBS_ variable in the OUT= data set that contains the number of the
observation in the input data set where the extreme value was found.
Interaction: If you use WHERE processing, the value of _OBS_ may not correspond

to the location of the observation in the input data set.

The MEANS Procedure 4 OUTPUT Statement 643

Interaction: If you use [n] to output multiple extreme values, PROC MEANS
creates n _OBS_ variables and uses the suffix n to create the variable names,
where n is a sequential integer from 1 to n.

[n]
specifies the number of extreme values for each variable in id-variable-list to
include in the OUT= data set. PROC MEANS creates n new variables and uses the
suffix _n to create the variable names, where n is a sequential integer from 1 to n.

By default, PROC MEANS determines one extreme value for each level of each
requested type. If n is greater than one, then n extremes are output for each level
of each type. When n is greater than one and you request extreme value selection,
the time complexity is �(T �N log

2
n) where T is the number of types

requested and N is the number of observations in the input data set. By
comparison, to group the entire data set, the time complexity is � (N log

2
N).

Default: 1
Range: an integer between 1 and 100
Example: To output two minimum extreme values for each variable, use

idgroup(min(x) out[2](x y z)=MinX MinY MinZ);

The OUT= data set contains the variables MinX_1, MinX_2, MinY_1, MinY_2,
MinZ_1, and MinZ_2.

(id-variable-list)
identifies one or more input data set variables whose values PROC MEANS
includes in the OUT= data set. PROC MEANS determines which observations to
output by the selection criteria that you specify (MIN, MAX, and LAST).

name(s)
specifies one or more names for variables in the OUT= data set.
Default: If you omit name, PROC MEANS uses the names of variables in the

id-variable-list.
Tip: Use the AUTONAME option to automatically resolve naming conflicts.

Alias: IDGRP
Requirement: You must specify the MIN|MAX selection criteria first and

OUT(id-variable-list)= after the suboptions MISSING, OBS, and LAST.
Tip: You can use id-group-specification to mimic the behavior of the ID statement

and a maximum-id-specification or mimimum-id-specification in the OUTPUT
statement.

Tip: When you want the output data set to contain extreme values along with other
id variables, it is more efficient to include them in the id-variable-list than to
request separate statistics. For example, the statement

output idgrp(max(x) out(x a b)=);

is more efficient than the statement

output idgrp(max(x) out(a b)=) max(x)=;

Featured in: Example 8 on page 672 and Example 12 on page 680

CAUTION:
The IDGROUP syntax allows you to create output variables with the same name. When
this happens, only the first variable appears in the output data set. Use the
AUTONAME option to automatically resolve these naming conflicts. 4

Note: If you specify fewer new variable names than the combination of analysis
variables and identification variables then the remaining output variables use the

644 OUTPUT Statement 4 Chapter 24

corresponding names of the ID variables as soon as PROC MEANS exhausts the list
of new variable names. 4

maximum-id-specification(s)
specifies that one or more identification variables be associated with the maximum
values of the analysis variables. The form of the maximum-id-specification is

MAXID <(variable-1 <(id-variable-list-1)> <…variable-n
<(id-variable-list–n)>>)> = name(s)

variable
identifies the numeric analysis variable whose maximum values PROC MEANS
determines. PROC MEANS may determine several maximum values for a variable
because, in addition to the overall maximum value, subgroup levels, which are
defined by combinations of class variables values, also have maximum values.
Tip: If you use an ID statement and omit variable, PROC MEANS uses all

analysis variables.

id-variable-list
identifies one or more variables whose values identify the observations with the
maximum values of the analysis variable.
Default: the ID statement variables

name(s)
specifies the names for new variables that contain the values of the identification
variable associated with the maximum value of each analysis variable.

Tip: If you use an ID statement, and omit variable and id-variable, PROC MEANS
associates all ID statement variables with each analysis variable. Thus, for each
analysis variable, the number of variables that are created in the output data set
equals the number of variables that you specify in the ID statement.

Tip: Use the AUTONAME option to automatically resolve naming conflicts.
Limitation: If multiple observations contain the maximum value within a class

level, PROC MEANS saves the value of the ID variable for only the first of those
observations in the output data set.

Featured in: Example 11 on page 677

CAUTION:
The MAXID syntax allows you to create output variables with the same name. When
this happens, only the first variable appears in the output data set. Use the
AUTONAME option to automatically resolve these naming conflicts. 4

Note: If you specify fewer new variable names than the combination of analysis
variables and identification variables then the remaining output variables use the
corresponding names of the ID variables as soon as PROC MEANS exhausts the list
of new variable names. 4

minid-specification
See the description of maximum-id-specification on page 644. This option behaves in
exactly the same way, except that PROC MEANS determines the minimum values
instead of the maximum values. The form of the minid-specification is

MINID<(variable-1 <(id-variable-list-1)> <…variable-n
<(id-variable-list–n)>>)> = name(s)

AUTOLABEL
specifies that PROC MEANS appends the statistic name to the end of the variable
label. If an analysis variable has no label, PROC MEANS creates a label by
appending the statistic name to the analysis variable name.

The MEANS Procedure 4 OUTPUT Statement 645

Featured in: Example 12 on page 680

AUTONAME
specifies that PROC MEANS creates a unique variable name for an output statistic
when you do not explicitly assign the variable name in the OUTPUT statement. This
is accomplished by appending the statistic-keyword to the end of the input variable
name from which the statistic was derived. For example, the statement

output min(x)=/autoname;

produces the x_Min variable in the output data set.
AUTONAME activates the SAS internal mechanism to automatically resolve

conflicts in the variable names in the output data set. Duplicate variables will not
generate errors. As a result, the statement

output min(x)= min(x)=/autoname;

produces two variables, x_Min and x_Min2, in the output data set.

Featured in: Example 12 on page 680

KEEPLEN
specifies that statistics in the output data set inherit the length of the analysis
variable that PROC MEANS uses to derive them.

CAUTION:
You permanently lose numeric precision when the length of the analysis variable causes
PROC MEANS to truncate or round the value of the statistic. However, the precision of
the statistic will match that of the input. 4

LEVELS
includes a variable named _LEVEL_ in the output data set. This variable contains a
value from 1 to n that indicates a unique combination of the values of class variables
(the values of _TYPE_ variable).

Main discussion: “Output Data Set” on page 655

Featured in: Example 8 on page 672

NOINHERIT
specifies that the variables in the output data set that contain statistics do not
inherit the attributes (label and format) of the analysis variables which are used to
derive them.

Tip: By default, the output data set includes an output variable for each analysis
variable and for five observations that contain N, MIN, MAX, MEAN, and
STDDEV. Unless you specify NOINHERIT, this variable inherits the format of the
analysis variable, which may be invalid for the N statistic (for example, datetime
formats).

WAYS
includes a variable named _WAY_ in the output data set. This variable contains a
value from 1 to the maximum number of class variables that indicates how many
class variables PROC MEANS combines to create the TYPE value.

Main discussion: “Output Data Set” on page 655

See also: “WAYS Statement” on page 647

Featured in: Example 8 on page 672

646 TYPES Statement 4 Chapter 24

TYPES Statement

Identifies which of the possible combinations of class variables to generate.

Main discussion: “Output Data Set” on page 655
Requirement: CLASS statement
Featured in: Example 2 on page 658, Example 5 on page 665, and Example 12 on page
680

TYPES request(s);

Required Arguments

request(s)
specifies which of the 2

k combinations of class variables PROC MEANS uses to
create the types, where k is the number of class variables. A request is composed of
one class variable name, several class variable names separated by asterisks, or ().

To request class variable combinations quickly, use a grouping syntax by placing
parentheses around several variables and joining other variables or variable
combinations. For example, the following statements illustrate grouping syntax:

Request Equivalent to

types A*(B C); types A*B A*C;

types (A B)*(C D); types A*C A*D B*C B*D;

types (A B C)*D; types A*D B*D C*D;

Interaction The CLASSDATA= option places constraints on the NWAY type. PROC
MEANS generates all other types as if derived from the resulting NWAY type.

Tip: Use ()to request the overall total (_TYPE_=0).
Tip: If you do not need all types in the output data set, use the TYPES statement to

specify specific subtypes rather than applying a WHERE clause to the data set.
This saves time and space.

