1151

CHAPTER

37

The TABULATE Procedure

Overview 1152
Terminology 1155
Procedure Syntax 1157
PROC TABULATE Statement 1158
BY Statement 1166
CLASS Statement 1167
CLASSLEV Statement 1170
FREQ Statement 1171
KEYLABEL Statement 1171
KEYWORD Statement 1172
TABLE Statement 1173
VAR Statement 1179
WEIGHT Statement 1181
Concepts 1181
Statistics Available in PROC TABULATE 1181
Formatting Class Variables 1182
Formatting Values in Tables 1183
How Using BY-group Processing Differs from Using the Page Dimension 1183
Calculating Percentages 1184
Specifying a Denominator for the PCTN Statistic 1185
Specifying a Denominator for the PCTSUM Statistic 1186
Using Style Elements in PROC TABULATE 1188
Results 1189
Missing Values 1189
No Missing Values 1190
A Missing Class Variable 1191
Including Observations with Missing Class Variables 1192
Formatting Headings for Observations with Missing Class Variables 1193
Providing Headings for All Categories 1194
Providing Text for Cells That Contain Missing Values 1195
Providing Headings for All Values of a Format 1196
Understanding the Order of Headings with ORDER=DATA 1198
Examples 1199
Example 1: Creating a Basic Two-Dimensional Table 1199
Example 2: Specifying Class Variable Combinations to Appear in a Table 1201
Example 3: Using Preloaded Formats with Class Variables 1203
Example 4: Using Multilabel Formats 1208
Example 5: Customizing Row and Column Headings 1210
Example 6: Summarizing Information with the Universal Class Variable ALL 1212
Example 7: Eliminating Row Headings 1214
Example 8: Indenting Row Headings and Eliminating Horizontal Separators 1216

1152 Overview A Chapter 37

Example 9: Creating Multipage Tables 1218
Example 10: Reporting on Multiple-Response Survey Data 1220
Example 11: Reporting on Multiple-Choice Survey Data 1224
Example 12: Calculating Various Percentage Statistics 1230
Example 13: Using Denominator Definitions to Display Basic Frequency Counts and
Percentages 1233
Example 14: Specifying Style Elements for HTML Output 1243
References 1245

Overview

The TABULATE procedure displays descriptive statistics in tabular format, using
some or all of the variables in a data set. You can create a variety of tables ranging
from simple to highly customized.

PROC TABULATE computes many of the same statistics that are computed by other
descriptive statistical procedures such as MEANS, FREQ, and REPORT. PROC
TABULATE provides

o simple but powerful methods to create tabular reports

0 flexibility in classifying the values of variables and establishing hierarchical
relationships between the variables

0 mechanisms for labeling and formatting variables and procedure-generated
statistics.

Output 37.1 on page 1152 shows a simple table that was produced by PROC
TABULATE. The data set on page 1199 contains data on expenditures of energy by two
types of customers, residential and business, in individual states in the Northeast (1)
and West (4) regions of the United States. The table sums expenditures for states
within a geographic division. (The RTS option provides enough space to display the
column headers without hyphenating them.)

options nodate pageno=1 linesize=64
pagesize=40;

proc tabulate data=energy;
class region division type;
var expenditures;
table region*division, type*expenditures /
rts=20;

run;

The TABULATE Procedure /A Qverview

Output 37.1 Simple Table Produced by PROC TABULATE

The SAS System

1 |1
[—
|2

________ Fmmm e ——

4 |3
[E—
|4

Type
1 | 2
____________ e
Expenditures |Expenditures
____________ e
Sum | Sum
____________ e
I
I
7477.00| 5129.00
____________ e
19379.00] 15078.00
____________ B
5476.00| 4729.00
____________ e
13959.00] 12619.00

1153

Output 37.2 on page 1153 is a more complicated table using the same data set that
was used to create Output 37.1 on page 1152. The statements that create this report

O customize column and row headers

O
O

apply a format to all table cells
sum expenditures for residential and business customers

O compute subtotals for each division

O compute totals for all regions.

For an explanation of the program that produces this report, see Example 6 on page

1212.

1154 Overview A Chapter 37

Output 37.2 Complex Table Produced by PROC TABULATE

Energy Expenditures for Each Region 1
(millions of dollars)
| Customer Base |
I |
|Residential | Business | All
| Customers | Customers | Customers
----------------------- e B
Region Division | | |
——————————— $ommmmmmmee | | |
Northeast |New England| 7,477| 5,129 12,606
----------- T T
Middle | | |
Atlantic | 19,379] 15,078] 34,457
----------- e e
Subtotal | 26,856 20,207] 47,063
----------- A e
West Division | | |
——————————— | | |
Mountain | 5,476 | 4,729 10,205
----------- e e
Pacific | 13,959] 12,619] 26,578
----------- e e
Subtotal | 19,435] 17,348] 36,783
----------------------- e e
Total for All Regions | $46,291| $37,555| $83,846

Display 37.1 on page 1154 shows a table created with HTML. Beginning with Version
7 of the SAS System, you can use the Output Delivery System to create customized
HTML files from PROC TABULATE. For an explanation of the program that produces
this table, see Example 14 on page 1243.

Display 37.1 HTML Table Produced by PROC TABULATE

Energy Expenditures
(milhons of dollars)
Type
Total
Residential Customers ; Business Customers
Region by Division by Type
Expenditu E i Expenditu
Sum. Sum Sum.
Region Division
Northeast ;| New England 37,477 35,129 $12,606
Middle Atlantic $19,379 $15,078 $34,457
Total $26,856 20,207 $47 063
West Division
Mountain 35,476 34,729 $10,205
Pacific $13,959 $12,619 $26,578
Total $19,435 $17,348 436,783
Total Division
New England 37,477 35,129 $12,606
Middle Atlantic $19,379 $15,078 $34,457
Mountain $5,476 $4,729 $10,205
Pacific $13,959 $12,612 $26,578
Total 346,201 437,555 183,846
e : =]

The TABULATE Procedure /A Terminology 1155

Terminology

Figure 37.1 on page 1155 illustrates some of the terms that are commonly used in
discussions of PROC TABULATE.

Figure 37.1 lllustration of Terms Used to Discuss PROC TABULATE

Column headings Column

The SAS|System 1

|Residential| Business |
e e
| Customers | Customers |

+ + |

Region |Division | | |
Y I —

Northeast |[New England| $7,477| $5,129 |

S ——

[Middle | | |

|[Atlantic | $19,379] $15,078 |

+ + + s |
\West IMountain |~ $5476| $4,729]

[s +. [

|Pacific | $13,959 $12,619 |

Row Row headings Cell

In addition, the following terms frequently appear in discussions of PROC
TABULATE:

category
the combination of unique values of class variables. The TABULATE procedure
creates a separate category for each unique combination of values that exists in
the observations of the data set. Each category that is created by PROC
TABULATE is represented by one or more cells in the table where the pages, rows,
and columns that describe the category intersect.

The table in Figure 37.1 on page 1155 contains three class variables: Region,
Division, and Type. These class variables form the eight categories listed in Table
37.1 on page 1156. (For convenience, the categories are described in terms of their
formatted values.)

1156 Terminology A Chapter 37

Table 37.1 Categories Created from Three Class Variables

Region Division Type

Northeast New England Residential Customers
Northeast New England Business Customers
Northeast Middle Atlantic Residential Customers
Northeast Middle Atlantic Business Customers
West Mountain Residential Customers
West Mountain Business Customers
West Pacific Residential Customers
West Pacific Business Customers

continuation message
is the text that appears below the table if it spans multiple physical pages.

A continuation message has a style. The default style is Aftercaption. For more
information about using styles, see STYLE= on page 1164 in the PROC
TABULATE statement and “Using Style Elements in PROC TABULATE” on page
1188.

nested variable
a variable whose values appear in the table with each value of another variable.
In Figure 37.1 on page 1155, Division is nested under Region.

page dimension text
is the text that appears above the table if the table has a page dimension.
However, if you specify BOX=_PAGE_ in the TABLE statement, the text that
would appear above the table appears in the box.

Page dimension text has a style. The default style is Beforecaption. For more
information about using styles, see STYLE= on page 1164 in the PROC
TABULATE statement and “Using Style Elements in PROC TABULATE” on page
1188.

subtable
the group of cells that is produced by crossing a single element from each
dimension of the TABLE statement when one or more dimensions contain
concatenated elements.
Figure 37.1 on page 1155 contains no subtables. For an illustration of a table
that is composed of multiple subtables, see Figure 37.17 on page 1238.

The TABULATE Procedure /A Procedure Syntax 1157

Procedure Syntax

Requirements: At least one TABLE statement is required.

Requirements: Depending on the variables that appear in the TABLE statement, a
CLASS statement, a VAR statement, or both are required.

Tip: Supports the Output Delivery System (see Chapter 2, "Fundamental Concepts for
Using Base SAS Procedures")

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, "Statements with the Same Function in Multiple Procedures," for details.
You can also use any global statements as well. See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures," for a list.

PROC TABULATE <option(s)>;

BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

CLASS variable(s) </ options>;

CLASSLEV variable(s) / style =<style-element-name | <PARENT>>
<[style-attribute-specification(s)]>;

FREQ variable;

KEYLABEL keyword-1="description-1’
<...keyword-n="description-n’>;

KEYWORD keyword(s) / style =<style-element-name | <PARENT>>
<[style-attribute-specification(s)]>;

TABLE <<page-expression,> row-expression,> column-expression </ table-option(s)>;

VAR analysis-variable(s)</ options>;

WEIGHT variable;

To do this Use this statement
Create a separate table for each BY group BY

Identify variables in the input data set as class CLASS

variables

Specify a style for class variable level value headings CLASSLEV

Identify a variable in the input data set whose values = FREQ
represent the frequency of each observation

Specify a label for a keyword KEYLABEL
Specify a style for keyword headings KEYWORD
Describe the table to create TABLE

PROC TABULATE Statement

A Chapter 37

To do this

Use this statement

Identify variables in the input data set as analysis
variables

Identify a variable in the input data set whose values
weight each observation in the statistical calculations

VAR

WEIGHT

PROC TABULATE Statement

PROC TABULATE <option(s)>;

To do this

Use this option

Customize the HTML contents link to the output
Specify the input data set

Disable floating point exception recovery

Specify the output data set

Enable floating point exception recovery

Identify categories of data that are of interest

Specify a secondary data set that contains the
combinations of values of class variables to
include in tables and output data sets

Exclude from tables and output data sets all
combinations of class variable values that are
not in the CLASSDATA= data set

Consider missing values as valid values for class
variables

Control the statistical analysis
Exclude observations with nonpositive weights

Specify the sample size to use for the P2
quantile estimation method

Specify the quantile estimation method

Specify the mathematical definition to calculate
quantiles

Specify the variance divisor
Customize the appearance of the table
Specify a default format for each cell in the table

Define the characters to use to construct the
table outlines and dividers

Eliminate horizontal separator lines from the
row titles and the body of the table

CONTENTS=
DATA=
NOTRAP
OUT=

TRAP

CLASSDATA=

EXCLUSIVE

MISSING

EXCLNPWGTS
QMARKERS=

QMETHOD=
QNTLDEF=

VARDEF=

FORMAT=
FORMCHAR=

NOSEPS

The TABULATE Procedure /A PROC TABULATE Statement 1159

To do this Use this option

Order the values of a class variable according to ORDER=
the specified order

Specify the default style element or style STYLE=
elements (for the Output Delivery System) to
use for each cell of the table

Options

CLASSDATA=SAS-data-set
specifies a data set that contains the combinations of values of the class variables
that must be present in the output. Any combinations of values of the class variables
that occur in the CLASSDATA= data set but not in the input data set appear in each
table or output data set and have a frequency of zero.

Restriction: The CLASSDATA= data set must contain all class variables. Their
data type and format must match the corresponding class variables in the input
data set.

Interaction: If you use the EXCLUSIVE option, PROC TABULATE excludes any
observations in the input data set whose combinations of class variables is not in
the CLASSDATA= data set.

Tip: Use the CLASSDATA= data set to filter or supplement the input data set.
Featured in: Example 2 on page 1201
CONTENTS=link-name

allows you to name the link in the HTML table of contents that points to the ODS
output of the first table that was produced using the TABULATE procedure.

Restrictions: CONTENTS= has no effect on TABULATE procedure reports.

DATA=SAS-data-set
specifies the input data set.

Main Discussion: “Input Data Sets” on page 18
EXCLNPWGTS
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC TABULATE treats observations with negative weights
like those with zero weights and counts them in the total number of observations.
Alias: EXCLNPWGT
See also: WEIGHT= on page 1180 and “WEIGHT Statement” on page 1181
EXCLUSIVE

excludes from the tables and the output data sets all combinations of the class
variable that are not found in the CLASSDATA= data set.

Requirement: If a CLASSDATA= data set is not specified, this option is ignored.
Featured in: Example 2 on page 1201
FORMAT=format-name

specifies a default format for the value in each table cell. You can use any SAS or
user-defined format.

Default: If you omit FORMAT=, PROC TABULATE uses BEST12.2 as the default
format.

Interaction: Formats that are specified in a TABLE statement override the format
that is specified with FORMAT=.

1160 PROC TABULATE Statement A Chapter 37

Tip: This option is especially useful for controlling the number of print positions
that are used to print a table.

Featured in: Example 1 on page 1199 and Example 6 on page 1212

FORMCHAR <(position(s))>="formatting-character(s)’
defines the characters to use for constructing the table outlines and dividers.

position(s)

identifies the position of one or more characters in the SAS formatting-character

string. A space or a comma separates the positions.

Default: Omitting position(s) is the same as specifying all 20 possible SAS
formatting characters, in order.

Range: PROC TABULATE uses 11 of the 20 formatting characters that SAS
provides. Table 37.2 on page 1160 shows the formatting characters that PROC
TABULATE uses. Figure 37.2 on page 1161 illustrates the use of each
formatting character in the output from PROC TABULATE.

formatting-character(s)
lists the characters to use for the specified positions. PROC TABULATE assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For example, the following option assigns the asterisk (*) to the third
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(3,7)="*#"'

Interaction: The SAS system option FORMCHAR-= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR-= option in a procedure can redefine selected characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, you must put an x after the closing
quote. For instance, the following option assigns the hexadecimal character 2D to
the third formatting character, the hexadecimal character 7C to the seventh
character, and does not alter the remaining characters:

formchar(3,7)='2D7C’'x

Tip: Specifying all blanks for formatting-character(s) produces tables with no
outlines or dividers.

formchar(1,2,3,4,5,6,7,8,9,10,11)
=’ " (11 blanks)

See also: For more information on formatting output, see Chapter 5 “Controlling
the Table’s Appearance” in the SAS Guide to TABULATE Processing.
For information on which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 37.2 Formatting Characters Used by PROC TABULATE

Position Default Used to draw

1 | the right and left borders and the vertical separators
between columns

2 - the top and bottom borders and the horizontal separators
between rows

The TABULATE Procedure /A PROC TABULATE Statement 1161

Position Default Used to draw

3 - the top character in the left border

4 - the top character in a line of characters that separate
columns

5 - the top character in the right border

6 the leftmost character in a row of horizontal separators

7 + the intersection of a column of vertical characters and a

row of horizontal characters

8 the rightmost character in a row of horizontal separators

9 - the bottom character in the left border

10 - the bottom character in a line of characters that separate
columns

11 - the bottom character in the right border

Figure 37.2 Formatting Characters in PROC TABULATE Output

Region |Dijvision | |

[— Q|
1 [Northeast |[New England| $12,60
___________ +__________| o)
O |Mid Ol |
| |Atlantic | $34,457|
P + + |

/‘IJ 1
6\1V\Ie\st'ﬂntain | $10,205| 8
| @rereree| o’

| |Pacific | $26,578|

O O
97 10 M1

MISSING
considers missing values as valid values to create the combinations of class variables.
Special missing values that are used to represent numeric values (the letters A
through Z and the underscore (_) character) are each considered as a separate value.
A heading for each missing value appears in the table.

Default: If you omit MISSING, PROC TABULATE does not include observations
with a missing value for any class variable in the report.

Main Discussion: “Including Observations with Missing Class Variables” on page
1192

See also: SAS Language Reference: Concepts for a discussion of missing values that
have special meaning.

1162

PROC TABULATE Statement A Chapter 37

NOSEPS
eliminates horizontal separator lines from the row titles and the body of the table.
Horizontal separator lines remain between nested column headers.

Tip: If you want to replace the separator lines with blanks rather than remove
them, use the FORMCHAR= option on page 1160.

Featured in: Example 8 on page 1216

NOTRAP
disables floating point exception (FPE) recovery during data processing. Note that
normal SAS System FPE handling is still in effect so that PROC TABULATE
terminates in the case of math exceptions.

Default: FPE recovery is disabled.

Tip: In operating environments where the overhead of FPE recovery is significant,
NOTRAP can improve performance.

See also: TRAP on page 1165

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the sort order to create the unique combinations of the values of the class
variables, which form the headings of the table, according to the specified order.

DATA
orders values according to their order in the input data set.

Interaction: If you use PRELOADFMT in the CLASS statement, the order for the
values of each class variable matches the order that PROC FORMAT uses to
store the values of the associated user-defined format. If you use the
CLASSDATA= option, PROC TABULATE uses the order of the unique values of
each class variable in the CLASSDATA= data set to order the output levels. If
you use both options, PROC TABULATE first uses the user-defined formats to
order the output. If you omit EXCLUSIVE, PROC TABULATE appends after the
user-defined format and the CLASSDATA= values the unique values of the class
variables in the input data set based on the order that they are encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user defined format
in the order that you define them.

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment.

Alias: FMT | EXTERNAL
FREQ
orders values by descending frequency count.
Interaction: Use the ASCENDING option in the CLASS statement to order values
by ascending frequency count.

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment. This sort sequence is
particularly useful for displaying dates chronologically.
Alias: UNFMT | INTERNAL

Default: UNFORMATTED

Interaction: If you use the PRELOADFMT option in the CLASS statement, PROC
TABULATE orders the levels by the order of the values in the user-defined format.

