and
.
.
.
.
.
.
.
and
are the vectors from the previous
exercise, explain why it is true that

Note - just computing both sides of the equation and comparing is not a sufficient explanation. Your explanation must include references to properties of the cross product.
perpendicular to
such that

where
and
.
is not equal to
. Remember
that just showing that the results are not the same for specific fixed
vectors is not
enough. Instead, you should do the calculations with arbitrary
three-dimensional vectors.
is perpendicular to
and perpendicular to
, where
and
are arbitrary three-dimensional vectors.

where
and
are arbitrary three-dimensional vectors, and
then explain how this identity implies the equation

where
is the angle between
and
.