VAR Statement

Identifies the analysis variables and their order in the output.

Default: If you omit the VAR statement, PROC MEANS analyzes all numeric variables
that are not listed in the other statements. When all variables are character variables,
PROC MEANS produces a simple count of observations.
Tip: You can use multiple VAR statements.
See also: Chapter 36, “The SUMMARY Procedure,” on page 1149
Featured in: Example 1 on page 657

The MEANS Procedure 4 WAYS Statement 647

VAR variable(s) </ WEIGHT=weight-variable>;

Required Arguments

variable(s)
identifies the analysis variables and specifies their order in the results.

Option

WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the variables that are
specified in the VAR statement. The variable does not have to be an integer. If the
value of the weight variable is

Weight value... PROC MEANS...

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the total
number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

The weight variable does not change how the procedure determines the range,
extreme values, or number of missing values.

Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC
statement.

Restriction: Skewness and kurtosis are not available with the WEIGHT option.

Tip: When you use the WEIGHT option, consider which value of the VARDEF=
option is appropriate. See the discussion of VARDEF= on page 633.

Tip: Use the WEIGHT option in multiple VAR statements to specify different
weights for the analysis variables.

Note: Prior to Version 7 of the SAS System, the procedure did not exclude the
observations with missing weights from the count of observations. 4

WAYS Statement

Specifies the number of ways to make unique combinations of class variables.

Tip: Use the TYPES statement to specify additional combinations of class variables.

Featured in: Example 6 on page 668

WAYS list;

648 WEIGHT Statement 4 Chapter 24

Required Arguments

list
specifies one or more integers that define the number of class variables to combine to
form all the unique combinations of class variables. For example, you can specify 2
for all possible pairs and 3 for all possible triples. The list can be specified in the
following ways:

m
m1 m2 … mn
m1,m2,…,mn
m TO n <BY increment>
m1,m2, TO m3 <BY increment>, m4

Range: 0 to maximum number of class variables
Example: To create the two way types for the classification variables A, C, and C use

class A B C ;
ways 2;

This is equilavent to specifying a*b, a*c, and b*c in the TYPES statement.
See also: WAYS option on page 645

WEIGHT Statement

Specifies weights for observations in the statistical calculations.

See also: For information on how to calculate weighted statistics and for an example
that uses the WEIGHT statement, see “WEIGHT” on page 73

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. If the value of the weight
variable is

Weight value… PROC MEANS…

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the
total number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

The MEANS Procedure 4 Using Class Variables 649

Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC
statement.

Restriction: Skewness and kurtosis are not available with the WEIGHT statement.
Interaction: If you use the WEIGHT= option in a VAR statement to specify a

weight variable, PROC MEANS uses this variable instead to weight those VAR
statement variables.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See the discussion of VARDEF= on page 633 and the
calculation of weighted statistics in “Keywords and Formulas” on page 1458 for
more information.
Note: Prior to Version 7 of the SAS System, the procedure did not exclude the

observations with missing weights from the count of observations. 4

Concepts

Using Class Variables
The TYPES statement controls which of the available class variables PROC MEANS

uses to subgroup the data. The unique combinations of these active class variable
values that occur together in any single observation of the input data set determine the
data subgroups. Each subgroup that PROC MEANS generates for a given type is called
a level of that type. Note, for all types the inactive class variables can still affect the
total observation count of the rejection of observations with missing values.

When you use a WAYS statement, PROC MEANS generates types that correspond to
every possible unique combination of n class variables chosen from the complete set of
class variables. For example

proc means;
class a b c d e;
ways 2 3;
run;

is equivalent to

proc means;
class a b c d e;
types a*b a*c a*d a*e b*c b*d b*e c*d c*e d*e

a*b*c a*b*d a*b*e a*c*d a*c*e a*d*e
b*c*d b*c*e c*d*e;

run;

If you omit the TYPES statement and the WAYS statement, PROC MEANS uses all
class variables to subgroup the data (the NWAY type) for displayed output and
computes all types (2k) for the output data set.

Ordering the Class Values
PROC MEANS determines the order of each class variable in any type by examining

the order of that class variable in the corresponding one-way type. You see the effect of
this behavior in the options ORDER=DATA or ORDER=FREQ. When PROC MEANS
subdivides the input data set into subsets, the classification process does not apply the

650 Computational Resources 4 Chapter 24

options ORDER=DATA or ORDER=FREQ independently for each subgroup. Instead,
one frequency and data order is established for all output based on an nonsubdivided
view of the entire data set. For example, consider the following statements:

data pets;
input Pet $ Gender $;
datalines;

dog m
dog f
dog f
dog f
cat m
cat m
cat f
;

proc means data=pets order=freq;
class pet gender;

run;

The statements produce this output.

The SAS System 1

The MEANS Procedure

N
Pet Gender Obs

dog f 3

m 1

cat f 1

m 2

In the example, PROC MEANS does not list male cats before female cats. Instead, it
determines the order of gender for all types over the entire data set. PROC MEANS
found more observations for female pets (f=4, m=3).

Computational Resources
PROC MEANS employs the same memory allocation scheme across all host

environments. When class variables are involved, PROC MEANS must keep a copy of
each unique value of each class variable in memory. You estimate the memory
requirements to group the class variable by calculating

Nc1 (Lc1 +K) +Nc2 (Lc2 +K) + :::+Ncn (Lcn +K)

where

Nci is the number of unique values for the class variable

Lci is the combined unformatted and formatted length of ci

The MEANS Procedure 4 Computational Resources 651

K is some constant on the order of 32 bytes (64 for 64-bit architectures).

When you use the GROUPINTERNAL option in the CLASS statement, Lci is simply
the unformatted length of ci.

Each unique combination of class variables, c1i c2j , for a given type forms a level in
that type (see “TYPES Statement” on page 646). You can estimate the maximum
potential space requirements for all levels of a given type, when all combinations
actually exist in the data (a complete type), by calculating

W �Nc1 �Nc2 � ::: �Ncn

where

W is a constant based on the number of variables analyzed and the
number of statistics calculated (unless you request QMETHOD=OS
to compute the quantiles).

Nc1:::Ncn are the number of unique levels for the active class variables of the
given type.

Clearly, the memory requirements of the levels overwhelm those of the class variables.
For this reason, PROC MEANS may open one or more utility files and write the levels
of one or more types to disk. These types are either the primary types that PROC
MEANS built during the input data scan or the derived types.

If PROC MEANS must write partially complete primary types to disk while it
processes input data, then one or more merge passes may be required to combine type
levels in memory with those on disk. In addition, if you use an order other than DATA
for any class variable, PROC MEANS groups the completed type on disk. For this
reason, the peak disk space requirements can be more than twice the memory
requirements for a given type.

When PROC MEANS uses a temporary work file, you will receive the following note
in the SAS log:

Processing on disk occurred during summarization.
Peak disk usage was approximately nnn Mbytes.
Adjusting SUMSIZE may improve performance.

In most cases processing ends normally.
When you specify class variables in a CLASS statement, the amount of

data-dependent memory that PROC MEANS uses before it writes to a utility file is
controlled by the SAS system option and PROC option SUMSIZE=. Like the system
option SORTSIZE=, SUMSIZE= sets the memory threshold where disk-based
operations begin. For best results, set SUMSIZE= to less than the amount of real
memory that is likely to be available for the task. For efficiency reasons, PROC
MEANS may internally round up the value of SUMSIZE=. SUMSIZE= has no effect
unless you specify class variables.

If PROC MEANS reports that there is insufficient memory, increase SUMSIZE=. A
SUMSIZE= value greater than MEMSIZE= will have no effect. Therefore, you may also
need to increase MEMSIZE=. If PROC MEANS reports insufficient disk space, increase
the WORK space allocation. See the SAS documentation for your operating environment
for more information on how to adjust your computation resource parameters.

652 Statistical Computations 4 Chapter 24

Statistical Computations

PROC MEANS uses single-pass algorithms to compute the moment statistics (such
as mean, variance, skewness, and kurtosis). See “Keywords and Formulas” on page
1458 for the statistical formulas.

The computational details for confidence limits, hypothesis test statistics, and
quantile statistics follow.