Featured in: “Understanding the Order of Headings with ORDER=DATA” on page
1198

The TABULATE Procedure /A PROC TABULATE Statement 1163

OUT=SAS-data-set
names the output data set. If SAS-data-set doesn’t exist, PROC TABULATE creates
it.
The number of observations in the output data set depends on the number of
categories of data that are used in the tables and the number of subtables that are
generated. The output data set contains these variables (in this order):

by variables
variables listed in the BY statement.

class variables
variables listed in the CLASS statement.

TYPE
a character variable that shows which combination of class variables produced the
summary statistics in that observation. Each position in _TYPE_ represents one
variable in the CLASS statement. If that variable is in the category that produced
the statistic, the position contains a 1; if it is not, the position contains a 0. In
simple PROC TABULATE steps that do not use the universal class variable ALL,
all values of _TYPE_ contain only 1’s because the only categories that are being
considered involve all class variables. If you use the variable ALL, your tables will
contain data for categories that do not include all the class variables, and values of
TYPE will, therefore, include both 1’s and 0’s.

PAGE
The logical page that contains the observation.

_TABLE
The number of the table that contains the observation.

statistics
statistics calculated for each observation in the data set.

Featured in: Example 3 on page 1203
QMARKERS=number

specifies the default number of markers to use for the P’ quantile estimation method.
The number of markers controls the size of fixed memory space.

Default: The default value depends on which quantiles you request. For the median
(P50), number is 7. For the quartiles (P25 and P75), number is 25. For the
quantiles P1, P5, P10, P90, P95, or P99, number is 107. If you request several
quantiles, PROC TABULATE uses the largest default value of number.

Range: an odd integer greater than 3

Tip: Increase the number of markers above the default settings to improve the
accuracy of the estimates; reduce the number of markers to conserve memory and
computing time.

Main Discussion: “Quantiles” on page 653

QMETHOD=0S | P2
specifies the method PROC TABULATE uses to process the input data when it

computes quantiles. If the number of observations is less than or equal to the
QMARKERS= value and QNTLDEF=5, both methods produce the same results.

0S
uses order statistics. This is the technique that PROC UNIVARIATE uses.

Note: This technique can be very memory-intensive. A

P2
uses the P* method to approximate the quantile.

1164

PROC TABULATE Statement A Chapter 37

Default: OS

Restriction: When QMETHOD=P2, PROC TABULATE does not compute weighted
quantiles.

Tip: When QMETHOD=P2, reliable estimates of some quantiles (P1,P5,P95,P99)
may not be possible for some types of data.

Main Discussion: “Quantiles” on page 653

QNTLDEF=1|2|3|4|5

specifies the mathematical definition that the procedure uses to calculate quantiles
when QMETHOD=0S is specified. When QMETHOD=P2, you must use
QNTLDEF=5.

Default: 5
Alias: PCTLDEF=

Main discussion: “Percentile and Related Statistics” on page 1463

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)]>

specifies the style element to use for the data cells of a table when it is used in the
PROC TABULATE statement. For example, the following statement specifies that
the background color for data cells be red:

proc tabulate data=one style=[background=red];

Note: This option can be used in other statements, or in dimension expressions,
to specify style elements for other parts of a table. A

Note: You can use braces ({ and }) instead of square brackets ([and]). A

style-element-name
is the name of a style element that is part of a style definition that is registered
with the Output Delivery System. SAS Institute provides some style definitions.
Users can create their own style definitions with PROC TEMPLATE.

Default: If you do not specify a style element, PROC TABULATE uses Data.

See also: For information about Institute-supplied style definitions, see “What
Style Definitions Are Shipped with the Software?” on page 43. For information
about PROC TEMPLATE and the Output Delivery System, see The Complete
Guide to the SAS Output Delivery System.

PARENT
specifies that the data cell use the style element of its parent heading. The parent
style element of a data cell is one of the following:

O the style element of the leaf heading above the column that contains the data
cell, if the table specifies no row dimension, or if the table specifies the style
element in the column dimension expression.

O the style element of the leaf heading above the row that contains the cell, if
the table specifies the style element in the row dimension expression.

o0 the Beforecaption style element, if the table specifies the style element in the
page dimension expression.

O undefined, otherwise.
Note: The parent of a heading (not applicable to STYLE= in the PROC

TABULATE statement) is the heading under which the current heading is
nested. A

The TABULATE Procedure /A PROC TABULATE Statement 1165

style-attribute-specification(s)
describes the attribute to change. Each style-attribute-specification has this
general form:
style-attribute-name=style-attribute-value
You can set or change the following attributes with the STYLE= option in the
PROC TABULATE statement (or in any other statement that uses STYLE=,
except for the TABLE statement):

ASIS= FONT_WIDTH=
BACKGROUND= HREFTARGET=
BACKGROUNDIMAGE= HTMLCLASS=
BORDERCOLOR= JUST=
BORDERCOLORDARK= NOBREAKSPACE=
BORDERCOLORLIGHT= POSTHTML-=
BORDERWIDTH= POSTIMAGE=
CELLHEIGHT= POSTTEXT=
CELLWIDTH= PREHTML=
FLYOVER= PREIMAGE=
FONT= PRETEXT=
FONT_FACE= PROTECTSPECIALCHARS=
FONT_SIZE= TAGATTR=
FONT_STYLE= URL=
FONT_WEIGHT= VJUST=

For more information about style attributes, see “What Style Attributes Can Base
Procedures Specify?” on page 43.

Alias: S=

Restriction: This option affects only the HTML and Printer output.

Tip: To specify a style element for data cells with missing values, use STYLE= in
the TABLE statement MISSTEXT= option.

See also: “Using Style Elements in PROC TABULATE” on page 1188
Featured in: Example 14 on page 1243

TRAP
enables floating point exception (FPE) recovery during data processing beyond that
provided by normal SAS System FPE handling, which terminates PROC TABULATE
in the case of math exceptions.

Default: FPE recovery is disabled.

Tip: Remove TRAP or use NOTRAP to improve performance in operating
environments where the overhead of FPE recovery is significant.

See also: NOTRAP on page 1162

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard deviation.
Table 37.3 on page 1166 shows the possible values for divisor and the associated
divisors.

1166

BY Statement A Chapter 37

Table 37.3 Possible Values for VARDEF=

Value Divisor Formula for Divisor
DF degrees of freedom n-1
N number of observations n
WDF sum of weights minus one X w) -1
WEIGHT sum of weights Y w;

| WGT

The procedure computes the variance as C'SS/divisor, where C'SS is the corrected
sums of squares and equals » (x5 — T)z When you weight the analysis variables,
CSS equals > w; (z; — fw)z where T,, is the weighted mean.

Default: DF

Requirement: To compute standard error of the mean, use the default value of
VARDEF-=.

Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an
estimate of 02, where the variance of the ith observation is var (z;) = 0% /w;, and
w; is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of o> /W, where 0 is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: the example of weighted statistics“WEIGHT” on page 73.

BY Statement

Creates a separate table on a separate page for each BY group.

Main discussion: “BY” on page 68

BY <DESCENDING> variable-1

<...<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable

specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

The TABULATE Procedure /A GCLASS Statement 1167

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED

specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

CLASS Statement

Identifies class variables for the table. Class variables determine the categories that PROC
TABULATE uses to calculate statistics.

Tip: You can use multiple CLASS statements.

Tip: Some CLASS statement options are also available in the PROC TABULATE
statement. They affect all CLASS variables rather than just the one(s) that you specify
in a CLASS statement.

CLASS variable(s) </option(s)>;

Required Arguments

variable(s)
specifies one or more variables that the procedure uses to group the data. Variables
in a CLASS statement are referred to as class variables. Class variables can be
numeric or character. Class variables can have continuous values, but they typically
have a few discrete values that define the classifications of the variable. You do not
have to sort the data by class variables.

Options

ASCENDING
specifies to sort the class variable values in ascending order.

Alias: ASCEND
Interaction: PROC TABULATE issues a warning message if you specify both
ASCENDING and DESCENDING and ignores both options.

DESCENDING
specifies to sort the class variable values in descending order.

1168

CLASS Statement A Chapter 37

Alias: DESCEND
Default: ASCENDING

Interaction: PROC TABULATE issues a warning message if you specify both
ASCENDING and DESCENDING and ignores both options.

EXCLUSIVE
excludes from tables and output data sets all combinations of class variables that are
not found in the preloaded range of user-defined formations.

Requirement: You must specify the PRELOADFMT option in the CLASS statement
to preload the class variable formats.

Featured in: Example 3 on page 1203

GROUPINTERNAL
specifies not to apply formats to the class variables when PROC TABULATE groups
the values to create combinations of class variables.
Interaction: If you specify the PRELOADFMT option in the CLASS statement,
PROC TABULATE ignores the GROUPINTERNAL option and uses the formatted
values.

Tip: This option saves computer resources when the class variables contain discrete
numeric values.

MISSING
considers missing values as valid class variable levels. Special missing values that
represent numeric values (the letters A through Z and the underscore (_) character)
are each considered as a separate value.
Default: If you omit MISSING, PROC TABULATE excludes the observations with
any missing CLASS variable values from tables and output data sets.

See also: SAS Language Reference: Concepts for a discussion of missing values with
special meanings.

MLF

enables PROC TABULATE to use the primary and secondary format labels for a

given range or overlapping ranges to create subgroup combinations when a

multilabel format is assigned to a class variable.

Requirement: You must use PROC FORMAT and the MULTILABEL option in the
VALUE statement to create a multilabel format.

Interaction: Using MLF with ORDER=FREQ may not produce the order that you
expect for the formatted values.

Tip: If you omit MLF, PROC TABULATE uses the primary format labels, which
corresponds to the first external format value, to determine the subgroup
combinations.

See also: The MULTILABEL option on page 451 in the VALUE statement of the
FORMAT procedure.

Featured in: Example 4 on page 1208

Note: When the formatted values overlap, one internal class variable value maps
to more than one class variable subgroup combination. Therefore, the sum of the N
statistics for all subgroups is greater than the number of observations in the data set
(the overall N statistic). A

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the order to group the levels of the class variables in the output, where

DATA
orders values according to their order in the input data set.

The TABULATE Procedure /A GCLASS Statement 1169

Interaction: If you use PRELOADFMT, the order for the values of each class
variable matches the order that PROC FORMAT uses to store the values of the
associated user-defined format. If you use the CLASSDATA= option in the
PROC statement, PROC MEANS uses the order of the unique values of each
class variable in the CLASSDATA= data set to order the output levels. If you
use both options, PROC TABULATE first uses the user-defined formats to order
the output. If you omit EXCLUSIVE in the PROC statement, PROC
TABULATE appends after the user-defined format and the CLASSDATA=
values the unique values of the class variables in the input data set based on
the order that they are encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user-defined format
in the order that you define them.

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment.

Alias: FMT | EXTERNAL

FREQ
orders values by descending frequency count.
Interaction: Use the ASCENDING option to order values by ascending frequency
count.

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment. This sort sequence is
particularly useful for displaying dates chronologically.

Alias: UNFMT | INTERNAL

Default: UNFORMATTED

Interaction: If you use the PRELOADFMT option in the CLASS statement, PROC
TABULATE orders the levels by the order of the values in the user-defined format.

Tip: By default, all orders except FREQ are ascending. For descending orders, use
the DESCENDING option.

Featured in: “Understanding the Order of Headings with ORDER=DATA” on page
1198

PRELOADFMT
specifies that all formats are preloaded for the class variables.
Requirement: PRELOADFMT has no effect unless you specify either EXCLUSIVE,
ORDER=DATA, or PRINTMISS and you assign formats to the class variables.

Note: If you specify PRELOADFMT without also specifying either
EXCLUSIVE or PRINTMISS, SAS writes a warning message to the SAS log. A
Interaction: To limit PROC TABULATE output to the combinations of formatted
class variable values present in the input data set, use the EXCLUSIVE option in
the CLASS statement.
Interaction: To include all ranges and values of the user-defined formats in the
output, use the PRINTMISS option in the TABLE statement.

CAUTION:
Use care when you use PRELOADFMT with PRINTMISS. This feature creates all
possible combinations of formatted class variables. Some of these combinations
may not make sense. A

1170 CLASSLEV Statement A Chapter 37

Featured in: Example 3 on page 1203

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)]>
specifies the style element to use for page dimension text, continuation messages, and
class variable name headings. For information about the arguments of this option,
and how it is used, see STYLE= on page 1164 in the PROC TABULATE statement.

Note: When you use STYLE= in the CLASS statement, it differs slightly from its
use in the PROC TABULATE statement. In the CLASS statement, the parent of the
heading is the page dimension text or heading under which the current heading is
nested. 2

Note: If a page dimension expression contains multiple nested elements, the
Beforecaption style element is the style element of the first element in the nesting. A
Alias: S=
Restriction: This option affects only the HTML and Printer output.

Tip: To override a style element that is specified for page dimension text in the
CLASS statement, you can specify a style element in the TABLE statement page
dimension expression.

Tip: To override a style element that is specified for a class variable name heading
in the CLASS statement, you can specify a style element in the related TABLE
statement dimension expression.

Featured in: Example 14 on page 1243

How PROC TABULATE Handles Missing Values for Class Variables

By default, if an observation contains a missing value for any class variable, PROC
TABULATE excludes that observation from all tables that it creates. CLASS
statements apply to all TABLE statements in the PROC TABULATE step. Therefore, if
you define a variable as a class variable, PROC TABULATE omits observations that
have missing values for that variable from every table even if the variable does not
appear in the TABLE statement for one or more tables.

If you specify the MISSING option in the PROC TABULATE statement, the procedure
considers missing values as valid levels for all class variables. If you specify the
MISSING option in a CLASS statement, PROC TABULATE considers missing values as
valid levels for the class variable(s) that are specified in that CLASS statement.

CLASSLEV Statement

Specifies a style element for class variable level value headings.
Restriction: This statement affects only the HTML and Printer output.

CLASSLEV variable(s) / style =<style-element-name | <PARENT>>
<[style-attribute-specification(s)] >;

Required Arguments

variable(s)
specifies one or more class variables from the CLASS statement for which you want
to specify a style element.

The TABULATE Procedure /A KEYLABEL Statement 1M

Options

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)]>
specifies a style element for class variable level value headings. For information on
the arguments of this option and how it is used, see STYLE= on page 1164 in the
PROC TABULATE statement.

Note: When you use STYLE= in the CLASSLEV statement, it differs slightly
from its use in the PROC TABULATE statement. In the CLASSLEV statement, the
parent of the heading is the heading under which the current heading is nested. 2
Alias: S=
Restriction: This option affects only the HTML and Printer output.

Tip: To override a style element that is specified in the CLASSLEV statement, you
can specify a style element in the related TABLE statement dimension expression.

Featured in: Example 14 on page 1243

FREQ Statement

Specifies a numeric variable that contains the frequency of each observation.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.

See also: For an example that uses the FREQ statement, see “FREQ” on page 70.

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer, the
SAS System truncates it. If n is less than 1 or is missing, the procedure does not use
that observation to calculate statistics.
The sum of the frequency variable represents the total number of observations.

KEYLABEL Statement

Labels a keyword for the duration of the PROC TABULATE step. PROC TABULATE uses the label
anywhere that the specified keyword would otherwise appear.

KEYLABEL keyword-1="description-1’

1172 KEYWORD Statement A Chapter 37

<...keyword-n="description-n’>;

Required Arguments

keyword
is one of the keywords for statistics that is discussed in “Statistics Available in PROC
TABULATE” on page 1181 or is the universal class variable ALL (see “Elements
That You Can Use in a Dimension Expression” on page 1177).

description
is up to 256 characters to use as a label. As the syntax shows, you must enclose
description in quotes.
Restriction: Each keyword can have only one label in a particular PROC
TABULATE step; if you request multiple labels for the same keyword, PROC
TABULATE uses the last one that is specified in the step.

KEYWORD Statement

Specifies a style element for keyword headings.
Restriction: This statement affects only the HTML and Printer output.

KEYWORD keyword(s) / style =<style-element-name | <PARENT>>
<[style-attribute-specification(s)] >;

Required Arguments

keyword
is one of the keywords for statistics that is discussed in “Statistics Available in PROC
TABULATE” on page 1181 or is the universal class variable ALL (see “Elements
That You Can Use in a Dimension Expression” on page 1177).

Options

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)]>
specifies a style element for the keyword headings. For information on the
arguments of this option and how it is used, see STYLE= on page 1164 in the PROC
TABULATE statement.

Note: When you use STYLE= in the KEYWORD statement, it differs slightly
from its use in the PROC TABULATE statement. In the KEYWORD statement, the
parent of the heading is the heading under which the current heading is nested. 2
Alias: S=
Restriction: This option affects only the HTML and Printer output.

Tip: To override a style element that is specified in the KEYWORD statement, you
can specify a style element in the related TABLE statement dimension expression.

The TABULATE Procedure /A TABLE Statement 1173

Featured in: Example 14 on page 1243

TABLE Statement

Describes a table to print.

Requirement: All variables in the TABLE statement must appear in either the VAR
statement or the CLASS statement.

Tip: Use multiple TABLE statements to create several tables.

TABLE <<page-expression,> row-expression,>
column-expression </ table-option(s)>;

Required Arguments

column-expression
defines the columns in the table. For information on constructing dimension
expressions, see “Constructing Dimension Expressions” on page 1177.

Restriction: A column dimension is the last dimension in a TABLE statement. A
row dimension or a row dimension and a page dimension may precede a column
dimension.

Options

To do this Use this option

Add dimensions

Define the pages in a table page-expression

Define the rows in a table row-expression
Customize the HTML contents entry link to the output CONTENTS=
Specify a style element for various parts of the table STYLE=

Customize text in the table
Specify the text to place in the empty box above row titles BOX=

Supply up to 256 characters to print in table cells that contain MISSTEXT=
missing values

Suppresses the continuation message for tables that span NOCONTINUED
multiple physical pages

Modify the layout of the table
Print as many complete logical pages as possible on a single CONDENSE
printed page or, if possible, print multiple pages of tables that

are too wide to fit on a page one below the other on a single
page, instead of on separate pages.

