Next: About this document ...
Up: lab_template
Previous: lab_template
Subsections
The purpose of this lab is to use Maple to study applications of
exponential and logarithmic functions. These are used to model many
types of growth and decay.
The simple model for growth is exponential growth, where
it is assumed that
is proportional to
. That is,
Separating the variables and integrating (see section 4.4 of the text),
we have
so that
In the case of exponential growth, we can drop the absolute value
signs around
, because
will always be a positive quantity.
Solving for
, we obtain
which we may write in the form
, where
is an
arbitrary positive constant.
In a sample of a radioactive material, the
rate at which atoms decay is proportional to the amount of material present.
That is,
where
is a constant. This is the same equation as in exponential growth,
except that
replaces
. The solution is
where
is a positive constant. Physically,
is the amount of
material present at
.
Radioactivity is often expressed in terms of an element's half-life.
For example, the half-life of carbon-14 is 5730 years. This statement means
that for any given sample of
, after 5730 years, half of it
will have undergone decay.
So, if the half-life is of an element Z is
years, it must be
that
, so that
and
.
What is usually called Newton's law of cooling is a simple model for
the change in temperature of an object that is in contact with an
environment at a different temperature. It says that the rate of
change of the temperature of an object is proportional to the
difference between the object's temperature and the temperature of the
environment. Mathematically, this can be expressed as the differential
equation
where
is the constant of proportionality and
is
the temperature of the environment. Using a technique called
separation of variables it isn't hard to derive the solution
where
is the temperature of the object at
.
Information can be thought of as of a physical quantity which can be measured. According to the Gallup Institute, information news diffuses through a fixed adult population of size
at a rate of time proportional to the number of people who have not heard the news.
If
is the number of people who have heard the news after t days, then
The initial condition
yields the solution
- Suppose that the population of a certain bacteria can be modeled by an exponential function. In a particular experiment, the number of bacteria was
at
. Four hours later, the bacteria was
. Find the value of the growth constant
and use it to predict the number of bacteria that would have been present after
hours.
- The worst nuclear accident in history happened in 1986 at the Chernobyl nuclear plant near Kiev in the Ukraine. An explosion destroyed one of the plant's four reactors, realeasing large amount of radioactive isotopes into the atmosphere. Consider 10 grams of the plutonium isotope Pu-239 released in the Chernobyl nuclear accident. This isotope has a half-life of
years. How long will it take for the 10 grams to decay to 1 gram?
- A thermometer registered
outside and then was brought into the house where the temperature was
. After 5 minutes, it registered
. When will it register
?
- Suppose that 75% of a freshman class of 500 students on a campus heard about the market crash on Wall Street 3 days after it happened. How long will it take for 99% of the freshman to hear the news?
Next: About this document ...
Up: lab_template
Previous: lab_template
Dina J. Solitro-Rassias
2010-10-07