Confidence Limits
With the keywords CLM, LCLM, and UCLM, you can compute confidence limits for

the mean. A confidence limit is a range, constructed around the value of a sample
statistic, that contains the corresponding true population value with given probability
(ALPHA=) in repeated sampling.

A two-sided 100 (1� �)% confidence interval for the mean has upper and lower
limits

x� t(1��=2;n�1)
sp
n

where s is
q

1
n�1

P
(xi � x)2 and t(1��=2;n�1) is the (1� �=2) critical value of the

Student’s t statistics with n � 1 degrees of freedom.
A one-sided 100 (1� �)% confidence interval is computed as

x+ t(1��;n�1)
sp
n

(upper)

x� t(1��;n�1)
sp
n

(lower)

A two-sided 100 (1� �)% confidence interval for the standard deviation has lower
and upper limits

s

s
n� 1

�2
(1��=2;n�1)

; s

s
n� 1

�2
(�=2;n�1)

where �2
(1��=2;n�1) and �2

(�=2;n�1) are the (1� �=2) and �=2 critical values of the

chi-square statistic with n� 1 degrees of freedom. A one-sided 100 (1 � �)%
confidence interval is computed by replacing �=2 with �.

A 100 (1 � �)% confidence interval for the variance has upper and lower limits that
are equal to the squares of the corresponding upper and lower limits for the standard
deviation.

When you use the WEIGHT statement or WEIGHT= in a VAR statement and the
default value of VARDEF=, which is DF, the 100 (1� �)% confidence interval for the
weighted mean has upper and lower limits

The MEANS Procedure 4 Quantiles 653

yw � t(1��=2)
sws
nP
i=1

wi

where yw is the weighted mean, sw is the weighted standard deviation, wi is the
weight for ith observation, and t(1��=2) is the (1 � �=2) critical value for the
Student’s t distribution with n� 1 degrees of freedom.

Student’s t Test
PROC MEANS calculates the t statistic as

t =
x� �0
s=
p
n

where x is the sample mean, n is the number of nonmissing values for a variable, and s
is the sample standard deviation. Under the null hypothesis, the population mean
equals �0. When the data values are approximately normally distributed, the
probability under the null hypothesis of a t statistic as extreme, or more extreme, than
the observed value (the p–value) is obtained from the t distribution with n� 1 degrees
of freedom. For large n, the t statistic is asymptotically equivalent to a z test.

When you use the WEIGHT statement or WEIGHT= in a VAR statement and the
default value of VARDEF=, which is DF, the Student’s t statistic is calculated as

tw =
yw � �0

sw=

s
nP
i=1

wi

where yw is the weighted mean, sw is the weighted standard deviation, and wi is the
weight for ith observation. The tw statistic is treated as having a Student’s t
distribution with n� 1 degrees of freedom. If you specify the EXCLNPWGT option in
the PROC statement, n is the number of nonmissing observations when the value of the
WEIGHT variable is positive. By default, n is the number of nonmissing observations
for the WEIGHT variable.

Quantiles
The options QMETHOD=, QNTLDEF=, and QMARKERS= determine how PROC

MEANS calculates quantiles. QNTLDEF= deals with the mathematical definition of a
quantile. See “Calculating Percentiles” on page 1404. QMETHOD= deals with the
mechanics of how PROC MEANS handles the input data. The two methods are

OS
reads all data into memory and sorts it by unique value.

P2
accumulates all data into a fixed sample size that is used to approximate the
quantile.

654 Results 4 Chapter 24

If data set A has 100 unique values for a numeric variable X and data set B has 1000
unique values for numeric variable X then OMETHOD=OS for data set B will take 10
times as much memory as it does for data set A. If QMETHOD=P2, both data sets A
and B will require the same memory space to generate quantiles.

The QMETHOD=P2 technique is based on the piecewise-parabolic (P2) algorithm
invented by Jain and Chlamtac (1985). P2 is a one-pass algorithm to determine
quantiles for a large data set. It requires a fixed amount of memory for each variable
for each level within the type. However, using simulation studies, reliable estimations
of some quantiles (P1, P5, P95, P99) may not be possible for some data sets such as
those with heavily tailed or skewed distributions.

If the number of observations is less than the QMARKERS= value, QMETHOD=P2
produces the same results as QMETHOD=OS when QNTLDEF=5. To compute
weighted quantiles, you must use QMETHOD=OS.

Results

Missing Values
PROC MEANS excludes missing values for the analysis variables before calculating

statistics. Each analysis variable is treated individually; a missing value for an
observation in one variable does not affect the calculations for other variables. The
statements handle missing values as follows:

� If a class variable has a missing value for an observation, PROC MEANS excludes
that observation from the analysis unless you use the MISSING option in the
PROC statement or the CLASS statement.

� If a BY or an ID variable value is missing, PROC MEANS treats it like any other
BY or ID variable value. The missing values form a separate BY group.

� If a FREQ variable value is missing or nonpositive, PROC MEANS excludes the
observation from the analysis.

� If a WEIGHT variable value is missing, PROC MEANS excludes the observation
from the analysis.

PROC MEANS tabulates the number of the missing values. Before the number of
missing values are tabulated, PROC MEANS excludes observations with frequencies
that are nonpositive when you use the FREQ statement and observations with weights
that are missing or nonpositive (when you use the EXCLNPWGT option) when you use
the WEIGHT statement. To report this information in the procedure output use the
NMISS statistical keyword in the PROC statement.

Column Width for the Output
You control the column width for the displayed statistics with the FW= option in the

PROC statement. Unless you assign a format to a numeric class or an ID variable,
PROC MEANS uses the value of the FW= option. When you assign a format to a
numeric class or an ID variable, PROC MEANS determines the column width directly
from the format. If you use the PRELOADFMT option in the CLASS statement, PROC
MEANS determines the column width for a class variable from the assigned format.

The MEANS Procedure 4 Output Data Set 655

The N Obs Statistic
By default when you use a CLASS statement, PROC MEANS displays an additional

statistic called N Obs. This statistic reports the total number of observations or the
sum of the observations of the FREQ variable that PROC MEANS processes for each
class level. PROC MEANS may omit observations from this total due to missing values
in one or more class variables or due to the effect of the EXCLUSIVE option when you
use it with the PRELOADFMT option or the CLASSDATA= option. Because of this and
the exclusion of observations when the WEIGHT variable contains missing values,
there is not always a direct relationship between NObs, N, and NMISS.

In the output data set, the value of N Obs is stored in the _FREQ_ variable. Use the
NONOBS option in the PROC statement to suppress this information in the displayed
output.

Output Data Set
PROC MEANS can create one or more output data sets. The procedure does not

print the output data set. Use PROC PRINT, PROC REPORT, or another SAS reporting
tool to display the output data set.

Note: By default the statistics in the output data set automatically inherit the
analysis variable’s format and label. However, statistics computed for N, NMISS,
SUMWGT, USS, CSS, VAR, CV, T, PROBT, SKEWNESS, and KURTOSIS do not inherit
the analysis variable’s format because this format may be invalid for these statistics.
Use the NOINHERIT option in the OUTPUT statement to prevent the other statistics
from inheriting the format and label attributes. 4

The output data set can contain these variables:
� the variables specified in the BY statement.
� the variables specified in the ID statement.

� the variables specified in the CLASS statement.
� the variable _TYPE_ that contains information about the class variables. By

default _TYPE_ is a numeric variable. If you specify CHARTYPE in the PROC
statement, _TYPE_ is a character variable. When you use more than 32 class
variables, _TYPE_ is automatically a character variable.

� the variable _FREQ_ that contains the number of observations that a given output
level represents.

� the variables requested in the OUTPUT statement that contain the output
statistics and extreme values.

� the variable _STAT_ that contains the names of the default statistics if you omit
statistic keywords.

� the variable _LEVEL_ if you specify the LEVEL option.

� the variable _WAY_ if you specify the WAYS option.

The value of _TYPE_ indicates which combination of the class variables PROC
MEANS uses to compute the statistics. The character value of _TYPE_ is a series of
zeros and ones, where each value of one indicates an active class variable in the type.
For example, with three class variables, PROC MEANS represents type 1 as 001, type 5
as 101, and so on.