1174 TABLE Statement A Chapter 37

To do this Use this option

Create the same row and column headings for all logical pages PRINTMISS
of the table

Customize row headings

Specify the number of spaces to indent nested row headings INDENT=

Control allocation of space for row titles within the available ROW=

space

Specify the number of print positions available for row titles RTSPACE=
BOX=value

BOX={<label=value>
<style=<style-element-name><[style-attribute-specification(s)]>> }
specifies text and a style element for the empty box above the row titles.
Value can be one of the following:

PAGE
writes the page-dimension text in the box. If the page-dimension text does not fit,
it is placed in its default position above the box, and the box remains empty.

'string’
writes the quoted string in the box. Any string that does not fit in the box is
truncated.

variable
writes the name (or label, if the variable has one) of a variable in the box. Any
name or label that does not fit in the box is truncated.
For details about the arguments of the STYLE= option and how it is used, see
STYLE= on page 1164 in the PROC TABULATE statement.

Featured in: Example 9 on page 1218 and Example 14 on page 1243

CONDENSE

prints as many complete logical pages as possible on a single printed page or, if
possible, prints multiple pages of tables that are too wide to fit on a page one below
the other on a single page, instead of on separate pages. A logical page is all the
rows and columns that fall within one of the following:

O a page-dimension category (with no BY-group processing)

O a BY group with no page dimension

O a page-dimension category within a single BY group.
Restrictions: CONDENSE has no effect on the pages that are generated by the BY

statement. The first table for a BY group always begins on a new page.
CONDENSE is ignored by the HTML destination but supported by the printer.

Featured in: Example 9 on page 1218
CONTENTS=link-name

allows you to name the link in the HTML table of contents that points to the ODS
output of the table that is produced by using the TABLE statement.

Restrictions: CONTENTS= has no effect on TABULATE procedure reports.

FUZZ=number
supplies a numeric value against which analysis variable values and table cell values
other than frequency counts are compared to eliminate trivial values (absolute values
less than the FUZZ= value) from computation and printing. A number whose

The TABULATE Procedure /A TABLE Statement 1175

absolute value is less than the FUZZ= value is treated as zero in computations and
printing. The default value is the smallest representable floating-point number on
the computer that you are using.

INDENT=number-of-spaces
specifies the number of spaces to indent nested row headings, and suppresses the
row headings for class variables.

Tip: When there are no crossings in the row dimension, there is nothing to indent,
so the value of number-of-spaces has no effect. However, in such cases INDENT=
still suppresses the row headings for class variables.

Featured in: Example 8 on page 1216 (with crossings) and Example 9 on page 1218
(without crossings)

page-expression
defines the pages in a table. For information on constructing dimension expressions,
see “Constructing Dimension Expressions” on page 1177.

Restriction: A page dimension is the first dimension in a table statement. Both a
row dimension and a column dimension must follow a page dimension.

Featured in: Example 9 on page 1218

MISSTEXT="text’

MISSTEXT={<label="text’

><style=<style-element-name><[style-attribute-specification(s)]>> }
supplies up to 256 characters of text to print and specifies a style element for table
cells that contain missing values. For details on the arguments of the STYLE= option
and how it is used, see STYLE= on page 1164 in the PROC TABULATE statement.

Interaction: A style element that is specified in a dimension expression overrides a
style element that is specified in the MISSTEXT= option for any given cell(s).

Featured in: “Providing Text for Cells That Contain Missing Values” on page 1195
and Example 14 on page 1243

NOCONTINUED
suppresses the continuation message, continued, that is displayed at the bottom of
tables that span multiple pages. The text is rendered with the Aftercaption style
element.

Restrictions: NOCONTINUED is ignored by the HTML destination but supported
by the printer.

PRINTMISS
prints all values that occur for a class variable each time headings for that variable
are printed, even if there are no data for some of the cells that these headings create.
Consequently, PRINTMISS creates row and column headings that are the same for
all logical pages of the table, within a single BY group.

Default: If you omit PRINTMISS, PROC TABULATE suppresses a row or column
for which there are no data, unless you use the CLASSDATA= option in the PROC
TABULATE statement.

Restrictions: If an entire logical page contains only missing values, that page does
not print regardless of the PRINTMISS option.

See also: CLASSDATA= option on page 1159
Featured in: “Providing Headings for All Categories” on page 1194
ROW=spacing

specifies whether all title elements in a row crossing are allotted space even when
they are blank. The possible values for spacing are as follows:

1176

TABLE Statement A Chapter 37

CONSTANT
allots space to all row titles even if the title has been blanked out (for example,
N=7 7)'

Alias: CONST
FLOAT

divides the row title space equally among the nonblank row titles in the crossing.
Default: CONSTANT
Featured in: Example 7 on page 1214

row-expression

defines the rows in the table. For information on constructing dimension expressions,
see “Constructing Dimension Expressions” on page 1177.

Restriction: A row dimension is the next to last dimension in a table statement. A
column dimension must follow a row dimension. A page dimension may precede a
row dimension.

RTSPACE=number

specifies the number of print positions to allot to all of the headings in the row

dimension, including spaces that are used to print outlining characters for the row

headings. PROC TABULATE divides this space equally among all levels of row

headings.

Alias: RTS=

Default: one-fourth of the value of the SAS system option LINESIZE=

Interaction: By default, PROC TABULATE allots space to row titles that are blank.
Use ROW=FLOAT on page 1175 to divide the space among only nonblank titles.

See also: For more information about controlling the space for row titles, see
Chapter 5, "Controlling the Table’s Appearance" in SAS Guide to TABULATE
Processing.

Featured in: Example 1 on page 1199

STYLE=<style-element-name><[style-attribute-specification(s)]>

specifies a style element to use for the entire table. For information about the
arguments of this option and how it is used, see STYLE= on page 1164 in the PROC
TABULATE statement.

Note: The list of attributes that you can set or change with the STYLE= option in
the TABLE statement differs from that of the PROC TABULATE statement. A

You can set or change the following attributes with the STYLE= option in the
TABLE statement. These attributes apply to the table as a whole. Attributes that
you apply in the PROC TABULATE statement and in other locations in the PROC
TABULATE step apply to cells within the table.

BACKGROUND= FONT_WIDTH="
BACKGROUNDIMAGE= FOREGROUND="
BORDERCOLOR= FRAME=
BORDERCOLORDARK= HTMLCLASS=
BORDERCOLORLIGHT= JUST=
BORDERWIDTH= OUTPUTWIDTH=
CELLPADDING= POSTHTML-=

CELLSPACING= POSTIMAGE=

The TABULATE Procedure /A TABLE Statement 1177

FONT=' POSTTEXT=
FONT _FACE=" PREHTML=
FONT_SIZE=' PREIMAGE=
FONT_STYLE=' PRETEXT=
FONT_WEIGHT=" RULES=

* When you use these attributes in this location, they affect only the text that is specified
with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter
the foreground color or the font for the text that appears in the table, you must set the
corresponding attribute in a location that affects the cells rather than the table.

For more information about style attributes, see “What Style Attributes Can Base
Procedures Specify?” on page 43.

Note: You can use braces ({ and }) instead of square brackets ([and]). A
Alias: S=
Restriction: This option affects only the HTML and Printer output.

Tip: To override a style element specification that is made as an option in the
TABLE statement, specify STYLE= in a dimension expression of the TABLE
statement.

Featured in: Example 14 on page 1243

Constructing Dimension Expressions

A TABLE statement consists of from one to three dimension expressions separated
by commas. Options can follow the dimension expressions. If all three dimensions are
specified, the leftmost dimension defines pages, the middle dimension defines rows, and
the rightmost dimension defines columns. If two dimensions are specified, the left
defines rows, and the right defines columns. If a single dimension is specified, it defines
columns.

A dimension expression is composed of elements and operators.

Elements That You Can Use in a Dimension Expression

analysis variables
(see “VAR Statement” on page 1179).

class variables
(see “CLASS Statement” on page 1167).

the universal class variable ALL
summarizes all of the categories for class variables in the same parenthetical
group or dimension (if the variable ALL is not contained in a parenthetical group).

Featured in: Example 6 on page 1212, Example 9 on page 1218, and Example 13
on page 1233

Note: If the input data set contains a variable named ALL, enclose the name of
the universal class variable in quotes. A

keywords for statistics

Requirement: To compute standard error or a ¢-test, you must use the default
value of VARDEF=, which is DF.

Featured in: Example 10 on page 1220 and Example 13 on page 1233

1178 TABLE Statement A Chapter 37

format modifiers
define how to format values in cells. Cross a format modifier with the elements
that produce the cells that you want to format. Format modifiers have the form

f=format

Tip: Format modifiers have no effect on CLASS variables.

See also: For more information on specifying formats in tables, see “Formatting
Values in Tables” on page 1183.

Featured in: Example 6 on page 1212

labels
temporarily replace the names of variables and statistics. Labels affect only the
variable or statistic that immediately precedes the label. Labels have the form

stat-or-variable-name='label-text’

Tip: PROC TABULATE eliminates the space for blank column headings from a
table but by default does not eliminate the space for blank row headings. Use
ROW=FLOAT in the TABLE statement to remove the space for blank row
headings.

Featured in: Example 5 on page 1210 and Example 7 on page 1214

style—element specifications
specify style elements for page dimension text, continuation messages, headings,
or data cells. For details, see “Specifying Style Elements in Dimension
Expressions” on page 1178.

You can also form dimension expressions by combining any of these elements.

Operators That You Can Use in a Dimension Expression

asterisk *
creates categories from the combination of values of the class variables and
constructs the appropriate headers for the dimension. If one of the elements is an
analysis variable, the statistics for the analysis variable are calculated for the
categories that are created by the class variables. This process is called crossing.

Featured in: Example 1 on page 1199
(blank)

places the output for each element immediately after the output for the preceding
element. This process is called concatenation.

Featured in: Example 6 on page 1212

parentheses ()
group elements and associate an operator with each concatenated element in the
group.
Featured in: Example 6 on page 1212

angle brackets <>
specify denominator definitions, which determine the value of the denominator in
the calculation of a percentage. For a discussion of how to construct denominator
definitions, see “Calculating Percentages” on page 1184.

Featured in: Example 10 on page 1220 and Example 13 on page 1233

Specifying Style Elements in Dimension Expressions
You can specify a style element in a dimension expression to control the appearance in
HTML and Printer output of the following table elements:

The TABULATE Procedure /A VAR Statement 1179

analysis variable name headings

class variable name headings

class variable level value headings

data cells

keyword headings

page dimension text
Specifying a style element in a dimension expression is useful when you want to
override a style element that you have specified in another statement, such as the

PROC TABULATE, CLASS, CLASSLEV, KEYWORD, TABLE, or VAR statements.
The syntax for specifying a style element in a dimension expression is

[STYLE<(CLASSLEV)>=<style-element-name |
<PARENT>>< [style-attribute-specification(s) 1>]

Some examples of style elements in dimension expressions are

dept={label='Department’
style=[foreground=red]}, N

dept*[style=MyDataStyle], N
dept*[format=12.2 style=MyDataStyle], N

Note: When used in a dimension expression, the STYLE= option must be enclosed
within square brackets ([and 1) or braces ({ and }). A

With the exception of (CLASSLEV), all arguments are described in STYLE= on page
1164 in the PROC TABULATE statement.

(CLASSLEV)
assigns a style element to a class variable level value heading. For example, the
following TABLE statement specifies that the level value heading for the class

variable, DEPT, has a foreground color of yellow:

table dept=[style(classlev)=
[foreground=yellow]] *sales;

Note: This option is used only in dimension expressions. A

For an example that shows how to specify style elements within dimension
expressions, see Example 14 on page 1243.

VAR Statement

Identifies numeric variables to use as analysis variables.

Alias: VARIABLES
Tip: You can use multiple VAR statements.

VAR analysis-variable(s) </ option(s)>;

Required Arguments

1180 VAR Statement A Chapter 37

analysis-variable(s);
identifies the analysis variables in the table. Analysis variables are numeric
variables for which PROC TABULATE calculates statistics. The values of an analysis
variable can be continuous or discrete.

If an observation contains a missing value for an analysis variable, PROC
TABULATE omits that value from calculations of all statistics except N (the number
of observations with nonmissing variable values) and NMISS (the number of
observations with missing variable values). For example, the missing value does not
increase the SUM, and it is not counted when you are calculating statistics such as
the MEAN.

Options

STYLE=<style-element-name | <PARENT>><[style-attribute-specification(s)>]
specifies a style element for analysis variable name headings. For information on the
arguments of this option and how it is used, see STYLE= on page 1164 in the PROC
TABULATE statement.

Note: When you use STYLE= in the VAR statement, it differs slightly from its
use in the PROC TABULATE statement. In the VAR statement, the parent of the
heading is the heading under which the current heading is nested. 2

Alias: S=
Restriction: This option affects only the HTML and Printer output.

Tip: To override a style element that is specified in the VAR statement, you can
specify a style element in the related TABLE statement dimension expression.

Featured in: Example 14 on page 1243
WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the variables that are

specified in the VAR statement. The variable does not have to be an integer. If the
value of the weight variable is

Weight value... PROC TABULATE...
0 counts the observation in the total number of observations
less than 0 converts the value to zero and counts the observation in the total

number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,

use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,

exclude negative and zero weights by default.

Restriction: To compute weighted quantiles, use QMETHOD=0S in the PROC
statement.

Tip: When you use the WEIGHT= option, consider which value of the VARDEF=
option is appropriate (see the discussion of VARDEF= on page 1165).

Tip: Use the WEIGHT option in multiple VAR statements to specify different
weights for the analysis variables.

Note: Prior to Version 7 of the SAS System, the procedure did not exclude the
observations with missing weights from the count of observations. A

The TABULATE Procedure /A Statistics Available in PROC TABULATE 1181

WEIGHT Statement

Specifies weights for analysis variables in the statistical calculations.

See also: For information on calculating weighted statistics and for an example that
uses the WEIGHT statement, see “Calculating Weighted Statistics” on page 74

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. If the value of the weight
variable is

Weight value ... PROC TABULATE ...
0 counts the observation in the total number of observations
less than 0 converts the value to zero and counts the observation in the

total number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

Restriction: To compute weighted quantiles, use QMETHOD=0S in the PROC
statement.

Interaction: If you use the WEIGHT= option in a VAR statement to specify a
weight variable, PROC TABULATE uses this variable instead to weight those VAR
statement variables.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See the discussion of VARDEF= on page 1165 and the
calculation of weighted statistics in “Keywords and Formulas” on page 1458 for
more information.

Note: Prior to Version 7 of the SAS System, the procedure did not exclude the

observations with missing weights from the count of observations. A

Concepts

Statistics Available in PROC TABULATE

Use the following keywords to request statistics in the TABLE statement. If a
variable name (class or analysis) and a statistic name are the same, enclose the
statistic name in single quotes.

Formatting Class Variables A Chapter 37

Descriptive statistic keywords

COLPCTN PCTSUM
COLPCTSUM RANGE

CSS REPPCTN

Ccv REPPCTSUM
MAX ROWPCTN
MEAN ROWPCTSUM
MIN STDDEV | STD
N STDERR
NMISS SUM
PAGEPCTN SUMWGT
PAGEPCTSUM USSs

PCTN VAR

Quantile statistic keywords

MEDIAN | P50 Q3| P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE
Hypothesis testing keyword

PROBT T

To compute standard error (STD), you must use VARDEF=DF in the PROC statement.
To compute weighted quantiles, you must use QMETHOD=0S in the PROC statement.

Explanations of the keywords, the formulas that are used to calculate them, and the
data requirements are discussed in “Keywords and Formulas” on page 1458.

Formatting Class Variables

Use the FORMAT statement to assign a format to a class variable for the duration of
a PROC TABULATE step. When you assign a format to a class variable, PROC
TABULATE uses the formatted values to create categories, and it uses the formatted
values in headings.

User-defined formats are particularly useful for grouping values into fewer
categories. For example, if you have a class variable, Age, with values ranging from 1
to 99, you could create a user-defined format that groups the ages so that your tables
contain a manageable number of categories. The following PROC FORMAT step creates
a format that condenses all possible values of age into six groups of values.

proc format;
value agefmt 0-29='Under 30’
30-39="30-39"
40-49="40-49"
50-59='50-59"
60-69="60-69"
other='70 or over’;

The TABULATE Procedure /A How Using BY-group Processing Differs from Using the Page Dimension 1183

run;

For information on creating user-defined formats, see Chapter 19, “The FORMAT
Procedure,” on page 433.

By default, PROC TABULATE includes in a table only those formats for which the
frequency count is not zero and for which values are not missing. To include missing
values for all class variables in the output, use the MISSING option in the PROC
TABULATE statement, and to include missing values for selected class variables, use
the MISSING option in a CLASS statement. To include formats for which the frequency
count is zero, use the PRELOADFMT option in a CLASS statement and the
PRINTMISS option in the TABLE statement, or use the CLASSDATA= option in the
PROC TABULATE statement.

Formatting Values in Tables

The formats for data in table cells serve two purposes. They determine how PROC
TABULATE displays the values, and they determine the width of the columns. The
default format for values in table cells is 12.2. You can modify the format for printing
values in table cells by

0 changing the default format with the FORMAT= option in the PROC TABULATE
statement

O crossing elements in the TABLE statement with the F= format modifier.

PROC TABULATE determines the format to use for a particular cell based on the
following order of precedence for formats:

1 If no other formats are specified, PROC TABULATE uses the default format (12.2).

2 The FORMAT= option in the PROC TABULATE statement changes the default
format. If no format modifiers affect a cell, PROC TABULATE uses this format for
the value in that cell.

3 A format modifier in the page dimension applies to the values in all the table cells
on the page unless you specify another format modifier for a cell in the row or
column dimension.

4 A format modifier in the row dimension applies to the values in all the table cells
in the row unless you specify another format modifier for a cell in the column
dimension.

5 A format modifier in the column dimension applies to the values in all the table
cells in the column.

For more information about formatting table cells, see "Formatting Values in Table
Cells" in Chapter 5, "Controlling the Table’s Appearance" in SAS Guide to TABULATE
Processing.