Usually, the output data set contains one observation per level per type. However, if
you omit statistical keywords in the OUTPUT statement, the output data set contains
five observations per level (six if you specify a WEIGHT variable). Therefore, the total

656 Output Data Set 4 Chapter 24

number of observations in the output data set is equal to the sum of the levels for all
the types you request multiplied by 1, 5, or 6, whichever is applicable.

If you omit the CLASS statement (_TYPE_ = 0), there is always exactly one level of
output per BY-group. If you use a CLASS statement, then the number of levels for each
type you request has an upper bound equal to the number of observations in the input
data set. By default, PROC MEANS generates all possible types. In this case the total
number of levels for each BY-group has an upper bound equal to

m �

�
2
k
� 1

�
� n+ 1

where k is the number of class variables and n is the number of observations for the
given BY group in the input data set and mis 1, 5, or 6.

PROC MEANS determines the actual number of levels for a given type from the
number of unique combinations of each active class variable. A single level is composed
of all input observations whose formatted class values match.

Figure 24.1 on page 656 shows the values of _TYPE_ and the number of observations
in the data set when you specify one, two, and three class variables.

Figure 24.1 The Effect of Class Variables on the OUTPUT Data Set

Character binary
equivalent of
TYPE
(CHARTYPE
option)

A ,B ,C=CLASS a, b, c,=number of levels of A, B, C,
variables respectively

on
e

CLASS
 v

ar
ia

bl
e

th
re

e
CLASS

 v
ar

ia
bl

es

tw
o

CLASS
 v

ar
ia

bl
es

Number of observations Total number of
Subgroup of this _TYPE_ and _WAY_ observations

C B A _WAY_ _TYPE_ defined by in the data set in the data set

0 0 0 0 0 Total 1

0 0 1 1 1 A a 1+a

0 1 0 1 2 B b

0 1 1 2 3 A*B a*b 1+a+b+a*b

1 0 0 1 4 C c

1 0 1 2 5 A*C a*c

1 1 0 2 6 B*C b*c 1+a+b+a*b+c

1 1 1 3 7 A*B*C a*b*c +a*c+b*c+a*b*c

The MEANS Procedure 4 Program 657

Examples

Example 1: Computing Specific Descriptive Statistics

Procedure features:
PROC MEANS statement options:

statistic keywords
FW=

VAR statement

This example
� specifies the analysis variables
� computes the statistics for the specified keywords and displays them in order
� specifies the field width of the statistics.

Program

options nodate pageno=1 linesize=80 pagesize=60;

The data set CAKE contains each participant’s last name and age, score for presentation, score
for taste, cake flavor, and number of cake layers for a cake-baking contest. The number of cake
layers is missing for two observations. The cake flavor is missing for another observation.

data cake;
input LastName $ 1-12 Age 13-14 PresentScore 16-17

TasteScore 19-20 Flavor $ 23-32 Layers 34 ;
datalines;

Orlando 27 93 80 Vanilla 1
Ramey 32 84 72 Rum 2
Goldston 46 68 75 Vanilla 1
Roe 38 79 73 Vanilla 2
Larsen 23 77 84 Chocolate .
Davis 51 86 91 Spice 3
Strickland 19 82 79 Chocolate 1
Nguyen 57 77 84 Vanilla .
Hildenbrand 33 81 83 Chocolate 1
Byron 62 72 87 Vanilla 2
Sanders 26 56 79 Chocolate 1
Jaeger 43 66 74 1
Davis 28 69 75 Chocolate 2
Conrad 69 85 94 Vanilla 1
Walters 55 67 72 Chocolate 2
Rossburger 28 78 81 Spice 2

658 Output 4 Chapter 24

Matthew 42 81 92 Chocolate 2
Becker 36 62 83 Spice 2
Anderson 27 87 85 Chocolate 1
Merritt 62 73 84 Chocolate 1
;

The statistic keywords specify the statistics and their order in the output. FW= uses a field
width of eight to display the statistics.

proc means data=cake n mean max min range std fw=8;

The VAR statement specifies the analysis variables and their order in the output.

var PresentScore TasteScore;
title ’Summary of Presentation and Taste Scores’;

run;

Output

PROC MEANS lists PresentScore first because this is the first variable specified in the VAR
statement. A field width of eight truncates the statistics to four decimal places.

Summary of Presentation and Taste Scores 1

The MEANS Procedure

Variable N Mean Maximum Minimum Range Std Dev
--
PresentScore 20 76.1500 93.0000 56.0000 37.0000 9.3768
TasteScore 20 81.3500 94.0000 72.0000 22.0000 6.6116
--

Example 2: Computing Descriptive Statistics with Class Variables
Procedure features:

PROC MEANS statement option:
MAXDEC=

CLASS statement
TYPES statement

This example
� analyzes the data for the two-way combination of class variables and across all

observations

The MEANS Procedure 4 Program 659

� limits the number of decimal places for the displayed statistics.

Program

options nodate pageno=1 linesize=80 pagesize=60;

The data set GRADE contains each student’s last name, gender, status of either undergraduate
(1) or graduate (2), expected year of graduation, class section (A or B), final exam score, and
final grade for the course.

data grade;
input Name $ 1-8 Gender $ 11 Status $13 Year $ 15-16

Section $ 18 Score 20-21 FinalGrade 23-24;
datalines;

Abbott F 2 97 A 90 87
Branford M 1 98 A 92 97
Crandell M 2 98 B 81 71
Dennison M 1 97 A 85 72
Edgar F 1 98 B 89 80
Faust M 1 97 B 78 73
Greeley F 2 97 A 82 91
Hart F 1 98 B 84 80
Isley M 2 97 A 88 86
Jasper M 1 97 B 91 93
;

MAXDEC= limits the displayed statistics to three decimal places.

proc means data=grade maxdec=3;

The CLASS statement separates the analysis by values of Status and Year.

class Status Year;

The TYPES statement requests the analysis across all the observations and the two-way
combination of Status and Year, which results in four levels.

types () status*year;

The VAR statement specifies the analysis variable.

var Score;
title ’Final Exam Grades for Student Status and Year of Graduation’;
run;

660 Output 4 Chapter 24

Output

PROC MEANS displays the default statistics for all the observations (_TYPE_=0) and the four
class levels of the Status and Year combination (Status=1, Year=97; Status=1, Year=98;
Status=2, Year=97; Status=2, Year=98).

Final Exam Grades for Student Status and Year of Graduation 1

The MEANS Procedure

Analysis Variable : Score

N
Obs N Mean Std Dev Minimum Maximum

10 10 86.000 4.714 78.000 92.000

Analysis Variable : Score

N
Status Year Obs N Mean Std Dev Minimum Maximum

1 97 3 3 84.667 6.506 78.000 91.000

98 3 3 88.333 4.041 84.000 92.000

2 97 3 3 86.667 4.163 82.000 90.000

98 1 1 81.000 . 81.000 81.000

Example 3: Using the BY Statement with Class Variables
Procedure features:

PROC MEANS statement option:
statistic keywords

BY statement
CLASS statement

Other features:
SORT procedure

Data set: GRADE on page 659

This example
� separates the analysis for the combination of class variables within BY values
� shows the sort order requirement for the BY statement
� calculates the minimum, maximum, and median.

Program

The MEANS Procedure 4 Program 661

options nodate pageno=1 linesize=80 pagesize=60;

PROC SORT sorts the observations by the variable Section. This is required to use Section as a
BY variable in the PROC MEANS step.

proc sort data=Grade out=GradeBySection;
by section;

run;

The statistic keywords specify the statistics and their order in the output.

proc means data=GradeBySection min max median;

The BY statement produces a separate analysis for each value of Section.

by section;

The CLASS statement separates the analysis by the values of Status and Year.

class Status Year;

The VAR statement specifies the analysis variable.

var Score;
title1 ’Final Exam Scores for Student Status and Year of Graduation’;
title2 ’ Within Each Section’;
run;

662 Output 4 Chapter 24

Output

Final Exam Scores for Student Status and Year of Graduation 1
Within Each Section

---------------------------------- Section=A -----------------------------------

The MEANS Procedure

Analysis Variable : Score

N
Status Year Obs Minimum Maximum Median

1 97 1 85.0000000 85.0000000 85.0000000

98 1 92.0000000 92.0000000 92.0000000

2 97 3 82.0000000 90.0000000 88.0000000

---------------------------------- Section=B -----------------------------------

Analysis Variable : Score

N
Status Year Obs Minimum Maximum Median

1 97 2 78.0000000 91.0000000 84.5000000

98 2 84.0000000 89.0000000 86.5000000

2 98 1 81.0000000 81.0000000 81.0000000

Example 4: Using a CLASSDATA= Data Set with Class Variables
Procedure features:

PROC MEANS statement options:
CLASSDATA=
EXCLUSIVE
FW=
MAXDEC=
PRINTALLTYPES

CLASS statement
Data set: CAKE on page 657

This example
� specifies the field width and decimal places of the displayed statistics
� uses only the values in CLASSDATA= data set as the levels of the combinations of

class variables
� calculates the range, median, minimum, and maximum
� displays all combinations of the class variables in the analysis.

The MEANS Procedure 4 Program 663

Program

options nodate pageno=1 linesize=80 pagesize=60;

The data set CAKETYPE contains the cake flavors and number of layers that must occur in the
PROC MEANS output.

data caketype;
input Flavor $ 1-10 Layers 12;
datalines;

Vanilla 1
Vanilla 2
Vanilla 3
Chocolate 1
Chocolate 2
Chocolate 3
;

FW= uses a field width of seven and MAXDEC= use zero decimal places to display the statistics.
CLASSDATA= and EXCLUSIVE restrict the class levels to the values in the CAKETYPE data
set. PRINTALLTYPES displays all combinations of class variables in the output.

proc means data=cake range median min max fw=7 maxdec=0
classdata=caketype exclusive printalltypes ;

The CLASS statement separates the analysis by the values of Flavor and Layers.

class flavor layers;

The VAR statement specifies the analysis variable.

var TasteScore;
Title ’Taste Score For Number of Layers and Cake Flavor’;

run;

664 Output 4 Chapter 24

Output

PROC MEANS calculates statistics for the 13 chocolate and vanilla cakes. Because the
CLASSDATA= data set contains 3 as the value of Layers, PROC MEANS uses 3 as a class value
even though the frequency is zero.

Taste Score For Number of Layers and Cake Flavor 1

The MEANS Procedure

Analysis Variable : TasteScore

N
Obs Range Median Minimum Maximum

13 22 80 72 94

Analysis Variable : TasteScore

N
Layers Obs Range Median Minimum Maximum

--
1 8 19 82 75 94

2 5 20 75 72 92

3 0
--

Analysis Variable : TasteScore

N
Flavor Obs Range Median Minimum Maximum

Chocolate 8 20 81 72 92

Vanilla 5 21 80 73 94

Analysis Variable : TasteScore

N
Flavor Layers Obs Range Median Minimum Maximum
--
Chocolate 1 5 6 83 79 85

2 3 20 75 72 92

3 0

Vanilla 1 3 19 80 75 94

2 2 14 80 73 87

3 0
--

The MEANS Procedure 4 Program 665

Example 5: Using Multi-label Value Formats with Class Variables
Procedure features:

PROC MEANS statement options:
statistic keywords
FW=
NONOBS

CLASS statement options:
MLF
ORDER=

TYPES statement
Other features

FORMAT procedure
FORMAT statement

Data set: CAKE on page 657

This example
� computes the statistics for the specified keywords and displays them in order
� specifies the field width of the statistics
� suppresses the column with the total number of observations
� analyzes the data for the one-way combination of cake flavor and the two-way

combination of cake flavor and participant’s age
� assigns user-defined formats to the class variables
� uses multi-label formats as the levels of class variables
� orders the levels of the cake flavors by the descending frequency count and orders

the levels of age by the ascending formatted values.

Program

options nodate pageno=1 linesize=80 pagesize=64;

PROC FORMAT creates user-defined formats to categorize the cake flavors and age of the
participants. MULTILABEL allows overlapping ranges for age.

proc format;
value $flvrfmt

’Chocolate’=’Chocolate’
’Vanilla’=’Vanilla’
’Rum’,’Spice’=’Other Flavor’;

value agefmt (multilabel)
15 - 29=’below 30 years’
30 - 50=’between 30 and 50’
51 - high=’over 50 years’
15 - 19=’15 to 19’
20 - 25=’20 to 25’
25 - 39=’25 to 39’

666 Program 4 Chapter 24

40 - 55=’40 to 55’
56 - high=’56 and above’;

run;

FW= uses a field width of six to display the statistics. The statistic keywords specify the
statistics and their order in the output. NONOBS suppresses the N Obs column.

proc means data=cake fw=6 n min max median nonobs;

The CLASS statements separate the analysis by values of Flavor and Age. ORDER=FREQ
orders the levels of Flavor by descending frequency count. ORDER=FMT orders the levels of Age
by ascending formatted values. MLF specifies that multi-label value formats be used for Age.

class flavor/order=freq;
class age /mlf order=fmt;

The TYPES statement requests the analysis for the one-way combination of Flavor and the
two-way combination of Flavor and Age.

types flavor flavor*age;

The VAR statement specifies the analysis variable.

var TasteScore;

The FORMAT statement assigns user-defined formats to Age and Flavor for this analysis.

format age agefmt. flavor $flvrfmt.;
title ’Taste Score for Cake Flavors and Participant’’s Age’;

run;

The MEANS Procedure 4 Output 667

Output

The one-way combination of class variables appears before the two-way combination. A field
width of six truncates the statistics to four decimal places. For the two-way combination of Age
and Flavor, the total number of observations is greater than the one-way combination of Flavor.
This is because of the multi-label format for age, which maps one internal value to more than
one formatted value.
The order of the levels of Flavor is based on the frequency count for each level. The order of the
levels of Age is based on the order of the user-defined formats.

Taste Score for Cake Flavors and Participant’s Age 1

The MEANS Procedure

Analysis Variable : TasteScore

Flavor N Min Max Median
--
Chocolate 9 72.00 92.00 83.00

Vanilla 6 73.00 94.00 82.00

Other Flavor 4 72.00 91.00 82.00
--

Analysis Variable : TasteScore

Flavor Age N Min Max Median

Chocolate 15 to 19 1 79.00 79.00 79.00

20 to 25 1 84.00 84.00 84.00

25 to 39 4 75.00 85.00 81.00

40 to 55 2 72.00 92.00 82.00

56 and above 1 84.00 84.00 84.00

below 30 years 5 75.00 85.00 79.00

between 30 and 50 2 83.00 92.00 87.50

over 50 years 2 72.00 84.00 78.00

Vanilla 25 to 39 2 73.00 80.00 76.50

40 to 55 1 75.00 75.00 75.00

56 and above 3 84.00 94.00 87.00

below 30 years 1 80.00 80.00 80.00

between 30 and 50 2 73.00 75.00 74.00

over 50 years 3 84.00 94.00 87.00

Other Flavor 25 to 39 3 72.00 83.00 81.00

40 to 55 1 91.00 91.00 91.00

below 30 years 1 81.00 81.00 81.00

between 30 and 50 2 72.00 83.00 77.50

over 50 years 1 91.00 91.00 91.00

668 Example 6: Using Preloaded Formats with Class Variables 4 Chapter 24

Example 6: Using Preloaded Formats with Class Variables

Procedure features:
PROC MEANS statement options:

COMPLETETYPES
FW=
MISSING
NONOBS

CLASS statement options:
EXCLUSIVE
ORDER=
PRELOADFMT

WAYS statement
Other features

FORMAT procedure
FORMAT statement

Data set: CAKE on page 657

This example
� specifies the field width of the statistics
� suppresses the column with the total number of observations
� includes all possible combinations of class variables values in the analysis even if

the frequency is zero
� considers missing values as valid class levels
� analyzes the one-way and two-way combinations of class variables
� assigns user-defined formats to the class variables
� uses only the preloaded range of user-defined formats as the levels of class

variables
� orders the results by the value of the formatted data.