How Using BY-group Processing Differs from Using the Page
Dimension
Using the page-dimension expression in a TABLE statement can have an effect

similar to using a BY statement.
Table 37.4 on page 1184 contrasts the two methods.

1184

Calculating Percentages A Chapter 37

Table 37.4 Contrasting the BY Statement and the Page Dimension

Issue

PROC TABULATE with a BY statement

PROC TABULATE with a page dimension
in the TABLE statement

Order of observations
in the input data set

One report
summarizing all BY
groups

Percentages

Titles

Ordering class
variables

Obtaining uniform
headings

Multiple ranges with
the same format

The observations in the input data set must
be sorted by the BY variables. 1

You cannot create one report for all the BY
groups.

The percentages in the tables are
percentages of the total for that BY group.
You cannot calculate percentages for a BY
group compared to the totals for all BY
groups because PROC TABULATE prepares
the individual reports separately. Data for
the report for one BY group are not
available to the report for another BY
group.

You can use the #BYVAL, #BYVAR, and
#BYLINE specifications in TITLE
statements to customize the titles for each
BY group (see “Creating Titles That
Contain BY-Group Information” on page
54).

ORDER=DATA and ORDER=FREQ order
each BY group independently.

You may need to insert dummy
observations into BY groups that do not
have all classes represented.

PROC TABULATE produces a table for
each range.

Sorting is unnecessary.

Use ALL in the page dimension to create a
report for all classes. (See Example 6 on
page 1212.)

You can use denominator definitions to
control the meaning of PCTN (see
“Calculating Percentages” on page 1184.)

The BOX= option in the TABLE statement
customizes the page headers, but you must
use the same title on each page.

The order of class variables is the same on
every page.

The PRINTMISS option ensures that each
page of the table has uniform headings.

PROC TABULATE combines observations
from the two ranges.

1 You can use the BY statement without sorting the data set if the data set has an index for the BY variable.

Calculating Percentages

The following statistics print the percentage of the value in a single table cell in
relation to the total of the values in a group of cells. No denominator definitions are
required; however, an analysis variable may be used as a denominator definition for
percentage sum statistics.

REPPCTN and REPPCTSUM statistics—print the percentage of the value in a single
table cell in relation to the total of the values in the report.

COLPCTN and COLPCTSUM statistics—print the percentage of the value in a single
table cell in relation to the total of the values in the column.

ROWPCTN and ROWPCTSUM statistics—print the percentage of the value in a
single table cell in relation to the total of the values in the row.

PAGEPCTN and PAGEPCTSUM statistics—print the percentage of the value in a
single table cell in relation to the total of the values in the page.

The TABULATE Procedure /A Galculating Percentages 1185

These statistics calculate the most commonly used percentages. See Example 12 on
page 1230 for an example.

PCTN and PCTSUM statistics can be used to calculate these same percentages. They
allow you to manually define denominators. PCTN and PCTSUM statistics print the
percentage of the value in a single table cell in relation to the value (used in the
denominator of the calculation of the percentage) in another table cell or to the total of
the values in a group of cells. By default, PROC TABULATE summarizes the values in
all N cells (for PCTN) or all SUM cells (for PCTSUM) and uses the summarized value
for the denominator. You can control the value that PROC TABULATE uses for the
denominator with a denominator definition.

You place a denominator definition in angle brackets (< and >) next to the N or
PCTN statistic. The denominator definition specifies which categories to sum for the
denominator.

This section illustrates how to specify denominator definitions in a simple table.
Example 13 on page 1233 illustrates how to specify denominator definitions in a table
that is composed of multiple subtables. For more examples of denominator definitions,
see "How Percentages Are Calculated" in Chapter 3, "Details of TABULATE Processing"
in SAS Guide to TABULATE Processing.

Specifying a Denominator for the PCTN Statistic

The following PROC TABULATE step calculates the N statistic and three different
versions of PCTN using the data set ENERGY on page 1199.

proc tabulate data=energy;

class division type;

table division*
(n='Number of customers’
pctn<type>='% of row’ @
pctn<division>='% of column’ @
pctn='% of all customers’), @

type/rts=50;
title 'Number of Users in Each Division’;

run;

The TABLE statement creates a row for each value of Division and a column for
each value of Type. Within each row, the TABLE statement nests four statistics: N and
three different calculations of PCTN (see Figure 37.3 on page 1186). Each occurrence of
PCTN uses a different denominator definition.

1186 Calculating Percentages A Chapter 37

Figure 37.3 Three Different Uses of the PCTN Statistic with Frequency Counts

Highlighted
Number of Users in Each Division
1
| | Type |
| e |
| 1 1 2 |
| + + :
|Division | | | I
| + [I |
|11 |Number of customers | 6.00| 6.00|
I * + :
| |% of row g | 50.00] 50.00]|
I + + :
| |% of column] | 27.27| 27.27|
| +. +. |
I i% of all customers O I| 13.64| 13.64]
| + + + |
|12 |Number of customers | 3.00]| 3.00]|
I + + :
| |% of row | 50.00] 50.00|
| +. +. |
I i% of column | 13.64] l3|.64|
I * + :
| |% of all customers | 6.82] 6.82|
| + + + |
|3 |Number of customers | 8.00| 8.00|
| +. +. |
I i% of row | 50.00| 50.0'0|
I + * :
| |% of column | 36.36| 36.36|
I + + :
| |% of all customers | 18.18| 18.18|
| +. +. +. |
i4 |Number of customers | 5.00| I5.00|
I * + :
| |% of row | 50.00| 50.00|
I + + :
| |% of column | 22.73| 22.73|
| +. +. |
I i% of all customers | 11.36| £1.3G|

1 <type> sums the frequency counts for all occurrences of Type within the same
value of Division. Thus, for Division=1, the denominator is 6 + 6, or 12.

2 <division> sums the frequency counts for all occurrences of Division within the
same value of Type. Thus, for Type=1, the denominator is 6 + 3 + 8 + 5, or 22.

3 The third use of PCTN has no denominator definition. Omitting a denominator
definition is the same as including all class variables in the denominator definition.
Thus, for all cells, the denominatoris 6 + 3+ 8 + 5+ 6 + 3 + 8 + 5, or 44.

Specifying a Denominator for the PCTSUM Statistic

The following PROC TABULATE step sums expenditures for each combination of
Type and Division and calculates three different versions of PCTSUM.

proc tabulate data=energy format=8.2;
class division type;
var expenditures;
table division*
(sum='Expenditures’*f=dollar10.2
pctsum<type>='% of row’ @
pctsum<division>='% of column’ @

The TABULATE Procedure /A Galculating Percentages 1187

pctsum='% of all customers’), @
type*expenditures/rts=40;
title ’'Expenditures in Each Division’;

run;

The TABLE statement creates a row for each value of Division and a column for each
value of Type. Because Type is crossed with Expenditures, the value in each cell is the
sum of the values of Expenditures for all observations that contribute to the cell.
Within each row, the TABLE statement nests four statistics: SUM and three different
calculations of PCTSUM (see Figure 37.4 on page 1187). Each occurrence of PCTSUM
uses a different denominator definition.

Figure 37.4 Three Different Uses of the PCTSUM Statistic with Sums Highlighted

Expenditures in Each Division 1

| Expend | Expend |
+ + |
Division | | | |
+ | | |
|Expenditures | $7,477.00| $5,129.00|
| +. |

1

+

| + +

I
|% of all customers | 16.65| 15.05|

|
|
|
|
|
|
I
|
|
I
|
| |
| |% of row 0 | 59.31] 40.69|
I i —
| |% of column O | 16.15] 13.66|
. M
| |% of all customers O 892 6.12]
| +. +. +. |
I
i2 |Expenditures |$19,379.00|$15,078.00|
I U
| |% of row | 56.24] 43.76|
. At
| |% of column | 41.86] 40.15|
| +. +. |
I
i i% of all customers | 23.11] 17.98|
| + + + |
13 |Expenditures | $5,476.00| $4,729.00|
. i
| |% of row | 53.66] 46.34|
| +. +. |
I
i i% of column | 11.83] 12.59|
I R —
| |% of all customers | 6.53] 5.64|
| + + + |
|4 |Expenditures |$13,959.00/$12,619.00|
| +. +. |
I
i i% of row | 52.52| 47.48|
I U
| |% of column | 30.15] 33.60|
| |
I

1 <type> sums the values of Expenditures for all occurrences of Type within the
same value of Division. Thus, for Division=1, the denominator is $7,477 + $5,129.

2 <division> sums the frequency counts for all occurrences of Division within the
same value of Type. Thus, for Type=1, the denominator is $7,477 + $19,379 +
$5,476 + $13,959.

3 The third use of PCTN has no denominator definition. Omitting a denominator
definition is the same as including all class variables in the denominator
definition. Thus, for all cells, the denominator is $7,477 + $19,379 + $5,476 +
$13,959 + $5,129 + $15,078 + $4,729 + $12,619.

1188

Using Style Elements in PROC TABULATE A Chapter 37

Using Style Elements in PROC TABULATE

If you use the Output Delivery System to create both HTML and Printer output from
PROC TABULATE, you can set the style element that the procedure uses for various
parts of the table. Style elements determine presentation attributes, such as font face,
font weight, color, and so forth. Information about the style attributes that you can set
for a style element is in “Customizing the Style Definition That ODS Uses” on page 42.
lists the default styles for various regions of a table.

Tahle 37.5 Default Styles for Table Regions

Region Style

column headings Header
continuation message Aftercaption
box Header

page dimension text Beforecaption
row headings Rowheader
data cells Data

table Table

You specify style elements for PROC TABULATE with the STYLE= option. The
following shows where you can use this option. Specifications in the TABLE statement
override the same specification in the PROC TABULATE statement. However, any style
attributes that you specify in the PROC TABULATE statement and that you do not
override in the TABLE statement are inherited. For instance, if you specify a blue
background and a white foreground for all data cells in the PROC TABULATE
statement, and you specify a gray background for the data cells of a particular crossing
in the TABLE statement, the background for those data cells is gray, and the
foreground is white (as specified in the PROC TABULATE statement).

Detailed information on STYLE= is provided in the documentation for individual
statements.

Table 37.6 Using the STYLE= Option in PROC TABULATE

To set the style element for Use STYLE in this statement

data cells

PROC TABULATE

page dimension text, continuation messages, and class CLASS

variable name headings
class level value headings CLASSLEV
keyword headings KEYWORD

the entire table

TABLE

analysis variable name headings VAR

The TABULATE Procedure /A Missing Values 1189

Results

Missing Values

How a missing value for a variable in the input data set affects your output depends
on how you use the variable in the PROC TABULATE step. Table 37.7 on page 1189
summarizes how the procedure treats missing values.

Table 37.7 Summary of How PROC TABULATE Treats Missing Values

If. ..

PROC TABULATE, by default, . . .

To override the default . . .

an observation contains a missing
value for an analysis variable

an observation contains a missing
value for a class variable

there are no data for a category

every observation that contributes to
a table cell contains a missing value
for an analysis variable

there are no data for a formatted
value

a FREQ variable value is missing or
is less than 1

a WEIGHT variable value is missing
or 0

excludes that observation from the
calculation of statistics (except N and
NMISS) for that particular variable

excludes that observation from the
table!

does not show the category in the
table

displays a missing value for any
statistics (except N and NMISS) in
that cell

does not display that formatted
value in the table

does not use that observation to
calculate statistics

uses a value of 0

no alternative

use MISSING in the PROC
TABULATE statement, or MISSING
in the CLASS statement

use PRINTMISS in the TABLE
statement, or use CLASSDATA= in
the PROC TABULATE statement

use MISSTEXT= in the TABLE
statement

use PRELOADFMT in the CLASS
statement with PRINTMISS in the
TABLE statement, or use
CLASSDATA= in the PROC
TABULATE statement, or add
dummy observations to the input
data set so that it contains data for
each formatted value

no alternative

no alternative

1 The CLASS statement applies to all TABLE statements in a PROC TABULATE step. Therefore, if you define a variable as
a class variable, PROC TABULATE omits observations that have missing values for that variable even if you do not use the
variable in a TABLE statement.

This section presents a series of PROC TABULATE steps that illustrate how PROC
TABULATE treats missing values. The following program creates the data set and
formats that are used in this section and prints the data set. The data set COMPREV
contains no missing values (see Figure 37.5 on page 1190).

proc format;
value cntryfmt 1='United States’
2='Japan’;

1190 Missing Values A Chapter 37

value compfmt 1='Supercomputer’
2='Mainframe’
3='Midrange’
4='Workstation’
5='Personal Computer’
6='Laptop’;

run;

data comprev;

input Country Computer Rev90 Rev9l Rev92;

datalines;
788.8 877.6 944.9
12538.1 9855.6 8527.9
9815.8 6340.3 8680.3
3147.2 3474.1 3722.4
18660.9 18428.0 23531.1
469.9 495.6 448.4
5697.6 6242.4 5382.3
5392.1 5668.3 4845.9
1511.6 1875.5 1924.5
4746.0 4600.8 4363.7

N NN DNDNR B PR
U= W N E U W N

proc print data=comprev noobs;
format country cntryfmt. computer compfmt.;
title 'The Data Set COMPREV';

run;

Figure 37.5 The Data Set COMPREV

The Data Set COMPREV 1
Country Computer Rev90 Rev9l Rev92

United States Supercomputer 788.8 877.6 9449
United States Mainframe 12538.1 9855.6 8527.9
United States Midrange 9815.8 6340.3 8680.3
United States Workstation 3147.2 3474.1 37224
United States Personal Computer 18660.9 18428.0 23531.1

Japan Supercomputer 469.9 495.6 4484
Japan Mainframe 5697.6 6242.4 5382.3
Japan Midrange 5392.1 5668.3 4845.9
Japan Workstation 1511.6 1875.5 19245
Japan Personal Computer 4746.0 4600.8 4363.7

No Missing Values
The following PROC TABULATE step produces Figure 37.6 on page 1191:

proc tabulate data=comprev;
class country computer;
var rev90 rev9l rev92;
table computer*country,rev90 rev9l rev92 /
rts=32;

The TABULATE Procedure /A Missing Values

format country cntryfmt. computer compfmt.;
title ’'Revenues from Computer Sales’;
title2 ’"for 1990 to 1992';

run;

Figure 37.6 Computer Sales Data: No Missing Values

1191

Because the data set contains no missing values, the table includes all observations. All headers

and cells contain nonmissing values.

Revenues from Computer Sales 1
for 1990 to 1992

| |Revi0 |Rev9l |Revo? |
| [— Hameonenees Hememee |

| | Sum | Sum | Sum |
|
|

+ + + |

I

Computer |Country | | | |

— e N I

|Supercomputer |United States | 788.80| 877.60| 944.90|

| : + + S

| |Japan | 469.90] 495.60| 448.40|

| + + + + |

|Mainframe |United States | 12538.10| 9855.60| 8527.90|
+. +. |

| | +
|

1
| |Japan | 5697.60] 6242.40| 5382.30|
| + + + + |
|Midrange |United States | 9815.80] 6340.30| 8680.30|
| : R
| |Japan | 5392.10| 5668.30| 4845.90|
| +. +. +. +. |
I I
|Workstation |United States | 3147.20| 3474.10| 3722.40|
| : + + e
| |Japan | 1511.60] 1875.50| 1924.50|
| + + + + |
Personal	United States	18660.90	18428.00	23531.10
Computer	+ + +			
	Japan	4746.00] 4600.80	4363.70	

A Missing Class Variable

The next program copies COMPREV and alters the data so that the eighth

observation has a missing value for Computer. Except for specifying this new data set,
the program that produces Figure 37.7 on page 1192 is the same as the program that
produces Figure 37.6 on page 1191. By default, PROC TABULATE ignores observations

with missing values for a class variable.

data compmiss;
set comprev;
if n =8 then computer=.;

run;

proc tabulate data=compmiss;
class country computer;
var rev90 rev9l rev92;
table computer*country,rev90 rev9l rev92 /

1192 Missing Values A Chapter 37

rts=32;
format country cntryfmt. computer compfmt.;
title ’'Revenues from Computer Sales’;
title2 'for 1990 to 1992';

run;

Figure 37.7 Computer Sales Data: Midrange, Japan, Deleted

The observation with a missing value for Computer was the category Midrange, Japan. This
category no longer exists. By default, PROC TABULATE ignores observations with missing
values for a class variable, so this table contains one fewer row than Figure 37.6 on page 1191.

Revenues from Computer Sales 1
for 1990 to 1992

| | Rev90 | Rev9l |Rev92 |
| T ——

| | Sum | Sum | Sum |
| +. +.

I

|Computer |Country | | | |

[rooereeeeeeees oo I

|Supercomputer |United States | 788.80] 877.60| 944.90|
|

! : s e
| [Japan | 469.90| 495.60| 448.40|

| +. +. +. +. |

I I
|Mainframe |United States | 12538.10] 9855.60| 8527.90|
| : L —

| |Japan | 5697.60] 6242.40| 5382.30]|

| + + + + |

| |
|Midrange |United States | 9815.80] 6340.30] 8680.30|
| +. +. +. +. |

I I
|Workstation |United States | 3147.20| 3474.10| 3722.40|

| : |
| |Japan | 1511.60] 1875.50| 1924.50|

| + + + + |

|Personal |United States | 18660.90| 18428.00| 23531.10|
|Computer | + + + |

| |Japan | 4746.00] 4600.80| 4363.70|

Including Observations with Missing Class Variables

This program adds the MISSING option to the previous program. MISSING is
available either in the PROC TABULATE statement or in the CLASS statement. If you
want MISSING to apply only to selected class variables, but not to others, specify
MISSING in a separate CLASS statement with the selected variable(s). The MISSING
option includes observations with missing values of a class variable in the report (see
Figure 37.8 on page 1193).

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev9l rev92;
table computer*country,rev90 rev9l rev92 /

rts=32;

format country cntryfmt. computer compfmt.;
title ’'Revenues from Computer Sales’;
title2 'for 1990 to 1992';

run;

The TABULATE Procedure /A Missing Values

Figure 37.8 Computer Sales Data: Missing Value for COMP

1193

This table includes a category with missing values of COMP. This category makes up the first

row of data in the table.