Program

options nodate pageno=1 linesize=80 pagesize=64;

PROC FORMAT creates user-defined formats to categorize the number of cake layers and the
cake flavors. NOTSORTED keeps $FLVRFMT unsorted to preserve the original order of the
format values.

proc format;
value layerfmt 1=’single layer’

2-3=’multi-layer’
.=’unknown’;

value $flvrfmt (notsorted)
’Vanilla’=’Vanilla’
’Orange’,’Lemon’=’Citrus’

The MEANS Procedure 4 Program 669

’Spice’=’Spice’
’Rum’,’Mint’,’Almond’=’Other Flavor’;

run;

FW= uses a field width of seven to display the statistics. COMPLETETYPES includes class
levels with a frequency of zero. MISSING considers missing values valid values for all class
variables. NONOBS suppresses the N Obs column.

proc means data=cake fw=7 completetypes missing nonobs;

The CLASS statement separates the analysis by values of Flavor and Layers. PRELOADFMT
and EXCLUSIVE restrict the levels to the preloaded values of the user-defined formats.
ORDER=DATA orders the levels of Flavor and Layer by formatted data values.

class flavor layers/preloadfmt exclusive order=data;

The WAYS statement requests one-way and two–way combinations of class variables.

ways 1 2;

The VAR statement specifies the analysis variable.

var TasteScore;

The FORMAT statement assigns user-defined formats to Flavor and Layers for this analysis.

format layers layerfmt. flavor $flvrfmt.;
title ’Taste Score For Number of Layers and Cake Flavors’;

run;

670 Output 4 Chapter 24

Output

The one-way combination of class variables appears before the two-way combination. PROC
MEANS just reports the level values that are listed in the preloaded range of user-defined
formats even when the frequency of observations is zero (i.e., citrus). PROC MEANS rejects
entire observations based on the exclusion of any single class value in a given observation.
Therefore, when the number of layers is unknown, statistics are calculated for only one
observation. The other observation is excluded because the flavor chocolate was not included in
the preloaded user-defined format for Flavor.
The order of the levels is based on the order of the user-defined formats. PROC FORMAT
automatically sorted the Layers format and did not sort the Flavor format.

Taste Score For Number of Layers and Cake Flavors 1

The MEANS Procedure

Analysis Variable : TasteScore

Layers N Mean Std Dev Minimum Maximum
--
unknown 1 84.000 . 84.000 84.000

single layer 3 83.000 9.849 75.000 94.000

multi-layer 6 81.167 7.548 72.000 91.000
--

Analysis Variable : TasteScore

Flavor N Mean Std Dev Minimum Maximum
--
Vanilla 6 82.167 7.834 73.000 94.000

Citrus 0

Spice 3 85.000 5.292 81.000 91.000

Other Flavor 1 72.000 . 72.000 72.000
--

Analysis Variable : TasteScore

Flavor Layers N Mean Std Dev Minimum Maximum
--
Vanilla unknown 1 84.000 . 84.000 84.000

single layer 3 83.000 9.849 75.000 94.000

multi-layer 2 80.000 9.899 73.000 87.000

Citrus unknown 0

single layer 0

multi-layer 0

Spice unknown 0

single layer 0

multi-layer 3 85.000 5.292 81.000 91.000

Other Flavor unknown 0

single layer 0

multi-layer 1 72.000 . 72.000 72.000
--

The MEANS Procedure 4 Program 671

Example 7: Computing a Confidence Limit for the Mean

Procedure features:
PROC MEANS statement options:

ALPHA=
FW=
MAXDEC=

CLASS statement

This example
� specifies the field width and number of decimal places of the statistics
� computes a two-sided 90 percent confidence limit for the mean values of

MoneyRaised and HoursVolunteered for the three years of data.

If these data are representative of a larger population of volunteers, the confidence
limits provide ranges of likely values for the true population means.

Program

The data set CHARITY contains information about high-school students’ volunteer work for a
charity. The variables give the name of the high school, the year of the fundraiser, the first
name of each student, the amount of money each student raised, and the number of hours each
student volunteered. A DATA step on page 1494 creates this data set.

data charity;
input School $ 1-7 Year 9-12 Name $ 14-20 MoneyRaised 22-26

HoursVolunteered 28-29;
datalines;

Monroe 1992 Allison 31.65 19
Monroe 1992 Barry 23.76 16
Monroe 1992 Candace 21.11 5

.

. more lines of data

.
Kennedy 1994 Sid 27.45 25
Kennedy 1994 Will 28.88 21
Kennedy 1994 Morty 34.44 25
;

FW= uses a field width of eight and MAXDEC= uses two decimal places to display the statistics.
ALPHA=.1 specifies a 90% confidence limit, and the CLM keyword requests two-sided
confidence limits. MEAN and STD request the mean and the standard deviation, respectively.

proc means data=charity fw=8 maxdec=2 alpha=.1 clm mean std;

The CLASS statement separates the analysis by values of Year.

672 Output 4 Chapter 24

class Year;

The VAR statement specifies the analysis variables and their order in the output.

var MoneyRaised HoursVolunteered;
title ’Confidence Limits for Fund Raising Statistics’;
title2 ’1992-94’;

run;

Output

PROC MEANS displays the lower and upper confidence limits for both variables for each year.

Confidence Limits for Fund Raising Statistics 1
1992-94

The MEANS Procedure

N Lower 90% Upper 90%
Year Obs Variable CL for Mean CL for Mean Mean Std Dev

1992 31 MoneyRaised 25.21 32.40 28.80 11.79

HoursVolunteered 17.67 23.17 20.42 9.01

1993 32 MoneyRaised 25.17 31.58 28.37 10.69
HoursVolunteered 15.86 20.02 17.94 6.94

1994 46 MoneyRaised 26.73 33.78 30.26 14.23
HoursVolunteered 19.68 22.63 21.15 5.96

Example 8: Computing Output Statistics

Procedure features:
PROC MEANS statement option:

NOPRINT
CLASS statement
OUTPUT statement options

statistic keywords
IDGROUP
LEVELS
WAYS

Other features:
PRINT procedure

Data set: GRADE on page 659

The MEANS Procedure 4 Output 673

This example
� suppresses the display of default statistics
� outputs the average final grade to a new variable
� output the name of the student with the two final exam score to a new variable
� outputs how many class variables are combined to the _WAY_ variable
� outputs the value of the class level to the _LEVEL_ variable
� displays the output data set.

Program

options nodate pageno=1 linesize=80 pagesize=60;

NOPRINT suppresses the display of default statistics.

proc means data=Grade noprint;

The CLASS statement separates the analysis by values of Status and Year.

class Status Year;

The VAR statement specifies the analysis variable.

var finalgrade;

The OUTPUT statement creates the SUMSTAT data set and outputs the mean value for the
final grade to the new variable AverageGrade. IDGROUP outputs the name of the student with
the top exam score to the variable BestScore and the observation number that contained the top
score. WAYS and LEVELS output information on how the class variables are combined.

output out=sumstat mean=AverageGrade
idgroup (max(score) obs out (name)=BestScore)
/ways levels;

run;

PROC PRINT displays the SUMSTAT data set without the observation numbers.

proc print data=sumstat noobs;
title1 ’Average Undergraduate and Graduate Course Grades’;
title2 ’For Two Years’;

run;

Output

674 Example 9: Computing Different Output Statistics for Several Variables 4 Chapter 24

The first observation contains the average course grade and the name of the student with the
highest exam score over the two-year period. The next four observations contain values for each
class variable value. The remaining four observations contain values for the Year and Status
combination. The variables _WAY_, _TYPE_, and _LEVEL_ show how PROC MEANS created
the class variable combinations. The variable _OBS_ contains the observation number in the
GRADE data set that contained the highest exam score.

Average Undergraduate and Graduate Course Grades 1
For Two Years

Average Best
Status Year _WAY_ _TYPE_ _LEVEL_ _FREQ_ Grade Score _OBS_

0 0 1 10 83.0000 Branford 2
97 1 1 1 6 83.6667 Jasper 10
98 1 1 2 4 82.0000 Branford 2

1 1 2 1 6 82.5000 Branford 2
2 1 2 2 4 83.7500 Abbott 1
1 97 2 3 1 3 79.3333 Jasper 10
1 98 2 3 2 3 85.6667 Branford 2
2 97 2 3 3 3 88.0000 Abbott 1
2 98 2 3 4 1 71.0000 Crandell 3

Example 9: Computing Different Output Statistics for Several Variables
Procedure features:

PROC MEANS statement options:
DESCEND
NOPRINT

CLASS statement
OUTPUT statement options:

statistic keywords
Other features:

PRINT procedure
WHERE= data set option

Data set: GRADE on page 659

This example
� suppresses the display of default statistics
� outputs the statistics for the class level and combinations of class variables

specified by WHERE=
� orders observations in the output data set by descending _TYPE_ value
� outputs the mean exam scores and mean final grades without assigning new

variables names
� outputs the median final grade to a new variable
� displays the output data set.