Revenues from Computer Sales 1
for 1990 to 1992

| | Rev90 |Rev9l |Rev92 |
| i ————

| | Sum | Sum | Sum |
|

+ + + |

I
|Computer [Country | | | |
oo L |

| | |
| 5392.10| 5668.30| 4845.90|
+. +. +. |

|. |Japan
| +.
I I
Supercomputer	United States	788.80] 877.60	944.90
	+ + +		
Japan	469.90	495.60	448.40
+ + + + |
Mainframe |United States| 12538.10| 9855.60| 8527.90|
| + + + |
I I
|Japan | 5697.60| 6242.40| 5382.30
+ + + + |

I
Midrange |United States| 9815.80| 6340.30| 8680.30|
| + + + + |
Workstation |United States| 3147.20| 3474.10| 3722.40|
| + + + |

|[Japan | 1511.60] 1875.50] 1924.50|

| + + + + |

|Personal |United States| 18660.90| 18428.00| 23531.10|
|Computer | + + + |

| |[Japan | 4746.00] 4600.80| 4363.70|

Formatting Headings for Observations with Missing Class Variables
By default, as shown in Figure 37.8 on page 1193, PROC TABULATE displays

missing values of a class variable as one of the standard SAS characters for missing

values (a period, a blank, an underscore, or one of the letters A through Z). If you want
to display something else instead, you must assign a format to the class variable that
has missing values, as shown in the following program (see Figure 37.9 on page 1194):

proc format;

value misscomp 1='Supercomputer’

2='Mainframe’
3='Midrange’
4='Workstation’

5='Personal Computer’

6='Laptop’

.='No type given’;

run;

proc tabulate data=compmiss missing;

class country computer;
var rev90 rev9l rev92;

1194

Missing Values A Chapter 37

table computer*country,rev90 rev9l rev92 /
rts=32;

format country cntryfmt. computer misscomp.;

title ’'Revenues for Computer Sales’;

title2 'for 1990 to 1992';

run;

Figure 37.9 Computer Sales Data: Text Supplied for Missing COMP Value

In this table, the missing value appears as the text that the MISSCOMP. format specifies.

Revenues for Computer Sales 1
for 1990 to 1992

| | Rev90 | Revol | Revo2 |
| e
|

| Sum | Sum | Sum |
|- S S S |
|Computer |Country | | | |
[e— T— (.
|No type given |Japan | 5392.10| 5668.30| 4845.90|
| Ao S S S |
|Supercomputer |United States | 788.80] 877.60] 944.90|
| E— S R S R |
| |Japan | 469.90| 495.60| 448.40|
| +. +. +. +. |
1 I
Mainframe	United States	12538.10	9855.60	8527.90
	--mmmmme e Hommmmmen ommmmmen Fommmmmee			
	Japan	5697.60	6242.40	5382.30
--mmmmm e TR S S S				

|Midrange |United States | 9815.80| 6340.30| 8680.30|
1 +. +. +. |

+

1 I
|Workstation |United States | 3147.20| 3474.10| 3722.40|

| S oo
| |Japan | 1511.60] 1875.50| 1924.50|

|--mmmmm e TR S S S |

|Personal |United States |18660.90|18428.00|23531.10|
|Computer | + + + |

| |Japan | 4746.00| 4600.80| 4363.70|

Providing Headings for All Categories

By default, PROC TABULATE evaluates each page that it prints and omits columns
and rows for categories that do not exist. For example, Figure 37.9 on page 1194 does
not include a row for No type given and for United States or for Midrange and for
Japan because there are no data in these categories. If you want the table to represent
all possible categories, use the PRINTMISS option in the TABLE statement, as shown
in the following program (see Figure 37.10 on page 1195):

proc tabulate data=compmiss missing;

class country computer;

var rev90 rev9l rev92;

table computer*country,rev90 rev9l rev92 /
rts=32 printmiss;

format country cntryfmt. computer misscomp. ;

title ’'Revenues for Computer Sales’;

title2 'for 1990 to 1992';

The TABULATE Procedure /A Missing Values 1195

run;

Figure 37.10 Computer Sales Data: Missing Statistics Values

This table contains a row for the categories No type given, United States and Midrange,
Japan. Because there are no data in these categories, the values for the statistics are all
missing.

Revenues for Computer Sales 1
for 1990 to 1992

| | Revo0 | Rev9l | Rev92 |
| T ——

|
|
I

| Sum | Sum | Sum |
+. +. 1

+

1

|Computer |Country | | | |

i S Lo

|No type given |United States| | il |

| ! L ——

| |Japan | 5392.10| 5668.30| 4845.90|

| +. +. +. +. |

I 1

|Supercomputer |United States| 788.80| 877.60] 944.90|

| [+ + + :

| |Japan | 469.90] 495.60] 448.40|

| + + + + |

|Mainframe |United States| 12538.10] 9855.60| 8527.90|
+. +. +. |

1
| |Japan | 5697.60| 6242.40| 5382.30|
| + + + + |
|Midrange |United States| 9815.80| 6340.30| 8680.30|
| | b
! [Papan | | | | .
I 1
|Workstation |United States| 3147.20| 3474.10| 3722.40|
| [+ + + :
| |Japan | 1511.60| 1875.50| 1924.50]|
| + + + + |
Personal	United States	18660.90	18428.00	23531.10
Computer	+ + +			
	Japan	4746.00	4600.80	4363.70

Providing Text for Cells That Contain Missing Values

If some observations in a category contain missing values for analysis variables,
PROC TABULATE does not use those observations to calculate statistics (except N and
NMISS). However, if each observation in a category contains a missing value, PROC
TABULATE displays a missing value for the value of the statistic. To replace missing
values for analysis variables with text, use the MISSTEXT= option in the TABLE
statement to specify the text to use, as shown in the following program (see Figure
37.11 on page 1196).

proc tabulate data=compmiss missing;
class country computer;
var rev90 rev9l rev92;
table computer*country,rev90 rev9l rev92 /
rts=32 printmiss misstext=’'NO DATA!';
format country cntryfmt. computer misscomp. ;
title ’'Revenues for Computer Sales’;

1196

Missing Values A Chapter 37

title2 'for 1990 to 1992';

run;

Figure 37.11 Computer Sales Data: Text Supplied for Missing Statistics Values

This table replaces the period normally used to display missing values with the text of the
MISSTEXT= option.

Revenues for Computer Sales 1
for 1990 to 1992

| | Revo0 | Rev9l | Rev92 |

| i ——

| | Sum | Sum | Sum

| e + +----|

|Computer |Country | | | |

e — Lo

|No type given |United States INO DATA!INO DATA!|NO DATA!|
I | +. +. +. |

I I
| |Japan | 5392.10| 5668.30] 4845.90|

|-=-mmmmmmee Fommmm e S S S |
|Supercomputer |United States | 788.80| 877.60] 944.90|
| e L SS— L S— S S— |

| |Japan | 469.90| 495.60| 448.40|

| +. +. +. +. |

iMainframe |United States [12538.10| 9855|.60| 8527.90|
| |--mmmmme e Aemmmmeee A emmmmmee Fommmmeee |

| |Japan | 5697.60| 6242.40| 5382.30|

|--mmmme - S UR—— S u— S — S —— |

|Midrange |United States | 9815.80| 6340.30| 8680.30|
| : S ———

| |Japan |NO DATA!|NO DATAI!|NO DATA!|
|-=-mmmmmmee Fommmm e S S Aommmmeen |
|Workstation |United States | 3147.20| 3474.10| 3722.40|
| e L SS— L — = S— |

| |Japan | 1511.60| 1875.50| 1924.50|

| +. +. +. +. |

1 I

|Personal |United States |18660.90|18428.00|23531.10|
|Computer [----=-mmmmmme Femmmeees Femmmeeee Femmmeene] |

| |Japan | 4746.00| 4600.80| 4363.70|

Providing Headings for All Values of a Format

PROC TABULATE prints headings only for values that appear in the input data set.
For example, the format COMPFMT. provides for six possible values of COMP. Only five
of these values occur in the data set COMPREV. The data set contains no data for
laptop computers.

If you want to include headings for all possible values of COMP (perhaps to make it
easier to compare the output with tables that are created later when you do have data
for laptops), you have three different ways to create such a table:

0 Use the PRELOADFMT option in the CLASS statement with the PRINTMISS
option in the TABLE statement. See Example 3 on page 1203 for another example
that uses PRELOADFMT.

o Use the CLASSDATA= option in the PROC TABULATE statement. See Example 2
on page 1201 for an example that uses the CLASSDATA= option.

0 Add dummy values to the input data set so that each value that the format
handles appears at least once in the data set.

The TABULATE Procedure /A Missing Values 1197

The following program adds the PRELOADFMT option to a CLASS statement that
contains the relevant variable.
The results are shown in Figure 37.12 on page 1197.

proc tabulate data=compmiss missing;

class country;

class computer / preloadfmt;

var rev90 rev9l rev92;

table computer*country,rev90 rev9l rev92 /
rts=32 printmiss misstext=’'NO DATA!';

format country cntryfmt. computer compfmt.;

title ’'Revenues for Computer Sales’;

title2 ’"for 1990 to 1992';

run;

Figure 37.12 Computer Sales Data: All Possible COMP Valued Included

This table contains a heading for each possible value of COMP.

Revenues for Computer Sales 1
for 1990 to 1992

| | Revo0 | Rev9l | RevI2 |
! o ———
|

| Sum | Sum | Sum |
|-mmmmm e e S T S |
|Computer |[Country | | | |
— e |

I
I |United States|NO DATA!NO DATA!NO DATA!|
| +. |

| + +

I I
| |Japan | 5392.10| 5668.30| 4845.90)

| Aommmmmmmeeem Fommmmee Aommmme Aommmeee| |
|Supercomputer |United States| 788.80| 877.60] 944.90|
| e s u— S — S —— |

| |Japan | 469.90| 495.60| 448.40|

| +. +. +. 1

I 1

|Mainframe |United States|12538.10| 9855.60| 8527.90|
| |---- e Ao o |

| |Japan | 5697.60| 6242.40| 5382.30|
|--mmmmmee e Ao e e Ao |

|Midrange |United States| 9815.80| 6340.30| 8680.30|

| : +. +. +. I

| |Japan |NO DATA!INO DATA!NO DATA!|

| + Ao + +--—-|
|Workstation |United States| 3147.20| 3474.10| 3722.40|
| | oo + +-—|

| |Japan | 1511.60| 1875.50] 1924.50|

| +. +. +. +. 1

I 1

|Personal |United States|18660.90|18428.00|23531.10|
|Computer |------------- e oo oo |

| |Japan | 4746.00| 4600.80| 4363.70|
|--mmmmmee e Ao e e Aomeeee |

|Laptop |United States|NO DATA!INO DATA!INO DATA!|
| | e ———

| |Japan |NO DATA!INO DATA!|NO DATA!|

+.

1198

Understanding the Order of Headings with ORDER=DATA A Chapter 37

Understanding the Order of Headings with ORDER=DATA

The ORDER= option applies to all class variables. Occasionally, you want to order
the headings for different variables differently. One method for doing this is to group
the data as you want them to appear and to specify ORDER=DATA.

For this technique to work, the first value of the first class variable must occur in the
data with all possible values of all the other class variables. If this criterion is not met,
the order of the headings may surprise you.

The following program creates a simple data set in which the observations are
ordered first by the values of Animal, then by the values of Food. The ORDER= option
in the PROC TABULATE statement orders the heading for the class variables by the
order of their appearance in the data set (see Figure 37.13 on page 1198). Although
bones is the first value for Food in the group of observations where Animal= dog, all
other values for Food appear before bones in the data set because bones never appears
when Animal= cat. Therefore, the header for bones in the table in Figure 37.13 on
page 1198 is not in alphabetic order.

In other words, PROC TABULATE maintains for subsequent categories the order that
was established by earlier categories. If you want to reestablish the order of Food for
each value of Animal, use BY-group processing. PROC TABULATE creates a separate
table for each BY group, so that the ordering can differ from one BY group to the next.

data foodpref;
input Animal $ Food §;
datalines;

cat fish

cat meat

cat milk

dog bones

dog fish

dog meat

r

proc tabulate data=foodpref format=9.
order=data;
class animal food;
table animal*food;

run;

Figure 37.13 Ordering the Headings of Class Variables

cat | dog |

|
+ |

Food | Food |
+ :
fish | meat | milk | fish | meat | bones |
+ + + + + |
NI N | N | N NN |
+ + + + + |
1y 1y 1 1 1

The TABULATE Procedure /\ Program 1199

Examples

Example 1: Creating a Basic Two-Dimensional Table

Procedure features:
PROC TABULATE statement options:

FORMAT=
TABLE statement
crossing (* operator)
TABLE statement options:
RTS=
Other features: FORMAT statement

This example

O creates a category for each type of user (residential or business) in each division of
each region

O applies the same format to all cells in the table
O applies a format to each class variable
O extends the space for row headings.

Program

The data set ENERGY contains data on expenditures of energy for business and residential
customers in individual states in the Northeast and West regions of the United States. A DATA
step on page 1503 creates the data set.

data energy;
length State $2;
input Region Division state $ Type Expenditures;
datalines;

11ME 1 708

1 1ME 2 379

. more lines of data .

S

4 HI 1 273
4 4 HI 2 298

PROC FORMAT creates formats for Region, Division, and Type.

1200 Program A Chapter 37

proc format;
value regfmt 1='Northeast’

2='South’
3='Midwest’
4="West';

value divfmt 1='New England’
2='Middle Atlantic’
3='Mountain’
4='Pacific’;
value usetype l='Residential Customers’
2='Business Customers’;

run;

The FORMAT= option specifies DOLLAR12. as the default format for the value in each table cell.

options nodate pageno=1 linesize=80 pagesize=60;
proc tabulate data=energy format=dollarl2.;

The CLASS statement identifies Region, Division, and Type as class variables. The VAR
statement identifies Expenditures as an analysis variable.

class region division type;
var expenditures;

The TABLE statement creates a row for each formatted value of Region. Nested within each row
are rows for each formatted value of Division. The TABLE statement also creates a column for
each formatted value of Type. Each cell created by these rows and columns contains the sum of
the analysis variable Expenditures for all observations that contribute to that cell.

table region*division,
type*expenditures

RTS= provides 25 characters per line for row headings.

/ rts=25;

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures for Each Region’;
title2 ’'(millions of dollars)’;

run;

The TABULATE Procedure /\ Program 1201

Output
Energy Expenditures for Each Region 1
(millions of dollars)
Type
Residential | Business
Customers | Customers
____________ e
Expenditures|Expenditures
____________ e
Sum | Sum
_______________________ Y R
Region |Division
----------- Fom e |
Northeast |New England $7,477] $5,129
| == . o
[Middle | |
|Aatlantic | $19,379| $15,078
----------- o
West |Mountain | $5,476] $4,729
[. o
|Pacific | $13,959| $12,619

Example 2: Specifying Class Variable Combinations to Appear in a Table

Procedure features:
PROC TABULATE Statement options:

CLASSDATA=
EXCLUSIVE

Data set: ENERGY on page 1199
Formats: REGFMT., DIVFMT., and USETYPE. on page 1200

This example

0 uses the CLASSDATA= option to specify combinations of class variables to appear
in a table

0 uses the EXCLUSIVE option to restrict the output to only the combinations
specified in the CLASSDATA= data set. Without the EXCLUSIVE option, the
output would be the same as in Example 1 on page 1199.

Program

The data set CLASSES contains the combinations of class variable values that PROC
TABULATE uses to create the table.

data classes;
input region division type;
datalines;

1202 Program A Chapter 37

111
112
4 41
4 4 2

CLASSDATA= and EXCLUSIVE restrict the class level combinations to those specified in the
CLASSES data set.

options nodate pageno=1 linesize=80 pagesize=60;
proc tabulate data=energy format=dollarl2.
classdata=classes exclusive;

The CLASS statement identifies Region, Division, and Type as class variables. The VAR
statement identifies Expenditures as an analysis variable.

class region division type;

var expenditures;

The TABLE statement creates a row for each formatted value of Region. Nested within each row
are rows for each formatted value of Division. The TABLE statement also creates a column for
each formatted value of Type. Each cell created by these rows and columns contains the sum of
the analysis variable Expenditures for all observations that contribute to that cell.

table region*division,
type*expenditures

RTS= provides 25 characters per line for row headings.

/ rts=25;

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures for Each Region’;
title2 ’'(millions of dollars)’;

run;

The TABULATE Procedure /\ Program 1203

Output

Energy Expenditures for Each Region
(millions of dollars)

Residential | Business

Customers | Customers
____________ I

Expenditures|Expenditures

Sum Sum
_______________________ T SO
Region |Division
----------- B |
Northeast |New England $7,477| $5,129
----------- e
West |Pacific | $13,959| $12,619

Example 3: Using Preloaded Formats with Class Variables

Procedure features:
PROC TABULATE statement option:

OUT=
CLASS statement options:

EXCLUSIVE
PRELOADFMT

TABLE statement option:
PRINTMISS
Other features: PRINT procedure
Data set: ENERGY on page 1199
Formats: REGFMT., DIVFMT., and USETYPE. on page 1200

This example

O creates a table that includes all possible combinations of formatted class variable
values (PRELOADFMT with PRINTMISS), even if those combinations have a zero
frequency and even if they do not make sense

O restricts the data in the table to combinations of formatted class variable values
that appear in the input data set (PRELOADFMT with EXCLUSIVE).

O writes the output to an output data set, and prints that data set.

Program

The FORMAT= option specifies DOLLAR12. as the default format for the value in each table cell.

1204 Program A Chapter 37

options nodate pageno=1 linesize=80 pagesize=60;
proc tabulate data=energy format=dollarl2.;

PRELOADFMT specifies that PROC TABULATE use the preloaded values of the user-defined
formats for the class variables.

class region division type / preloadfmt;
var expenditures;

PRINTMISS specifies that all possible combinations of user-defined formats be used as the
levels of the class variables.

table region*division,
type*expenditures / rts=25 printmiss;

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures for Each Region’;
title2 ’'(millions of dollars)’;

run;

The OUT= option specifies the name of the output data set to which PROC TABULATE writes
the data.

proc tabulate data=energy format=dollarl2. out=tabdata;

The EXCLUSIVE option (used with PRELOADFMT) restricts the output to only the
combinations of formatted class variable values that appear in the input data set.

class region division type / preloadfmt exclusive;
var expenditures;

The PRINTMISS option is not specified in this case. If it were, it would override the
EXCLUSIVE option in the CLASS statement.

table region*division,
type*expenditures / rts=25;

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

The TABULATE Procedure A Output 1205

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures for Each Region’;
title2 ’'(millions of dollars)’;

run;

The PRINT procedure lists the output data set from PROC TABULATE.

proc print data=tabdata;

run;

Output

1206

Output

A Chapter 37

This output, created with the PRELOADFMT and PRINTMISS options, contains all possible
combinations of preloaded user-defined formats for the class variable values. It includes
combinations with zero frequencies, and combinations that make no sense, such as Northeast
and Pacific.

Energy Expenditures for Each Region 1
(millions of dollars)

Residential | Business
Customers | Customers
____________ e
Expenditures|Expenditures
____________ e

Region Division
___________ e
Northeast New England $7,477
Middle
Atlantic

$15,078

Middle

Midwest New England

Middle
Atlantic

Middle
Atlantic

t——t—F—F—F—— t—F — F — F—— F— F— ot — F —— o ——— + —

$5,476 | $4,729

The TABULATE Procedure A Output 1207

This output, created with the PRELOADFMT and EXCLUSIVE options, contains only those
combinations of preloaded user-defined formats for the class variable values that appear in the
input data set. This output is identical to the output from Example 1 on page 1199.

Energy Expenditures for Each Region 1
(millions of dollars)
Type
Residential | Business
Customers | Customers
____________ e
Expenditures|Expenditures
____________ e
Sum | Sum
_______________________ Y R
Region |Division
----------- B |
Northeast |New England $7,477| $5,129
[. o
[Middle | |
|Aatlantic | $19,379| $15,078
----------- o
West |Mountain | $5,476] $4,729
[. o
|Pacific | $13,959| $12,619

This output is a listing of the output data set from PROC TABULATE. It contains the data
created with the PRELOADFMT and EXCLUSIVE options specified.

Energy Expenditures for Each Region
(millions of dollars)

E

b4

p

e

n

d

i

t

D u

i _ r

R v _ _ T e

e i T P A s

g S T Y A B _

o i i % P G L s

b o o o) E E E u

s n n e _ _ m
1 Northeast New England Residential Customers 111 1 1 7477
2 Northeast New England Business Customers 111 1 1 5129
3 Northeast Middle Atlantic Residential Customers 111 1 1 19379
4 Northeast Middle Atlantic Business Customers 111 1 1 15078
5 West Mountain Residential Customers 111 1 1 5476
6 West Mountain Business Customers 111 1 1 4729
7 West Pacific Residential Customers 111 1 1 13959
8 West Pacific Business Customers 111 1 1 12619

1208 Example 4: Using Multilabel Formats A Chapter 37

Example 4: Using Multilabel Formats

Procedure features:

CLASS statement options:

MLF

PROC TABULATE statement options:

FORMAT=

TABLE statement

ALL class variable
concatenation (blank operator)

crossing (* operator)

grouping elements (parentheses operator)

label
variable list

Other features:

FORMAT procedure

FORMAT statement

VALUE statement options:
MULTILABEL

This example

o0 shows how to specify a multilabel format in the VALUE statement of PROC

FORMAT

o0 shows how to activate multilabel format processing using the MLF option with the
CLASS statement

O demonstrates the behavior of the N statistic when multilabel format processing is

activated.

Program

The CARSURVEY data set contains data from a survey distributed by a car manufacturer to a
focus group of potential customers brought together to evaluate new car names. Each
observation in the data set contains an id, the participant’s age, and the participant’s ratings of
four car names. A DATA step creates the data set.

options nodate pageno=1 linesize=80 pagesize=64;

data carsurvey;

input Rater Age Progressa Remark Jupiter Dynamo;

datalines;

1 38 94 98
2 49 96 84
3 16 64 78
4 27 89 73

. more lines of data .

77 61 92 88
78 24 87 88

84
80
76
90

77
88

80
77
73
92

85
91

The TABULATE Procedure /\ Program 1209

79 18 54 50 62 74
80 62 90 91 90 86

The FORMAT procedure creates a multilabel format for ages using the MULTILABEL option on
page 451.

proc format;
value agefmt (multilabel notsorted)

15 - 29 = ’'Below 30 years’
30 - 50 = 'Between 30 and 50’

51 - high = 'Over 50 years’
15 - 19 = 15 to 19’
20 - 25 = '20 to 25’
25 - 39 = 25 to 39’
40 - 55 = 40 to 55’

56 - high = 56 and above’;

run;

The FORMAT= option specifies up to ten digits as the default format for the value in each table
cell.

proc tabulate data=carsurvey format=10.;

The CLASS statement identifies Age as the class variable and uses the MLF option to activate
multilabel format processing. The VAR statement identifies Progressa, Remark, Jupiter, and
Dynamo as the analysis variables.

class age /mlf;
var progressa remark jupiter dynamo;

The row dimension of the TABLE statement creates a row for each formatted value of Age.
Multilabel formatting allows an observation to be included in multiple rows or age categories.
The row dimension uses the ALL class variable to sumarize information for all rows. The
column dimension uses the N statistic to calculate the number of observations for each age
group. Notice the result of the N statistic crossed with the ALL class variable in the row
dimension is the total number of observations instead of the sum of the N statistics for the rows.
The column dimension uses the ALL class variable at the beginning of a crossing to assign a
label, Potential Car Names , instead of calculating statistics. The four nested columns
calculate the mean ratings for the car names for each age group.

table age all, n all='Potential Car Names'*(progressa remark
jupiter dynamo)*mean;

The TITLE1 and TITLE2 statements specify the first and second titles.

titlel "Rating Four Potential Car Names";
title2 "Rating Scale 0-100 (100 is the highest rating)";

The FORMAT statement assigns the user-defined format. agefmt., to Age for this analysis.

format age agefmt.;

run;

1210 Output A Chapter 37

Output
OQutput 37.3
Rating Four Potential Car Names 1
Rating Scale 0-100 (100 is the highest rating)

| Potential Car Names

| ___

| Progressa | Remark | Jupiter | Dynamo

I o Fom e o

| N Mean | Mean | Mean | Mean
------------------ T T TP
Age I I I I
—————————————————— | | | |
15 to 19 | 14 75| 78| 81| 73
------------------ T T T T
20 to 25 | 11 89| 88| 84 | 89
------------------ T T T T
25 to 39 | 26| 84| 90| 82| 72
------------------ T T T TS
40 to 55 | 14| 85 | 87| 80 | 68
------------------ T T P
56 and above | 15] 84| 82| 81| 75
------------------ T T
Below 30 years | 36| 82| 84| 82| 75
------------------ T T T T
Between 30 and 50 | 25| 86 | 89| 81| 73
------------------ T T TS
Over 50 years | 19| 82| 84 | 80 | 76
------------------ T T T T
all | 80 | 83| 86 | 81| 74

Example 5: Customizing Row and Column Headings

Procedure features:
TABLE statement

labels
Data set: ENERGY on page 1199
Formats: REGFMT., DIVFMT., and USETYPE on page 1200

This example shows how to customize row and column headings. A label specifies
text for a heading. A blank label creates a blank heading. PROC TABULATE removes
the space for blank column headings from the table.

Program

The FORMAT= option specifies DOLLAR12. as the default format for the value in each table cell.

options nodate pageno=1 linesize=80 pagesize=60;
proc tabulate data=energy format=dollarl2.;

The TABULATE Procedure /A QOutput 1211

The CLASS statement identifies Region, Division, and Type as class variables. The VAR
statement identifies Expenditures as an analysis variable.

class region division type;
var expenditures;

The TABLE statement creates a row for each formatted value of Region. Nested within each row
are rows for each formatted value of Division. The TABLE statement also creates a column for
each formatted value of Type. Each cell created by these rows and columns contains the sum of
the analysis variable Expenditures for all observations that contribute to that cell. Text in
quotation marks specifies headings for the corresponding variable or statistic. Although Sum is
the default statistic, it is specified here so that you can remove the heading.

table region*division,
type='Customer Base'’*expenditures=' '*sum=' '

RTS= provides 25 characters per line for row headings.

/ rts=25;

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures for Each Region’;
title2 ’'(millions of dollars)’;

run;

Output

1212 Example 6: Summarizing Information with the Universal Class Variable ALL A Chapter 37

The headings for Region, Division, and Type contain text specified in the TABLE statement.
The TABLE statement eliminated the headings for Expenditures and Sum.

Energy Expenditures for Each Region 1
(millions of dollars)

| Customer Base
| _________________________
|Residential | Business
| Customers | Customers
_______________________ B SO
Region |pivision |
----------- B |
Northeast |New England% $7,477] $5,129
[. o
|Middle |
|Aatlantic | $19,379| $15,078
----------- o
West |Mountain | $5,476] $4,729
[. .
|Pacific | $13,959| $12,619

Example 6: Summarizing Information with the Universal Class Variabhle ALL

Procedure features:
PROC TABULATE statement options:
FORMAT=
TABLE statement:
ALL class variable

concatenation (blank operator)
format modifiers

grouping elements (parentheses operator)
Data set: ENERGY on page 1199

Formats: REGFMT., DIVFMT., and USETYPE on page 1200

This example shows how to use the universal class variable ALL to summarize
information from multiple categories.

Program

The FORMAT= option specifies COMMAI12. as the default format for the value in each table cell.

options nodate pageno=1 linesize=64 pagesize=60;
proc tabulate data=energy format=commal2.;

The CLASS statement identifies Region, Division, and Type as class variables. The VAR
statement identifies Expenditures as an analysis variable.

The TABULATE Procedure A Output 1213

class region division type;
var expenditures;

The row dimension of the TABLE statement creates a row for each formatted value of Region.
Nested within each row are rows for each formatted value of Division and a row (labeled
Subtotal) that summarizes all divisions in the region. The last row of the report (labeled
Total for All Regions) summarizes all regions. The format modifier f=DOLLAR12. assigns
the DOLLAR12. format to the cells in this row.

table region*(division all='Subtotal’)
all='Total for All Regions'’*f=dollarl2.,

The column dimension of the TABLE statement creates a column for each formatted value of
Type and a column labeled All customers that shows expenditures for all customers in a row
of the table. Each cell created by these rows and columns contains the sum of the analysis
variable Expenditures for all observations that contribute to that cell. Text in quotation marks
specifies headings for the corresponding variable or statistic. Although Sum is the default
statistic, it is specified here so that you can remove the heading.

type='Customer Base'’*expenditures=' '*sum=' '
all='All Customers’*expenditures=' '*sum=' '

RTS= provides 25 characters per line for row headings.

/ rts=25;

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;

run;

Output

1214 Example 7: Eliminating Row Headings A Chapter 37

The universal class variable ALL provides subtotals and totals in this

table.
Energy Expenditures for Each Region 1
(millions of dollars)
| Customer Base |
IResidential | Business I All
| Customers | Customers | Customers
----------------------- e B
Region Division | | |
——————————— $ommmmmmmee | | |
Northeast |New England| 7,477| 5,129 12,606
----------- T T
Middle | | |
Atlantic | 19,379] 15,078] 34,457
----------- e e
Subtotal | 26,856 20,207] 47,063
----------- A e
West Division | | |
——————————— |
Mountain I 5,476I 4,729 10,205
----------- e e
Pacific | 13,959] 12,619] 26,578
----------- e e
Subtotal | 19,435] 17,348] 36,783
----------------------- e
Total for All Regions | $46,291| $37,555| $83,846

Example 7: Eliminating Row Headings

Procedure features:
TABLE statement:

labels
ROW=FLOAT

Data set: ENERGY on page 1199
Formats: REGFMT., DIVFMT., and USETYPE on page 1200

This example shows how to eliminate blank row headings from a table. To do so, you
must both provide blank labels for the row headings and specify ROW=FLOAT in the
TABLE statement.

Program

The FORMAT= option specifies DOLLAR12. as the default format for the value in each table cell.

options nodate pageno=1 linesize=80 pagesize=60;
proc tabulate data=energy format=dollarl2.;

The TABULATE Procedure A Output 1215

The CLASS statement identifies Region, Division, and Type as class variables. The VAR
statement identifies Expenditures as an analysis variable.

class region division type;

var expenditures;

The row dimension of the TABLE statement creates a row for each formatted value of Region.
Nested within these rows is a row for each formatted value of Division. The analysis variable
Expenditures and the Sum statistic are also included in the row dimension, so PROC
TABULATE creates row headings for them as well. The text in quotation marks specifies the
headings. In the case of Expenditures and Sum, the headings are blank.

’

table region*division*expenditures=’' ’‘*sum=' ',

The column dimension of the TABLE statement creates a column for each formatted value of

Type.

type='Customer Base’

RTS= provides 25 characters per line for row headings. ROW=FLOAT eliminates blank row
headings.

/ rts=25 row=float;

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures for Each Region’;
title2 ’'(millions of dollars)’;

run;

Output

1216 Example 8: Indenting Row Headings and Eliminating Horizontal Separators A Chapter 37

Compare this table with the table in Example 5 on page 1210. The two tables are identical, but
the program that creates the table uses Expenditures and Sum in the column dimension. PROC
TABULATE automatically eliminates blank headings from the column dimension, whereas you
must specify ROW=FLOAT to eliminate blank headings from the row dimension.

Energy Expenditures for Each Region 1
(millions of dollars)

| Customer Base
| _________________________
|Residential | Business
| Customers | Customers
_______________________ B SO
Region |pivision |
----------- B |
Northeast |New England% $7,477] $5,129
[. o
|Middle |
|Aatlantic | $19,379| $15,078
----------- o
West |Mountain | $5,476] $4,729
[. o
|Pacific | $13,959| $12,619

Example 8: Indenting Row Headings and Eliminating Horizontal Separators

Procedure features:
PROC TABULATE statement options:
NOSEPS
TABLE statement options:
INDENT=
Data set: ENERGY on page 1199
Formats: REGFMT., DIVFMT., and USETYPE on page 1200

This example shows how to condense the structure of a table by
O removing row headings for class variables

O indenting nested rows underneath parent rows instead of placing them next to
each other

O eliminating horizontal separator lines from the row titles and the body of the table.

Program

The FORMAT= option specifies DOLLAR12. as the default format for the value in each table cell.
NOSEPS eliminates horizontal separator lines from row titles and from the body of the table.

options nodate pageno=1 linesize=80 pagesize=60;
proc tabulate data=energy format=dollarl2. noseps;

The TABULATE Procedure /A QOutput 1217

The CLASS statement identifies Region, Division, and Type as class variables. The VAR
statement identifies Expenditures as an analysis variable.

class region division type;
var expenditures;

The TABLE statement creates a row for each formatted value of Region. Nested within each row
are rows for each formatted value of Division. The TABLE statement also creates a column for
each formatted value of Type. Each cell created by these rows and columns contains the sum of
the analysis variable Expenditures for all observations that contribute to that cell. Text in
quotation marks in all dimensions specifies headings for the corresponding variable or statistic.
Although Sum is the default statistic, it is specified here so that you can remove the heading.

table region*division,
type='Customer Base'’*expenditures=' '*sum=' '

RTS= provides 25 characters per line for row headings. INDENT= removes row headings for
class variables, places values for Division beneath values for Region rather than beside them,
and indents values for Division 4 spaces.

/ rts=25 indent=4;

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures for Each Region’;
title2 ’'(millions of dollars)’;

run;

Output

1218

Example 9: Creating Multipage Tables A Chapter 37

NOSEPS removes the separator lines from the row titles and the body of the table. INDENT=
eliminates the row headings for Region and Division, and indents values for Division
underneath values for Region.

Energy Expenditures for Each Region 1
(millions of dollars)

Customer Base
Residential | Business
Customers | Customers
_______________________ M SR,
Northeast |
New England $7,477| $5,129
Middle Atlantic $19,379| $15,078
West
Mountain $5,476| $4,729
Pacific $13,959| $12,619

Example 9: Creating Multipage Tables

Procedure features:
TABLE statement

ALL class variable
BOX=
CONDENSE
INDENT=
page expression

Data set: ENERGY on page 1199

Formats: REGFMT., DIVFMT., and USETYPE. on page 1200

This example creates a separate table for each region and one table for all regions.
By default, PROC TABULATE creates each table on a separate page, but the
CONDENSE option places them all on the same page.

Program

The FORMAT= option specifies DOLLAR12. as the default format for the value in each table cell.

options nodate pageno=1 linesize=80 pagesize=60;
proc tabulate data=energy format=dollarl2.;

The CLASS statement identifies Region, Division, and Type as class variables. The VAR
statement identifies Expenditures as an analysis variable.

class region division type;
var expenditures;

The TABULATE Procedure /\ Program 1219

The page dimension of the TABLE statement creates one table for each formatted value of
Region and one table for all regions. Text in quotation marks provides the heading for each page.

table region='Region: ’ all='All Regions’,

The row dimension creates a row for each formatted value of Division and a row for all
divisions. Text in quotation marks provides the row headings.

division all='All Divisions’,

The column dimension of the TABLE statement creates a column for each formatted value of
Type. Each cell created by these pages, rows, and columns contains the sum of the analysis
variable Expenditures for all observations that contribute to that cell. Text in quotation marks
specifies headings for the corresponding variable or statistic. Although Sum is the default
statistic, it is specified here so that you can remove the heading.

type='Customer Base'’*expenditures=' ’'*sum=' '

RTS= provides 25 characters per line for row headings. BOX= places the page heading inside
the box above the row headings. CONDENSE places as many tables as possible on one physical
page. INDENT= eliminates the row heading for Division. (Because there is no nesting in the
row dimension, there is nothing to indent.)