Program

The MEANS Procedure 4 Output 675

options nodate pageno=1 linesize=80 pagesize=60;

NOPRINT suppresses the display of default statistics. DESCEND orders the observations in the
OUT= data set by descending _TYPE_ value.

proc means data=Grade noprint descend;

The CLASS statement separates the analysis by values of Status and Year.

class Status Year;

The VAR statement specifies the analysis variables.

var Score FinalGrade;

The OUTPUT statement outputs the mean for Score and FinalGrade to variables of the same
name. The median final grade is output to the variable MedianGrade. The WHERE= data set
option restricts the observations in SUMDATA. One observation contains overall statistics
(_type_=0). The remainder must have a status of 1.

output out=Sumdata (where=(status=’1’ or _type_=0))
mean= median(finalgrade)=MedianGrade;

run;

PROC PRINT displays the SUMDATA data set.

proc print data=Sumdata;
title ’Exam and Course Grades for Undergraduates Only’;
title2 ’and for All Students’;

run;

Output

The first three observations contain statistics for the class variable levels with a status of 1.
The last observation contains the statistics for all the observations (no subgroup). Score
contains the mean test score anf FinalGrade contains the mean final grade.

Exam and Course Grades for Undergraduates Only 1
and for All Students

Final Median
Obs Status Year _TYPE_ _FREQ_ Score Grade Grade

1 1 97 3 3 84.6667 79.3333 73
2 1 98 3 3 88.3333 85.6667 80
3 1 2 6 86.5000 82.5000 80
4 0 10 86.0000 83.0000 83

676 Example 10: Computing Output Statistics with Missing Class Variable Values 4 Chapter 24

Example 10: Computing Output Statistics with Missing Class Variable Values
Procedure features:

PROC MEANS statement options:
CHARTYPE
NOPRINT
NWAY

CLASS statement options:
ASCENDING
MISSING
ORDER=

OUTPUT statement
Other features:

PRINT procedure
Data set: CAKE on page 657

This example
� suppresses the display of default statistics
� considers missing values as valid level values for only one class variable
� orders observations in the output data set by the ascending frequency for a single

class variable
� outputs observations for only the highest _TYPE_ value
� outputs _TYPE_ as binary character values
� outputs the maximum taste score to a new variable
� displays the output data set.

Program

options nodate pageno=1 linesize=80 pagesize=60;

CHARTYPE outputs the _TYPE_ values as binary characters. NWAY outputs observations with
the highest _TYPE_ value. NOPRINT suppresses the display of default statistics.

proc means data=cake chartype nway noprint;

The CLASS statements separates the analysis by Flavor and Layers. ORDER=FREQ and
ASCENDING order the levels of Flavor by ascending frequency. MISSING uses missing values
of Layers as a valid class level value.

class flavor /order=freq ascending;
class layers /missing;

The VAR statement specifies the analysis variable.

The MEANS Procedure 4 Example 11: Identifying an Extreme Value with the Output Statistics 677

var TasteScore;

The OUTPUT statement creates the CAKESTAT data set and outputs the maximum value for
the taste score to the new variable HighScore.

output out=cakestat max=HighScore;
run;

PROC PRINT displays the CAKESTAT data set.

proc print data=cakestat;
title ’Maximum Taste Score for Flavor and Cake Layers’;

run;

Output

The OUT= output data set contains only observations for the combination of both class
variables, Flavor and Layers. Therefore, _TYPE_ contains the binary character string 11. The
observations are ordered by ascending frequency of Flavor. The missing value in Layers is a
valid value for this class variable. PROC MEANS excludes the observation with the missing
flavor because it an invalid value for Flavor.

Maximum Taste Score for Flavor and Cake Layers 1

High
Obs Flavor Layers _TYPE_ _FREQ_ Score

1 Rum 2 11 1 72
2 Spice 2 11 2 83
3 Spice 3 11 1 91
4 Vanilla . 11 1 84
5 Vanilla 1 11 3 94
6 Vanilla 2 11 2 87
7 Chocolate . 11 1 84
8 Chocolate 1 11 5 85
9 Chocolate 2 11 3 92

Example 11: Identifying an Extreme Value with the Output Statistics

Procedure features:
CLASS statement
OUTPUT statement options:

statistic keyword
MAXID

Other features:

678 Program 4 Chapter 24

PRINT procedure
Data set: CHARITY on page 671

This example
� identifies the observations with maximum values for two variables
� creates new variables for the maximum values
� displays the output data set.

Program

options nodate pageno=1 linesize=80 pagesize=60;

The statistic keywords specify the statistics and their order in the output.

proc means data=Charity n mean range;

The CLASS statement separates the analysis by School and Year.

class School Year;

The VAR statement specifies the analysis variables and their order in the output.

var MoneyRaised HoursVolunteered;

The OUTPUT statement outputs the new variables, MostCash and MostTime, which contain the
names of the students who collected the most money and volunteered the most time,
respectively, to the PRIZE data set.

output out=Prize maxid(MoneyRaised(name)
HoursVolunteered(name))= MostCash MostTime
max= ;

title ’Summary of Volunteer Work by School and Year’;
run;

PROC PRINT displays the PRIZE data set.

proc print data=Prize;
title ’Best Results: Most Money Raised and Most Hours Worked’;

run;

Output

The MEANS Procedure 4 Output 679

The first page of output shows the output from PROC MEANS with the statistics for six class
levels: one for Monroe High for the years 1992, 1993, and 1994; and one for Kennedy High for
each of the three years.

Summary of Volunteer Work by School and Year 1

The MEANS Procedure

N
School Year Obs Variable N Mean Range

Kennedy 1992 15 MoneyRaised 15 29.0800000 39.7500000

HoursVolunteered 15 22.1333333 30.0000000

1993 20 MoneyRaised 20 28.5660000 23.5600000
HoursVolunteered 20 19.2000000 20.0000000

1994 18 MoneyRaised 18 31.5794444 65.4400000
HoursVolunteered 18 24.2777778 15.0000000

Monroe 1992 16 MoneyRaised 16 28.5450000 48.2700000
HoursVolunteered 16 18.8125000 38.0000000

1993 12 MoneyRaised 12 28.0500000 52.4600000
HoursVolunteered 12 15.8333333 21.0000000

1994 28 MoneyRaised 28 29.4100000 73.5300000
HoursVolunteered 28 19.1428571 26.0000000

The output from PROC PRINT shows the maximum MoneyRaised and HoursVolunteered values
and the names of the students who are responsible for them. The first observation contains the
overall results, the next three contain the results by year, the next two contain the results by
school, and the final six contain the results by School and Year.

Best Results: Most Money Raised and Most Hours Worked 2

Most Most Money Hours
Obs School Year _TYPE_ _FREQ_ Cash Time Raised Volunteered

1 . 0 109 Willard Tonya 78.65 40
2 1992 1 31 Tonya Tonya 55.16 40
3 1993 1 32 Cameron Amy 65.44 31
4 1994 1 46 Willard L.T. 78.65 33
5 Kennedy . 2 53 Luther Jay 72.22 35
6 Monroe . 2 56 Willard Tonya 78.65 40
7 Kennedy 1992 3 15 Thelma Jay 52.63 35
8 Kennedy 1993 3 20 Bill Amy 42.23 31
9 Kennedy 1994 3 18 Luther Che-Min 72.22 33

10 Monroe 1992 3 16 Tonya Tonya 55.16 40
11 Monroe 1993 3 12 Cameron Myrtle 65.44 26
12 Monroe 1994 3 28 Willard L.T. 78.65 33

680 Example 12: Identifying the Top Three Extreme Values with the Output Statistics 4 Chapter 24

Example 12: Identifying the Top Three Extreme Values with the Output
Statistics

Procedure features:
PROC MEANS statement option:

NOPRINT
CLASS statement
OUTPUT statement options:

statistic keywords
AUTOLABEL
AUTONAME
IDGROUP

TYPES statement
Other features:

FORMAT procedure
FORMAT statement
PRINT procedure
RENAME = data set option

Data set: CHARITY on page 671

This example
� suppresses the display of default statistics
� analyzes the data for the one-way combination of the class variables and across all

observations
� outputs the total and average amount of money raised to new variables
� outputs to new variables the top three amounts of money raised, the names of the

three students who raised the money, the years when it occurred, and the schools
the students attended

� automatically resolves conflicts in the variable names when names are assigned to
the new variables in the output data set

� appends the statistic name to the label of the variables in the output data set that
contain statistics that were computed for the analysis variable.

� assigns a format to the analysis variable so that the statistics that are computed
from this variable inherit the attribute in the output data set

� renames the _FREQ_ variable in the output data set
� displays the output data set and its contents.

Program

options nodate pageno=1 linesize=80 pagesize=60;

PROC FORMAT creates user-defined formats that assign the value of All to the missing levels
of the class variables.

The MEANS Procedure 4 Program 681

proc format;
value yrFmt . = " All";
value $schFmt ’ ’ = "All ";

run;

NOPRINT suppresses the display of default statistics.

proc means data=Charity noprint;

The CLASS statement separates the analysis by values of School and Year.

class School Year;

The TYPES statement requests the analysis across all the observations and for each one-way
combination of School and Year.

types () school year;

The VAR statement specifies the analysis variable.

var moneyraised;

The OUTPUT statement creates the TOP3LIST data set. RENAME= renames the _FREQ_
variable that contains frequency count for each class level. SUM= and MEAN= specify that the
sum of money raised and the mean of money raised are output to automatically name the new
variables. IDGROUP outputs 12 variables that contain the top three amounts of money raised
and the three corresponding students, schools, and years. AUTOLABEL appends the analysis
variable name to the label for the output variables that contain the sum and mean.
AUTONAME resolves naming conflicts for these variables.

output out=top3list(rename=(_freq_=NumberStudents))sum= mean=
idgroup(max(moneyraised) out[3] (moneyraised name

school year)=)/autolabel autoname;

The FORMAT statement assigns user-defined formats to Year and School and a SAS dollar
format to MoneyRaised. The LABEL statement assigns a label to the analysis variable
MoneyRaised.

label MoneyRaised=’Amount Raised’;
format year yrfmt. school $schfmt.

moneyraised dollar8.2;
run;

PROC PRINT displays the TOP3LIST data set.

682 Output 4 Chapter 24

proc print data=top3list;
title1 ’School Funding Raising Report’;
title2 ’Top Three Students’;

run;

PROC DATASETS displays the contents of the TOP3LIST data set. NOLIST suppresses the
directory listing for the WORK data library.

proc datasets library=work nolist;
contents data=top3list;
title1 ’Contents of the PROC MEANS Output Data Set’;

run;

Output

The output from PROC PRINT shows the top three values of MoneyRaised, the names of the
students who raised these amounts, the schools the students attended, and the years when the
money was raised. The first observation contains the overall results, the next three contain the
results by year, and the final two contain the results by school. The missing class levels for
School and Year are replaced with the value of ALL.

School Funding Raising Report 1
Top Three Students

Money Money
Number Raised_ Raised_ Money Money Money

Obs School Year _TYPE_ Students Sum Mean Raised_1 Raised_2 Raised_3

1 All All 0 109 $3192.75 $29.29 $78.65 $72.22 $65.44
2 All 1992 1 31 $892.92 $28.80 $55.16 $53.76 $52.63
3 All 1993 1 32 $907.92 $28.37 $65.44 $47.33 $42.23
4 All 1994 1 46 $1391.91 $30.26 $78.65 $72.22 $56.87
5 Kennedy All 2 53 $1575.95 $29.73 $72.22 $52.63 $43.89
6 Monroe All 2 56 $1616.80 $28.87 $78.65 $65.44 $56.87

Obs Name_1 Name_2 Name_3 School_1 School_2 School_3 Year_1 Year_2 Year_3

1 Willard Luther Cameron Monroe Kennedy Monroe 1994 1994 1993
2 Tonya Edward Thelma Monroe Monroe Kennedy 1992 1992 1992
3 Cameron Myrtle Bill Monroe Monroe Kennedy 1993 1993 1993
4 Willard Luther L.T. Monroe Kennedy Monroe 1994 1994 1994
5 Luther Thelma Jenny Kennedy Kennedy Kennedy 1994 1992 1992
6 Willard Cameron L.T. Monroe Monroe Monroe 1994 1993 1994

The MEANS Procedure 4 Output 683

The labels for the variables that contain statistics that were computed from MoneyRaised
include the statistic name at the end of the label.

School Funding Raising Report 1
Top Three Students

Money Money
Number Raised_ Raised_ Money Money Money

Obs School Year _TYPE_ Students Sum Mean Raised_1 Raised_2 Raised_3

1 All All 0 109 $3192.75 $29.29 $78.65 $72.22 $65.44
2 All 1992 1 31 $892.92 $28.80 $55.16 $53.76 $52.63
3 All 1993 1 32 $907.92 $28.37 $65.44 $47.33 $42.23
4 All 1994 1 46 $1391.91 $30.26 $78.65 $72.22 $56.87
5 Kennedy All 2 53 $1575.95 $29.73 $72.22 $52.63 $43.89
6 Monroe All 2 56 $1616.80 $28.87 $78.65 $65.44 $56.87

Obs Name_1 Name_2 Name_3 School_1 School_2 School_3 Year_1 Year_2 Year_3

1 Willard Luther Cameron Monroe Kennedy Monroe 1994 1994 1993
2 Tonya Edward Thelma Monroe Monroe Kennedy 1992 1992 1992
3 Cameron Myrtle Bill Monroe Monroe Kennedy 1993 1993 1993
4 Willard Luther L.T. Monroe Kennedy Monroe 1994 1994 1994
5 Luther Thelma Jenny Kennedy Kennedy Kennedy 1994 1992 1992
6 Willard Cameron L.T. Monroe Monroe Monroe 1994 1993 1994

684 References 4 Chapter 24

Contents of the PROC MEANS Output Data Set 2

The DATASETS Procedure

Data Set Name: WORK.TOP3LIST Observations: 6
Member Type: DATA Variables: 18
Engine: V8 Indexes: 0
Created: 14:41 Tuesday, May 4, 1999 Observation Length: 144
Last Modified: 14:41 Tuesday, May 4, 1999 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

-----Engine/Host Dependent Information-----

Data Set Page Size: 16384
Number of Data Set Pages: 1
First Data Page: 1
Max Obs per Page: 113
Obs in First Data Page: 6
Number of Data Set Repairs: 0
File Name: UNIX-pathname
Release Created: 8.00.00B
Host Created: HP-UX
Inode Number: 313604
Access Permission: rw-r--r--
Owner Name: UNIX-userid
File Size (bytes): 24576

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label

7 MoneyRaised_1 Num 8 40 DOLLAR8.2 Amount Raised
8 MoneyRaised_2 Num 8 48 DOLLAR8.2 Amount Raised
9 MoneyRaised_3 Num 8 56 DOLLAR8.2 Amount Raised
6 MoneyRaised_Mean Num 8 32 DOLLAR8.2 Amount Raised_Mean
5 MoneyRaised_Sum Num 8 24 DOLLAR8.2 Amount Raised_Sum

10 Name_1 Char 7 95
11 Name_2 Char 7 102
12 Name_3 Char 7 109

4 NumberStudents Num 8 16
1 School Char 7 88 $SCHFMT.

13 School_1 Char 7 116 $SCHFMT.
14 School_2 Char 7 123 $SCHFMT.
15 School_3 Char 7 130 $SCHFMT.

2 Year Num 8 0 YRFMT.
16 Year_1 Num 8 64 YRFMT.
17 Year_2 Num 8 72 YRFMT.
18 Year_3 Num 8 80 YRFMT.

3 _TYPE_ Num 8 8

See the TEMPLATE procedure in The Complete Guide to the SAS Output Delivery
System for an example of how to create a custom table definition for this output data set.

References

Jain R. and Chlamtac I., (1985) “The P2 Algorithm for Dynamic Calculation of
Quantiles and Histograms Without Sorting Observations,” Communications of the
Association of Computing Machinery, 28:10.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–482–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