/ rts=25 box=_page_ condense indent=1;

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures for Each Region and All Regions’;
title2 ’'(millions of dollars)’;

run;

1220 Output A Chapter 37

Output
Energy Expenditures for Each Region and All Regions
(millions of dollars)
Region: Northeast | Customer Base
| ==
|Residential | Business
| Customers | Customers
_______________________ Y R
New England | $7,477| $5,129
_______________________ Y R
Middle Atlantic | $19,379| $15,078
_______________________ Y R
All Divisions | $26,856 | $20,207
Region: West | Customer Base
| ==
|Residential | Business
| Customers | Customers
_______________________ Y R
Mountain | $5,476| $4,729
_______________________ Y R
Pacific | $13,959| $12,619
_______________________ Rt R
All Divisions | $19,435| $17,348
All Regions | Customer Base
| ==
|Residential | Business
| Customers | Customers
_______________________ Y R
New England | $7,477] $5,129
_______________________ Rt R
Middle Atlantic | $19,379| $15,078
_______________________ Rt R
Mountain | $5,476| $4,729
_______________________ Y R
Pacific | $13,959| $12,619
_______________________ Rt R
All Divisions | $46,291| $37,555

Example 10: Reporting on Multiple-Response Survey Data

Procedure features:
TABLE statement:

denominator definition (angle bracket operators)
N statistic

PCTN statistic

variable list

Other features:
FORMAT procedure

The TABULATE Procedure /A Program 1221

SAS system options:

FORMDLIM=
NONUMBER

SYMPUT routine

The two tables in this example show
0 which factors most influenced customers’ decisions to buy products
0O where customers heard of the company.

The reports appear on one physical page with only one page number. By default, they

would appear on separate pages.
In addition to showing how to create these tables, this example shows how to

O use a DATA step to count the number of observations in a data set
O store that value in a macro variable
O access that value later in the SAS session.

Collecting the Data
Figure 37.14 on page 1221 shows the survey form used to collect data.

Figure 37.14 Completed Survey Form

Customer Questionnaire

ID#:

Please place a check beside all answers that apply.

Why do you buy our products?

— Cost Performance _ Reliability — Sales staff

How did you find out about our company?

— T.V./Radio __ Newspaper/Magazine _ Word of mouth

What makes a sales person effective?

Product knowledge ____ Personality ___ Appearance

Program

The FORMDLIM= option replaces the character that delimits page breaks with a single blank.
By default, a new physical page starts whenever a page break occurs.

options nodate pageno=1 linesize=80 pagesize=18
formdlim=' ’;

1222

Program

A Chapter 37

The CUSTOMER_RESPONSE data set contains data from a customer survey. Each observation
in the data set contains information about factors that influence one respondent’s decisions to
buy products. A DATA step on page 1496 creates the data set. Using missing values rather than
0’s is crucial for calculating frequency counts in PROC TABULATE.

data customer_ response;
input Customer Factorl-Factor4 Sourcel-Source3
Qualityl-Quality3;
datalines;
1..1111.1.

. more lines of data .

119 . . .1 . . .1 . .
12011 .1 1.

The SET statement reads the descriptor portion of CUSTOMER_RESPONSE at compile time
and stores the number of observations (the number of respondents) in COUNT. The SYMPUT
routine stores the value of COUNT in the macro variable NUM. This variable is available to the
remainder of the SAS session. The IF 0 condition, which is always false, ensures that the SET
statement, which reads the observations, never executes. (Reading observations is unnecessary.)
The STOP statement ensures that the DATA step executes only once.

data _null ;
if 0 then set customer response nobs=count;
call symput(’num’,left(put(count,4.)));
stop;

run;

The FORMAT procedure creates a format for percentages. The PCTFMT. format writes all
values with at least one digit to the left of the decimal point and with one digit to the right of
the decimal point. A blank and a percent sign follow the digits.

proc format;
picture pctfmt low-high='009.9 %';

run;

The VAR statement identifies Factorl, Factor2, Factor3, Factor4, and Customer as the analysis
variables. Customer must be listed because it appears in the denominator definition.

proc tabulate data=customer_ response;
var factorl-factor4 customer;

The TABULATE Procedure /\ Program 1223

The TABLE statement creates a row for each factor, a column for frequency counts, and a
column for the percentages. Text in quotation marks supplies headers for the corresponding row
or column. The format modifiers F=7. and F=PCTFMT?9. provide formats for values in the
associated cells and extend the column widths to accommodate the column headers.

table factorl='Cost’
factor2='Performance’
factor3='Reliability’
factor4='Sales Staff’,
(n='Count’'*f=7. pctn<customer>=’'Percent’*f=pctfmt9.) ;

The TITLE statements specify titles.

title ’'Customer Survey Results: Spring 1996';
title3 ’‘Factors Influencing the Decision to Buy';

run;

The SAS system option NONUMBER suppresses page numbers for subsequent pages.

options nonumber;

The VAR statement specifies the analysis variables. Customer must be in the variable list
because it appears in the denominator definition.

proc tabulate data=customer response;
var sourcel-source3 customer;

The TABLE statement creates a row for each source of the company name, a column for
frequency counts, and a column for the percentages. Text in quotation marks supplies a header
for the corresponding row or column.

table sourcel='TV/Radio’
source2='Newspaper’
source3='Word of Mouth’,
(n='Count’'*f=7. pctn<customer>=’'Percent’*f=pctfmt9.) ;

The TITLE and FOOTNOTE statements specify the title and footnote. The macro variable NUM
resolves to the number of respondents. The FOOTNOTE statement uses double rather than
single quotes so that the macro variable will resolve.

title ’'Source of Company Name’;
footnote "Number of Respondents: &num";

run;

The FORMDLIM= option resets the page delimiter to a page eject. The NUMBER option
resumes the display of page numbers on subsequent pages.

options formdlim='’ number;

1224 Output A Chapter 37

Output

Customer Survey Results: Spring 1996 1
Factors Influencing the Decision to Buy

| Count | Percent |
------------------ et |
Cost | 87| 72.5 %
------------------ et |
Performance | 62| 51.6 %
------------------ et |
Reliability | 30| 25.0 %
------------------ ot |
Sales Staff | 120| 100.0 %|

Source of Company Name

| | Count | Percent |

| == o o |

| TV/Radio | 92| 76.6 %|

| == o Fom |

| Newspaper | 69| 57.5 %|

| == o Fom |
|

|Word of Mouth

Number of Respondents: 120

Example 11: Reporting on Multiple-Choice Survey Data

Procedure features:
TABLE statement:

N statistic

Other features:
FORMAT procedure
TRANSPOSE procedure
Data set options:

RENAME=

This report of listener preferences shows how many listeners select each type of
programming during each of seven time periods on a typical weekday. The data were

The TABULATE Procedure A GCollecting the Data 1225

collected by a survey, and the results were stored in a SAS data set. Although this data
set contains all the information needed for this report, the information is not arranged
in a way that PROC TABULATE can use.

To make this crosstabulation of time of day and choice of radio programming, you
must have a data set that contains a variable for time of day and a variable for
programming preference. PROC TRANSPOSE reshapes the data into a new data set
that contains these variables. Once the data are in the appropriate form, PROC
TABULATE creates the report.

Collecting the Data
Figure 37.15 on page 1225 shows the survey form used to collect data.

Figure 37.15 Completed Survey Form

phone_ _ _
LISTENER SURVEY
1. What is your age?
2. What is your gender?
3. On the average WEEKDAY, how many hours do you listen
to the radio?
4. On the average WEEKEND-DAY, how many hours do you
listen to the radio?
Use codes 1-8 for question 5. Use codes 0-8 for 6-19.
0 Do not listen at that time
1 Rock 5 Classical
2 Top40 6 Easy Listening
3 Country 7 News/Information/Talk
4 Jazz 8 Other
5. What style of music or radio programming do you most
often listen to?
On a typical WEEKDAY, On a typical WEEKEND-DAY,
what kind of radio program- what kind of radio programming
ming do you listen to do you listen to
6. from 6-9 a.m.? 13. from 6-9 a.m.?
7. from 9 a.m. to noon? 14. from 9 a.m. to noon?
8. from noon to 1 p.m.? 15. from noon to 1 p.m.?
9. from 1-4 p.m.? 16. from 1-4 p.m.?
10. from 4-6 p.m.? 17. from 4-6 p.m.?
11. from 6-10 p.m.? 18. from 6-10 p.m.?
12. from 10 pm. to 2 a.m.? 19. from 10 p.m. to 2 a.m.?

An external file on page 1522 contains the raw data for the survey. Several lines
from that file appear here.

967 32 £ 5 3 5
75557000870080
781 30 £ 2 3 5

1226

Program

A Chapter 37

50005000475000
859 39 £ 105
1000100000O0OO0OOCO

. . . more lines of data . . .

859 32 m .25 .25 1
1000000O0O1O0O0OO0OO0CO

Program

options nodate pageno=1 linesize=132 pagesize=40;

The data set RADIO contains data from a survey of 336 listeners. The data set contains
information about listeners and their preferences in radio programming. The INFILE statement
specifies the external file that contains the data. MISSOVER prevents the input pointer from
going to the next record if it doesn’t find values in the current line for all variables listed in the
INPUT statement. Each raw-data record contains two lines of information about each listener.
The INPUT statement reads only the information that this example needs. The / line control
skips the first line of information in each record. The rest of the INPUT statement reads
Timel-Time7 from the beginning of the second line. These variables represent the listener’s
radio programming preference for each of seven time periods on weekdays (see Figure 37.15 on
page 1225). Listener=_N_ assigns a unique identifier to each listener.

data radio;
infile ’'input-file’ missover;
input /(Timel-Time7) ($1. +1);
listener= n_;

run;

PROC FORMAT creates formats for the time of day and the choice of programming.

proc format;

value $timefmt ’'Timel’='6-9 a.m.’
'Time2’'='9 a.m. to noon’
'Time3’='noon to 1 p.m.’

'Timed4’'='1-4 p.m.’

'Time5'='4-6 p.m.’

'Time6'='6-10 p.m.’

'Time7'='10 p.m. to 2 a.m.’

other='*** Data Entry Error ***’;
value $pgmfmt '0’="Don’t Listen"
"1",’2'="Rock and Top 40’
"3’='Country’

'4','5','6'="'Jazz, Classical, and Easy Listening’
'7'='News/ Information /Talk’
'8'='Other’

other='*** Data Entry Error ***’;

run;

The TABULATE Procedure /A Program 1227

PROC TRANSPOSE creates RADIO_TRANSPOSED. This data set contains the variable
Listener from the original data set. It also contains two transposed variables: Timespan and
Choice. Timespan contains the names of the variables (Timel-Time7) from the input data set
that are transposed to form observations in the output data set. Choice contains the values of
these variables. (See “A Closer Look” on page 1228 for a complete explanation of the PROC
TRANSPOSE step.)

proc transpose data=radio
out=radio_transposed(rename=(coll=Choice))
name=Timespan;
by listener;
var timel-time7;

The FORMAT statement permanently associates these formats with the variables in the output
data set.

format timespan $timefmt. choice $pgmfmt.;

run;

The FORMAT= option specifies the default format for the values in each table cell.

proc tabulate data=radio_transposed format=12.;

The CLASS statement identifies Timespan and Choice as class variables.

class timespan choice;

The TABLE statement creates a row for each formatted value of Timespan and a column for
each formatted value of Choice. In each column are values for the N statistic. Text in quotation
marks supplies headers for the corresponding rows or columns.

table timespan='Time of Day’,
choice='Choice of Radio Program’*n='Number of Listeners’;

The TITLE statement specifies the title.

title 'Listening Preferences on Weekdays';

run;

1228 Output A Chapter 37

Output

Listening Preferences on Weekdays 1

Choice of Radio Program

|Rock and Top|

Jazz, |
Classical, | News/
and Easy |Information

| |
| |
Don’t Listen	40	Country
+ + + + +		
Number of	Number of	Number of
Listeners	Listeners	Listeners
+ + + + + +
Tine of Day | | | | | | |
| [| | | | | |
|6-9 a.m. | 34| 143| 7] 39| 96| 17|
| + + + + + +
|9 a.m. to noon | 214 59| 5| 51| 3| 4|
| + + + + + +
|noon to 1 p.m. | 238 55| 3| 27| 9| 4|
| + + + + + +
|1-4 p.m. | 216 60| 5] 50| 2| 3|
| + + + + + +
|4-6 p.m. | 56| 130] 6 57| 69| 18|
| + + + + + +
|6-10 p.m. | 202| 54| 9| 44| 20| 7]
| + + + + + +
|10 p.m. to 2 a.m. | 264| 29| 3| 36| 2| 2|

A Closer Look

Reshape the data

The original input data set has all the information that you need to make the
crosstabular report, but PROC TABULATE cannot use the information in that form.
PROC TRANSPOSE rearranges the data so that each observation in the new data set
contains the variable Listener, a variable for time of day, and a variable for
programming preference. PROC TABULATE uses this new data set to create the
crosstabular report.

PROC TRANSPOSE restructures data so that values that were stored in one
observation are written to one variable. You can specify which variables you want to
transpose. This section illustrates how PROC TRANSPOSE reshapes the data. The
following section explains the PROC TRANSPOSE step in this example.

When you transpose with BY processing, as this example does, you create from each
BY group one observation for each variable that you transpose. In this example,
Listener is the BY variable. Each observation in the input data set is a BY group
because the value of Listener is unique for each observation.

This example transposes seven variables, Timel through Time7. Therefore, the
output data set has seven observations from each BY group (each observation) in the
input data set.

Figure 37.16 on page 1229 uses the first two observations in the input data set to
illustrate the transposition.

Figure 37.16 Transposing Two Observations

Input Data Set

The TABULATE Procedure /A A Closer Look

/ Timel Time2 Time3 Time4 Time5 Time6 Timey Listener
7 5 5 5 0 0 1
5 0 0 0 0 0 2
0 0 0
_
Listener _NAME_ coL1 [l The BY variable is not

transposed. All the

1 Timel 7 observations created from the
same BY group contain the

1 Time2 7 same value of Listener.

[0 _NAME_ contains the name

1 Time3 5 of the variable in the input
data set that was transposed

1 Time4 5 to create the current
observation in the output

1 Time5 7 data set.

[0 COL1 contains the values of

1 Time6 0 Timel-Time7.

1 Time7 0

2 Timel 5

2 Time2 0

2 Time3 0

2 Time4 0

2 Time5 5

2 Time6 0

2 Time7 0

Output Data Set

Understanding the PROC TRANSPOSE Step

This is the PROC TRANSPOSE step that reshapes the data:

proc transpose data=radio

out=radio_transposed(rename=(coll=Choice)) (2]

1229

1230

Example 12: Calculating Various Percentage Statistics A Chapter 37

name=Timespan; (3]
by listener; (4]
var timel-time7; (5]
format timespan $timefmt. choice $pgmfmt.; (6]

run;

The DATA= option in the PROC TRANSPOSE statement specifies the input data
set.

The OUT= option in the PROC TRANSPOSE statement specifies the output data
set. The RENAME= data set option renames the transposed variable from COL1
(the default name) to Choice.

The NAME= option in the PROC TRANSPOSE statement specifies the name for
the variable in the output data set that contains the name of the variable that is
being transposed to create the current observation. By default, the name of this
variable is _NAME_.

4 The BY statement identifies Listener as the BY variable.
5 The VAR statement identifies Timel through Time7 as the variables to transpose.

The FORMAT statement assigns formats to Timespan and Choice. The PROC
TABULATE step that creates the report does not need to format Timespan and
Choice because the formats are stored with these variables.

Example 12: Calculating Various Percentage Statistics

Procedure features:
PROC TABULATE statement options:

FORMAT=

TABLE statement:

ALL class variable

COLPCTSUM statistic

concatenation (blank operator)

crossing (* operator)

format modifiers

grouping elements (parentheses operator)
labels

REPPCTSUM statistic

ROWPCTSUM statistic

variable list

TABLE statement options:

ROW=FLOAT
RTS=

Other features: FORMAT procedure

This example shows how to use three percentage sum statistics: COLPCTSUM,
REPPCTSUM, and ROWPCTSUM.

The data set FUNDRAIS contains data on student sales during a school fundraiser. A DATA
step creates the data set.

The TABULATE Procedure A 1231

options nodate pageno=1 linesize=105 pagesize=60;
data fundrais;
length name $ 8 classrm $ 1;
input @1 team $ @8 classrm $ @10 name $
@19 pencils @23 tablets;
sales=pencils + tablets;

cards;
BLUE A ANN 4 8
RED A MARY 5 10
GREEN A JOHN 6 4
RED A BOB 2 3
BLUE B FRED 6 8
GREEN B LOUISE 12 2
BLUE B ANNETTE 9
RED B HENRY 8 10
GREEN A ANDREW 3 5
RED A SAMUEL 12 10
BLUE A LINDA 7 12
GREEN A SARA 4 .
BLUE B MARTIN 9 13
RED B MATTHEW 7 6
GREEN B BETH 15 10
RED B LAURA 4 3

The FORMAT procedure creates a format for percentages. The PCTFMT. format writes all
values with at least one digit, a blank, and a percent sign.

proc format;
picture pctfmt low-high='009 %';

run;

The TITLE statement specifies the title.

title "Fundraiser Sales";

The FORMAT= option specifies up to seven digits as the default format for the value in each
table cell.

proc tabulate format=7.;

The CLASS statement identifies Team and Classrm as class variables. The VAR statement
identifies Sales as the analysis variable.

class team classrm;
var sales;

The row dimension of the TABLE statement creates a row for each formatted value of Team.
Nested within each row is a row (labeled sales) that summarizes sales for the team. The last
row of the report summarizes sales for all teams.

table (team all)*sales=’' ',

1232 Output A Chapter 37

The column dimension of the TABLE statement creates a column for each formatted value of
Classrm. Nested within each column are columns that summarize sales for the class. The first
nested column, labeled sum, is the sum of sales for the row for the classroom. The second nested
column, labeled ColPctSum, is the percentage of the sum of sales for the row for the classroom
in relation to the sum of sales for all teams in the classroom. The third nested column, labeled
RowPctSum, is the percentage of the sum of sales for the row for the classroom in relation to the
sum of sales for the row for all classrooms. The fourth nested column, labeled RepPctSum, is the
percentage of the sum of sales for the row for the classroom in relation to the sum of sales for
all teams for all classrooms. The last column of the report summarizes sales for the row for all
classrooms.

classrm='Classroom’* (sum
colpctsum*f=pctfmt9.
rowpctsum*f=pctfmt9.
reppctsum*f=pctfmt9.)
all

RTS= provides 20 characters per line for row headings. ROW=FLOAT eliminates blank row

headings.
/rts=20 row=float;
run;

Fundraiser Sales 1
	Classroom								
	A	B	a1l						
	+ +								
	Sum	ColPctSum	RowPctSum	RepPctSum	Sum	ColPctSum	RowPctSum	RepPctSum	Sum
+ + + + + + + + +									
team									
e !									
BLUE	31	34 % 46 %	15 %	36	31 8	53 8	17 3	67	
+ + + + + + + + +									
GREEN	18	19 %	31 8	8 3	39	34 % 68 %	19 3	57	
+ + + + + + + + +									
RED	42	46 % 52 %	20 % 38	33 3 47 % 18 %	80				
+ + + + + + + + +									
a11	91	100 % 44 3% 44 3% 113] 100 % 55 %	55 % 204						

A Closer Look

Here are the percentage sum statistic calculations used to produce the output for the
Blue Team in Classroom A:

COLPCTSUM=31/91%100=34%
ROWPCTSUM=31/67%*100=46%
REPPCTSUM=31/204%100=15%

Similar calculations were used to produce the output for the remaining teams and
classroom.

The TABULATE Procedure /A Program

1233

Example 13: Using Denominator Definitions to Display Basic Frequency

Counts and Percentages

Procedure features:
TABLE statement:

ALL class variable

denominator definitions (angle bracket operators)

N statistic

PCTN statistic

Other features:
FORMAT procedure

Crosstabulation tables (also called contingency tables and stub-and-banner reports)
show combined frequency distributions for two or more variables. This table shows

frequency counts for females and males within each of four job classes. The table also
shows the percentage that each frequency count represents of

O the total women and men in that job class (row percentage)

O the total for that gender in all job classes (column percentage)

O the total for all employees.

Program

options nodate pageno=1 linesize=80 pagesize=60;

The JOBCLASS data set contains encoded information about the gender and job class of

employees in a fictitious company.

data jobclass;

input Gender Occupation

datalines;

1

NN NNNNNRERRR R R P B B
W N B WEAENFEBNRE®NREWNDR
NN NNNNNRER PR B B B B

1

W N & W N R WD DN FE WN

1

NN NNNNMNNRERRP R B P B B

BN R W N R DR WD W R WN

NN NNNNNRERRPRRPR R P P B B

BN R WD W HE WD R WD WDN R

NN NNNNMNNDNRERRR R PR P B -

BN R D W W W N R BN WN R

NN NN NNNMNRRRRRRBBRB 2

)
()
~e

H N R & P WNhDERFE NP BN WND R

NN NN NNNNRRRRRRBBRB 2

H N R & W s NDE DN DN WND =

1234 Program A Chapter 37

PROC FORMAT creates formats for Gender and Occupation.

proc format;
value gendfmt 1='Female’
2='Male’
other='*** Data Entry Error ***’;
value occupfmt 1='Technical’
2='Manager/Supervisor’
3=’Clerical’
4='Administrative’
other='*** Data Entry Error ***’;

run;

The FORMAT= option specifies the 8.2 format as the default format for the value in each table
cell.

proc tabulate data=jobclass format=8.2;

The CLASS statement identifies Gender and Occupation as class variables.

class gender occupation;

The TABLE statement creates a set of rows for each formatted value of Occupation and for all
jobs together. Text in quotation marks supplies a header for the corresponding row.

table (occupation='Job Class’ all='All Jobs')

For detailed explanations of the structure of this table and of the use of denominator definitions,
see “A Closer Look” on page 1236. The asterisk in the row dimension indicates that the
statistics that follow in parentheses are nested within the values of Occupation and All to form
sets of rows. Each set of rows includes four statistics:

1 N, the frequency count. The format modifier (F=9.) writes the values of N without
the decimal places that the default format would use. It also extends the column
width to nine characters so that the word Employees fits on one line.

the percentage of the row total (row percent).

the percentage of the column total (column percent).

the overall percent. Text in quotation marks supplies the header for the
corresponding row. A comma separates the row definition from the column definition.

*(n='Number of employees’*f=9.
pctn<gender all>='Percent of row total’
pctn<occupation all>='Percent of column total’
pctn='Percent of total’),

The TABULATE Procedure /\ Program 1235

The column dimension creates a column for each formatted value of Gender and for all
employees. Text in quotation marks supplies the header for the corresponding column. The
RTS= option provides 50 characters per line for row headings.

gender='Gender’ all='All Employees’/ rts=50;

The FORMAT statement assigns formats to Gender and Occupation. The TITLE statements
specify the titles.

format gender gendfmt. occupation occupfmt.;
title ’'Gender Distribution’;
title2 ’'within Job Classes’;

run;

1236 Output

A Chapter 37

Output

Gender Distribution
within Job Classes

| | Gender | |
! [| A |
| | Female | Male |Employees|
| + + +
Job Class				
+ [
Technical	Number of employees	16	18	34
	+ + +			
	Percent of row total	47.06	52.94	100.00]
	+ + +			
	Percent of column total	26.23	29.03	27.64
	+ + +			
	Percent of total	13.01] 14.63	27.64	
+ + + +				
Manager/Supervisor	Number of employees	20	15	35
	+ + +			
	Percent of row total	57.14	42.86	100.00]
	+ + +			
	Percent of column total	32.79	24.19	28.46
	+ + +			
	Percent of total	16.26]	12.20] 28.46	
+ + + +				
clerical	Number of employees	14	14	28
	+ + +			
	Percent of row total	50.00] 50.00] 100.00]		
	+ + +			
	Percent of column total	22.95	22.58] 22.76	
	+ + +			
	Percent of total	11.38] 11.38] 22.76		
+ + + +				
Administrative	Number of employees	11	15	26
	+ + +			
	Percent of row total	42.31	57.69	100.00]
	+ + +			
	Percent of column total	18.03] 24.19	21.14	
	+ + +			
	Percent of total	8.94	12.20] 21.14	
+ + + +				
all Jobs	Number of employees	61	62	123]
	+ + +			
	Percent of row total	49.59	50.41	100.00]
	+ + +			
	Percent of column total	100.00	100.00	100.00]
	+ + +			
	Percent of total	49.59	50.41	100.00]

A Closer Look

The part of the TABLE statement that defines the rows of the table uses the PCTN
statistic to calculate three different percentages.

In all calculations of PCTN, the numerator is N, the frequency count for one cell of
the table. The denominator for each occurrence of PCTN is determined by the
denominator definition. The denominator definition appears in angle brackets after the
keyword PCTN. It is a list of one or more expressions. The list tells PROC TABULATE
which frequency counts to sum for the denominator.

The TABULATE Procedure /A A Closer Look 1237

Analyzing the Structure of the Tahle

Taking a close look at the structure of the table helps you understand how PROC
TABULATE uses the denominator definitions. The following simplified version of the
TABLE statement clarifies the basic structure of the table:

table occupation='Job Class’ all='All Jobs’,
gender='Gender’ all='All Employees’;

The table is a concatenation of four subtables. In this report, each subtable is a
crossing of one class variable in the row dimension and one class variable in the column
dimension. Each crossing establishes one or more categories. A category is a
combination of unique values of class variables, such as female, technical or all,
clerical. Table 37.8 on page 1237 describes each subtable.

Table 37.8 Contents of Subtables

Class variables contributing to the Number of
subtable Description of frequency counts categories
Occupation and Gender number of females in each job or 8

number of males in each job

All and Gender number of females or number of males 2
Occupation and All number of people in each job 4
All and All number of people in all jobs 1

Figure 37.17 on page 1238 highlights these subtables and the frequency counts for each
category.

1238 A Closer Look A Chapter 37

Figure 37.17 lllustration of the Four Subtables

Occupation
and All

Occupation and Gender

Gender |
I'-é-rﬁé-lg e |,
Job Class +| |) | | |
Technical INumber of employees ' | I}Gl 18|

Percent of row total | 47.06] 52.94|
Percent of column total | 26.23| 29.03|
Percentoftotal | 1301 14.63]

Manager/Supervisor |Numberofer'nplo ees | 20 15
Percentof rowtotal | 57.14] 42.86]
Per 79 24.19|
Percent of total | }_e_._g_q:l_'_é_gp_L

Clerical [Number of employees | 14 14|

Percent of row total | 50.00] 50.50]
Percent of column total | 22.95] 22.58|
Percentoftotal | 11.38] 1138

Administrative |Numberofempl6yees |11 15
Percent of row total | 42.31] 57.69|
Pel 03| 24.19|

Percent of total | 894 12.20]
+ S S —

ﬁVumber ofemployges A * 61 * 62
Percent of row total | 49.59] 50.41]|

Percent of column total | 100.00] 100.00]
Percentof total | 49.59 50.41

|
All Jobs

All and Gender

All
and All

Interpreting Denominator Definitions
The following fragment of the TABLE statement defines the denominator definitions for
this report. The PCTN keyword and the denominator definitions are underlined.

table (occupation=’'Job Class’ all='All Jobs')
*(n='Number of employees’*f=5.
pctn<gender all>='Row percent’
pctn<occupation all>=’'Column percent’
pctn='Percent of total’),

Each use of PCTN nests a row of statistics within each value of Occupation and All.
Each denominator definition tells PROC TABULATE which frequency counts to sum for
the denominators in that row. This section explains how PROC TABULATE interprets
these denominator definitions.

Row Percentages
The part of the TABLE statement that calculates the row percentages and that labels
the row is

pctn<gender all>='Row percent’

Consider how PROC TABULATE interprets this denominator definition for each
subtable.

The TABULATE Procedure /A A Closer Look 1239

Subtable 1: Occupation and Gender

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does contribute to the
subtable, PROC TABULATE uses it as the denominator definition. This denominator
definition tells PROC TABULATE to sum the frequency counts for all occurrences of
Gender within the same value of Occupation.

For example, the denominator for the category female, technical is the sum of all
frequency counts for all categories in this subtable for which the value of Occupation is
technical. There are two such categories: female, technical and male,
technical. The corresponding frequency counts are 16 and 18. Therefore, the
denominator for this category is 16+18, or 34.

Subtable 2: All and Gender

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does contribute to the
subtable, PROC TABULATE uses it as the denominator definition. This denominator
definition tells PROC TABULATE to sum the frequency counts for all occurrences of
Gender in the subtable.

For example, the denominator for the category all, female is the sum of the
frequency counts for all, female and all, male. The corresponding frequency counts
are 61 and 62. Therefore, the denominator for cells in this subtable is 61+62, or 123.

1240

A Closer Look A Chapter 37

Subtable 3: Occupation and All

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does not contribute to
the subtable, PROC TABULATE looks at the next element in the denominator
definition, which is All. The variable All does contribute to this subtable, so PROC
TABULATE uses it as the denominator definition. All is a reserved class variable with
only one category. Therefore, this denominator definition tells PROC TABULATE to use
the frequency count of All as the denominator.

For example, the denominator for the category clerical, all is the frequency
count for that category, 28.

Note: In these table cells, because the numerator and the denominator are the
same, the row percentages in this subtable are all 100. A

Subtable 4: All and All

PROC TABULATE looks at the first element in the denominator definition, Gender,
and asks if Gender contributes to the subtable. Because Gender does not contribute to
the subtable, PROC TABULATE looks at the next element in the denominator
definition, which is All. The variable All does contribute to this subtable, so PROC
TABULATE uses it as the denominator definition. All is a reserved class variable with
only one category. Therefore, this denominator definition tells PROC TABULATE to use
the frequency count of All as the denominator.

There is only one category in this subtable: all, all. The denominator for this
category is 123.

Note: In this table cell, because the numerator and denominator are the same, the
row percentage in this subtable is 100. A

Column Percentages
The part of the TABLE statement that calculates the column percentages and labels the
row is

pctn<occupation all>=’Column percent’

Consider how PROC TABULATE interprets this denominator definition for each
subtable.

The TABULATE Procedure /A A Closer Look 1241

Subtable 1: Occupation and Gender

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does contribute to the subtable, PROC TABULATE uses it as the denominator
definition. This denominator definition tells PROC TABULATE to sum the frequency
counts for all occurrences of Occupation within the same value of Gender.

For example, the denominator for the category manager/supervisor, male is the
sum of all frequency counts for all categories in this subtable for which the value of
Gender is male. There are four such categories: technical, male; manager/
supervisor, male; clerical, male; and administrative, male. The corresponding
frequency counts are 18, 15, 14, and 15. Therefore, the denominator for this category is
18+15+14+15, or 62.

Subtable 2: All and Gender

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does not contribute to the subtable, PROC TABULATE looks at the next element in the
denominator definition, which is All. Because the variable All does contribute to this
subtable, PROC TABULATE uses it as the denominator definition. All is a reserved
class variable with only one category. Therefore, this denominator definition tells PROC
TABULATE to use the frequency count for All as the denominator.

For example, the denominator for the category all, female is the frequency count
for that category, 61.

Note: In these table cells, because the numerator and denominator are the same,
the column percentages in this subtable are all 100. A

1242

A Closer Look A Chapter 37

Subtable 3: Occupation and All

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does contribute to the subtable, PROC TABULATE uses it as the denominator
definition. This denominator definition tells PROC TABULATE to sum the frequency
counts for all occurrences of Occupation in the subtable.

For example, the denominator for the category technical, all is the sum of the
frequency counts for technical, all; manager/supervisor, all; clerical, all,
and administrative, all. The corresponding frequency counts are 34, 35, 28, and 26.
Therefore, the denominator for this category is 34+35+28+26, or 123.

Subtable 4: All and All

PROC TABULATE looks at the first element in the denominator definition,
Occupation, and asks if Occupation contributes to the subtable. Because Occupation
does not contribute to the subtable, PROC TABULATE looks at the next element in the
denominator definition, which is All. Because the variable All does contribute to this
subtable, PROC TABULATE uses it as the denominator definition. All is a reserved
class variable with only one category. Therefore, this denominator definition tells PROC
TABULATE to use the frequency count of All as the denominator.

There is only one category in this subtable: all, all. The frequency count for this
category is 123.

Note: In this calculation, because the numerator and denominator are the same, the
column percentage in this subtable is 100. A

Total Percentages
The part of the TABLE statement that calculates the total percentages and labels the
row is

pctn='Total percent’

If you do not specify a denominator definition, PROC TABULATE obtains the
denominator for a cell by totaling all the frequency counts in the subtable. Table 37.9
on page 1243 summarizes the process for all subtables in this example.

The TABULATE Procedure /A Program 1243

Table 37.9 Denominators for Total Percentages

Class variables contributing to

the subtable Frequency counts Total
Occupat and Gender 16, 18, 20, 15 14, 14, 11, 15 123
Occupat and All 34, 35, 28, 26 123
Gender and All 61, 62 123
All and All 123 123

Consequently, the denominator for total percentages is always 123.

Example 14: Specifying Style Elements for HTML Output

Procedure features:
STYLE= option in
PROC TABULATE statement
CLASSLEV statement
KEYWORD statement
TABLE statement
VAR statement
Other features: ODS HTML statement
Data set: ENERGY on page 1199
Formats: REGFMT, DIVFMT, and USETYPE on page 1200

This example creates HTML files and specifies style elements for various table
regions.

Program

The ODS HTML statement produces output that is written in HTML. The output from PROC
TABULATE goes to the body file.

ods html body='external-file';

The STYLE= option in the PROC TABULATE statement specifies the style element for the data
cells of the table.

proc tabulate data=energy style=[font_weight=bold];

The STYLE= option in the CLASS statement specifies the style element for the class variable
name headings.

style=[just=center];

The STYLE= option in the CLASSLEV statement specifies the style element for the class
variable level value headings.

1244

HTML Body File A Chapter 37

classlev region division type / style=[just=left];
The STYLE= option in the VAR statement specifies a style element for the variable name
headings.

var expenditures / style=[font_size=3];

The STYLE= option in the KEYWORD statement specifies a style element for keywords.The
KEYLABEL statement assigns a label to the keyword.

keyword all sum / style=[font width=wide];
keylabel all="Total";

The STYLE= option in the dimension expression overrides any other STYLE= specifications in
PROC TABULATE, including the STYLE= specification after the slash in the TABLE statement.

table (region all)*(division all*[style=[background=yellow]]),
(type all)*(expenditures*f=dollarl0.) /
style=[background=red]

The STYLE= option in the MISSTEXT option of the TABLE statement specifies a style element
to use for the text in table cells that contain missing values.

misstext=[label="Missing" style=[font weight=1light]]

The STYLE= option in the BOX option of the TABLE statement specifies a style element to use
for text in the empty box above the row titles.

box=[label="Region by Division by Type"
style=[font_style=italic]];

The FORMAT statement assigns formats to Region, Division, and Type. The TITLE statements
specify the titles.

format region regfmt. division divfmt. type usetype.;
title ’'Energy Expenditures’;
title2 ’'(millions of dollars)’;

run;

The ODS HTML statement closes the HTML destination.

ods html close;

HTML Body File

The TABULATE Procedure /\ References

This table uses customized style elements to control font sizes, font widths, justification, and
other style attributes for the headings and data cells.

Energy Expenditures
(millions of dollars)

$7.477 $12,606
$19,379 $15,078 $34,457
$26,856 20,207 547,063
$5,476 $4,729 $10,205
$13,959 $12,619 $26,578
$19.435 $17,348 136,783
$7,477 $5,129 $12,606
$19,379 $15,078 $34,457
$5,476 $4,729 $10,205
$13,959 $12,612 $26,578
$46.201 $37,555 583,848

1245

References

Jain, Raj and Chlamtac, Imrich (1985), “The P2 Algorithm for Dynamic Calculation of
Quantiles and Historgrams without Storing Observations,” Communications of the

Association of Computing Machinery, 28:10.

1246 References A Chapter 37

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS®
Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-482-9

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any

means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®
indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

